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Abstract
While popular optimization methods such as
SGD, AdamW, and Lion depend on steepest de-
scent updates in either ℓ2 or ℓ∞ norms, there re-
mains a critical gap in handling the non-Euclidean
structure observed in modern deep networks train-
ing. In this work, we address this need by intro-
ducing a new accelerated ℓp steepest descent al-
gorithm, called STACEY, which uses interpolated
primal-dual iterate sequences to effectively nav-
igate non-Euclidean smooth optimization tasks.
In addition to providing novel theoretical guar-
antees for the foundations of our algorithm, we
empirically compare our approach against these
popular methods on tasks including image classi-
fication and language model (LLM) pretraining,
demonstrating both faster convergence and higher
final accuracy. We further evaluate different val-
ues of p across various models and datasets, un-
derscoring the importance and efficiency of non-
Euclidean approaches over standard Euclidean
methods. Code can be found at https://
github.com/xinyuluo8561/Stacey.

1. Introduction
Stochastic first-order methods have proven essential for effi-
ciently training modern deep learning models. Beyond the
basic stochastic gradient descent (SGD) algorithm (Robbins
& Monro, 1951) and its momentum-based variants (Nes-
terov, 1983; Polyak, 1964), a variety of adaptive methods
have been developed, such as AdaGrad (Duchi et al., 2011a),
Adam (Kingma & Ba, 2015), and AdamW (Loshchilov &
Hutter, 2019), which incorporate second-moment gradient
information to provide per-coordinate scaling. Meanwhile,
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more recent methods like signSGD (Bernstein et al., 2018)
and Lion (Chen et al., 2023) focus on using the sign of the
(stochastic) gradient.

Although these algorithms have shown impressive empirical
performance (sometimes exceeding that of standard adap-
tive methods), their theoretical analyses typically rely on
Euclidean (i.e., ℓ2) or ℓ∞-based assumptions. Specifically,
crucial to guarantees of finding ϵ-approximate stationary
points (Carmon et al., 2017; Ghadimi & Lan, 2013; Jin et al.,
2017) are two related choices: (i) the norm used to define
stationarity, and (ii) the corresponding notion of smoothness.
Classical analyses in deep learning often adopt Euclidean
smoothness (Ghadimi & Lan, 2013), while signSGD relies
on ℓ∞-based assumptions (Bernstein et al., 2018; Balles
et al., 2020).

Yet, there is mounting evidence—both theoretical and empir-
ical—suggesting that a more flexible ℓp perspective can cap-
ture the geometric structure of complex deep network objec-
tives far better than either p = 2 or p =∞ alone (Adolphs
et al., 2019; Cohen et al., 2021; Ghorbani et al., 2019; Jiang
et al., 2024; Li et al., 2020a; Papyan, 2018). For instance,
depending on the shape of the loss surface and the distri-
bution of gradients across coordinates, certain ℓp norms
with 2 < p < ∞ may lead to faster descent or improved
generalization. This leaves open a significant gap: How
can we develop and analyze optimizers in alternative non-
Euclidean regimes, namely those with general ℓp norms
where p ∈ (2,∞)?

To address this question, we propose a novel approach
that we term STACEY (Stochastic Steepest Descent with
Acceleration). Our development builds on insights from
both ℓp-steepest descent and non-Euclidean acceleration
techniques (Allen-Zhu & Orecchia, 2017; Diakonikolas &
Guzmán, 2024; Nemirovskii & Nesterov, 1985; Nesterov,
2005), combining primal-dual (Diakonikolas & Orecchia,
2019) iterates with an interpolation scheme designed specif-
ically for ℓp-based smoothness. While the notion of ac-
celeration is well understood in the classical (Euclidean)
setting (Nesterov, 1983), extending it to arbitrary ℓp norms
introduces a fundamental trade-off: although we may at-
tain improved geometry dependence (and thus potentially
faster practical convergence in certain regimes), the theoret-

1

https://github.com/xinyuluo8561/Stacey
https://github.com/xinyuluo8561/Stacey


STACEY: Promoting Stochastic Steepest Descent via Accelerated ℓp-Smooth Nonconvex Optimization

ical “acceleration exponent” necessarily decreases from 2
toward 1 as p grows large (Guzmán & Nemirovski, 2015;
Nemirovskii & Nesterov, 1985). Nonetheless, by situating
STACEY within this continuum of non-Euclidean optimizers,
we can reap meaningful benefits over purely Euclidean (e.g.,
SGD) and purely sign-based (e.g., signSGD) methods on
modern, large-scale tasks.

Our Contributions:

• Accelerated ℓp-based method. Drawing inspiration
from primal-dual interpolation techniques in the con-
vex setting (Allen-Zhu & Orecchia, 2017; Nesterov,
2005; Diakonikolas & Guzmán, 2024), we design
STACEY, an accelerated ℓp descent algorithm specif-
ically tailored to non-Euclidean smooth optimization
(Section 4).

• General ℓp convergence guarantees for non-convex
problems. We first establish stochastic ℓp steepest

descent guarantees E
[
∥∇f(x̂)∥p

∗

p∗

]
≤ ϵ at a rate

of O(ϵ−4), under standard variance-bounded and ℓp-
smoothness assumptions, where we let p∗ := p

p−1
(Section 4.1). Our results strictly generalize previous
guarantees for signSGD (p =∞).

• Practical performance on large-scale tasks. We com-
pare STACEY against popular optimizers such as SGD,
Adam, AdamW, and Lion on tasks ranging from im-
age classification to pretraining large language models
(Section 5). Our experiments show that STACEY can
converge faster and achieve higher accuracy than these
baselines, particularly when the geometry of the objec-
tive departs significantly from the Euclidean setting.

• Flexible norm choices. We further evaluate different
values of p ∈ (2,∞) across various model architec-
tures and datasets, illustrating the potential advantages
of tailoring the choice of norm to the problem geome-
try.

Taken together, our results highlight the importance of non-
Euclidean perspectives for contemporary machine learning
tasks, offering both theoretical insight and practical improve-
ment over classical (ℓ2-based) and sign-based (ℓ∞-based)
optimizers.

2. Related Work
Methods for non-Euclidean geometries. A significant
line of research has studied sign-based methods, which
can be viewed as (stochastic) steepest descent under the
ℓ∞ norm. For instance, Bernstein et al. (2018) introduced
signSGD and analyzed its convergence properties through

an ℓ2 majorization-based smoothness condition,1 showing
that in expectation, ∥∇f(x̂)∥1 can be driven below a pre-
scribed threshold. Similarly, Balles et al. (2020) investi-
gated the geometric underpinnings of sign-based updates,
highlighting how they relate to ℓ∞ steepest descent. Re-
cent work on Lion (Chen et al., 2023) and its generalization
Lion-K (Chen et al., 2024) further underscores the empirical
benefits of sign-driven coordinates in large-scale tasks.

However, sign-based approaches (p = ∞) represent just
one extreme of non-Euclidean geometry. The other well-
studied example is the classical ℓ2-based regime (e.g.,
vanilla SGD) (Ghadimi & Lan, 2013; Robbins & Monro,
1951), where standard notions of Euclidean smoothness and
approximate stationarity ∥∇f(x̂)∥2 ≤ ϵ underpin core theo-
retical results. Interpolating between these extremes (ℓ2 and
ℓ∞) by considering ℓp norms for 2 < p <∞ has remained
comparatively underexplored in the stochastic, non-convex
setting. One challenge is that, unlike in the Euclidean case,
the coordinate-scaling in an ℓp steepest-descent update is
not merely a straightforward unbiased estimator of the full-
batch direction, making a standard “SGD-style” analysis
more involved.

Methods for curvature-aware optimization. Another
line of work exploits local geometry by incorporating
second-order information, such as the Hessian or Fisher
information matrix, and develops techniques for their ef-
ficient approximation. K-FAC (Martens & Grosse, 2015)
approximates the Fisher information matrix using layer-wise
Kronecker-factored preconditioners for efficient second-
order updates. Shampoo (Gupta et al., 2018; Morwani et al.,
2025; Vyas et al., 2025) similarly employs per-dimension
Kronecker-factored preconditioners to approximate the gra-
dient’s second-moment matrix, enabling scalable curvature-
aware optimization for tensor-structured parameters. Sophia
(Liu et al., 2024) further improves scalability by approxi-
mating the diagonal of the Hessian using second-order mo-
mentum. In contrast, our method, STACEY, is a first-order
approach that leverages non-Euclidean geometry, rather than
local curvature, through a differing ℓp norm.

Why ℓp-based methods help for large models. A key
motivation for exploring ℓp-norms with p ∈ (2,∞) stems
from recent studies on the Hessian spectrum of large neural
networks (Ghorbani et al., 2019; Papyan, 2018). In particu-
lar, Ghorbani et al. (2019) provide evidence that the Hessian
eigenvalue density can be highly non-uniform, leading to
large curvature in certain subspaces while others remain
comparatively flat. Under standard ℓ2-based (Euclidean) as-
sumptions, these directions of high curvature can inflate the
global smoothness parameter L2, potentially slowing con-

1We provide a comparison of ℓ2 majorization and ℓp smooth-
ness conditions in Appendix B.
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vergence or complicating optimization. By transitioning to
ℓp-smoothness for p > 2, one can sometimes leverage a rea-
sonable Lipschitz constant Lp, as high-curvature directions
may not always dominate in the same way.

Formally, a function f is ℓp-smooth if, for all x, y ∈ Rd,

∥∇f(x)−∇f(y)∥p∗ ≤ Lp ∥x− y∥p,

where p∗ = p
p−1 is the dual value. Thus, the choice

of p shifts how curvature in different coordinates or sub-
spaces affects∇f . Because large-scale models often exhibit
anisotropic Hessians (Cohen et al., 2021; Li et al., 2020a),
an ℓp analysis can better mirror the true geometric struc-
ture of the objective. This observation aligns with analyses
in (Balles et al., 2020), where sign-based methods (i.e.,
ℓ∞) can exploit flat directions effectively; by continuity,
ℓp norms for p ∈ (2,∞) may interpolate between purely
Euclidean and purely sign-driven behaviors.

Two main factors motivate the study of general ℓp-norms
(2 < p <∞) in large-scale training:

1. Hessian Geometry and Tail Behavior. Large neu-
ral networks often exhibit Hessians whose eigenval-
ues and singular vectors follow nontrivial (sometimes
heavy-tailed) distributions (Ghorbani et al., 2019; Pa-
pyan, 2018). By choosing p to better accommodate
outlier directions or to exploit more uniform curvature
across coordinates, one can leverage better effective
ℓp-smoothness constant Lp.

2. Balancing Sparse and Dense Updates. Methods at
p =∞ (sign-based) produce coordinate-wise updates
of the same magnitude, while ℓ2-based approaches
“spread out” updates proportionally to gradient mag-
nitudes. In high dimensions, intermediate ℓp steps
can yield a better trade-off between these extremes,
potentially improving both speed of descent and gener-
alization (Cohen et al., 2021; Li et al., 2020a).

Trade-offs for non-Euclidean acceleration. Alongside
this matter of defining (and parameterizing) smoothness,
there is a second lens through which we observe the poten-
tial for general p, namely that of acceleration (Allen-Zhu
& Orecchia, 2017; Bai & Bullins, 2024a; Nemirovskii &
Nesterov, 1985; Nesterov, 1983; 2005). As we further dis-
cuss in Section 4, there is a fundamental trade-off (for con-
vex settings) between the rate of acceleration and the norm
used to measure the initial distance to the optimal solution.
Concretely, it is well known that, for convex f(x) that is
L-smooth with respect to ∥·∥2, the classic accelerated gradi-
ent descent (AGD) method of (Nesterov, 1983) converges at
the rate f(xT )− f(x∗) ≤ O

(
L∥x0−x∗∥2

2

T 2

)
, and this rate is

indeed tight (Nesterov, 2018; Nemirovskij & Yudin, 1983).

Importantly, we emphasize the appearance here of ∥·∥2 not
only in measuring smoothness, but also for the ∥x0 − x∗∥22
term.

Unfortunately, the standard analysis of AGD does not read-
ily adapt to alternative notions of smoothness, as the de-
sign of the algorithm is, in a sense, specific to Euclidean
settings; we refer the reader to the work of (Allen-Zhu &
Orecchia, 2017) for further discussion of this basic incom-
patibility. Nevertheless, several works (Diakonikolas &
Guzmán, 2024; Nemirovskii & Nesterov, 1985; Nesterov,
2005; Song et al., 2021)—including that of Allen-Zhu &
Orecchia (2017)—with optimal rates in the Euclidean set-
ting (Nesterov, 2018; Bai & Bullins, 2025), have provided
techniques for accelerating in non-Euclidean settings. In
particular, the approach of Nemirovskii & Nesterov (1985),
for convex f(x) that is Lp-smooth with respect to ∥·∥p,
leads to guarantees of the form

f(xT )− f(x∗) ≤ O

(
Lp∥x0 − x∗∥2p

T
p+2
p

)
. (1)

(See also, e.g., Theorem 2 in (Diakonikolas & Guzmán,
2024).) Moreover, these rates are likewise known to be
tight (Guzmán & Nemirovski, 2015).

Looking closely at these convergence guarantees, we may
first note that, for p = 2, the rate in equation 1 recovers that
of Nesterov (1983). On the other hand, for p→∞, while
∥x0−x∗∥2p can, at best, be as small as d

2
p−1∥x0−x∗∥22, we

also have that limp→∞ T− p+2
p = T−1—in which case the

benefit of acceleration disappears altogether—and in fact
this (limiting) rate essentially matches that of unaccelerated
ℓ∞ steepest descent (Kelner et al., 2014). Consequently,
these observations reveal the opportunity afforded by (non-
Euclidean) ℓp-based accelerated methods for other values
of p <∞, resulting from this trade-off between the depen-
dence on the problem geometry and the rate of acceleration.

3. Preliminaries and Assumptions
Throughout we let ∥·∥ and ∥·∥∗ denote a general norm and
its dual, respectively. In addition, we specify ∥·∥p to denote
the standard ℓp norm (1 ≤ p ≤ ∞) and ∥·∥p∗ := ∥·∥p/(p−1)

to denote its dual norm. For symmetric M ∈ Rd×d s.t.
M ≻ 0, we further let ∥·∥M denote the standard matrix
norm, i.e., ∥x∥M =

√
x⊤Mx for x ∈ Rd. For a vector

v ∈ Rd, we use superscript, i.e., v(i) to denote the ith

coordinate of v, and we let diag(v) denote the diagonal
matrix such that diag(v)i,i = v(i). We use subscript, e.g.,
θt, to denote a vector in the tth iteration. For brevity, we
use gt for the true gradient∇f(θt) and g̃t for the stochastic
gradient g(θt). We use sgn (·) to denote the sign function
and I[·] to denote the indicator function.
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Algorithm 1 STACEY(p,2) Optimizer
input p, β1, β2, α, τ, η, ϵ, λ, f
initialize θ0, z0,m0 ← 0

1: while θt+1 not converged do
2: g̃t ← g̃ s.t. E[g̃] = ∇f(θt)
3: ct+1 ← β1mt + (1− β1)g̃t
4: sϵ(x) = [sϵ1(x), · · · , sϵd(x)]⊤ where

sϵi (x) =
x(i)∣∣x(i)
∣∣ p−2
p−1 + ϵ

, ∀ i ∈ [d]

5: yt+1 ← θt − ηtsϵ (ct+1)
6: zt+1 = zt − αct+1

7: θt+1 = τzt+1 + (1− τ)yt+1 − ηtλθt
8: mt+1 = β2mt + (1− β2)g̃t
9: end while

10: return θt+1

We may also consider the following equivalent definition of
ℓp smoothness.

Assumption 1 (Smoothness in ℓp norm). Let f : Rd 7→ R
be L-smooth w.r.t. ∥·∥p for p ≥ 2. Then, for all x, y ∈ Rd,

∣∣f(y)− f(x)−∇f(x)⊤(y − x)
∣∣ ≤ L

2
∥y − x∥2p .

4. Accelerating Stochastic Steepest Descent
Inspired by previous techniques in non-Euclidean acceler-
ation (Allen-Zhu & Orecchia, 2017; Nesterov, 2005)—as
well as their successes, e.g., (Bullins, 2020; Jambulapati
et al., 2019; Sherman, 2017; Sidford & Tian, 2018)—we
introduce a practical acceleration scheme called STACEY
(Algorithm 1), which is specifically designed for ℓp-based
methods. Central to our approach is its reliance on two se-
quences of stochastic steps: 1) one sequence based on the
standard ℓp steepest descent direction (line 5), which we
show is theoretically well-grounded in the stochastic non-
convex setting; 2) another sequence—whose combination
with the first ultimately leads to acceleration—based on a
gradient descent direction (line 6), whose details we will
further discuss.

4.1. Analyzing Stochastic ℓp Descent

In this section, we present the stochastic ℓp descent al-
gorithm, which serves as the fundamental framework of
our approach, and establish its convergence guarantees.
As shown in Algorithm 3, its update step takes the un-
scaled form2 of its counterpart in the deterministic setting

2This is in line with signSGD (Bernstein et al., 2018) compared
to the scaled form in (Balles et al., 2020). In addition, we adopt

Algorithm 2 STACEY(p,p) Optimizer
input p, β1, β2, α, τ, η, ϵ, λ, f
initialize θ0, z0,m0 ← 0

1: while θt+1 not converged do
2: g̃t ← g̃ s.t. E[g̃] = ∇f(θt)
3: ct+1 ← β1mt + (1− β1)g̃t
4: sϵ(x) = [sϵ1(x), · · · , sϵd(x)]⊤ where

sϵi (x) =
x(i)∣∣x(i)
∣∣ p−2
p−1 + ϵ

, ∀ i ∈ [d]

5: yt+1 ← θt − ηts
ϵ (ct+1)

6: z
(i)
t+1 =

∣∣∣z(i)
t

∣∣∣p−2
z
(i)
t −αc

(i)
t+1∣∣∣∣∣∣∣z(i)

t

∣∣∣p−2
z
(i)
t −αc

(i)
t+1

∣∣∣∣ p−2
p−1

+ϵ

, ∀ i ∈ [d]

7: θt+1 = τzt+1 + (1− τ)yt+1 − ηtλθt
8: mt+1 = β2mt + (1− β2)g̃t
9: end while

10: return θt+1

Algorithm 3 Stochastic ℓp Descent
input p, η, f, θ0

1: for t = 0 to T − 1 do
2: s(x) = [s1(x), · · · , sd(x)]⊤ where

si(x) =
x(i)

|x(i)|
p−2
p−1

, ∀ i ∈ [d]

3: θt+1 = θt − ηs (g̃t) ▷ g̃t s.t. E[g̃t] = ∇f(θt)
4: end for
5: return θT

θ
(i)
t+1 = θ

(i)
t − η∥gt∥

p−2
p−1

p∗
g
(i)
t∣∣∣g(i)

t

∣∣∣ p−2
p−1

, which is derived from

the closed form of

θt+1 = argmin
θ

{
⟨ηgt, θ − θt⟩+

1

2
∥θ − θt∥2p

}
.

When p = ∞, Algorithm 3 reduces exactly to signSGD
(Bernstein et al., 2018).

For p > 2, we show in Theorem 1 that stochastic ℓp descent
converges in expectation to an ϵ-approximate stationary
point with respect to the dual norm at a rate of O(ϵ−4),
thereby generalizing the previous guarantees for signSGD
(p = ∞). In addition, we provide here a proof sketch,
deferring the complete proof to Appendix A.1. Curiously, as
we will see, moving from the ℓ2 setting (or even from the ℓ∞
setting) introduces certain technical considerations that need
to be addressed non-trivially. As standard in stochastic and

the unscaled version for clearer convergence analysis and a more
practical implementation.
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non-Euclidean settings (Ghadimi & Lan, 2013; Bernstein
et al., 2018), we rely on the following assumptions.

Assumption 2 (Unbiased Estimate). The stochastic gradi-
ent g̃ is an unbiased estimate of the true gradient g. That is,
E[g̃] = g.

Assumption 3 (Bounded Variance). For some data ξ, the
variance of each coordinate of the stochastic gradient is
bounded, i.e., ∀i ∈ [d], E[|g̃(i) − g(i)|2] ≤ σ2

i .

Corollary 1. By Assumption 3, E[∥g̃ − g∥22] ≤ σ2 where
for σ := ∥σ⃗∥2, σ⃗ = [σ1, · · · , σd]

⊤.

Corollary 2. If the stochastic gradient is an n-sample mini-
batch estimate, then ∀i ∈ [d], E[|g̃(i) − g(i)|2] ≤ σ2

i

n .

Assumption 4 (Bounded gradient). For G > 0, p ≥ 2, and
p∗ where 1

p + 1
p∗ = 1, ∥g̃∥p∗ ≤ G.

Corollary 3. By Assumption 4, we know that

(a) ∥g∥p∗ = ∥E [g̃]∥p∗ ≤ E [∥g̃∥p∗ ] ≤ G with Jensen’s
inequality.

(b) ∀ i ∈ [d],
∣∣g̃(i)∣∣ ≤ G and

∣∣g(i)∣∣ ≤ G.

We briefly justify the necessity of Assumption 4, which
arises from additional technical challenges. Specifically,
the coordinate-wise re-scaled update introduces bias un-
der standard assumptions, preventing the direct application
of conventional expectation and variance analyses as we
later elaborate in detail. Notably, similar assumptions are
also made when analyzing problems with complex struc-
tures, such as stochastic compositional (Wang et al., 2017),
composite (Wang et al., 2024; Duchi et al., 2011b), and
federated optimization (Li et al., 2020b; Yuan et al., 2021;
Bai & Bullins, 2024b). Now we introduce the convergence
result for ℓp steepest descent in the stochastic non-convex
setting.

Theorem 1 (Main). Running Algorithm 3 on some (possibly
non-convex) function f that satisfies Assumptions 1 to 4
yields

E

[
1

T

T−1∑
t=0

∥gt∥p
∗

p∗

]
≤ f0 − f∗

ηT
+

LηG
2

p−1

2

+
1

T

T−1∑
t=0

2p−1
p−1 G

1
p−1 ∥σ⃗∥1
√
nt

where f0 = f(θ0) and f∗ = f(θ∗), nt is the batch size in
iteration t and L, σ⃗, and G are constants from Assumption
1, 3, 4. Further letting the batch size nt = T , the number
of gradient call is N = T 2 for T iterations. With η =

1

L
1
2 G

1
p−1 T

1
2

we have

E

[
1

T

T−1∑
t=0

∥gt∥p
∗

p∗

]
≤

1

N
1
4

[
L

1
2G

1
p−1

(
f0 − f∗ +

1

2

)
+

2p− 1

p− 1
G

1
p−1 ∥σ⃗∥1

]
,

i.e., Algorithm 3 takes N ∈ O
(
ϵ−4
)

gradient queries to
reach an ϵ-approximate stationary point.

Proof Sketch. Starting with Assumption 1 and the descent
step in Algorithm 3,

f(θt+1) ≤ f(θt)− η ⟨gt, s(gt)⟩︸ ︷︷ ︸
A

+ η ⟨gt, s(gt)− s(g̃t)⟩︸ ︷︷ ︸
B

+
Lη2

2
∥s(g̃t)∥2p︸ ︷︷ ︸
C

,

where A = η∥gt∥p
∗

p∗ . In conventional first-order anal-
ysis, the inner product term B is supposed to cancel
out after taking expectation. In contrast, the closed-
form stochastic ℓp descent update is coordinate-wise
re-scaled, which makes the descent step biased, that is,
E[s(g̃)] ̸= s(f(x)). In the literature on biased gradient
descent (Stich & Ajalloeian, 2020; Demidovich et al.,
2023), the bias terms simply accumulate as constants
and do not decay with the iterations. Thus, this term
requires novel techniques to guarantee convergence.
Noticing that si(x) = x(i)

|x(i)|
p−2
p−1

= sgn(x(i))|x(i)|
1

p−1 ,

B = η
d∑

i=1

g
(i)
t

(
sgn

(
g
(i)
t

)
|g(i)t |

1
p−1 − sgn

(
g̃
(i)
t

)
|g̃(i)t |

1
p−1

)
= η

d∑
i=1

∣∣∣g(i)t

∣∣∣ (|g(i)t |
1

p−1 + |g̃(i)t |
1

p−1

)
I[

sgn
(
g
(i)
t

)̸
=sgn

(
g̃
(i)
t

)]

+ η
d∑

i=1

∣∣∣g(i)t

∣∣∣ ∣∣∣|g(i)t |
1

p−1 − |g̃(i)t |
1

p−1

∣∣∣ I[
sgn

(
g
(i)
t

)
=sgn

(
g̃
(i)
t

)].

Denote the first term as B1 and the second B2. The
|g(i)t |

1
p−1 + |g̃(i)t |

1
p−1 term in B1 can be bounded by

2G
1

p−1 with Corollary 3, after which we take expectation,
turning the indicator into a probability, and Lemma 2

in Appendix A.1 shows E [B1] ≤ 2ηG
1

p−1 ∥σ⃗∥1√
nt

using
Markov’s inequality.

B2 requires more sophisticated handling since we
cannot push the expectation through due to the data
dependence of the term

∣∣∣|g(i)t |
1

p−1 − |g̃(i)t |
1

p−1

∣∣∣, nor does

P
[
sgn

(
g
(i)
t

)
= sgn

(
g̃
(i)
t

)]
give us much information.

We instead take the zeroth-order Taylor expansion so
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that ∀ i ∈ [d], ∃ ζ(i) between g
(i)
t and g̃

(i)
t such that

|g(i)t |
1

p−1 = |g̃(i)t |
1

p−1 +
1

p− 1
sgn(ζ(i))

∣∣∣ζ(i)∣∣∣ 2−p
p−1

(
g
(i)
t − g̃

(i)
t

)
.

In addition, we have∣∣∣|g(i)t |
1

p−1 − |g̃(i)t |
1

p−1

∣∣∣
=

1

p− 1
sgn(ζ(i))

∣∣∣ζ(i)∣∣∣ 2−p
p−1

(
g
(i)
t − g̃

(i)
t

)
.

Furthermore, given sgn
(
g
(i)
t

)
= sgn

(
g̃
(i)
t

)
, it is either∣∣∣g(i)t

∣∣∣ ≤ ∣∣ζ(i)∣∣ ≤ ∣∣∣g̃(i)t

∣∣∣ or
∣∣∣g(i)t

∣∣∣ ≥ ∣∣ζ(i)∣∣ ≥ ∣∣∣g̃(i)t

∣∣∣. Ap-

pendix A.1 Lemma 3 shows that E [B2] ≤ ηG
1

p−1 ∥σ⃗∥1

(p−1)
√
nt

in
either case.

Term C is usually turned into mean-squared error that co-
incides with variance in an unbiased setting, which the
bounded variance assumption can directly handle. This
is not the case for our setting. It is worth noting that the
analysis of signSGD (Bernstein et al., 2018), a special case
of the ℓp setting with p = ∞, was able to push through
due to its update being in the very form of the sign of the
gradient, which is in itself bounded by the constant 1. Our
update, in contrast, is more complicated with the absolute
value of the coordinates of the gradient in the denomina-
tor, which is only lower bounded by 0, or some ϵ > 0
at best. Therefore, we directly apply Assumption 4 and

C = Lη2

2 ∥gt∥
2

p−1

p∗ ≤ Lη2G
2

p−1

2 . Moving term A to the left
hand side, telescoping across iterations, and dividing both
sides by ηT completes the proof. □

4.2. ℓp acceleration

We would note that for smooth convex optimization, (deter-
ministic) gradient descent can be accelerated to achieve a
rate of O(1/T 2). However, for stochastic first-order meth-
ods, it has been shown that a) in convex settings, SGD can-
not improve upon the standard O(1/

√
T ) rate when noise

parameter σ is large enough (Agarwal et al., 2009), and
b) in first-order smooth non-convex settings, SGD cannot
be accelerated (in theory) without additional assumptions
(in terms of gradient norm minimization), due to known
lower bounds (Arjevani et al., 2023). Nevertheless, standard
practical implementations of SGD are frequently designed
to introduce some notion of acceleration with momentum
(e.g., (Bernstein et al., 2018; Sutskever et al., 2013)), “push-
ing” the converging sequence further along the direction of
previous gradients.

In contrast, we take the view of acceleration not as a “push-
ing” (in the Euclidean sense), but rather as a (dynamic)
interpolation of two iterate sequences: one acting from a

(primal) steepest descent perspective (line 4 Algorithm 1),
while the other functions in a dual capacity (line 5 Algo-
rithm 1). An apparent distinction is that momentum, as a
separate functionality, can be applied on top of the accel-
eration scheme in STACEY(p,2), as demonstrated in lines 3
and 7 of Algorithm 1, for both the steepest descent and the
(Euclidean) mirror descent.

A Euclidean-based two-sequence interpolation was adopted
by Schedule-Free SGD/AdamW (Defazio et al., 2024),
which removes explicit learning-rate schedules while re-
taining strong performance. In the realm of non-Euclidean
methods, we contrast our algorithm with Lion-K (Chen
et al., 2024; Bernstein et al., 2018). While at first glance
it may seem that these methods may simply be a rewriting
of each other (based on the choice of parameters), a closer
inspection on the very first step reveals that such is not the
case:

Lion-K: θ1 = −η∇K ((1− β1)g̃0) ,

STACEY(p,2): θ1 = −(1− τ)ηsϵ ((1− β1)g̃0)

− τα(1− β1)g̃0.

where K(·) = ∥·∥p∗ and sϵ (·) is defined in Algorithm 1.
The key difference of STACEY(p,2) lies in the convex combi-
nation of a steepest descent step and a gradient descent step,
whereas Lion-K is composed of only the steepest descent
step. They coincide only when τ = 0 for STACEY(p,2), i.e.,
completely getting rid of the “coupling”, which then defeats
the purpose of our acceleration. In addition, there is no
choice of parameters for Lion-K to recover linear coupling.
As a result, they are not iterate-equivalent, which further
highlights the fundamental difference between “momentum”
and “acceleration”, a distinction which, crucially, does not
appear in the case of standard (Euclidean) AGD, i.e., when
both steepest and mirror descent steps are with respect to
Euclidean norms.

Further inspired by the fact that STACEY(p,2) breaks the
symmetry (in primal and dual trajectories) by coupling an
ℓp steepest descent step with an ℓ2-based mirror descent step,
we present the natural variant STACEY(p,p) (Algorithm 2),
for which we group ℓp steepest descent with a mirror descent
step having 1

p∥·∥
p
p (whose pth-order uniform convexity is

useful for non-Euclidean acceleration (Adil et al., 2024;
Contreras et al., 2024; Song et al., 2021)) as its distance
generating function. The closed-form mirror descent update
is presented in line 5 of the algorithm.

5. Experiments
In this section, we present empirical evidence that the
STACEY optimizer outperforms other optimizers in both
convergence speed and accuracy. We evaluate STACEY’s ef-
fectiveness on image classification (Section 5.1), and LLM
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Table 1. Image classification on CIFAR at the 50th, 100th, and 200th epochs. STACEY consistently outperforms other optimizers,
demonstrating both superior accuracy and faster convergence.

Optimizer Training NLL ↓ Testing ACC (%) ↑
@50 epoch @100 epoch @200 epoch @50 epoch @100 epoch @200 epoch

SGD w/ Momentum 0.0567 ± 0.0017 0.0441 ± 0.0014 0.0352 ± 0.0012 91.15 ± 0.30 92.02 ± 0.24 92.76 ± 0.13
Adam 0.0401 ± 0.0017 0.0182 ± 0.0017 0.0083 ± 0.0010 91.69 ± 0.18 92.13 ± 0.16 92.66 ± 0.36
AdamW 0.0590 ± 0.0010 0.0278 ± 0.0009 0.0195 ± 0.0015 90.59 ± 0.37 91.47 ± 0.42 92.12 ± 0.07
Lion (Chen et al., 2023) 0.1006 ± 0.0571 0.2226 ± 0.1410 0.0245 ± 0.0043 89.38 ± 2.02 89.19 ± 1.88 92.15 ± 0.32
STACEY(p,p) 0.0423 ± 0.0009 0.0118 ± 0.0014 0.0021 ± 0.0011 91.88 ± 0.21 92.79 ± 0.16 93.79 ± 0.38
STACEY(p,2) 0.0614 ± 0.0031 0.0131 ± 0.0027 0.0014 ± 0.0005 90.83 ± 0.32 92.70 ± 0.28 93.54 ± 0.06

Table 2. Image classification on ImageNet at the 20th, 40th, and 60th epochs. STACEY demonstrates superior test accuracy and faster
convergence compared to other optimizers.

Optimizer Training NLL ↓ Testing Top-1 ACC (%) ↑
@20 epoch @40 epoch @60 epoch @20 epoch @40 epoch @60 epoch

SGD w/ Momentum 2.0731 ± 0.0007 1.7926 ± 0.0006 1.4993 ± 0.0003 56.34 ± 0.27 63.54 ± 0.09 68.81 ± 0.54
AdamW 1.3337 ± 0.0008 0.9822 ± 0.0017 0.7395 ± 0.0029 66.12 ± 0.53 68.47 ± 0.14 69.31 ± 0.05
Lion (Chen et al., 2023) 1.3529 ± 0.0007 1.0948 ± 0.0126 0.8605 ± 0.0045 67.66 ± 0.03 68.43 ± 0.10 69.62 ± 0.11
STACEY(p,p) 1.4680 ± 0.0150 1.1636 ± 0.0159 1.0324 ± 0.0100 66.93 ± 0.10 69.15 ± 0.15 69.87 ± 0.14
STACEY(p,2) 1.8376 ± 0.0134 1.3781 ± 0.0187 1.1983 ± 0.0120 60.89 ± 0.12 66.34 ± 0.16 67.56 ± 0.15
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Figure 1. Learning curves of CIFAR classification with varying
ℓp-norm.

pretraining (Section 5.2). The hyperparameter choices and
tuning are summarized in Appendix C.

In all experiments, we underscore the efficiency of the
STACEY optimizer by comparing it against other optimiz-
ers as baselines including SGD (with momentum) (Nes-
terov, 1983; Polyak, 1964), Adam (Kingma & Ba, 2015),
AdamW (Loshchilov & Hutter, 2019), and Lion (Chen et al.,
2023).
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Figure 2. Learning curves of ImageNet classification at the first 6
epochs with varying ℓp-norm.

In real-world large datasets, such as training from scratch
on ImageNet (Deng et al., 2009) and LLM (LLaMA (Tou-
vron et al., 2023)) pretraining on C4 dataset, we further
demonstrate the necessity of utilizing different ℓp-norms
for specific tasks. For example, in the CIFAR (Krizhevsky,
2009) image classification, an ℓp-norm for p close to 2 de-
livers the best performance (Section 5.1), consistent with
the effectiveness of Euclidean-based optimizers. In contrast,
an ℓp-norm with p around 3 proves more effective in LLM
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Table 3. Training and testing loss of LLM pre-training at a series of steps. The proposed STACEY optimizer consistently achieves lower
loss than baselines at all steps.

Optimizer Training Loss Testing Loss
@5k step @10k steps @20k steps @30k steps @5k step @10k steps @20k steps @30k steps

SGD w/ Momentum 6.6704± 0.0129 6.5205± 0.0088 6.4206± 0.0055 6.3920± 0.0048 6.6558± 0.0131 6.5150± 0.0085 6.4173± 0.0038 6.3909± 0.0038
Adam 6.4548± 0.0028 6.3647± 0.0037 6.2851± 0.0030 6.2485± 0.0028 6.4493± 0.0017 6.3646± 0.0035 6.2820± 0.0037 6.2480± 0.0028
AdamW 5.6655± 0.0095 5.5172± 0.0081 5.4401± 0.0091 5.4268± 0.0096 5.6510± 0.0099 5.5171± 0.0080 5.4350± 0.0088 5.4240± 0.0093
Lion (Chen et al., 2023) 6.8722± 0.0656 6.8190± 0.0549 6.8021± 0.0451 6.7794± 0.0425 6.8624± 0.0587 6.8220± 0.0500 6.7954± 0.0438 6.7733± 0.0413

STACEY(p,p) 5.4016± 0.0107 4.9938± 0.0209 4.6492± 0.0112 4.4962± 0.0123 5.3616± 0.0068 4.9655± 0.0169 4.6372± 0.0116 4.4879± 0.0132
STACEY(p,2) 6.2492± 0.0060 6.0038± 0.0319 5.7210± 0.0363 5.5841± 0.0379 6.2312± 0.0065 5.9867± 0.0313 5.7062± 0.0375 5.5755± 0.0375
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Figure 3. Learning curves of LLM pretraining at the first 30K
iterations with varying ℓp-norm.

pretraining (Section 5.2). These results highlight the impor-
tance of developing non-Euclidean optimizers and adjusting
the choice of ℓp-norm to enhance performance across dif-
ferent tasks, and we would note this choice may further
benefit from, e.g., parameter-free approaches (Jacobsen &
Cutkosky, 2022).

5.1. Image Classification

We demonstrate improved accuracy and faster convergence
of the STACEY optimizer across image classification tasks
of varying scales, consistent with our algorithm’s design for
acceleration.

Training from scratch on CIFAR. We train
ResNet18 (He et al., 2016) on the CIFAR
dataset (Krizhevsky, 2009) for 200 epochs, with the
results presented in Table 1. We report training NLL and
testing accuracy at the 50th, 100th, and 200th epochs. The
proposed STACEY optimizer consistently outperforms all
compared optimizers. As shown in Fig. 1, a p-norm of 2

yields the best performance for the CIFAR dataset when
using the ResNet18 architecture.

Training from scratch on ImageNet. We train
ResNet50 (He et al., 2016) with a batch size 256 on
ImageNet (Deng et al., 2009) for 60 epochs.3 The learning
rate schedule is cosine decay with 10K steps of warm-up,
and the mix-precision training is used to reduce the memory
footprint. The learning curves are shown in Table 2.

5.2. Pretraining Large Language Models (LLMs)

We pretrain llama-100m (Touvron et al., 2023) on the
C4 subset4 using various optimizers with cosine scheduler.
The training and testing loss results, as presented in Ta-
ble 3, show the advantage of STACEY over alternative algo-
rithms. We additionally compare in Fig. 3 the performance
of STACEY across different choices of p, whereby we ob-
serve the best performance when p = 3, which contrasts
with the best results being observed when p = 2 in the CI-
FAR image classification tasks, as discussed in Section 5.1.

5.3. Discussion

As we observe throughout the experiments, STACEY demon-
strates superior performance over SGD, which showcases its
ability to adapt to a broader range of non-Euclidean geome-
tries. This adaptability verifies STACEY’s convergence for
general ℓp-norms, making it a better choice for optimization
tasks that present complex geometries and extend beyond
the conventional Euclidean frameworks.

Compared with Adam (Kingma & Ba, 2015) and
AdamW (Loshchilov & Hutter, 2019), the results of STACEY
suggests that the introduced acceleration technique is well-
aligned with the principles of non-Euclidean optimization.
In addition, they highlight how STACEY’s acceleration
mechanism, which is designed for a wider range of non-
Euclidean structure, can yield better performance than tradi-

3Due to computational resource limitations, the batch sizes
used in this paper are smaller than those in Lion’s original pa-
per (Chen et al., 2024).

4https://huggingface.co/datasets/
datablations/c4-subsets.
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tional adaptive methods.

Furthermore, STACEY’s improved performance over
Lion (Chen et al., 2023) highlights the effectiveness of in-
terpolating primal and dual sequences as an acceleration
strategy, in contrast to simply incorporating momentum.
The primal-dual interpolation ensures a more balanced and
stable progression towards optimality, leveraging informa-
tion from both primal and dual sequences. This strategy
allows STACEY to achieve faster convergence, even in chal-
lenging settings and complex tasks like large-scale image
classification and pretraining LLMs.

Algorithmic efficiency. We observe that STACEY has a 2d
memory overhead, as it needs to store both a momemtum
and a dual vector. This matches the memory overhead of
Adam, which requires storing two moment vectors, and the
per-iteration cost, in terms of basic arithmetic operations, is
also comparable to that of Adam. Whereas methods such
as SGD with momentum and Lion require only a single
momentum vector, we would note that the overhead of the
additional dual variable in STACEY is precisely what enables
its ℓp-based acceleration.

6. Conclusion
In this paper, we have presented a new approach to stochas-
tic non-convex optimization by leveraging non-Euclidean
ℓp geometry. We first established that stochastic ℓp steep-
est descent converges at a rate of O(ϵ−4) in expectation
to a stationary point under ℓp-smoothness assumptions,
thus strictly generalizing previous analyses for signSGD
(p = ∞). Building on these foundations, we introduced
STACEY, an accelerated algorithm that combines stochas-
tic ℓp descent with primal-dual interpolation techniques to
effectively navigate non-Euclidean optimization landscapes.

Our results highlight how acceleration in ℓp spaces can
yield improved geometry-dependent performance compared
to Euclidean and ℓ∞-based updates. In extensive experi-
ments on large-scale image classification and language mod-
eling, STACEY consistently achieved faster convergence
and higher accuracy than popular optimizers such as SGD,
AdamW, and Lion. Moreover, we demonstrated the versa-
tility of choosing different p ∈ (2,∞) to tailor the descent
geometry to diverse model architectures and datasets. Over-
all, our contributions underscore both the theoretical and
practical benefits of pursuing non-Euclidean perspectives
for addressing the complexities of modern machine learning
tasks.
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P. A guide through the zoo of biased SGD. In Thirty-
seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/
forum?id=OCtv4NyahI. (Cited on page 5.)

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE Conference on Computer Vision and Pat-
tern Recognition, pp. 248–255. Ieee, 2009. (Cited on
pages 7, 8, and 17.)

Diakonikolas, J. and Guzmán, C. Complementary com-
posite minimization, small gradients in general norms,
and applications. Mathematical Programming, pp. 1–45,
2024. (Cited on pages 1, 2, and 3.)

Diakonikolas, J. and Orecchia, L. The approximate duality
gap technique: A unified theory of first-order methods.
SIAM Journal on Optimization, 29(1):660–689, 2019.
(Cited on page 1.)

Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient
methods for online learning and stochastic optimization.
Journal of Machine Learning Research, 12(7), 2011a.
(Cited on page 1.)

Duchi, J. C., Agarwal, A., and Wainwright, M. J. Dual aver-
aging for distributed optimization: Convergence analysis
and network scaling. IEEE Transactions on Automatic
control, 57(3):592–606, 2011b. (Cited on page 5.)

Ghadimi, S. and Lan, G. Stochastic first-and zeroth-order
methods for nonconvex stochastic programming. SIAM
journal on optimization, 23(4):2341–2368, 2013. (Cited
on pages 1, 2, and 5.)

Ghorbani, B., Krishnan, S., and Xiao, Y. An investiga-
tion into neural net optimization via Hessian eigenvalue
density. In International Conference on Machine Learn-
ing, pp. 2232–2241. PMLR, 2019. (Cited on pages 1, 2,
and 3.)

Gupta, V., Koren, T., and Singer, Y. Shampoo: Pre-
conditioned stochastic tensor optimization. In Interna-
tional Conference on Machine Learning, pp. 1842–1850.
PMLR, 2018. (Cited on page 2.)

Guzmán, C. and Nemirovski, A. On lower complexity
bounds for large-scale smooth convex optimization. Jour-
nal of Complexity, 31(1):1–14, 2015. (Cited on pages 2
and 3.)

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 770–778, 2016. (Cited on page 8.)

Jacobsen, A. and Cutkosky, A. Parameter-free mirror de-
scent. In Conference on Learning Theory, pp. 4160–4211.
PMLR, 2022. (Cited on page 8.)

Jambulapati, A., Sidford, A., and Tian, K. A direct Õ(1/ϵ)
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A. Proofs
A.1. Complete Proof for Theorem 1

Theorem 1 Running Algorithm 3 on some (possibly non-convex) function f that satisfies Assumptions 1 to 4 yields

E

[
1

T

T−1∑
t=0

∥gt∥p
∗

p∗

]
≤ f0 − f∗

ηT
+

LηG
2

p−1

2
+

1

T

T−1∑
t=0

2p−1
p−1 G

1
p−1 ∥σ⃗∥1
√
nt

where f0 = f(θ0) and f∗ = f(θ∗), nt is the batch size in iteration t and L, σ⃗, and G are constants from Assumption 1, 3, 4.
Further letting the batch size nt = T , the number of gradient call is N = T 2 for T iterations. With η = 1

L
1
2 G

1
p−1 T

1
2

we

have
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]
,

i.e., Algorithm 3 takes N ∈ O
(
ϵ−4
)

gradient queries to reach an ϵ-approximate stationary point.

Proof. Starting with Assumption 1 and the descent step in Algorithm 3,

f(θt+1) ≤ f(θt) + ⟨gt, θt+1 − θt⟩+
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2
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Now we analyze these terms one by one.
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B1 is bounded in expectation by 2ηG
1

p−1 ∥σ⃗∥1√
nt

in Lemma 2 and B2 is bounded in expectation by ηG
1
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nt

in Lemma 3.
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By telescoping through t = 0, · · · , T − 1, we get
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Lemma 2.
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Proof. By Corollary 3 (b),
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where for the last three inequalities we used Markov’s inequality, Jensen’s inequality, and Assumption 3.
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Lemma 3. E
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in which the second equality holds by taking the zeroth order Taylor expansion of
∣∣∣g(i)t

∣∣∣ 1
p−1

at g̃(i)t with Lagrange remainder,
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∣∣∣. Now we analyze these two cases respectively. We
write out the derivations separately for clarity and simplicity, alternatively one can merge these two cases with the law of
total expectation.
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Combining these two cases together (e.g., by the law of total expectation) completes the proof.

B. ℓ2 Majorization and ℓp Smoothness
An assumption of interest, studied by Bernstein et al. (2018) (as well as Karimi et al. (2016)), is that of ℓ2 majorization
(with respect to L⃗ = [L1, . . . , Ld]), meaning that for all x, y ∈ Rd,

∣∣f(y)− f(x)−∇f(x)⊤(y − x)
∣∣ ≤ 1

2

d∑
i=1

Li(y
(i) − x(i))2.

We may equivalently express this condition as 1-smoothness w.r.t. ∥·∥L, where L := diag(L⃗), i.e., for all x, y ∈ Rd,
∥∇f(y)−∇f(x)∥L−1 ≤ ∥y − x∥L.

Interestingly, we may observe that, for any 1 < ρ ≤ ∞ and letting ρ∗ := ρ
ρ−1 , we have

1

∥L⃗∥1/2ρ∗

∥∇f(y)−∇f(x)∥2ρ/(2ρ−1) ≤ ∥∇f(y)−∇f(x)∥L−1 ≤ ∥y − x∥L ≤ ∥L⃗∥1/2ρ∗ ∥y − x∥2ρ,

where the first inequality holds by reverse Hölder’s inequality, i.e., for u, v ∈ Rd,
d∑

i=1

|u(i)v(i)| ≥ ∥u∥1/q∥v∥ −1
q−1

(where we

choose q = 2ρ−1
ρ ), and the last inequality holds by Hölder’s inequality.
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Rearranging, we have ∥∇f(y)−∇f(x)∥2ρ/(2ρ−1) ≤ ∥L⃗∥ρ∗∥y − x∥2ρ, and so it follows that, for p > 2, ℓ2 majorization
implies ∥L⃗∥ p

p−2
-smoothness w.r.t. ∥·∥p. Thus, while this condition is sufficient to entail ℓp smoothness (as previously noted

by (Balles et al., 2020) in the case of p =∞), we nevertheless prefer to work directly with ℓp smoothness assumptions, as
we believe they provide a more natural pairing for the methods we consider.

C. Hyperparameter Choices
We summarize the hyperparameters used in our experiments in Tables 4, 5, and 6. These hyperparameters are determined
through a grid search. Specifically, we perform a search to identify appropriate values for the ℓp-norm, learning rate η, α,
and weight decay λ. This process involves an initial rough comparison across a range of magnitudes, followed by a more
precise grid search to determine the optimal values.

For fair comparison, all experimental settings, apart from the listed hyperparameters, follow the original papers of
AdamW (Loshchilov & Hutter, 2019) and Lion (Chen et al., 2023), and are kept consistent across all optimizers. For
example, data augmentations for ImageNet (Deng et al., 2009) and CIFAR (Krizhevsky, 2009) all include random cropping
and random horizontal flipping.

Table 4. CIFAR hyper-parameters.
Model Optimizer Batch Size p Learning Rate Schedule α β1 β2 λ τ ϵ

ResNet-18 SGD w/ Momentum 128 - 0.02 cosine decay - 0.9 - 0.0002 - -
ResNet-18 Adam (Kingma & Ba, 2015) 128 - 0.001 cosine decay - 0.9 0.999 0.0005 - 1e-8
ResNet-18 AdamW (Loshchilov & Hutter, 2019) 128 - 0.01 cosine decay - 0.9 0.999 0.0005 - 1e-8
ResNet-18 Lion (Chen et al., 2023) 128 - 0.001 cosine decay - 0.9 0.99 0.01 - -
ResNet-18 STACEY(p,p) 128 2 0.1 cosine decay 0.1 0.9 0.99 0.01 0.001 1e-12
ResNet-18 STACEY(p,2) 128 2 0.1 cosine decay 0.1 0.9 0.99 0.01 0.001 1e-12

Table 5. ImageNet hyper-parameters.
Model Optimizer Batch Size p Learning Rate Schedule α β1 β2 λ τ ϵ

ResNet-50 SGD w/ Momentum 256 - 0.01 cosine decay - 0.9 - 0.0005 - -
ResNet-50 AdamW (Loshchilov & Hutter, 2019) 256 - 0.002 cosine decay - 0.9 0.999 0.005 - 1e-4
ResNet-50 Lion (Chen et al., 2023) 256 - 3e-4 cosine decay - 0.9 0.99 0.01 - -
ResNet-50 STACEY(p,p) 256 3 0.01 cosine decay 0.001 0.9 0.999 0.001 0.001 1e-8
ResNet-50 STACEY(p,2) 256 2.8 0.01 cosine decay 0.001 0.9 0.999 0.001 0.001 1e-8

Table 6. Hyper-parameters for LLM pretraining.
Model Optimizer Batch Size p Learning Rate Schedule α β1 β2 λ τ ϵ

llama-100m SGD w/ Momentum 16 - 0.01 cosine decay - 0.9 - 0.0005 - -
llama-100m Adam (Kingma & Ba, 2015) 16 - 0.0001 cosine decay - 0.9 0.999 0.01 - 1e-8
llama-100m AdamW (Loshchilov & Hutter, 2019) 16 - 0.0001 cosine decay - 0.9 0.999 0.05 - 1e-8
llama-100m Lion (Chen et al., 2023) 16 - 0.05 cosine decay - 0.9 0.999 0.01 - -
llama-100m STACEY(p,p) 16 3 0.01 cosine decay 0.1 0.9 0.99 0.01 0.001 1e-8
llama-100m STACEY(p,2) 16 2.8 0.01 cosine decay 0.1 0.9 0.99 0.0005 0.001 1e-8
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