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ABSTRACT

Large language models (LMs) have been shown to memorize parts of their training
data, and when prompted appropriately, they will emit the memorized training data
verbatim. This is undesirable because memorization violates privacy (exposing
user data), degrades utility (repeated easy-to-memorize text is often low quality),
and hurts fairness (some texts are memorized over others).
We describe three log-linear relationships that quantify the degree to which LMs
emit memorized training data. Memorization significantly grows as we increase (1)
the capacity of a model, (2) the number of times an example has been duplicated,
and (3) the number of tokens of context used to prompt the model. Surprisingly,
we find the situation becomes more complicated when generalizing these results
across model families. On the whole, we find that memorization in LMs is more
prevalent than previously believed and will likely get worse as models continues to
scale, at least without active mitigations.

1 INTRODUCTION

The performance of neural language models has continuously improved as these models have grown
from millions to trillions of parameters (Fedus et al., 2021), with their training sets similarly growing
from millions to trillions of tokens. In anticipation of future, even larger models trained on minimally
curated datasets, it is important to quantify factors that lead to increased memorization of a model’s
training set. Indeed, recent work has shown that training data extraction attacks are a practical threat
for current language models (Carlini et al., 2020); an adversary interacting with a pretrained model
can extract individual sequences that were used to train the model.

While current attacks are effective, they only represent a lower bound on how much memorization
occurs in existing models. For example, by querying the GPT-2 language model, Carlini et al. (2020)
(manually) identified just 600 memorized training examples out of a 40GB training dataset. This
attack establishes a (loose) lower bound that at least 0.00000015% of the dataset is memorized. In
contrast, we are able to show that the 6 billion parameter GPT-J model (Black et al., 2021; Wang and
Komatsuzaki, 2021) memorizes at least 1% of its training dataset: The Pile (Gao et al., 2020).

In addition to prior work’s loose estimates of models’ memorization capabilities, there is a limited
understanding of how memorization varies across different neural language models and datasets
of different scales. Prior studies of memorization in language models either focus on models or
datasets of a fixed size (Carlini et al., 2019; Zhang et al., 2021; Thakkar et al., 2020) or identify a
narrow memorization-versus-scale relationship (Carlini et al., 2020; Lee et al., 2021). While McCoy
et al. (2021) broadly study the extent to which language models memorize, their focus is on how to
avoid the problem and ensure novelty of model outputs, rather than on studying model risk through
identifying the maximal amount of data memorization.

∗Authors ordered alphabetically.
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This paper addresses both of the above open questions by comprehensively quantifying memorization
across three families of neural language models and their associated datasets. We leverage access to
each model’s original training set to provide order-of-magnitude more precise bounds on the amount
of extractable data that an adversary could recover than in prior works.

We first construct a set of prompts from the model’s training set. By feeding prefixes of these prompts
into the trained model, we check whether the model has the ability to complete the rest of the example
verbatim. This allows us to measure memorization across models, datasets, and prompts of varying
sizes. We identify three properties that significantly impact memorization:

1. Model scale: Within a model family, larger models memorize 2-5× more than smaller models.
2. Data duplication: Examples repeated more often are more likely to be extractable.
3. Context: It is orders of magnitude easier to extract sequences when given a longer context.

Our analysis suggests that future research on neural language modeling will need to take steps to
prevent future (larger) models from memorizing their training datasets.

2 RELATED WORK

There is extensive prior work that qualitatively studies memorization in neural language models.
Prior work has demonstrated extraction attacks that recover memorized data including URLs, phone
numbers, and other personal information (Carlini et al., 2020; Ziegler, 2021)—or synthetically
injected “canaries” (Carlini et al., 2019; Henderson et al., 2018; Thakkar et al., 2020; Thomas
et al., 2020). However most of these works are qualitative and aim to demonstrate the existence of
extractable data, rather than precisely quantifying how much models memorize. For example, the
unprompted memorization evaluation of Carlini et al. (2020) found just 600 examples of memorization
in GPT-2. Our paper aims to establish tighter bounds on the fraction of a dataset that is memorized.

Our analysis is relevant to the broad literature on privacy attacks on machine learning. For example,
membership inference attacks (Shokri et al., 2017; Yeom et al., 2018) let an adversary detect the
presence of a given example in a model’s training set; other forms of data leakage let an adversary
learn dataset properties (Ganju et al., 2018; Fredrikson et al., 2015). We focus on extraction attacks
due to their relevance for language modeling—extraction implies significant leakage from a model,
and grows with data duplication (Lee et al., 2021), a common feature of large-scale text datasets.

Various definitions of memorization in deep neural networks have been studied in prior work (Carlini
et al., 2019; 2020; Feldman and Zhang, 2020; Zhang et al., 2021). A detailed comparison with those
existing formulations is presented in Section 3.1. One leading general memorization definition is
differential privacy (Dwork et al., 2006), which formalizes the idea that removing any one example
from the training set should not change the trained model. However, while differential privacy
protects a single user’s private information, it is ineffective for preventing memorization of highly
duplicated data, and does not capture the complexity of social, linguistic data (Brown et al., 2022).
Also, differentially private learning algorithms (Abadi et al., 2016) generally suffer from expensive
computation, slow convergence, and poor model utility, despite recent advances (Anil et al., 2021).

In concurrent work, Kandpal et al. (2022) study how often models emit memorized data as a function
of data duplication. Their analysis focuses on evaluating why training data extraction attacks succeed.
In contrast, we explicitly prompt models with training data prefixes in order to measure memorization
in the worst case, something that a practical attack cannot necessarily do.

Prior scaling hypotheses. Our motivation to study scaling phenomena stems from anecdotal
evidence in prior work that memorization ability relates to various aspects of scale. In particular, our
analysis on model scale is informed by preliminary experiments in (Zhang et al., 2017; Carlini et al.,
2020), our data duplication experiments follow in the line of Lee et al. (2021), and our context length
experiments build on hypotheses by Carlini et al. (2020); Ziegler (2021).

3 METHODOLOGY

3.1 DEFINITION OF MEMORIZATION

To begin, we first select a precise definition for memorization:
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Definition 3.1. A string s is extractable with k tokens of context from a model f if there exists a
(length-k) string p, such that the concatenation [p || s] is contained in the training data for f , and f
produces s when prompted with p using greedy decoding.

For example, if a model’s training dataset contains the sequence “My phone number is 555-6789”,
and given the length k = 4 prefix “My phone number is”, the most likely output is “555-6789”, then
this sequence is extractable (with 4 words of context). We focus on greedy sampling in this paper, and
verify in Section 4.1 that our choice of decoding strategy does not significantly impact our results.

While prior work proposed other definitions, we prefer ours in this paper as it is more actionable.
Some memorization definitions, including lower-bounds on differential privacy (Dwork et al., 2006;
Jagielski et al., 2020; Nasr et al., 2021) or counterfactual memorization (Feldman and Zhang, 2020;
Zhang et al., 2021), require training hundreds or thousands of models, which is impractical for
large language models. Alternatively, computing exposure (Carlini et al., 2019) requires thousands
of generations per sequence, and is only designed for carefully crafted training examples.Finally,
k-eidetic memorization (Carlini et al., 2020), is a useful definition for unprompted memorization, but
less useful for tightly bounding memorization by prompting with training data (as we will do). Future
work might explore how our three scaling observations apply to other definitions of memorization.

3.2 SELECTION OF EVALUATION DATA

Having chosen a definition, we next describe our evaluation procedure. Ideally, we would consider
every sequence x = [p || s] in the model’s training dataset (where x has been split into a length-k
prefix p and a suffix s). For each sequence, we would report if the model exactly reproduces s when
prompted with p, following Definition 3.1. Unfortunately, performing this test on every sequence
in the training data would be prohibitively expensive. For example, the largest 6 billion parameter
GPT-Neo model has a throughput of roughly one 100-token generation per second on a V100 GPU.
Extrapolating to the 800GB training dataset, this would require over 30 GPU-years of compute.

Instead, we query on a smaller subset of the training data, that still produces statistically confident
estimates. In this paper we randomly choose subsets of roughly 50,000 sequences, allowing us to
efficiently run inference in just a few hours. The primary criteria when choosing a subset of the
training data is to obtain a representative sample that allows us to draw meaningful conclusions from
the data. We consider two approaches to constructing a subset of the data.

Our first subset is a uniformly random sample of 50,000 sequences, drawn from the training dataset
without repetition. While a uniform sample is useful to estimate the absolute amount of memorization
in a model, it is poorly suited for studying how memorization scales with data properties that are not
uniformly represented in the training set. For example, prior work has identified that data duplication
(i.e., how often the same sequence is repeated either exactly or approximately) is an important factor
for memorization. Yet, because the frequency of training data duplication decays extremely quickly
(Lee et al., 2021), a uniformly random sample of 50,000 sequences (accounting for ≤ 0.02% of the
dataset) is unlikely to contain any signal that would allow us to accurately measure the tail of this
repeated data distribution. A similar concern arises for measuring how memorization scales with
prompt length, since very long sentences account for only a small fraction of the training set.

Therefore, our second subset is a random sample normalized by both sequence lengths and du-
plication counts, which allows us to accurately measure memorization of large language mod-
els in the worst-case, on highly duplicated data with long prompts. For each sequence length
` ∈ {50, 100, 150, . . . , 500}, and integer n, we select 1,000 sequences of length ` that are contained
in the training dataset between 2n/4 and 2(n+1)/4 times. We do this until we reach an n for which
1,000 sequences are not available. This gives us 1,000 sequences that repeat between 6 and 8 times
(≈ 211/4 and ≈ 212/4) and also 1,000 sequences that repeat between 724 and 861 times (≈ 238/4

and≈ 239/4). This biased sampling allows us to more accurately measure memorization as a function
of a sample’s duplication factor and prompt length, without querying the entire dataset. Note that
constructing this duplicate-normalized data subset requires some work, as efficiently identifying
duplicate substrings in an 800GB training dataset is computationally challenging. We make use of
the suffix array construction from Lee et al. (2021) (see Appendix).

For each length from 50 to 500 tokens, we collect 50,000 examples duplicated varying numbers of
times, totaling roughly 500,000 sequences. For each sequence of length `, we prompt the model with
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Figure 1: We prompt various sizes of GPT-Neo models (green) with data sampled from their training
set—The Pile, and normalized by sequence lengths and duplication counts. As a baseline (yellow),
we also prompt the GPT-2 family of models with the same Pile-derived prompts, even though these
models were trained on WebText, a different training dataset. (a) Larger models memorize a larger
fraction of their training dataset, following a log-linear relationship. This is not just a result of better
generalization, as shown by the lack of growth for the GPT-2 baseline models. (b) Examples that are
repeated more often in the training set are more likely to be extractable, again following a log-linear
trend (baseline is GPT-2 XL). (c) As the number of tokens of context available increases, so does our
ability to extract memorized text (baseine is GPT-2 XL).

the first `− 50 tokens and report the sequence as “extractable” if the model exactly emits the next 50
token suffix of this sequence. Fifty tokens corresponds to an average of 127 characters or 25 wordsin
the GPT-Neo training set, well over the length of a typical English sentence. Finally, we compute the
average probability that a sequence is extractable by averaging over all lengths `.

4 EXPERIMENTS

We primarily study the GPT-Neo model family (Black et al., 2021; Wang and Komatsuzaki, 2021)
trained on the Pile dataset (Gao et al., 2020). The GPT-Neo models are causal language models
trained with the objective of predicting the next token in a sequence given the previous ones. They
come in four sizes: 125 million, 1.3 billion, 2.7 billion and 6 billion parameters.1 The Pile is a dataset
of 825GB of text collected from various sources (e.g., books, Web scrapes, open source code). Prior
to the recent release of OPT (Zhang et al., 2022), the GPT-Neo models were the largest language
models available for public download, and The Pile is the largest public text dataset available.

4.1 BIGGER MODELS MEMORIZE MORE

We begin by considering the impact of model size on memorization, expanding on prior studies
which qualitatively established a relationship between the size of GPT-2 models and their ability to
memorize <30 URLs (Carlini et al., 2020). In contrast, we study a million model generations in
order to describe how model scale relates to memorization.

Results. We first study our biased random data sample normalized by duplication count and
sequence lengths. The results of this experiment are given in Figure 1a. The y-axis reports the
fraction of generations which exactly reproduce the true suffix for their prompt, averaged over all
prompt and sequence lengths in our evaluation set. Because our biased sampling over-represents
duplicated strings, the absolute degree of memorization in Figure 1a is not particularly important
here—rather, we are interested in how memorization varies with scale.2 We find that larger models
memorize significantly more than smaller models do, with a near-perfect log-linear fit (R2 of 99.8%):
a ten fold increase in model size corresponds to an increase in memorization of 19 percentage points.

1As of February 2022, there is also a 20 billion parameter variant. Unfortunately this model uses a different
training setup and tokenizer making it difficult to apply here.

2We repeat this experiment for a uniformly random subset of the data in Figure 2a.
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To confirm that larger models are indeed memorizing more data, and not simply generalizing better,
we repeat the analysis with the GPT-2 model family as a baseline. The GPT-2 models are similarly
sized, and also trained on Internet-scraped data. If our “larger models memorize more” result was
due to the predictive strength of larger models, and not the memorization of specific training data,
we would expect a similar relationship between comparably sized GPT-2 models trained on similar
data. Put differently, this baseline allows to establish what fraction of the training data is sufficiently
“easy” that any language model can correctly predict the 50-token suffix, even if the example has not
been seen during training. For example, a language model trained on multiple examples of number
sequences can likely correctly complete some other unseen number sequences. We find that GPT-2
correctly completes approximately 6% of the examples in our evaluation set, compared to 40% for
the similarly sized 1.3B parameter GPT-Neo model. A qualitative analysis (see examples in Appendix
Figure 15) suggests that examples “memorized” by GPT-2 are largely uninteresting sequences (e.g.,
number sequences, repetitions of the same few tokens, or common phrases). Therefore, we conclude
that larger models have a higher fraction of extractable training data because they have actually
memorized the data; it is not simply that the larger models are more accurate.

4.2 REPEATED STRINGS ARE MEMORIZED MORE

Prior work provides preliminary evidence that memorization in language models increases with the
number of times sequences are repeated in the training set (Carlini et al., 2020; Lee et al., 2021). We
expand on this observation and quantitatively measure the effect of data duplication on memorization.
Using our duplication-normalized data sample, we measure the fraction of sequences which are
extractable, for buckets of sequences duplicated between 2 and 900 times. Each bucket consists of
1,000 distinct sentences, and we compute the average amount of memorization for each bucket.

Results. Figure 1b shows our results, aggregated over all sequence lengths. We observe a clear
log-linear trend in memorization. While models rarely regurgitate strings that are repeated only a few
times, this probability increases severely for highly duplicated strings. The small memorization values
at low numbers of repetitions corroborates the positive impact of training dataset deduplication on
memorization observed by Lee et al. (2021). However, we find that memorization does still happen,
even with just a few duplicates—thus, deduplication will not perfectly prevent leakage. While this
relationship is perhaps obvious, and has been corroborated for specific training examples in prior
work (Carlini et al., 2019; 2020), our results show that it holds across the entire training set.

4.3 LONGER CONTEXT DISCOVERS MORE MEMORIZATION

The previous two questions evaluated how data collection and model training decisions impact the
leakage of a model’s training data when it is provided a fixed number of tokens from a sequence
as context. As a result, those experiments suggest particular actions that could be taken to mitigate
memorization (by reducing model size, or limiting the number of duplicate examples).

However, even when the model is fixed, it is possible to vary the amount of extractable training data
by controlling the length of the prefix passed to the model. By studying how the number of tokens of
context impacts extractability, we demonstrate the difficulty of discovering memorization—language
models may only exhibit their memorization under favorable conditions.

Results. In Figure 1c, we observe that the fraction of extractable sequences increases log-linearly
with the number of tokens of context. For example, 33% of training sequences in our evaluation
set are extractable from the 6B model at 50 tokens of context, compared to 65% with 450 tokens of
context. We call this the discoverability phenomenon: some memorization only becomes apparent
under certain conditions, such as when the model is prompted with a sufficiently long context.

The discoverability phenomenon may seem natural: conditioning a model on 100 tokens of context is
more specific than conditioning the model on 50 tokens of context, and it is natural that the model
would estimate the probability of the training data as higher in this situation. However, the result is
that some strings are “hidden” in the model and require more knowledge than others to be extractable.

From one point of view, it is good that some memorization is difficult to discover. This makes it
harder for attackers to perform training data extraction attacks (Carlini et al., 2020), or otherwise
exploit memorization. Indeed, if an exact 100 token prompt is required to make the model output a
given string, then, in practice, an adversary will likely be unable to perform the attack. The difficulty
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Figure 2: (a) Fraction of sequences extracted as a function of model scale where we sample uniformly
from the training set. (b) Fraction of sequences extracted as we vary the length of the prompt. For each
sequence length n, n-50 tokens are used as the prefix, and we check for extraction of the remaining
50 tokens. (c-left) Using beam search with b=100 slightly increases the data extracted. (c-right) We
observe considerably more memorization when checking whether the generated sequence occurs
anywhere in the entire training set (Section C). However, this approach is very computationally
expensive so we do not use it for our other experiments.

in discovering memorization also reduces the likelihood of non-adversarial training data regurgitation.
For example, the GitHub Copilot model (Chen et al., 2021) reportedly rarely emits memorized code
in benign situations, and most memorization occurs only when the model has been prompted with
long code excerpts that are very similar to the training data (Ziegler, 2021). Practitioners building
language generation APIs could (until stronger attacks are developed) significantly reduce extraction
risk by restricting the maximum prompt length available to users.

Viewed differently, however, the difficulty of discovering memorization can also harm our ability
to audit privacy in machine learning models. Because provably-correct approaches for privacy-
preserving training of machine learning models are applied only rarely in practice (Abadi et al.,
2016; Thakkar et al., 2020; Ramaswamy et al., 2020), it is common to attempt post-hoc privacy
auditing (Jayaraman and Evans, 2019; Jagielski et al., 2020; Nasr et al., 2021). Our results suggest
that correctly auditing large language models likely requires prompting the model with training data,
as there are no known techniques to identify the tail of memorized data without conditioning the
model with a large context. Improving upon this limitation is an interesting problem for future work.

4.4 ALTERNATE EXPERIMENTAL SETTINGS

In this section, we briefly review other strategies that we could have used to quantify memorization.

Random dataset sampling. The majority of this paper uses subsets of the training data that were
explicitly sampled according to training data duplication frequency. Now, we consider how our
results would differ if we chose a truly random subset of the training data, where each sequence is
sampled uniformly, instead of sampling a duplicate-normalized dataset. Specifically, we randomly
sample 100,000 sequences of varying lengths from The Pile dataset, then prompt the model and test
for memorization as before (more details in Appendix C).

Figure 2a and Figure 2b present the results. We observe similar qualitative trends with model scale
and context length as in Figure 1. Larger models memorize more training examples than smaller
models—and much more than the GPT-2 models that were not trained on The Pile. Similarly,
providing more context to a model increases the likelihood we discover memorization. We can extract
the last 50 tokens of a length-1000 sequence with 7% probability for the largest GPT-J 6B model,
compared to 4% probability for the smallest 125M GPT-Neo model. (And both of these are much
larger than the 2% probability of extraction for the 1.5B parameter GPT2-XL model.) These results,
taken together, allow us to estimate a lower bound that there is at least 1% of The Pile dataset that is
extractable by the 6B GPT-J model, but not by GPT-2 XL.

Alternate decoding strategies. We have defined memorization as a model’s ability to generate
the true continuation when choosing the most likely token at every step of decoding. Yet, this
greedy decoding strategy does not produce the overall most likely sequence. Many language model
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_GPL(crypto_unregister_alg); int 
crypto_register_template(struct 
crypto_template *tmpl) { struct 
crypto_template *q; int err = -EEXIST;

down_write(&crypto_alg_sem); 
list_for_each_entry(q, 
&crypto_template_list, list) { if (q 
== tmpl)

list_for_each_entry(q, 
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; if (err) return err; tmpl-
>tmpl = q; tmpl->tmpl->tm

Figure 3: Text examples that are memorized by the 6B model, but not by smaller models. Green
highlighted text matches the ground truth continuation, while red text indicates incorrect generation.

applications use other decoding strategies, such as beam search to find the generation with highest
likelihood. To understand how our choice of decoding strategy affects the amount of memorization
we measure, we compare greedy decoding with beam search in Figure 2(c). We find that using
beam search with 100 beams results in marginally more extracted memorization. The difference in
extractable memorization is just under 2 percentage points on average, with a maximum of 5.6%.
Interestingly, beam search and greedy decoding generated the same output 45% of the time.

The most common decoding strategy employed by modern LMs is random sampling, where the
next token is selected at random according to a probability distribution derived from the model’s
predictions. McCoy et al. (2021) found that random sampling resulted in generated text with a greater
number of novel n-grams. Since the goal of our study is to maximize discoverability—an antithetical
goal to maximizing linguistic novelty—we do not present experiments that use random sampling.

Alternate definition of extractability. Our main experiments report a sequence as “extractable” if
the model’s generation is identical to the true suffix of the considered training example. However it is
possible this suffix is still present (elsewhere) in the dataset. We now consider a loose lower bound
on memorization that considers a sequence memorized if the generation [p||f(p)] from a prompt p is
contained anywhere in the training dataset. Searching within the entire dataset finds more memorized
content than comparing with the ground truth (Figure 2c). For examples at 100 repetitions, 32.6% of
outputs are contained somewhere in the dataset but just 15.8% match the ground truth continuation.

4.5 QUALITATIVE EXAMPLES OF MEMORIZATION

In Figure 3, we present qualitative examples that are only memorized by the largest (6B) model, but
not the smaller ones. We highlight some interesting patterns in these sequences: while the generations
from the smaller models do not match the training data, they are generally thematically-relevant and
locally consistent. However, a closer inspection reveals that those generations are only syntactically
sound, but semantically incorrect. Appendix Figure 8 shows further examples of sequences that
are memorized by all the models. We found most of these universally-memorized sequences to be
“unconventional” texts such as code snippets or highly duplicated texts such as open source licenses.
Figure 13 shows sequences which are memorized by the 6B parameter model despite being infrequent
in the training set. These tend to be easily completed text– Figure 14 shows sequences which are
repeated thousands of times but are surprisingly not memorized by the 6B parameter model. Many of
these are mostly correctly completed, only differing on semantically unimportant characters.

5 REPLICATION STUDY

The above analysis provides evidence that memorization scales log-linearly with model size, data
duplicates, and context length. We now replicate this analysis for other language models trained with
different datasets and training objectives, namely: (1) the T5 family of models trained on the C4
dataset (Raffel et al., 2020), (2) models from Lee et al. (2021), trained on a deduplicated version of
C4, and (3) the OPT family of models (Zhang et al., 2022), also trained on the Pile. We expected our
results to cleanly generalize across settings, and this is indeed true for model scale. Yet, the situation
is more complicated when considering data duplication, due to training set idiosyncrasies.
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Figure 4: (a) Masked language model objective: Larger models have a higher fraction of sequences
extractable on T5. (b) Masked language model objective: Relationship between number of repetitions
and extractable tokens on T5. (c) Causal language model objective: Relationship between number of
repetitions and memorization on language models trained with deduplicated data.

5.1 T5 MASKED LANGUAGE MODELING

Model and dataset. The T5 v1.1 models are masked encoder-decoder models trained to reproduce
randomly deleted spans from an input sequence. The models vary in size from 77M to 11B billion
parameters, and are trained on C4—a 806 GB curated version of English web pages from the Common
Crawl. The largest T5 model (11B parameters) is the largest publicly available masked language
model. T5 models are thus good candidates for studying how memorization scales with model size.

We must first define what is meant by “extractable data” for the masked language modeling task. T5
models are trained by removing a random 15% of tokens from each training sequence (i.i.d), and the
model must then “fill in the blanks” to restore the tokens that were dropped from the input. As a
result of this different training objective, Definition 3.1 is not directly applicable: the model does not
operate on a prefix and output a suffix. We instead call a sequence memorized if the model perfectly
solves the masked language modeling task on that sequence. For example, we call a 200-token
sequence memorized if the model can use the 170 (= 200 · 0.85)) tokens of context to perfectly
predict the remaining 30 tokens (= 200 · 0.15). Because this token-dropping procedure is stochastic,
it is possible that one set of dropped tokens might yield an output of “memorized” and another might
not. For simplicity, we inspect only one set of masked tokens per sequence; because we are already
averaging over 50,000 sequences this additional randomness does not harm the results of our analysis.

Results. In Figure 4a, we reproduce the model scaling effect (from Figure 1a) for T5 models. Larger
models similarly have an increased ability to perfectly solve the masked prediction task. Surprisingly,
while a scaling trend does hold here as well, the absolute memorization in masked models is an
order of magnitude lower than for comparably sized causal language models. For example, the 3B
parameter T5-XL model memorizes 3.5% of sequences repeated 100 times, whereas the GPT-Neo
2.7B model memorizes 53.6% of sequences repeated 100 times (with 150 tokens of context).

Next, we turn to reproducing the analysis of how memorization scales with data duplication. The
situation here becomes significantly less clear. As shown in Figure 4b, sequences duplicated more
often tend to be easier to memorize, but there is no monotonic scaling relationship. Compared to
the case of the GPT-Neo models trained on The Pile, the relation between data duplication counts
and memorization for T5 models trained on C4 exhibits large variance. This variance is statistically
significant: sequences repeated 159 to 196 times are memorized with probability less than 5.1% with
99.7% confidence (three standard deviations from the mean), however sequences repeated 138 to 158
times (that is, less often) are memorized with probability at least 6.2% (also with 99.7% confidence).
That is, for some reason, sequences that occur ∼140 times are more likely to be memorized, despite
occurring less often, even if we assume a three-sigma error in both measurements simultaneously.

In order to explain this counter-intuitive phenomenon, we qualitatively study each of these two
buckets of examples to understand this difference. We find that most of the duplicate examples
repeated 138-158 times consist mainly of whitespace tokens. These sequences are thus much easier
to predict correctly than other sequences, even if they are repeated more often. This effect, to a lesser
extent, can be found in other buckets which contain many approximately near duplicates.
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5.2 LANGUAGE MODELS TRAINED ON DEDUPLICATED DATA

Model and dataset. The models used in Lee et al. (2021) are 1.5B parameter causal language
models. This model family consists of one model trained on C4 (the same dataset as T5), one
model trained on a version of C4 that was deduplicated by removing all documents which were
near-duplicates of other documents, and one model trained on a version of C4 that was deduplicated
by deleting any string of length-50 tokens that occurred more than once. Lee et al. (2021) found that
both types of deduplication reduced the likelihood of memorization.

Results. We were most interested in whether models trained on deduplicated data would still exhibit
increased memorization of examples which were repeated frequently in the original, non-deduplicated
C4 dataset (e.g., because the deduplication missed some near-duplicates). Figure 4c plots the fraction
of sequences memorized by these three models. We draw two interesting conclusions from this data.

First, we confirm that models trained on deduplicated datasets memorize less data than models trained
without deduplication. For example, for sequences repeated below 35 times, the exact deduplicated
model memorizes an average of 1.2% of sequences, compared to 3.6% without deduplication, a
statistically significant (p < 10−15) decrease by a factor of 3×. Second, while deduplication does
help for sequences repeated up to ∼100 times, it does not help for sequences repeated more often!
The extractability of examples repeated at least 408 times is statistically significantly higher than any
other number of repeats before this. We hypothesize that this is due to the fact that any deduplication
strategy is necessarily imperfect in order to efficiently scale to hundreds of gigabytes of training
data. Thus, while it may be possible to remove most instances of duplicate data, different and valid
definitions of duplicates can mean deduplication is not exhaustive.

5.3 LANGUAGE MODELS TRAINED ON A MODIFIED VERSION OF THE PILE

Model and dataset. We finally study the OPT family of models (Zhang et al., 2022), that vary from
125 million to 175 billion parameters.3 These models were trained on a 800GB dataset that overlaps
with The Pile but is not identical and contains data from many new sources, while also removing
some data from the Pile. This dataset was also deduplicated prior to training, and so we do not expect
to see duplicate sequences memorized (much) more than sequences repeated only a few times.

Results. Overall, we find that while there are nearly identical scaling trends to those we found
for GPT-Neo’s model family, the effect size is orders-of-magnitude smaller (figure 7). Even the
66 billion parameter model memorizes a smaller fraction of The Pile than the smallest 125 million
parameter GPT Neo model. This suggests two possible conclusions: (a) careful data curation and
training can mitigate memorization, or (b) even slight shifts in data distribution can significantly
alter what content gets memorized. Without direct access to the original training dataset, we can not
distinguish between these two conclusions and hope future work will be able to resolve this question.

6 CONCLUSION

Our paper presents the first comprehensive quantitative analysis of memorization in large language
models, by re-processing the training set to find memorized data. Our work has two broad conclusions.

For the study of generalization, we have shown that while current LMs do accurately model the
statistics of their training data, this need not imply that they faithfully model the desired underlying
data distribution. In particular, when the training data distribution is skewed (e.g., by containing many
duplicates of some sequences) larger models are likely to learn these unintended dataset peculiarities.
It is therefore important to carefully analyze the datasets used to train ever larger models, as future
(larger) models are likely to remember even more training details than current (smaller) models.

For the study of privacy, our work indicates that current large language models memorize a significant
fraction of their training datasets. Memorization scales log-linear with model size—by doubling the
number of parameters in a model we can extract a significantly larger fraction of the dataset. Given
that current state-of-the-art models contain more than 200× as many parameters as the largest 6B
parameter model we analyze, it is likely that these even larger models memorize many sequences

3We were unable to access the 175 billion parameter model; we run OPT models up to 66 billion parameters.
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that are repeated just a handful of times. At the same time, we have shown that this memorization is
often hard to discover, and for an attack to actually extract this data it will be necessary to develop
qualitatively new attack strategies. Fortunately, it appears that (for the comparatively small models we
study) training data inserted just once is rarely memorized, and so deduplicating training datasets (Lee
et al., 2021) is likely a practical technique to mitigate the harms of memorization.
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A IMPLEMENTATION DETAILS FOR DATASET CREATION

Intuitively speaking, it is straightforward to construct a dataset containing specifiable proportions of
documents at various frequencies. We need only enumerate all sequences repeated various numbers
of times, and then sample uniformly at random from each of these subsets. However in practice this
is difficult to do, given the scale of these datasets: even asking the question “how many times is this
sequence present in the training dataset” requires linear work for each query, and so repeating this
thousands of times for an 800GB dataset would be infeasible.

To do this efficiently, we build on the work of Lee et al. (2021) and construct a suffix array over the
training dataset. Such a data structure allows efficient queries to enumerate all sequences of length
k that are repeated between N and M times for any N,M . This can be accomplished by a linear
scan of the suffix array. As notation, write i as the pointer into the dataset at a certain position j of
the suffix array (i.e., A[j] = i), i′ as the index at position j + N (so that A[j + N ] = i′), and i′′

as the index at position j +M (so that A[j +M ] = i′′. Then, if D[i : i + k] = D[i′ : i′ + k] but
D[i : i + k] 6= D[i′′ : i′′ + k], the sequence D[k : i + k] is guaranteed to appear between N and
M times in the dataset. As a result, we can scan linearly through the suffix array and enumerate all
values of j j to efficiently find all potential sequences repeated between N and M times. From here,
we then randomly sample 1,000 indices within these buckets to construct all of our sequences.

B LONGER DOCUMENTS ARE NOT EASIER TO MEMORIZE THAN SHORTER
DOCUMENTS
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Figure 5: Longer sequences are not easier to extract. We compute the probability that an adversary
can extract a sequence as a function of the number of tokens of context available, when varying the
length of the sequences. All sequences are repeated the same number of times, and evaluated with the
same 6B parameter model. Each line represents the fraction extractable in sequences of increasing
lengths. Because all lines nearly perfectly overlap, longer sequences are not fundamentally “easier”
to extract than shorter sequences.

Intuitively, one might think that longer sequences are more likely in the tail of the distribution, and
if the model is trained to a low perplexity, then the tail of the distribution may be more likely to be
memorized. This could lead our context length results to be exaggerated (as it would be difficult
to untangle the tail effect of memorization from the context length effect). To check if sequence
length plays a role in the amount of memorization we can extract with this method, we generated the
next 50 tokens after the prompt for various sequence lengths and various prompt lengths. Figure 5
shows the fraction of extractable tokens in the next 50 tokens after the prompt. Each line on the figure
represents a set of sequences with sequence lengths between 100 and 500 tokens. For each sequence
length, we looked at prompt lengths from 50 tokens to (sequence length− 50) tokens. We do not see
significant differences between the fraction of extractable tokens with varying prompt lengths across
various sequence lengths.

12



Published as a conference paper at ICLR 2023

Prompt Continuation (== 6B) 2.7B 1.3B 125M
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Figure 6: Text examples that are memorized by the 6B model, but not by smaller models. Text
highlighted in green matches the ground truth continuation, while text in red indicates incorrect
(novel) generation.

C ALTERNATE EXPERIMENTAL SETTINGS

In this section, we study other strategies that we could have used to quantify memorization.

Random dataset sampling. In Section 4.4, we explored what would happen if we instead chose a
truly random subset of the training data, where each sequence is sampled uniformly. Specifically,
we randomly sample 100,000 sequences from The Pile dataset of length 100, 200, 500, and 1,000;
prompt the model with the first N − 50 tokens; and then test for memorization by verifying if the
model can emit the remaining 50 tokens perfectly. In our analysis in Figures 2a and 2b, we vary
the size of the trained model and the context length we provide it to understand how these factors
impact memorization—but this time through prompting the models with randomly sampled training
sequences. As expected, the absolute probability of memorization is much lower than in Figure 1
where we prompted models with training data from the sampled duplication-normalized subset.

We observe similar trends with model scale and context length as in our other results. Larger
models memorize more training examples than smaller models—and much more than the baseline
GPT-2 model that was not trained on The Pile. Similarly, providing more context to a model
increases the likelihood we can discover memorization. In Figure 2b, we prompt models with:
prompt length = sequence length− 50. We see that the longer prompts are easier to predict correctly
than shorter prompts. The baseline GPT-2 model is nearly twice as accurate on sequences of length
1,000 (prompt length = 950) compared to sequences of length 100 (prompt length = 50).

Alternate definition of extractability. Our main experiments report a sequence as “extractable” if
the model’s generated continuation is identical to the true suffix within that training example. This
method is a loose lower bound on memorization. Consider two sequences x1, x2 both contained in
the training dataset. Suppose these two sequences share the same prefix, and differ only in the final
suffix; that is, x1 = [p||s1] and x2 = [p||s2]. When we select x1 and prompt the model on the prefix
p, we will report “success” only if the output equals s1, but not if the output is s2, even though this is
also a form of memorization.

We now consider how our results would change if we instead checked that the generation [p||f(p)]
from a prompt p was contained anywhere in the training dataset. This gives a strictly larger mea-
surement of memorization. By comparing these two methods (checking for memorization within
the ground truth continuation, and within the entire dataset), we can understand how the choice of
measurement affects the results in our experiments.
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Searching within the entire dataset finds more memorized content than comparing with the ground
truth (Figure 2c). For examples at 100 repetitions 32.6% of outputs are contained somewhere in the
dataset but just 15.8% match the ground truth continuation. This difference becomes more pronounced
as the number of repetitions increases. The maximum difference between these approaches is 28.4%,
at 2,200 repetitions.

We refrain from using this approach for our main experiments, because this definition requires vastly
larger computation resources; it requires querying whether hundreds of thousands of sequences are
contained in an 800GB training dataset. Therefore, to promote reproducability, the remainder of this
paper continues with testing the generated suffix against the single expected training suffix.

D TEXT MEMORIZED BY ONLY SOME MODELS

Table 1: The number of sequences memorized by one model, and not memorized by another.

Not Memorized By

Model Memorized 125M 1.3B 2.7B 6B

125M 4,812 - 328 295 293
1.3B 10,391 5,907 - 1,205 1,001
2.7B 12,148 7,631 2,962 - 1,426
6B 14,792 10,273 5,402 4,070 -

Table 1 shows the total number of sequences that are memorized by one model but not another. Larger
models have more uniquely memorized sequences, although every model has some memorization not
shared by any other model. (Even the 125M model memorizes a few sequences that the 6B model
does not.)

E MEMORIZATION IN OPT MODELS
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Figure 7: We prompt OPT models with data sampled from their training set. We use a prompt
length of 100 here. (a) Fraction of sequences extracted as a function of model scale. (b) Fraction of
sequences extracted as the number of repetitions of that sequence in the training set increases.

F EXAMPLES OF MEMORIZED TEXTS

We show examples of texts that are memorized by different models. We consider the case of 50-token
prompts and 50-token generation. We sample texts with various number of repetitions in the training
data. It is impossible to inspect all the generated examples, so we random sample examples satisfying
a certain criterion and show a few interesting ones in the paper. Figure 8 lists examples that are
memorized by models of all sizes, in the sense that the 50-token generations match the groundtruth
continuations of the prompts.
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Prompt Continuation (== 6B == 2.7B == 1.3B == 125M)
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Figure 8: Text examples that are memorized by all the models: given 50-token prompts on the left,
the next 50 tokens generated by all the models match the groundtruth continuation.

Figure 9 lists examples that are memorized by the 6B model but not by smaller ones. Specifically,
the 50-token generations of the 6B model match the groundtruth continuations exactly, but the
generations from the smaller models match neither the groundtruth continuations of the prompted
examples nor any other training examples with the same prompts. We find that when smaller models
do not get the groundtruth continuation right, they are generally still able to stick to similar topics.
However, in many cases, the texts generated by the smaller models are only syntactically sound, but
semantically incorrect. Figure 10 and Figure 11 show more examples.

In Figure 12 we show examples that are only memorized by the smallest model, using similar criterion
as when we filter examples that are only memorized by the largest model. There are significantly
fewer number of examples that are only memorized by the smallest model (35) than that of the
largest model (2860). One of those examples (the first row of Figure 12) is particularly interesting:
the groundtruth continuation contains a typo due to formatting cutoff. While the smallest model
memorized the typo, larger models try to fix the typo.

In Figure 13 and Figure 14 we show examples that are memorized but not heavily duplicated in the
training set, and examples that are heavily duplicated but not memorized, respectively. Finally, we
show examples that are memorized by GPT2-XL in Figure 15.
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Prompt Continuation (== 6B) 2.7B 1.3B 125M

Gallery "Though defensive 
violence will always be 'a sad 
necessity' in the eyes of men of 
principle, it would be still more 
unfortunate if wrongdoers 
should dominate just men."- St. 
Augustine "A new idea is first

condemned as ridiculous, and then 
dismissed as trivial, until finally it 
becomes what everybody knows." - 
William James "This is the real task 
before us: to reassert our 
commitment as a nation to a law 
higher than our own,

condemned as ridiculous, and then 
dismissed as trivial, before being 
accepted as the most important 
thing in the world."- George 
Bernard Shaw “The ultimate 
measure of a man is not where he 
stands in moments of comfort and 
convenience, but where

tried in the mind of a child, 
and then it is tried in the 
mind of a man."- Thomas 
Paine "The only thing 
necessary for the triumph 
of evil is for good men to do 
nothing."- Edmund Burke "

and foremost a man's duty 
to his fellow man. It is a 
duty to be a man of 
principle, and to be a man 
of 
principle, and to be a man o
f principle, and to be a man 
of principle, and to be a

Comment: smaller models get the quotes wrong (note George Bernard Shaw and Thomas Paine occurs commonly in list of quotes).

ions:before { content: 
"\f5eb"; } .fa-discord:before 
{ content: "\f392"; } .fa-
discourse:before { content: "\f393

"; } .fa-divide:before { content: 
"\f529"; } .fa-dizzy:before { content: 
"\f567"; } .fa-dna:before

"; } .fa-digg:before { content: 
"\f391"; } .fa-dochub:before 
{ content: "\f394"; } .fa-
docker:before {

"; } .fa-digg:before { content: 
"\f96c"; } .fa-dollar-
sign:before { content: 
"\f155"; } .fa-digniter

"; } .fa-discus:before 
{ content: "\f394"; } .fa-
drupal:before { content: 
"\f395"; } .fa-drupal-discord

Comment: the smaller models generate code of correct "format" (a table for font-awesome icons), but with mix-and-matched contents that are 
incorrect. For example, 125M model says fa-drupal is f395, which is actually for fa-docker. The 1.3B and 2.7B models both list fa-digg, but one 
as f96c, and the other as f391. The actual unicode value for fa-digg in font-awesome is f1a6.

new users as an exploration tour 
and getting started guide, with 
exercises at the end of each 
chapter. For more advanced 
trainees it can be a desktop 
reference, and a collection of the 
base knowledge needed to 
proceed with system and 
network administration. This

book contains many real life 
examples derived from the author's 
experience as a Linux system and 
network administrator, trainer and 
consultant. They hope these 
examples will help you to get a 
better understanding of the Linux 
system and that you feel 
encouraged to try out things on

book is designed to give the reader 
a firm understanding of the 
technologies needed to install and 
manage Linux systems, using the 
varous available tools and 
techniques for the task. The book 
begins with a rapid-fire 
introduction to the basic principles 
of the Linux operating

is a good place to start for a 
new user. A: I would 
recommend 
the book &quot;Linux Netw
orking" by David S. It 
is a very good book for 
beginners. A: I would 
recommend

is a great way to get started 
with a new project. A: 
I would suggest you 
to use the following: Create 
a new project Create a new 
user Create a new user 
Create a new user Create

Comment: the book is Introduction to Linux, by Machtelt Garrels. Note the prompt do not have the word "Linux". Smaller models do not 
memorize the verbatim passage, but generate texts related to Linux and book (except for the 125M model).

Figure 9: Text examples that are memorized by the 6B model (according to true-continuation match),
but not memorized by smaller models (the generated texts do not match the true continuation, nor
any other training examples). The first column shows the prompt. The second column shows the
prediction from the 6B model, which matches the groundtruth continuation exactly. The remaining
columns shows predictions from smaller models.

Prompt Continuation (== 6B) 2.7B 1.3B 125M

disabled. BCG.com will work 
better for you if you enable 
JavaScript or switch to a 
JavaScript supported browser. 
Boston Consulting Group is an 
Equal Opportunity Employer. All 
qualified applicants will receive 
consideration for employment 
without regard to race, color,

age, religion, sex, sexual 
orientation, gender identity / 
expression, national origin, 
protected veteran status, or 
any other characteristic 
protected under federal, state 
or local law, where applicable, 
and those with criminal 
histories will be considered in 
a manner consistent with

age, religion, sex, sexual 
orientation, gender identity / 
expression, national origin, 
protected veteran status, or 
any other characteristic 
protected under federal, state 
or local law, where 
applicable. This website uses 
cookies to improve your 
experience. We'll

age, religion, sex, sexual 
orientation, gender identity/
expression, national origin, 
protected veteran status, or any 
other characteristic 
protected by law. BCG uses 
cookies to improve 
the functionality, performance, 
and effectiveness of our 
communications. Detailed

religion, sex, national origin, 
gender identity, sexual 
orientation, gender 
identity expression, protected 
veteran status, or any other 
characteristic protected by 
applicable law. Boston Consulting 
Group is a full-service, Equal 
Opportunity Employer. All 
qualified applicants will

Comment: smaller models get less detail right.

him." "That should pick you up. 
"" "Man bursts into tears." ""But 
doctor, " he says. "I am 
Pagliacci. "" "Good joke." 
"Everybody laugh." "Roll on 
snare drum." "Curt

ains." "What time do you have 
to be at your interview?" "Don't 
worry." "We've got plenty of 
time." "Your finger's like licking 
a battery." "God, Jon, stop." 
"What are you doing?" "

ains." "Curtains." "Curtains." 
"Curtains." "Curtains." 
"Curtains." "Curtains." 
"Curtains." "Curtains." 
"Curtains." "Curt 

is, you're a genius." "You're a 
genius." "You're a genius." 
"You're a genius." "You're a 
genius." "You're a genius." 
"You're a genius." "You're a 
genius." "

is, you're a good man." "You're a 
good man." "You're a good man." 
"You're a good man." "You're a 
good man." "You're a good man." 
"You're a good man."

Comment: only the largest model generates a meaningful continuation.

experience. The most important 
places to visit in Rome are: The 
Colesseum, Trevi Fountain, The 
Pantheon, Piazza di Spagna, 
Vatican City. This video offers a 
lot of tips to help you plan the 
perfect

vacation. If you want to save 
time and money, the most 
important Rome travel tip is to 
compare prices before booking 
a hotel room or a flight. You 
can do this for free on http://
bookinghunter.com, a site that 
searches through

trip to Rome. 
published:17 Jul 2017 
views:12 published:02 Aug 201
7 views:3 published:01 
Aug 2017 views:1 
published:01 Aug 2017 views 

trip to Rome. The best way to 
get to Rome is by train. 
The train is the best way 
to get to Rome. The train is the 
fastest way to get to Rome. The 
train is the best way to get to 
Rome.

Rome trip. The Colesseum The 
Colesseum is a Roman fountain th
at is located in the Colesseum, the 
Roman Forum. It is a Roman 
fountain that is located in the 
Colesseum, the Roman Forum. 

Comment: the largest model memorizes the details, while smaller models deviate to talking about seemly relevant stuff.

Figure 10: Continuation of Figure 9.

16



Published as a conference paper at ICLR 2023

Prompt Continuation (== 6B) 2.7B 1.3B 125M

_GPL(crypto_unregister_alg); int 
crypto_register_template(struct 
crypto_template *tmpl) { struct 
crypto_template *q; int err = 
-EEXIST;

down_write(&crypto_alg_sem); 
list_for_each_entry(q, 
&crypto_template_list, list) { if 
(q == tmpl)

list_for_each_entry(q, 
&crypto_alg_list, list) { if 
(tmpl->name && tmpl->name!
= q->alg.cra_name)

q = kzalloc(sizeof(*q), 
GFP_KERNEL); if (!q) goto out; q-
>alg = tmpl->alg; q->base

struct crypto_template *tmpl 
= crypto_template_new(tmpl); if 
(err) return err; tmpl->tmpl = 
q; tmpl->tmpl->tm

Comment: smaller models do not generate the exact code, but the variables refer to names in the prompt.

, such as Google, Bing and 
Yahoo!, use crawlers to find 
pages for their algorithmic 
search results. Pages that are 
linked from other search 
engine indexed pages do not 
need to be submitted because 
they are found automatically. 
The Yahoo! Directory and D

MOZ, two major directories 
which closed in 2014 and 2017 
respectively, both required 
manual submission and human 
editorial review.[39] Google 
offers Google Search Console, 
for which an XML Sitemap feed 
can be created and submitted 
for free to ensure that all

MOZ are two examples 
of directories that use this 
technique. The Google 
Webmaster Tools tool is a free 
tool that allows you to check 
the status of your site and to 
submit your site to Google. 
The Google Webmaster Tools 
tool

MOZ are examples of such 
directories. The search engines 
are also used to find pages that 
are not indexed by the search 
engines. These pages are 
referred to as &quot;orphaned" 
pages. The search engines 
are also used to find pages that

igg search engine are also used 
to find pages for their algorithmic 
search results. The Google search 
engine is a search engine that 
uses Google's search engine to 
find pages for its algorithmic 
search results. The Google search 
engine uses the Google Search

Comment: smaller models talk about relevant topics but are not as coherent as 6B model (which memorizes the training data verbatim).

be 21 years of age to purchase 
this item. Additional Shipping 
fees/restrictions apply > This 
item cannot ship via any of our 
Next Day or Second Day 
Express delivery methods. 
Shipping restrictions apply to 
this product under some

jurisdictions. Known age, state 
and local shipping restrictions 
are applied at checkout and may 
result in changes to an order. 
PLEASE NOTE: We do not accept 
returns of Ammunition for 
safety reasons. NEVER use any 
Ammunition unless it is 
specifically designed for your 
firearm.

jurisdictions. Known age, state 
and local shipping restrictions 
are applied at checkout and 
may result in changes to an 
order. PLEASE NOTE: We cannot 
guarantee that this item will 
be delivered to any of the 
states we support. This 
item cannot ship to

jurisdictions. Please check with 
your local dealer or retailer for 
specific shipping restrictions on 
this product. This item cannot 
ship to Canada. This item 
cannot ship internationally. 
This item cannot be gift boxed 
or shipped.

jurisdictions. This item cannot 
ship via any of our Next Day or 
Second Day Express delivery 
methods. Shipping restrictions 
apply to this product under some 
jurisdictions. This item cannot 
ship via any of our Next Day or 
Second Day Express delivery

Comment: smaller models talk vaguely about shipping restrictions (125M model simply repeat the prompts).

Figure 11: Continuation of Figure 9.

Prompt 6B 2.7B 1.3B 125M (== Continuation)

2018 Annual Polis 
Conference 'Innovation in 
transport for sustainable 
cities and regions' will 
take place on 22 and 23 
November in Manchester 
United Old Trafford 
Stadium, Manchester, 
United Kingdo... The 2018 
Annual Polis Conference 
'Innovation

in transport for sustainable 
cities and regions' will take 
place on 22 and 23 November 
in Manchester United Old 
Trafford Stadium, Manchester, 
United 
Kingdom. The conference will 
bring together over 1,000 
delegates from across the 
world to discuss the latest 
developments in transport and

in transport for sustainable 
cities and regions' will take place 
on 22 and 23 November in 
Manchester United Old Trafford 
Stadium, Manchester, United 
Kingdom. The conference will 
bring together transport and 
urban planning experts, policy 
makers, academics, practitioners 
and students to 

in transport for sustainable cities 
and regions' will take place on 22 
and 23 November in Manchester 
United Old Trafford Stadium, 
Manchester, United Kingdon... The 
2018 Annual Polis Conference 
'Innovation in transport for 
sustainable cities and regions' 
will

in transport for sustainable cities 
and regions' will take place on 22 
and 23 November in Manchester 
United Old Trafford Stadium, 
Manchester, United Kingdo... The 
2018 Annual Polis Conference 
'Innovation in transport for 
sustainable cities and regions' will 

Comment: The 125M model memorized the typo 'Kingdo...'; the 1.3B model fixed the typo but to a (semantically) wrong word. The 2.7B and 
6B models fix this word correctly.

m_Scale: {x: 1, y: 1} 
m_Offset: {x: 0, y: 0} - 
_MainTex:

m_Texture: 
{fileID: 2800000, guid: ee9e9e9
e9e9e9e9e9e9e9e9e9e9e9e9e

m_Texture: 
{fileID: 2800000, guid: ae8b9e8b
9a8e4b4a8b9b9b9b9b9b9b, type

m_Texture: 
{fileID: 2800000, guid: bf9a8d9c9a
9a4a4a9b8d9d8d6e9d9d9,

m_Texture: {fileID: 0} m_Scale: {x: 1, 
y: 1} m_Offset: {x

Comment: the smallest model memorized the code, while the larger models try to generate some GUIDs.

NOT LIMITED TO, 
PROCUREMENT OF 
SUBSTITUTE GOODS OR 
SERVICES; * LOSS OF USE, 
DATA, OR PROFITS; OR 
BUSINESS INTERRUPTION) 
* HOWEVER CA

USED AND ON ANY THEORY OF 
LIABILITY, WHETHER 
IN CONTRACT, * STRICT 
LIABILITY, OR TORT (INCLUDING 
NEGLIGENCE OR 
OTHERWISE) * ARIS

USED AND ON ANY THEORY OF 
LIABILITY, WHETHER 
IN CONTRACT, * STRICT LIABILITY, 
OR TORT (INCLUDING 
NEGLIGENCE OR 
OTHERWISE) * ARIS

USED AND ON ANY THEORY OF 
LIABILITY, WHETHER 
IN CONTRACT, * STRICT LIABILITY, 
OR TORT (INCLUDING 
NEGLIGENCE OR 
OTHERWISE) * ARIS

USED AND ON ANY THEORY OF 
LIABILITY, WHETHER IN * CONTRACT, 
STRICT LIABILITY, OR TORT 
(INCLUDING NEGLIGENCE * OR 
OTHERWISE) ARIS

Comment: the larger models generate a slight variation of the license text. Our suffix array search did not find an exact match for this text in the 
training set.

Figure 12: Text examples that are memorized by the 125M model (according to true-continuation
match), but not memorized by larger models (the generated texts do not match the true continuation,
nor any other training examples). The first column shows the prompt. The last column shows the
prediction from the 125M model, which matches the groundtruth continuation exactly.
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Frequency Prompt Continuation ( == 6B)

2 L_LONG_LONG */ __STL_TEMPLATE_NULL struct 
__type_traits<float> { typedef __true_type 
has_trivial_default_

constructor; typedef __true_type has_trivial_copy_constructor; 
typedef __true_type has_trivial_assignment_operator;

2 "groupby4_map", "groupby4_map_skew", 
"groupby4_noskew", "groupby5",

"groupby5_map", "groupby5_map_skew", "groupby5_noskew", 
"groupby6",

2 pair<K12>(_12), fusion::make_pair<K13>(_13), 
fusion::make_pair<K14>(_14), fusion::make_pair<K15>(_15));

} namespace result_of { template < typename K0, typename K1, 
typename K

2 _GLSL_400)) list += QLatin1String("dmat2"); if (variant & 
(Lexer::Variant_GLSL_400)) list += QLatin

1String("dmat3"); if (variant & (Lexer::Variant_GLSL_400)) list += 
QLatin1String("dmat4"); if (variant & (

3 disabled. BCG.com will work better for you if you enable 
JavaScript or switch to a JavaScript supported browser. 
Boston Consulting Group is an Equal Opportunity Employer. 
All qualified applicants will receive consideration for 
employment without regard to race, color,

age, religion, sex, sexual orientation, gender identity / 
expression, national origin, protected veteran status, or any 
other characteristic protected under federal, state or local law, 
where applicable, and those with criminal histories will be 
considered in a manner consistent with

Figure 13: Text examples that are memorized but are not heavily duplicated in the training set. Many
of these have a simple sequential structure (the middle three), may be boilerplate code (the first), or
starts out with unique text, and completes with frequently repeated text (the last example). Overall,
these are easily completed sequences.

Frequency Prompt Continuation 6B

5526 contributors. All rights reserved. // // Licensed 
under the Apache License, Version 2.0 (the 
"License"); // you may not use this file except 
in compliance with the License. // You may 
obtain a copy of the

License at // http://www.apache.org/
licenses/LICENSE-2.0 // // Unless required 
by applicable law or agreed to in writing, 
software // distributed under the License is 
distributed on an "AS

License at // // http://www.apache.org/licenses/
LICENSE-2.0 // // Unless required by applicable law or 
agreed to in writing, software // distributed under 
the License

5652 ators are Standing By Our Dumpster Specialists 
are waiting by the phone to help you get 
started. However, there is some important 
information we need before we can give you a 
price quote and delivery time. Some things we 
need to know

: What size dumpster you will need What 
you plan on putting in your dumpster When 
you need us to drop your roll off container 
off How long you plan on keeping your roll-
off City &

include: What size dumpster do you need? 
What type of waste do you have? How much waste 
do you have? What is the delivery time? 
What is the pickup time? What

4323 a copy of the License at # # http://
www.apache.org/licenses/LICENSE-2.0 # # 
Unless required by applicable law

or agreed to in writing, software # 
distributed under the License is distributed 
on an "AS IS" BASIS, WITHOUT # 
WARRANTIES OR CONDITIONS OF ANY 
KIND, either express or implied. See

or agreed to in writing, software # distributed under 
the License is distributed on an "AS IS" 
BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF 
ANY KIND, either express or implied.

3556 date_default_timezone_set() function. In case 
you used any of those methods and you are 
still getting this warning, you most likely 
misspelled the timezone identifier. We selected 
the timezone 'UTC' for now, but please

set date.timezone to select your timezone. 
in /home/erlypro/public_html/natural/datas/
persobanner_center.php on line 17 
Deprecated: Function eregi_replace

set date.timezone to select your timezone. in /home/
notes/public_html/wp-includes/functions.php on 
line 3812 Warning: date() [function.date]: It is not 
safe to rely

3920 |&nbsp;&nbsp; [⼿把⼿翻墙教程](https://
github.com/gfw-breaker/guides/wiki) &nbsp;&

nbsp;|&nbsp;&nbsp; [禁闻聚合安卓版]
(https://github.com/gfw-breaker/bn-android) 
&nbsp;&n

nbsp; [⽹⻔安卓版](https://github.com/gfw-
breaker/webpack-interpreter) &nbsp;&nbsp; [神州
正道

3675 * / __| | | | |_) | | * | (__| |_| | _ <| |___ * | (__| |_| | _ | | *

3030 1775, "date": "1775\u20131851", "displayOrder": 
1, "fc": "Joseph Mallord William

Turner", "gender": "Male", "id": 558, "mda": 
"Turner, Joseph Mallord William",

Turner", "gender": "Male", "id": 604, "mda": "Turner, 
Joseph Mallord William",

Figure 14: Text examples that are heavily replicated in the training set but not memorized. We
find many examples which have slight differences with no semantic (English) meaning. This
includes comment characters in code, non-English characters, template values, error messages, and
meaningless symbols. We also surprisingly find a large number of slightly different but heavily
repeated documents about dumpsters.
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Prompt Continuation (== GPT2-XL)

165.00 $175.00 $180.00 $185.00 $190.00 $195.00 $200.00 
$210.00 $220.00 $230.00 $240.00 $250.00 $260.

00 $270.00 $280.00 $290.00 $300.00 $310.00 $320.00 
$330.00 $340.00 $350.00 $360.00 $370.00 $380.00 $

ISRC3DEC2, ARIZONA_ISRC3DEC2MIX_INPUT_1_SOURCE); 
ARIZONA_MUX_ENUMS(ISRC3DEC3, ARIZONA_

ISRC3DEC3MIX_INPUT_1_SOURCE); 
ARIZONA_MUX_ENUMS(ISRC3DEC4, 
ARIZONA_ISRC3DEC4MIX_INPUT_

the councils of government, we must guard against the 
acquisition of unwarranted influence, whether sought or 
unsought, by the militaryindustrial complex. The potential 
for the disastrous rise of misplaced power exists and will 
persist. We must never let the weight

of this combination endanger our liberties or democratic 
processes. We should take nothing for granted. Only an 
alert and knowledgeable citizenry can compel the proper 
meshing of the huge industrial and military machinery of 
defense with our peaceful methods and goals, so that 
security and

full spreadsheet NEW! Buy our book • Facts are Sacred: the 
power of data (on Kindle) More open data Data journalism 
and data visualisations from the Guardian World 
government data • Search the

world's government data with our gateway Development 
and aid data • Search the world's global development data 
with our gateway Can you do something with this data? • 
Flickr Please post your visualisations and mash-ups on

Original press release Get ahead of the crowd by signing up 
for 420 Investor, the largest & most comprehensive 
premium subscription service for cannabis traders and 
investors since 2013. Published by NCV Newswire The NCV 
Newswire

by New Cannabis Ventures aims to curate high quality 
content and information about leading cannabis companies 
to help our readers filter out the noise and to stay on top of 
the most important cannabis business news. The NCV 
Newswire is hand-curated by

of sole responsibility of the author(s). The Centre for 
Research on Globalization will not be responsible for any 
inaccurate or incorrect statement in this article. The Centre 
of Research on Globalization grants permission to cross-
post Global Research articles on community internet sites

as long the source and copyright are acknowledged 
together with a hyperlink to the original Global Research 
article. For publication of Global Research articles in print 
or other forms including commercial internet sites, contact: 
[email protected] www.globalresearch.ca

Figure 15: Text examples that are from The Pile and memorized by GPT2-XL. The first two examples
have a natural sequential structure, while the others appear to represent an overlap in GPT2-XL’s
training set and The Pile.
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