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Abstract: We introduce BEHAVIOR, a benchmark for embodied AI with 100
activities in simulation, spanning a range of everyday household chores such as
cleaning, maintenance, and food preparation. These activities are designed to
be realistic, diverse and complex, aiming to reproduce the challenges that agents
must face in the real world. Building such a benchmark poses three fundamental
difficulties for each activity: definition (it can differ by time, place, or person),
instantiation in a simulator, and evaluation. BEHAVIOR addresses these with three
innovations. First, we propose a predicate logic-based description language for
expressing an activity’s initial and goal conditions, enabling generation of diverse
instances for any activity. Second, we identify the simulator-agnostic features
required by an underlying environment to support BEHAVIOR, and demonstrate in
one such simulator. Third, we introduce a set of metrics to measure task progress
and efficiency, absolute and relative to human demonstrators. We include 500 hu-
man demonstrations in virtual reality (VR) to serve as the human ground truth. Our
experiments demonstrate that even state-of-the-art embodied AI solutions struggle
with the level of realism, diversity, and complexity imposed by the activities in our
benchmark. We make BEHAVIOR publicly available at behavior.stanford.edu to
facilitate and calibrate the development of new embodied AI solutions.
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1 Introduction

Embodied AI refers to the study and development of artificial agents that can perceive, reason, and
interact with the environment with the capabilities and limitations of a physical body. Recently,
significant progress has been made in developing solutions to embodied AI problems such as (visual)
navigation [1–5], interactive Q&A [6–10], instruction following [11–15], and manipulation [16–22].

To calibrate the progress, several lines of pioneering efforts have been made towards benchmarking
embodied AI in simulated environments, including Rearrangement [23, 24], TDW Transport Chal-
lenge [25], VirtualHome [26], ALFRED [11], Interactive Gibson Benchmark [27], MetaWorld [28],
and RLBench [29], among others [30–32]. These efforts are inspiring, but their activities represent
only a fraction of challenges that humans face in their daily lives. To develop artificial agents that can
eventually perform and assist with everyday activities with human-level robustness and flexibility, we
need a comprehensive benchmark with activities that are more realistic, diverse, and complex.

But this is easier said than done. There are three major challenges that have prevented existing
benchmarks from accommodating more realistic, diverse, and complex activities:

• Definition: Identifying and defining meaningful activities for benchmarking;
• Realization: Developing simulated environments that realistically support such activities;
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Figure 1: Benchmarking Embodied AI with BEHAVIOR: a� We define 100 realistic household activities from
the American Time Use Survey [34] and define them with a set of relevant objects, organized with WordNet [35],
and logic-symbolic initial and goal conditions in BDDL (Sec. 4). b� We provide an implementation of
BEHAVIOR in iGibson 2.0 that generates potentially infinite diverse activity instances in realistic home scenes
using the definition. c� AI agents perform the activities in simulation through continuous physical interactions of
an embodied avatar with the environment. Humans can perform the same activities in VR. BEHAVIOR includes
a dataset of 500 successful VR demonstrations. d� Changes in the scene are continuously mapped to their logic-
symbolic equivalent representation in BDDL and checked against the goal condition; we provide intermediate
success scores, metrics on agent’s efficiency, and a human-centric metric relative to the demonstrations.

• Evaluation: Defining success and objective metrics for evaluating performance.

We propose BEHAVIOR (Fig. 1)–Benchmark for Everyday Household Activities in Virtual,
Interactive, and ecOlogical enviRonments, addressing the three key challenges with three technical
innovations. First, we introduce BEHAVIOR Domain Definition Language (BDDL), a representation
adapted from predicate logic that maps simulated states to semantic symbols. It allows us to define
100 activities as initial and goal conditions, and enables generation of potentially infinite initial
states and solutions for achieving the goal states. Second, we facilitate its realization by listing
environment-agnostic functional requirements for realistic simulation. With proper engineering,
BEHAVIOR can be implemented in many existing environments; we discuss a fully functional
instantiation in iGibson 2.0 [33] in this paper including the necessary object models (1217 models of
391 categories). Third, we provide a comprehensive set of metrics to evaluate agent performance in
terms of success and efficiency. To make evaluation comparable across diverse activities, scenes, and
instances, we propose a set of metrics relative to demonstrated human performance on each activity,
and provide a large-scale dataset of 500 human demonstrations (1077.7 min) in virtual reality, which
serve as ground truth for evaluation and may also facilitate developing imitation learning solutions.

BEHAVIOR’s 100 activities are realistic, diverse, and complex. They are often performed by humans
in their homes (e.g., cleaning, packing or preparing food) and require long-horizon solutions for
changing not only the position of multiple objects but also their internal states or texture (e.g.,
temperature, wetness or cleanliness levels). As we demonstrate by experimentally evaluating the
performance of two state-of-the-art reinforcement learning algorithms (Section 7), these properties
make BEHAVIOR activities extremely challenging for existing solutions. By presenting well-
defined challenges beyond the capabilities of current solutions, BEHAVIOR can serve as a unifying
benchmark that guides the development of embodied AI.

2 Related Work

Benchmarks and datasets have played a critical role in recent impressive advances in AI, particularly
computer vision. Image [36–39] and video datasets [40–45] enable study and development of
solutions for important research questions by providing both training data and fair comparison. These
datasets, however, are passive observations that are not well-suited for development of embodied AI
that must control and understand the consequences of their own actions.

Benchmarks for Embodied AI: Although real-world challenges [46–53] provide the ultimate
testbed for embodied AI agents, benchmarks in simulated environments serve as useful alternatives
with several advantages; simulation enables faster, safer learning, and supports more reproducible,
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Table 1: Comparison of Embodied AI Benchmarks: BEHAVIOR activities are exceptionally realistic due
to their grounding in human population time use [34] and realistic simulation (sensing, actuation, changes
in environment) in iGibson 2.0. The activity set is diverse in topic, objects used, scenes done in, and state
changes required. The diversity is reinforced by the ability to generate infinite new instances scene-agnostically.
BEHAVIOR activities are complex enough to reflect real-world housework: many decision steps and objects in
each activity. This makes BEHAVIOR uniquely well-suited to benchmark task-planning and control, and it is
the only one to include human VR demonstrations (see Table A.1 for more detail).

accessible, and fair evaluation. However, in order to serve as a meaningful proxy for real-world
performance, simulation benchmarks need to achieve high levels of 1) realism (in the activities,
the models, the sensing and actuation of the agent), 2) diversity (of scenes, objects and activities
benchmarked), and 3) complexity (length, number of objects, required skills and state changes).
Below we review existing benchmarks based on these three criteria (see Table 1 for a summary).

Benchmarks for visual navigation [54, 55] provide high levels of visual realism and diversity of scenes,
but they often lack interactivity or diversity of activities. The Interactive Gibson Benchmark [27]
trades off some visual realism for physically realistic object manipulation in order to benchmark
interactive visual navigation. While benchmarks for stationary manipulation [56, 29, 28, 30, 57, 31,
32] fare well on physical realism, they commonly fall short on diversity (of scenes, objects, tasks)
and complexity (often having simple activities that take a few seconds). Benchmarks for instruction
following [11, 26] provide diversity of scenes, objects and possible changes of the environment, but
with low levels of complexity; the horizon of the activities is shorter as the agents decide among a
discrete set of predefined action primitives with full access to the state of the world.

Closer to BEHAVIOR, a recent group of benchmarks has focused on rearrangement tasks [23–25] in
realistic simulation environments with diverse scenes. The initial Rearrangement position paper [23]
poses critical questions such as how to define embodied AI tasks and measure solution quality.
Importantly however, most household activities go far beyond the scope of rearrangement (see
comparison in Fig. A.2). While such focus can inspire new solutions for solving rearrangement
tasks, these solutions may not generalize to activities that require more than physical manipulation of
object coordinates. Indeed, the majority of household activities involve other state changes (cooking,
washing, etc.) (Fig. A.2, [34]). BEHAVIOR therefore incorporates 100 activities that humans actually
spend time on at home [34] (Sec. 3). To express such diverse activites in a common language,
we present a novel logic-symbolic representation that defines activities as initial and goal states,
inspired by but distinct from the Planning Domain Definition Language (PDDL) [58] (see Sec. 4).
These definitions yield in principle infinite instances per activity and accept any meaningful solution.
We implement activity-independent metrics including a human-centric metric normalized to human
performance; to facilitate comparison and development of new solutions, we also present a dataset of
500 successful VR demonstrations.

3 BEHAVIOR: Benchmarking Realistic, Diverse, Complex Activities

Building on the advances led by existing benchmarks, BEHAVIOR aims to reach new levels of
realism, diversity, and complexity by using household activities as a domain for benchmarking AI.
See Table 1 for comparisons between BEHAVIOR and existing benchmarks.
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Realism in BEHAVIOR Activities: To effectively benchmark embodied AI agents in simulation,
we need realistic activities that pose similar challenges to those in the real world. BEHAVIOR achieves
this by using a data-driven approach to identify activities that approximate the true distribution of real
household activities. To this end, we use the American Time Use Survey (ATUS, [34]): A survey
from the U.S. Bureau of Labor Statistics on how Americans spend their time. BEHAVIOR activities
come from, and are distributed similarly to, the full space of simulatable activities in ATUS (see
Fig. A.2). The use of an independently curated source of real-world activities is a unique strength of
BEHAVIOR as a benchmark that reflects natural behaviors of a large population.

BEHAVIOR also achieves realism by simulating these activities in reconstructions of real-world
homes. We use iGibson 2.0, a simulation environment with realistic physics simulation from the
Bullet [59] physics engine and high-quality virtual sensor signals (see Fig. A.7), which includes 15
ecological, fully interactive 3D models of real-world homes with furniture layouts that approximate
their real counterparts. These scenes are further populated with object models created by professional
artists from the new BEHAVIOR Object dataset, which includes 1217 models of 391 categories
grounded in the WordNet [35] taxonomy. The dataset covers a data-driven selection of activity-related
objects (see Fig. A.8). Figs. A.10 and A.9 illustrate examples of objects and taxonomic arrangement.
The 100 BEHAVIOR activities, visualized in Fig. A.1, go beyond comparable benchmarks that
evaluate a few hand-picked activities in less realistic setups (see Table 1 Realism). iGibson 2.0 also
provides a wide variety of realistic simulated robots that have real-world counterparts, e.g. LoCoBot,
Quadrotor, Fetch, the last of which we can use to fulfill the BEHAVIOR activities (see Sec. 5).

Diversity in BEHAVIOR Activities: Benchmarks with diverse activities demand generalizable
solutions. In real-world homes, agents encounter a range of activities that differ in 1) the capabilities
required for achieving them, 2) the environments in which they occur (e.g., scenes, objects), and 3)
the initial states of a particular scene. BEHAVIOR presents extensive diversity in all these dimensions.
We include 100 activities that require a wide variety of state changes (e.g., moving objects, soaking
materials, cleaning surfaces, heating/freezing food) demanding a broad set of agent capabilities (see
Fig A.2). To reflect the diversity in the ways humans encounter, understand, and accomplish these
activities, we provide two example definitions per activity.

BDDL, our novel representation for activity definition, allows new valid instances to be sampled
from each definition, providing potentially infinite number of instances per activity. The resulting
instances vary over scene, object models, and configuration, supported by implementation in iGibson
2.0 and BEHAVIOR Object dataset. Related benchmarks focus on fewer tasks, mostly limited to
kinematic state changes and with scene- or position-constant instantiation (see Table 1 Diversity).

Complexity in BEHAVIOR Activities: Beyond diversity across activities, BEHAVIOR also raises
the complexity of the activities themselves by benchmarking full household activities that parallel the
length (number of steps an agent needs), the number of objects involved, and the number of required
capabilities of real-world chores (see Fig. A.3, comparison in Table 1 Complexity). Compared to
activities in existing benchmarks, these activities are very long-horizon with some requiring several
thousand steps (even for humans in VR; see Fig. A.12), involve more objects (avg. 10.5), and require
a heterogeneous set of capabilities (range: 2 - 8) to change various environment states.

4 Defining Realistic, Diverse, and Complex Household Activities with BDDL

BEHAVIOR challenges embodied AI agents to achieve a diverse set of complex long-horizon
household activities through physical interactions in a realistically simulated home environment.

Adopting the common formalism of partially-observable Markov decision processes (POMDP), each
activity has a state space S (see more details in A.3.2).

We define an activity ⌧ as two sets of states, ⌧ = {S⌧,0, S⌧,g}, where S⌧,0 is a set of possible initial
states and S⌧,g is a set of acceptable goal states. In an activity instance, the agent must change the
world state from some concrete s0 2 S⌧,0 to any sg 2 S⌧,g. However, describing activities in the
physical state space generates scene- or pose-specific definitions (e.g., [23, 30, 29]) that are far more
specific than how humans represent these activities, limiting the diversity and complexity of existing
embodied AI benchmarks. To overcome this, we introduce BEHAVIOR Domain Definition Language
(BDDL), a predicate logic-based language that establishes a symbolic state representation built on
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predefined, meaningful predicates grounded in simulated physical states; its variables and constants
represent object categories from the BEHAVIOR object dataset. Each activity is defined in BDDL as
an initial and goal condition parametrizing sets of possible initial states and satisfactory goal states
S̄⌧,0 and S̄⌧,g . BDDL predicates create symbolic counterparts of the physical state, S̄ (see Fig. 2).

Burnt(fish) Cooked(fish) Frozen(fish) Sliced(tomato) Open(microwave)

Dusty(table) Stained(plate) Soaked(rag) ToggledOn(stove) InRoom(bed, bedroom)

OnFloor(shoe) OnTopOf(apple, plate) InsideOf(food, fridge) Under(present, tree) NextTo(book, bag)

Figure 2: Unary and Binary Predicates in BDDL: We
represent object states and relationships to other objects
based on their kinematics, temperature, wetness level and
other physical and functional properties, enabling a diverse
and complex set of realistic activities

BDDL overcomes limitations that hinder di-
versity through two mechanisms: first, an ini-
tial condition maps to infinite physical states
in diverse scenes. Second, a goal condition
detects all semantically satisfactory solutions.
By contrast, other benchmarks support either
infinite distinct instantiations but only in one
scene per definition, because they sample from
hard-coded regions; or instantiation in multi-
ple scenes, but not infinitely because object
poses are hard-coded on furniture objects in
those scenes. BEHAVIOR is the only bench-
mark with both. BEHAVIOR also includes
a systematic generation pipeline (Sec. A.3.3)
enabling unlimited definitions per activity to
formalize the subjectivity of household activities. We include 200 definitions and 100 instances
in simulation (Sec. 5). BEHAVIOR is thus the only benchmark equipped to formalize unlimited
human-defined versions of an activity and create practically infinite unique instantiations in any scene.
Finally, BEHAVIOR has purely declarative definitions of initial and goal condition, whereas some
benchmarks provide imperative plans for getting from initial to goal [26]. The declarative nature
creates a true test of an agent’s capability of task planning.

5 Instantiating BEHAVIOR in a Realistic Physics Simulator

While BEHAVIOR is not bounded to any specific simulation environment, there are a set of functional
requirements to be able to simulate BEHAVIOR activities: 1) maintain an object-centric representation
(object identities enriched with properties and states), 2) simulate physical forces and motion, and
generate virtual sensor signals (images), 3) simulate additional properties per object (e.g. temperature,
soak level, cleanliness level) necessary for BEHAVIOR activities, 4) implement functionality to
generate valid instances based on the literals defining an activity’s initial condition, e.g., instantiating
an object insideOf another, and 5) implement functionality to evaluate the atomic formulae
relevant to the goal condition, e.g. checking whether an object is cooked or onTopOf another.

While BEHAVIOR activities are not tailored to a specific embodiment, we propose two concrete
bodies to fulfill the activities offering different action spaces (see Fig. 1): a bimanual humanoid avatar
(24 degrees of freedom, DoF), and a Fetch robot (12/13 DoF), both capable of navigating, grasping
and interacting with the hand(s). Humans in VR embody the bimanual humanoid.

Because it models a real-world robot, agents trained with the Fetch embodiment could be directly
tested with a real-world version of the hardware (see discussion on sim2real in Sec. A.8). Both agents
receive sensor signals from the on-board virtual sensors, and perform actions at 30Hz.

We provide a fully functional implementation of BEHAVIOR using iGibson 2.0, a new version
of the open-source simulation environment iGibson that fulfills the requirements above. iGibson
2.0 provides an object-centric representation with additional properties, support for sources of heat
and water, dust and stain particles, and changes in object appearance based on extended states.
We also implement the two embodiments mentioned above and a set of action primitives inspired
by [25, 55, 60, 24] to facilitate solution prototyping and task-planning research. The primitives
are executing sequences of low-level actions resulting from a motion planning process (bilateral
RRT⇤ [61]) to navigateTo, grasp, placeOnTop, placeInside, open, and close the object
given as argument. Further details can be found in Sec. A.4 and in [33]. Our implementation of
BEHAVIOR in iGibson 2.0 goes beyond the capabilities of existing benchmarks and amplifies realism,
diversity, and complexity (see Table 1).
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Figure 3: Evaluation of human performance in collect_misplaced_items: (Left) success score, Q;
(Right) efficiency metrics: kinematic disarrangement, (Dk, dotted), hand interaction displacement (Lright , green,
and Lleft , blue); frames at the top depict significant events detected by the metrics; the success score detects the
completion of activity-relevant steps; exploration, manipulation and scene disruption events are captured by the
efficiency metrics that provide complementary information about the performance of the agent.

6 Evaluation Metrics: Success, Efficiency and Human-Centric Metric

BEHAVIOR provides evaluation metrics to quantify the performance of an embodied AI solution.
Extending prior metrics suggested for Rearrangement [23], we propose a primary metric based on
success and several secondary metrics for characterizing efficiency.

Primary Metric – Success Score Q: The main goal of an embodied AI agent in BEHAVIOR is
to perform an activity successfully (i.e., all logical expressions in the goal condition are met). A
binary definition of success, however, only signals the end of a successful execution and cannot assess
interim progress. To provide more guidance to agents and enable comparisons of partial solutions,
we propose success score as the primary metric, defined as the maximum fraction of satisfied goal
literals in a ground solution to the goal condition at each step. More formally:

Given an activity ⌧ with goal state set S̄⌧,g , its goal condition can be flattened to a set C of conjunctions
Ci of ground literals lji .

For any Ci 2 C, if all lji 2 Ci are true then the goal condition is satisfied (see A.3.2 for definitions
and technical details on flattening), i.e. for some current environment state s, we have

W
Ci

V
lji

lji =

True =) s 2 S̄⌧,g . We compute the fraction of literals lji that are True for each Ci, and define the
overall success score by taking the maximum: Q = max

C

|{lji |lji=True}|
|Ci|

, where | · | is set cardinality.

An activity is complete when all literals in at least one Ci of its goal condition are satisfied, achieving
Q = 1 (100%). Fig. 3, left, depicts time evolution of Q during an activity execution. Q extends the
fraction of objects in acceptable poses proposed as metric in [23], generalized to any type of activity.

Secondary Metrics – Efficiency: Beyond success, efficiency is critical to evaluation; a successful
solution in real-world tasks may be ineffective if it takes too long or causes scene disruption. We
propose six secondary metrics that complement the primary metric (see Fig. 3, right, for examples):

• Simulated time, Tsim : Accumulated time in simulation during execution as the number of
simulated steps times the average simulated time per step. Tsim is independent of the computer used.
• Kinematic disarrangement, DK: Displacement caused by the agent in the environment. This can

be accumulated over time, or differential, i.e. computed between two time steps, e.g. initial, final.
• Logical disarrangement, DL: Amount of changes caused by the agent in the logical state of the

environment. This can be accumulated over time or differential between two time steps.
• Distance navigated, Lbody : Accumulated distance traveled by the agent’s base body. This metric

evaluates the efficiency of the agent in navigating the environment.
• Displacement of hands, Lleft and Lright : Accumulated displacement of each of the agent’s hands

while in contact with another object for manipulation (i.e., grasping, pushing, etc). This metric
evaluates the efficiency of the agent in its interaction with the environment.

These efficiency metrics above can be quantified in absolute units (e.g., distance, time) for scene- and
activity-specific comparisons (general efficiency). To enable fair comparisons cross diverse activities
in BEHAVIOR, we also propose normalization relative to human performance (human-centric
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efficiency); given a human demonstration for an activity instance in VR, each secondary metric can
be expressed as a fraction of the maximum human performance on that metric.

For this purpose, we present the BEHAVIOR Dataset of Human Demonstrations with 500 successful
demonstrations of BEHAVIOR activities in VR (1077.7 min). Humans are immersed in iGibson 2.0,
controlling the same embodiment used by the AI agents (details in Sec. A.6). The dataset includes
a complete record of human actions including manipulation, navigation, and gaze tracking data
(Fig. A.12, Fig. A.14, and Fig. A.16), supporting analysis and subactivity segmentation (Fig. A.11).
Sec. A.6.2 presents a comprehensive analysis of these data; we quantify human performance in
BEHAVIOR efficiency metrics (see Fig. A.12), and Fig. A.13 provides a further decomposition of
room occupancy and hand usage across each BEHAVIOR activity. To our knowledge, this is the
largest available dataset of human behavior in VR; these data can facilitate development of new
solutions for embodied AI (e.g., imitation learning) and also support studies of human cognition,
planning, and motor control in ecological environments.

7 Evaluating Reinforcement Learning in BEHAVIOR

In this section, we aim to experimentally demonstrate the challenges imposed by BEHAVIOR’s
realism, diversity, and complexity on state-of-the-art embodied AI solutions. BEHAVIOR is a
benchmark for all kinds of embodied AI methods. Here, we evaluate two reinforcement learning
(RL) algorithms that have excelled on simpler embodied AI tasks [62, 63, 21, 64–68]: Soft-Actor
Critic (SAC [16]) and Proximal-Policy Optimization (PPO [17]). We use SAC to train policies in
the original low-level continuous action space of the agent, and PPO for experiments using our
implemented action primitives (for details on the agents, see Sec. 5). Due to limited computational
resources, we evaluate on the 12 most simple activities (by distinct state changes involved) using the
bimanual humanoid embodiment.

Reward is given by our staggered success score Q. We use as input a subset of the realistic agent’s
observations, RGB, depth and proprioception (excluding LiDAR, segmentation, etc.). Sec. A.7
includes more experimental details.

Results in the original activities: The first row of Table 2 shows the results of SAC (mean Q at
the end of training for 3 seeds) on the original 12 activities with the standard setup: realistic robot
actions and onboard sensing. Even for these “simpler” activities, BEHAVIOR is too great a challenge:
the training agents do not fulfill any predicate in the goal condition (Q = 0). In the following, we will
analyze how each dimension of difficulty (realism, diversity, complexity) contributes to these results.

bringingInWood

collectMisplacedItems

movingBoxesToStorage
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throwingAwayLeftovers

puttin
gDishesAway

puttin
gleftoversA

way

re-shelvingLibraryBooks
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Qca 0 0 0 0 0 0 0 0 0 0 0 0

co
m
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ex

ity Qap 0.13 0 0 0 0 0 0 0 0 0 0 0
SR

ca@T � 1 s 1 1 1 0 0 0 0 0 1 1 0.97 1
SR

ca@T � 2 s 1 0.07 1 0 0 0 0 0 1 1 0.01 0
SR

ca@T � 3 s 1 0.21 1 0 0 0 0 0 1 0.01 0 0
SR

ca@T � 10 s 0 0 0 0 0 0 0 0 0 0 0 0

re
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m Qca

FullObs
0 0 0 0 0 0 0 0 0 0 0 0

Qap

FullObs
0.20 0.02 0.49 0 0 0 0 0.13 0 0.09 0 0

Qap

NoPhys
0.92 0.47 0.73 0 0.32 0.55 0.44 0.04 0 0.27 0 0.32

Qap

NoPhys,FullObs
1.0 0.95 0.83 0 0.56 0.94 0.55 0.56 0 0.5 0.67 1.0

Table 2: Evaluation of state-of-the-art RL algorithms on BE-
HAVIOR Fully realistic, diverse and complex (row 1): SAC [16]
for visuomotor continuous actions (superindex ca) performs poorly
in all activities; Complexity analysis (rows 2-6): reducing complex-
ity (horizon) with temporally extended action primitives (superindex
ap and gray cells, trained with PPO [17]) or by starting few seconds
away from a goal state, lead to some non-zero success rate (SR).
Realism analysis (rows 7-10): Only by reducing realism in obser-
vations and physics, and complexity through action primitives, RL
achieves significant success in a handful of the activities.

Effect of complexity (activity
length): First, we evaluate the
impact of the activity complexity
(time length) on performance. We
begin with an RL algorithm using our
implemented action primitives based
on motion planning. These temporally
extended actions effectively shorten
the horizon and length of the activity.
The results of training with PPO are
depicted in the second row of Table 2.
Even in these simpler conditions,
agents fail in all but one activity
(bringingInWood, Q = 0.13). In
a second oracle-driven experiment,
we take a successful human demon-
stration for each activity from the
BEHAVIOR Dataset and set a state a
few seconds before its successful execution at T as the activity initial state. We train agents with
SAC: rows 3 to 6 of Table 2 show the mean success rate (SR, full accomplishment of the activity) in
100 evaluation episodes for the final policy resulting from training with three different random seeds
(Q starts here close to 1 and is less informative). Even when starting 1 s away from a goal state, most
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agents fail. A few do better, but their performance decreases quickly as we start further away from
the successful execution, being zero for all activities at 10 s. This indicates that the long horizon
of BEHAVIOR activities is in fact a paramount challenge for RL. We hypothesize that Embodied
AI solutions with a hierarchical structure such as hierarchical-RL or task-and-motion-planning
(TAMP) may help to overcome the challenges of high complexity (length) of the BEHAVIOR
activities [69–72].

Effect of realism (in sensing and actuation): In a third experiment, we evaluate how much the
realism in actuation and sensing affects the performance of embodied AI solutions. We train agents
with continuous motion control (SAC), and motion primitives (PPO) assuming full-observability
of the state, with results in Tables 2 (rows 7-8, subindex FullObs). Even with full observability,
the complexity dominates policies in the original action space and they fail entirely. For policies
selecting among action primitives, there is partial success in only five activities, indicating that
perception is part of the difficulty in BEHAVIOR. To evaluate the effect of realistic actuation, we train
an agent using action primitives that execute without physics simulation, achieving their expected
outcome (e.g. grasp an object, or place it somewhere). Tables 2 (row 9-10, subindex noPhys) shows
the results, also in combination with unrealistic full-observability. We observe that without the
difficulties of realistic physics and actuation, the learning agents achieve an important part of most
activities, accomplishing consistently two of them (Q = 1) when full-observability of the state is
also granted. This indicates that the generation of the correct actuation is a critical challenge for
embodied AI solutions, even when they infer the right next step at the task-planning level, supporting
the importance of benchmarks with realistically action execution over predefined action outcomes.

Diversity in. . .
object poses object instances ontop sliced soaked stained cooked

� � 1 0.15 1 1 1
� � 0.825 0 0.935 0.28 0.66
� � 0.46 0 0.925 0.11 0.265

Table 3: Evaluation of the effect of BEHAVIOR’s diversity: Re-
sults of training agents with SAC [16] in single-predicate activities
of increasing diversity; Even in these simple activities, performance
degrades quickly indicating that current state-of-the-art cannot cope
with the dimensions of diversity spanned in BEHAVIOR

Effect of diversity (in activity
instance and objects): Another
cause of the poor performance of
robot learning solutions in the 12 BE-
HAVIOR activities may be the high
diversity in multiple dimensions, such
as scenes, objects, and initial states.
This diversity forces embodied AI so-
lutions to generalize to all possible
conditions. In a second experiment,
we evaluate the effect of BEHAVIOR’s diversity on performance. To present diversity across activi-
ties while alleviating their complexity, we train RL agents to complete five single-literal activities
involving only one or two objects. Note that these activities are not part of BEHAVIOR. We evaluate
training with RL (SAC) for each activity under diverse instantiations: initialization of the activity
(object poses) and object instances. The results are shown in Table 3, where we report Q. First,
we train without any diversity as baseline to understand the ground complexity of the single-literal
activities. All agents achieve success. Then, we evaluate how well the RL policies train for a diverse
set of instances of the activities, first changing objects’ initial pose, then changing the object. Per-
formance in all activities decreases rapidly, especially in sliced and stained. These experiments
indicate that the diversity in BEHAVIOR goes beyond what current RL algorithms can handle even
in simplified activities, and poses a challenge for generalization in embodied AI.

8 Conclusion and Future Work

We presented BEHAVIOR, a novel benchmark for embodied AI solutions of household activities.
BEHAVIOR presents 100 realistic, diverse and complex activities with a new logic-symbolic represen-
tation, a fully functional simulation-based implementation, and a set of human-centric metrics based
on the performance of humans on the same activities in VR. The activities push the state-of-the-art
in benchmarking adding new types of state changes that the agent needs to be able to cause, such
as cleaning surfaces or changing object temperatures. Our experiments with two state-of-the-art RL
baselines shed light on the challenges presented by BEHAVIOR’s level of realism, diversity and
complexity. BEHAVIOR will be open-source and free to use; we hope it facilitates participation and
fair access to research tools, and paves the way towards a new generation of embodied AI.
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