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ABSTRACT

Inspired by the governing role of protein structures on protein functions, structure-
based protein representation pre-training is recently gaining interest but remains
largely unexplored. Along this direction, pre-training by maximizing the mutual
information (MI) between different descriptions of the same protein (i.e., corre-
lated views) has shown some preliminary promise, while more in-depth studies
are required to design more informative correlated views. Previous view designs
focus on capturing structural motif co-occurrence in the same protein structure,
while they cannot capture detailed atom- and residue-level interactions and also the
statistical dependencies of residue types along protein sequences. To address these
limitations, we propose the Siamese Diffusion Trajectory Prediction (SiamDiff)
method. SiamDiff employs the multimodal diffusion process as a faithful simula-
tion of the structure-sequence co-diffusion trajectory that gradually and smoothly
approaches the folded structure and the corresponding sequence of a protein from
scratch. Upon a native protein and its correlated counterpart obtained with random
structure perturbation, we build two multimodal (structure and sequence) diffusion
trajectories and regard them as two correlated views. A principled theoretical
framework is designed to maximize the MI between such paired views, such that
the model can acquire the atom- and residue-level interactions underlying protein
structural changes and also the residue type dependencies. We study the effective-
ness of SiamDiff on both residue-level and atom-level structural representations.
Experimental results on EC and ATOM3D benchmarks show that the performance
of SiamDiff is consistently competitive on all benchmark tasks, compared with
existing baselines. The source code will be made public upon acceptance.

1 INTRODUCTION

In the past year, thanks to the rise of highly accurate and efficient protein structure predictors based on
deep learning (Jumper et al., 2021; Baek et al., 2021), the gap between the number of reported protein
sequences and corresponding (computationally) solved structures is greatly narrowed. These advances
open the opportunity of self-supervised protein representation learning based on protein structures,
i.e., learning informative protein representations from massive protein structures without using any
annotation. Compared to extensively studied sequence-based protein self-supervised learning like
protein language models (Elnaggar et al., 2021; Rives et al., 2021), structure-based methods could
learn more effective representations to indicate protein functions, since a protein sequence determines
its structure, and the structure is the determinant of its diverse functions (Harms & Thornton, 2010).

To attain this goal, some recent works have explored different self-supervised learning strategies on
protein structures, including contrastive learning (Zhang et al., 2022; Hermosilla & Ropinski, 2022),
self-prediction (Zhang et al., 2022; Chen et al., 2022) and denoising score matching (Guo et al., 2022;
Wu et al., 2022a). Among these works, mutual information (MI) maximization based methods (Zhang
et al., 2022; Hermosilla & Ropinski, 2022) achieve superior performance on protein function and
structural class prediction. At the core of these methods, different structural descriptions of the same
protein (i.e., correlated views) are built to capture the co-occurrence of structural motifs. However,
such view construction scheme fails to capture detailed atom- and residue-level interactions and also
the statistical dependencies of residue types along protein sequences. Therefore, the MI maximization
based on these views may not produce effective representations for the tasks that require to model
detailed local structures (e.g., the Residue Identity task from ATOM3D (Townshend et al., 2020)) or
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minor differences on structures and sequences due to point mutations (e.g., the Mutation Stability
Prediction task from ATOM3D), as demonstrated by the experimental results in Tables 1 and 2.

To tackle such limitation, in this work, we propose the Siamese Diffusion Trajectory Prediction
(SiamDiff) method to jointly model fine-grained atom- and residue-level interactions and residue
type dependencies. Specifically, given a native protein, we first derive its correlated counterpart by
random structure perturbation. We further extend the original protein and the generated counterpart
respectively by the multimodal diffusion process, in which we transform both the protein structure
and the protein sequence towards random distribution by gradually and smoothly adding noises.
Such a diffusion process is verified as a faithful simulation of the structure-sequence co-diffusion
trajectory by recent studies (Anand & Achim, 2022; Luo et al., 2022). We regard the diffusion
trajectories of the original protein and the generated counterpart as two correlated views, and a
principled theoretical framework is designed to maximize the MI between such paired views. Under
such a learning framework, the model can acquire the atom- and residue-level interactions underlying
protein structural changes and also the residue type dependencies. The learned protein representations
are expected to boost diverse types of downstream tasks.

SiamDiff can be flexibly applied to both residue-level and atom-level structures for effective rep-
resentation learning. We employ different self-supervised algorithms to pre-train residue-level and
atom-level structure encoders, and the pre-trained models are extensively evaluated on Enzyme
Commission number prediction (Gligorijević et al., 2021) and ATOM3D (Townshend et al., 2020)
benchmarks. Experimental results verify that SiamDiff can consistently achieve competitive perfor-
mance on all benchmark tasks and on both structure levels, in contrast to existing baselines.

2 RELATED WORK

Protein Structure Representation Learning. The community witnessed a surge of research
interests in learning informative protein structure representations using structure-based encoders and
training algorithms. The encoders are designed to capture protein structural information on different
granularity, including residue-level structures (Gligorijević et al., 2021; Wang et al., 2022b; Zhang
et al., 2022), atom-level structures (Hermosilla et al., 2021; Jing et al., 2021a; Wang et al., 2022a)
and protein surfaces (Gainza et al., 2020; Sverrisson et al., 2021; Somnath et al., 2021).

Recent works study pre-training on massive unlabeled protein structures for generalizable representa-
tions, covering contrastive learning (Zhang et al., 2022; Hermosilla & Ropinski, 2022), self-prediction
of geometric quantities (Zhang et al., 2022; Chen et al., 2022) and denoising score matching (Guo
et al., 2022; Wu et al., 2022a). All these methods only employ native proteins for pre-training. By
comparison, the proposed SiamDiff uses the information from multimodal diffusion trajectories to
better acquire atom- and residue-level interactions and residue type dependencies.

Diffusion Probabilistic Models (DPMs). DPM was first proposed in Sohl-Dickstein et al. (2015)
and has been recently rekindled for its strong performance on image and waveform generation (Ho
et al., 2020; Chen et al., 2020a). Recent works (Nichol & Dhariwal, 2021; Song et al., 2020; 2021)
have improved training and sampling for DPMs. Besides the DPMs for continuous data, some works
study discrete DPMs and achieve impressive results on generating texts (Austin et al., 2021; Li et al.,
2022), images (Austin et al., 2021) and image segmentation data (Hoogeboom et al., 2021).

Inspired by these progresses, DPMs have been recently adopted to solve the problems in chemistry
and biology domain, including molecule generation (Xu et al., 2022; Hoogeboom et al., 2022; Wu
et al., 2022b), molecular representation learning (Liu et al., 2022), protein design (Anand & Achim,
2022; Luo et al., 2022) and motif-scaffolding (Trippe et al., 2022). In this work, we novelly study
how DPMs can help protein representation learning, which aligns with a recent effort (Abstreiter
et al., 2021) on diffusion-based image representation learning.

3 PRELIMINARIES

3.1 PROBLEM DEFINITION

Notations. A protein with nr residues (amino acids) and na atoms can be represented as a sequence-
structure tuple P = (S,R). We use S = [s1, s2, · · · , snr

] to denote its sequence with si as the type
of the i-th residue, while R = [r1, r2..., rna ] ∈ Rna×3 denotes its structure with ri as the Cartesian
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coordinates of the i-th atom. In the paper, we construct a graph for each protein with edges connecting
atoms with the Euclidean distance lower than a threshold. Besides, we also consider residue-level
protein graphs, a concise version of atom graphs that enable efficient message passing between nodes
and edges. As in Zhang et al. (2022), we only keep the alpha carbon atom of each residue and add
sequential, radius and K-nearest neighbor edges as different types of edges.

Equivariance. Equivariance is ubiquitous in machine learning for modeling the symmetry in physical
systems (Thomas et al., 2018; Weiler et al., 2018; Batzner et al., 2022) and is shown to be critical for
successful design and better generalization of 3D neural networks (Köhler et al., 2020). Formally,
a function F : X → Y is equivariant w.r.t. a group G if F ◦ ρX (x) = ρY ◦ F(x), where ρX and
ρY are transformations corresponding to an element g ∈ G acting on X and Y , respectively. The
function is invariant w.r.t G if the transformations ρY is identity. In this paper, we consider the SE(3)
group, i.e., rotations and translations in 3D space.

Problem Definition. Given a set of unlabeled proteins P = {P1,P2, ...}, our goal is to train a protein
encoder ϕ(S,R) to extract representations that are SE(3)-invariant w.r.t. protein structures R.

3.2 DIFFUSION MODELS ON PROTEINS

Diffusion models are a class of deep generative models with latent variables encoded by a forward
diffusion process and decoded by a reverse generative process (Sohl-Dickstein et al., 2015). There
have been recent efforts on applying denoising diffusion models for protein generation (Luo et al.,
2022; Anand & Achim, 2022). We use P0 to denote the ground-truth protein and Pt for t = 1, · · · , T
to be the latent variables over T diffusion steps. Modeling the protein as an evolving thermodynamic
system, the forward process gradually injects small noise to the data P0 until reaching a random
noise distribution at time T . The reverse process learns to denoise the latent variable towards the data
distribution. Both processes are defined as Markov chains:

q(P1:T |P0) =
∏T

t=1 q(Pt|Pt−1), pθ(P0:T−1|PT ) =
∏T

t=1 pθ(Pt−1|Pt), (1)

where q(Pt|Pt−1) defines the forward process at step t and pθ(Pt−1|Pt) with learnable parameters
θ defines the reverse process at step t.

The generation of a protein relies on the joint diffusion process on structures and sequences. Follow-
ing Luo et al. (2022), we assume 1) the separate definition of the forward process on structures and
sequences and 2) the conditional independence of sequences and structures in the reverse process:

q(Pt|Pt−1) = q(Rt|Rt−1) · q(St|St−1), pθ(Pt−1|Pt) = pθ(Rt−1|Pt) · pθ(St−1|Pt). (2)
Next, we discuss how to define the diffusion models on protein structures and sequences, respectively.

Diffusion models on 3D structures. Since the coordinates of atoms are continuous variables in the
3D space, the forward process can be defined by adding random Gaussian noise. Then, the reverse
process can be parameterized as a Gaussian with a learnable mean and user-defined variance. That is,

q(Rt|Rt−1) = N (Rt;
√
1− βtRt−1, βtI), pθ(Rt−1|Pt) = N (Rt−1;µθ(Pt, t), σ2

t I), (3)

where β1, ..., βT are a series of fixed variances and σt can be any user-defined variance. Since Rt is
available as an input, following Ho et al. (2020), we reparameterize the mean µθ(Pt, t) as:

µθ(Pt, t) =
1

√
αt

(
Rt − βt√

1− ᾱt
ϵθ(Pt, t)

)
, (4)

where αt = 1 − βt, ᾱt =
∏t

s=1 αs and the neural network ϵθ(·) learns to decorrupt the data and
should be translation-invariant and rotation-equivariant w.r.t. the protein structure Rt.

Diffusion models on sequences. The key of diffusion models on discrete attributes is to define
transition matrices for the Markov chain. Austin et al. (2021) adds an absorbing state [MASK] for the
Markov chain and then each residue either stays the same or transits to [MASK] with some probability
at each step. For the reverse process, a neural network p̃θ is defined to predict the probability of S0

and then parameterize the diffusion trajectory with the probability q(St−1|St, S̃0). That is,

q(St|St−1) = Cat
(
St;p = st−1Qt

)
, pθ(St−1|Pt) ∝

∑
S̃0 q(St−1|St, S̃0) · p̃θ(S̃0|Pt), (5)

where st ∈ Rnr×21 denotes the one-hot feature for the sequence St, Qt ∈ R21×21 denotes the
corresponding transition matrix at step t, Cat(·) is the categorical distribution and S̃0 enumerates all
possible residue types.
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Figure 1: High-level illustration of SiamDiff. Given a protein P = (S,R), we first obtain two
correlated starting states P1 and P2 via identity and structure perturbation functions, respectively.
Then, we apply a multimodal diffusion process on the starting states to construct two siamese
trajectories, where we use * to denote masked residues. To maximize the mutual information between
these trajectories, we predict the noises on one trajectory with representations from the other.

4 SIAMDIFF: SIAMESE DIFFUSION TRAJECTORY PREDICTION

4.1 MOTIVATION AND OVERVIEW

Motivation. Recent self-supervised learning approaches learn informative representations by maxi-
mizing mutual information (MI) between representations of multiple views of the same object with
shared information, whose effectiveness has been proved on images (Chen et al., 2020b), natural
languages (Hjelm et al., 2018), graphs (Hassani & Khasahmadi, 2020), small molecules (Liu et al.,
2021) and proteins (Zhang et al., 2022). For MI maximization based protein representation learning,
previous works (Zhang et al., 2022; Hermosilla & Ropinski, 2022) only focus on capturing protein
substructure co-occurrences, while they fail to capture two important properties of proteins: (1) the
detailed atom- and residue-level interactions, and (2) the statistical dependencies of residue types
along protein sequences.

In this work, we introduce the multimodal diffusion trajectory (i.e., the diffusion processes of a pair
of corresponding sequence and structure) to incorporate these two properties, where (1) rich atom and
residue interactions along protein formation can be learned from the structure diffusion process, and
(2) residue type dependencies can be learned from the sequence diffusion process. By maximizing the
MI between the multimodal diffusion trajectories of a pair of correlated proteins, more informative
protein representations can be learned. The graphical illustration of this idea is shown in Fig. 1. We
next present the overview of two key components of our learning framework.

Correlated protein diffusion trajectories construction. Our framework is based on the contrast
of correlated protein trajectories, a.k.a., siamese trajectories. These trajectories are generated by
a multimodal diffusion process, which is verified to be effective for protein structure-sequence co-
design (Anand & Achim, 2022; Luo et al., 2022) and thus can reflect physical and chemical principles
underlying protein formation (Anfinsen, 1972; Dill & MacCallum, 2012).

Specifically, we first construct two correlated states from one protein as the starting points of the
trajectories. Given the original protein P = (S,R), we deem it as the native state P1 = (S1,R1)
and build a correlated state P2 = (S2,R2) by randomly perturbing the protein structure, i.e.,
S2 = S1,R2 = R1 + ϵ, where ϵ ∈ Rna×3 is the noise drawn from a normal distribution.

Then, for states P1 and P2, we sample their diffusion trajectories P0:T
1 and P0:T

2 with the mutlimodal
diffusion process defined in Sec. 3.2. Take P1 = (S1,R1) for example. We start the diffusion
process from the state P0

1 = P1. The diffusion process is defined by the joint diffusion on structures
and sequences, i.e., q(P1:T

1 |P0
1 ) = q(R1:T

1 |R0
1)q(S1:T

1 |S0
1 ). We utilize the conditional Gaussian
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distributions in (3) to derive trajectories on structures R1:T
1 and the discrete Markov chain in (5)

to derive the sequence diffusion processes S1:T
1 . In this way, we define the trajectory P0:T

1 =
{(St

1,Rt
1)}Tt=0 for P1 and can derive the siamese trajectory P0:T

2 = {(St
2,Rt

2)}Tt=0 similarly.

Maximizing mutual information (MI) between representations from siamese trajectories. The
main focus of our approach is to maximize the MI between representations of siamese trajectories
constructed as above (see App. A for related works about MI maximization). For notations, we
use the bold symbol to denote the representation of an object and use P 0:T

1 and P 0:T
2 to denote

the corresponding random variables of representations of the siamese trajectories P0:T
1 and P0:T

2 .
Because directly optimizing MI is intractable, we instead maximize an approximate lower bound of
MI described in the following proposition (see proof in App. B.1).

Proposition 1 With some approximations, the mutual information between representations of two
siamese trajectories is lower bounded by:

I(P 0:T
1 ;P 0:T

2 ) ≥ −1

2
(L(2→1) + L(1→2)) + C,

where C is a constant independent of our encoder and the term from trajectory P0:T
b to P0:T

a is
defined as

L(b→a) := EP0:T
a ,P0:T

b

[∑T
t=1 DKL

(
q(Pt−1

a |Pt
a,P0

a)||p(Pt−1
a |Pt

a,P
0:T
b )

)]
, (6)

with b → a being either 2 → 1 or 1 → 2.

The two terms share the similar formula as the ELBO loss in diffusion models (Ho et al., 2020). Take
L(2→1) for example. Here q(Pt−1

1 |Pt
1,P0

1 ) is a posterior analytically tractable with our definition of
each diffusion step q(Pt

1|Pt−1
1 ) in (3) and (5). The reverse process is learnt to generate a less noisy

state Pt−1
1 given the current state Pt

1 and representations of the siamese trajectory P0:T
2 , which are

extracted by the protein encoder to be pre-trained.

Essentially, we perform mutual prediction between two siamese trajectories, which is similar to the
idea of mutual representation reconstruction in Grill et al. (2020); Chen & He (2021). In practice,
though adding structural noises, P1 and P2 share information about the same protein and thus the
whole trajectory of P2 may give too many clues for the denoising towards Pt−1

1 , which is harmful
for pre-training. To address this issue, we parameterize p(Pt−1

1 |Pt
1,P

0:T
2 ) with pθ(Pt−1

1 |Pt
1,P

t
2).

For diffusion on sequences, we further guarantee that the same set of residues are masked in St
1 and

St
2 to avoid the leakage of ground-truth residue types across views.

Below we describe the parameterization of the generation process pθ(Pt−1
1 |Pt

1,P
t
2) in Sec. 4.2,

derive the pre-training objective from (6) in Sec. 4.3, and discuss advantages of our method and its
connection with existing works in Sec. 4.4.

4.2 MODELING PROTEIN GENERATION PROCESS

Different from the generation process in traditional diffusion models, the parameterization of
pθ(Pt−1

1 |Pt
1,P

t
2) should inject information from Pt

2. Therefore, we apply an SE(3)-invariant encoder
ϕ(·) to Pt

2, and the extracted atom and residue representations (denoted as at
2 and ht

2) are employed
for this denoising step. Given the conditional independence in (2), this generation process can be
decomposed into that on protein structures and sequences as shown below.

Generation process on protein structures. As in (4), modeling the generation process of protein
structures is to model the noise on Rt

1 and gradually decorrupt the noisy structure. This can be
parameterized with a noise prediction network ϵθ(Pt

1,P
t
2, t) that is translation-invariant and rotation-

equivariant w.r.t. Rt
1. Besides, the noise applied on Rt

1 should not change with transformations on
Rt

2, so ϵθ should be SE(3)-invariant w.r.t. Rt
2.

To achieve these goals, we define our noise prediction network with atom representations at
2 (which

is SE(3)-invariant w.r.t. Rt
2) and atom coordinates rt1 (which is SE(3)-equivariant w.r.t. Rt

1). We
draw inspirations from recent works (Satorras et al., 2021) to build an equivariant output based on
normalized directional vectors between adjacent atom pairs. Each edge (i, j) is encoded by its length
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∥rt1i − rt1j∥2 and the representations of two end nodes at
2i, a

t
2j , and the encoded score mi,j will be

further used for aggregating directional vectors. Specifically, we have

[ϵθ(Pt
1,P

t
2, t)]i =

∑
j∈N t

1 (i)
mi,j ·

rt
1i−rt

1j

∥rt
1i−rt

1j∥2

, with mi,j = MLP(at
2i,a

t
2j ,MLP(∥rt1i − rt1j∥2)),

where N t
1(i) denotes the neighbors of the atom i in the corresponding graph of Pt

1. Note that
ϵθ(Pt

1,P
t
2, t) achieves the equivariance requirement, as mi,j is SE(3)-invariant w.r.t. Rt

1 and Rt
2

while rt1i − rt1j is translation-invariant and rotation-equivariant w.r.t. Rt
1.

Generation process on protein sequences. As in (5), the generation process on sequences aims to
predict masked residue types in S0

1 with a predictor p̃θ. In our setting of mutual prediction, we define
the predictor based on representations of the same residues in St

2, which are also masked. Hence, for
each masked residue i in St

2, we feed its representation ht
2i to an MLP and predict the type of the

corresponding residue type s01i in S0
1 :

p̃θ(S0
1 |Pt

1,P
t
2) =

∏
i p̃θ(s

0
1i|Pt

1,P
t
2) =

∏
i Softmax(s01i|MLP(ht

2i)),

where the softmax function is applied over all residue types.

4.3 PRE-TRAINING OBJECTIVE

Given the defined forward and reverse process on two trajectories, we now derive the pre-training
objective based on the mutual diffusion loss in (6). We take the term L(2→1) for example and its
counterpart can be derived in the same way. It can be proved that with the independence assumptions
in (2), the objective can be decomposed into a structure loss L(R,2→1) and a sequence loss L(S,2→1)

(see proof in App. B.2):

L(R,2→1) :=E
[∑T

t=1 DKL
(
q(Rt−1

1 |Rt
1,R0

1)||pθ(Rt−1
1 |Pt

1,P
t
2)
)]

, (7)

L(S,2→1) :=E
[∑T

t=1 DKL
(
q(St−1

1 |St
1,S0

1 )||pθ(St−1
1 |Pt

1,P
t
2)
)]

. (8)

Structure loss L(R,2→1). It has been shown in Ho et al. (2020) that the loss function can be simplified
under our parameterization by calculating KL divergence between Gaussians as weighted L2 distances
between means ϵθ and ϵ (see details in App. B.3):

L(R,2→1) =
∑T

t=1 γtEϵ∼N (0,I)

[
∥ϵ− ϵθ(Pt

1,P
t
2, t)∥22

]
, (9)

where the coefficients γt are determined by the variances β1, ..., βt. In practice, we follow the
suggestion in Ho et al. (2020) to set all weights γt = 1 for the simplified loss L(R,2→1)

simple .

Since ϵθ is designed to be rotation-equivariant w.r.t. Rt
1, to make the loss function invariant w.r.t.

Rt
1, the supervision ϵ is also supposed to achieve such equivariance. So we adopt the chain-rule

approach proposed in Xu et al. (2022), which decomposes the noise on pairwise distances to obtain
the modified noise vector ϵ̂ as supervision. We refer readers to Xu et al. (2022) for more details.

Sequence loss L(S,2→1). Since we parameterize pθ(St−1
1 |Pt

1,P
t
2) with p̃θ(S̃0

1 |Pt
1,P

t
2) and

q(St−1
1 |St

1, S̃0
1 ) as in (5), it can be proved that the t-th KL divergence term in (8) reaches zero

when p̃θ(S̃0
1 |Pt

1,P
t
2) puts all mass on the ground truth S0

1 (see proof in App. B.4). Therefore, for the
purpose of pre-training, we can simplify the KL divergence to the cross entropy loss between the
correct residue type s01i and the prediction:

L(S,2→1)
simple =

∑T
t=1

∑
i CE

(
s01i, p̃θ(s

0
1i|Pt

1,P
t
2)
)
. (10)

Final pre-training objective. To summarize, the ultimate training objective for our method is

Ltotal =
1

2

(
L(R,2→1)

simple + L(S,2→1)
simple + L(R,1→2)

simple + L(S,1→2)
simple

)
, (11)

where L(·,b→a)
simple is the loss term defined by predicting trajectory P0:T

a from trajectory P0:T
b .
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4.4 DISCUSSION

Now we discuss the advantages of our method over previous works. The benefits of these critical
designs will be empirically demonstrated by experiments in Sec. 5.3.

Advantages of multimodal denoising. Compared with previous works focusing on either protein
sequences (Yang et al., 2022) or structures (Guo et al., 2022), in this work, we perform joint denoising
on both modalities. Note that given a sequence S and a structure R that exist in the nature with
high probability, the sequence-structure tuple P = (S,R) may not be a valid state of this protein.
Consequently, instead of modeling the marginal distribution, we are supposed to model the joint
distribution of protein sequences and structures, which can be achieved by our multimodal denoising.

Connection with diffusion models. Diffusion models have achieved outstanding performance
on image and text generation tasks (Dhariwal & Nichol, 2021; Li et al., 2022) and recently been
applied on unsupervised representation learning (Abstreiter et al., 2021). The key to its success is the
denoising objective at different noise levels, which has also been used for self-supervised learning
in earlier works of scheduled denoising autoencoders (Geras & Sutton, 2014; Chandra & Sharma,
2014). Our method differs from these existing works by incorporating the idea of mutual prediction
of two siamese diffusion trajectories so as to maximize the mutual information between them.

5 EXPERIMENTS

We conduct experiments on both residue and atom levels to prove the effectiveness of our method.

5.1 EXPERIMENTAL SETUPS

Pre-training datasets. Following Zhang et al. (2022), we pre-train our models with the AlphaFold
protein structure database (Jumper et al., 2021; Varadi et al., 2021), including both 365K proteome-
wide predicted structures and 440K Swiss-Prot (Consortium, 2021) predicted structures.

Downstream benchmark tasks. For downstream evaluation, we adopt the EC protein function
prediction task (Gligorijević et al., 2021) and four ATOM3D tasks (Townshend et al., 2020).

1. Enzyme Commission (EC) number prediction task aims to predict EC numbers of proteins
which describe their catalysis behavior in biochemical reactions. This task is formalized as 538
binary classification problems. We adopt the dataset splits from Gligorijević et al. (2021) and
use the test split with 95% sequence identity cutoff following Zhang et al. (2022).

2. Protein Structure Ranking (PSR) task predicts global distance test scores of protein structure
predictions submitted to the Critical Assessment of Structure Prediction (CASP) (Kryshtafovych
et al., 2019) competition. This benchmark dataset is split according to the competition year.

3. Mutation Stability Prediction (MSP) task seeks to predict whether a mutation will increase
the stability of a protein complex or not (binary classification). The benchmark dataset is split
upon a 30% sequence identity cutoff among different splits.

4. Residue Identity (RES) task studies the structural role of an amino acid under its local
environment. A model predicts the type of the center amino acid based on its surrounding
atomic structure. The environments in different splits are with different protein topology classes.

Baseline methods. We evaluate our method on both residue- and atom-level structures. GearNet-
Edge (Zhang et al., 2022) and GVP (Jing et al., 2021a) are employed as backbone models for
residue and atom levels, respectively. GearNet-Edge models protein structures with different types of
edges and edge-type-specific convolutions, which is further enhanced by message passing between
edges. GVP constructs atom graphs and adds a vector channels for modeling equivariant features.
Based on these two encoders, we compare the proposed method with previous protein structural

pre-training algorithms including multiview contrastive learning (Zhang et al., 2022), denoising score
matching (Guo et al., 2022) and four self-prediction methods (Zhang et al., 2022), i.e., residue type,
distance, angle and dihedral prediction. Details can be found in App. D.

Training and evaluation. For fair comparison, we pre-train our model for 50 epochs on the
AlphaFold protein structure database, following Zhang et al. (2022). For downstream evaluation, we
fine-tune the pre-trained models for 200 epochs on EC and 50 epochs on Atom3D tasks except RES.
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Table 1: Residue-level results on EC and Atom3D tasks. We use *, † and ‡ to denote the first, second
and third best performance among all models.

Method EC PSR MSP Mean
RankFmax AUPR Global ρ Mean ρ AUROC AUPRC

GearNet-Edge 0.810 0.835 0.739 0.374 0.586 0.192 -

w
/p

re
-t

ra
in

in
g

Denoising Score Matching 0.842 0.862 0.823 0.472 0.559 0.183 8.0
Residue Type Prediction 0.843 0.870 0.839* 0.497† 0.642 0.229‡ 4.3‡
Distance Prediction 0.839 0.863 0.780 0.437 0.588 0.168 9.3
Angle Prediction 0.853 0.880 0.794 0.449 0.632 0.191 6.3
Dihedral Prediction 0.859‡ 0.881‡ 0.735 0.366 0.617 0.210 6.3
Multiview Contrast 0.874* 0.892* 0.736 0.362 0.656‡ 0.220 4.7

SiamDiff 0.864† 0.882† 0.829† 0.506* 0.695* 0.331* 1.5*
SiamDiff (w/o seq.&struct. diff.) 0.802 0.787 0.726 0.338 0.626 0.200 9.7
SiamDiff (w/o seq. diff.) 0.858 0.876 0.789 0.474 0.638 0.202 5.2
SiamDiff (w/o struct. diff.) 0.856 0.873 0.818 0.481‡ 0.660† 0.246† 4.0†
SiamDiff (w/o MI max.) 0.855 0.875 0.826‡ 0.462 0.616 0.180 6.7

Table 2: Atom-level results on Atom3D tasks. Accuracy is abbreviated as Acc. We use *, † and ‡ to
denote the first, second and third best performance among all models.

Method PSR MSP RES Mean
RankGlobal ρ Mean ρ AUROC AUPRC Acc.

GVP 0.809 0.486 0.652 0.228 0.550 -

w
/p

re
-t

ra
in

in
g

Denoising Score Matching 0.849 0.535 0.625 0.209 0.558 7.2
Residue Type Prediction 0.845 0.527 0.664 0.254 0.558 5.6
Distance Prediction 0.825 0.513 0.621 0.250 0.504 8.8
Angle Prediction 0.872* 0.545† 0.659 0.244 0.581† 3.2‡

Dihedral Prediction 0.852‡ 0.538 0.692† 0.260† 0.585* 2.4†
Multiview Contrast 0.848 0.518 0.640 0.187 0.335 9.0

SiamDiff 0.854† 0.548* 0.694* 0.263* 0.563‡ 1.6*
SiamDiff (w/o seq.&struct. diff.) 0.796 0.487 0.640 0.216 0.516 9.2
SiamDiff (w/o seq. diff.) 0.850 0.530 0.670‡ 0.255‡ 0.472 5.2
SiamDiff (w/o struct. diff.) 0.823 0.519 0.642 0.222 0.560 7.0
SiamDiff (w/o MI max.) 0.850 0.540‡ 0.631 0.217 0.556 6.2

Due to the large size of the RES dataset, we set the time limit as 24 hours and thus only fine-tine each
model for 12 epochs. More training hyperparameters are stated in App. D.

For EC prediction, we employ Fmax and AUPR as evaluation metrics, following the original bench-
mark (Gligorijević et al., 2021). For PSR prediction, we utilize the global and mean Spearman’s ρ
to assess the ranking performance. The MSP task measures the binary classification performance
with AUROC and AUPRC, and the micro-averaged accuracy serves as the evaluation metric of RES.
Detailed definitions of Fmax, global Spearman’s ρ and mean Spearman’s ρ are stated in Appendix D.

5.2 EXPERIMENTAL RESULTS

Tables 1 and 2 report the results of GearNet-Edge and GVP on residue- and atom-level graphs,
respectively. We do not include the results of GVP on EC and GearNet-Edge on RES tasks due to
their poor performance. We analyze and discuss these results below.

Overall, SiamDiff gains consistently superior or competitive performance on all benchmarks
across residue- and atom-level structures. On all residue- and atom-level benchmark tasks, the
performance of SiamDiff is among the top three, which is not attained by previous protein structure
pre-training methods. Although dihedral prediction performs well on atom-level downstream tasks, its
performance on the residue-level PSR and MSP tasks is not satisfactory. The extensive experimental
results demonstrate the strength of SiamDiff on boosting diverse types of structure-based protein
understanding tasks, including function prediction (EC), protein model quality assessment (PSR),
mutation effect prediction (MSP) and structural role understanding (RES).

On EC, SiamDiff outperforms all baselines except Multiview Contrast. Note that this function
prediction task aims to predict their catalyzed biochemical reactions, which are mainly determined
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by the structures of active/binding sites on protein surfaces. The superior performance of Multiview
Contrast can be attributed to the design of its correlated views, which aims to capture the statistical
relevance of these protein substructures that reflect protein functions and thus aligns representations
of proteins with similar functional sites. In contrast, SiamDiff maximizes MI between siamese
trajectories for modeling atom- and residue-level interactions underlying protein structural changes.

On PSR, SiamDiff is the best in terms of mean ρ and ranks the second in terms of global ρ.
Among all baselines, only Residue Type Prediction can achieve consistently good performance on
both structure levels. It is worth noticing that both SiamDiff and residue type prediction can acquire
the compatibility of protein sequence and structure. Specifically, Residue Type Prediction models the
conditional distribution of sequences given structures, while SiamDiff models the joint distribution of
sequences and structures. Such cross-modality modeling mechanisms benefit their performance on
this task where the validity of generated structures is assessed given a protein sequence.

On MSP, SiamDiff achieves the best performance. This task classifies a set of similar mutant
structures into two groups according to their ability to stabilize protein-protein interactions. Such
classification is mostly determined by the local structure change around the mutation site, which can
be well modeled by the structure diffusion process in SiamDiff. Essentially, structure diffusion guides
the model to recover the original/stable structure from the perturbed/destabilized one, which is highly
correlated to the objective of MSP. This can also explain why only applying the structure diffusion
objective (SiamDiff w/o seq. diff.) still achieves the third best performance at the atom level.

On RES, SiamDiff ranks the third place, lagging behind Angle and Dihedral Prediction. In
this task, the types of target residues are predicted given coordinates of its three backbone atoms
and atoms from surrounding residues. It is known that dihedral angles on the protein backbone can
determine the distribution of plausible side chain structures (Shapovalov & Dunbrack Jr, 2011) and
further imply residue types. Therefore, by capturing this information explicitly or implicitly, Dihedral
Prediction and Angle Prediction achieve very good results. By comparison, though SiamDiff is not
specifically designed for dihedral modeling, it can still achieve competitive performance on this task.

5.3 ABLATION STUDY

We study different components of our method in the last blocks of Tables 1 and 2.

Effect of multimodal diffusion. We study three degenerated settings of multimodal diffusion, i.e.,
w/o sequence and structure diffusion, w/o sequence diffusion and w/o structure diffusion. For the
setting without sequence and structure diffusion, we simply perform contrastive learning between two
correlated starting states from a protein. Compared to the original method, all these three settings lead
to performance decay on all tasks. These results prove the necessity of both structure and sequence
diffusion for SiamDiff to learn structure- and sequence-aware protein representations.

Effect of MI maximization. We evaluate our method under the setting without MI maximization.
Specifically, we only use the original protein to derive the multimodal diffusion trajectory, and
multimodal denoising is performed on this single trajectory. This setting is also clearly inferior to
the original SiamDiff, since it cannot capture shared information between correlated views. Such
a modeling capability is important on many tasks, e.g., general protein function prediction on EC
(Fmax score before and after removing this component: 0.864 v.s. 0.855), and it is thus an essential
component of SiamDiff. More ablation studies are provided in App. C.1.

6 CONCLUSIONS AND FUTURE WORK

In this work, we propose the Siamese Diffusion Trajectory Prediction (SiamDiff) for protein structure
pre-training. SiamDiff deems the whole diffusion trajectory of a protein as a view and seeks to
maximize the mutual information between correlated trajectories. In particular, we consider the
multimodal diffusion process in which both the protein folded structure and the protein sequence are
gradually corrupted towards chaos, so as to capture the joint distribution of structures and sequences.
Extensive experiments on diverse types of tasks and on both residue- and atom-level structures verify
the consistently superior or competitive performance of SiamDiff against previous baselines.

In future works, we will enhance SiamDiff with a dedicated multimodal encoder that can better model
the protein structure and sequence in a joint fashion, and we will also explore how to incorporate the
large-scale protein sequence corpus into the pre-training process.
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REPRODUCIBILITY STATEMENT

For the sake of reproducibility, in App. D, we provide detailed data processing schemes, graph con-
struction schemes, model configurations, pre-training configurations and fine-tuning configurations.
All source code of this work will be released to public upon acceptance.
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A MORE RELATED WORKS

Mutual Information (MI) Estimation and Maximization. MI can measure both the linear and
non-linear dependency between random variables. Some previous works (Belghazi et al., 2018; Hjelm
et al., 2018) try to use neural networks to estimate the lower bound of MI, including Donsker-Varadhan
representation (Donsker & Varadhan, 1983), Jensen-Shannon divergence (Fuglede & Topsoe, 2004)
and Noise-Contrastive Estimation (NCE) (Gutmann & Hyvärinen, 2010; 2012). The optimization
with InfoNCE loss (Oord et al., 2018) maximizes a lower bound of MI and is broadly shown to be a
superior representation learning strategy (Chen et al., 2020b; Hassani & Khasahmadi, 2020; Xu et al.,
2021; Liu et al., 2021; Zhang et al., 2022). In this work, we adopt the MI lower bound proposed by
Liu et al. (2022) with two conditional log-likelihoods, and we formulate the learning objective by
mutually denoising the multimodal diffusion processes of two correlated proteins.

B PROOFS

B.1 PROOF OF PROPOSITION 1

Proof. First, the mutual information between representations of two trajectories is defined as:
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However, since the distribution of representations are intractable to sample for optimization, we in-
stead sample the trajectories P0:T

1 and P0:T
2 from our defined diffusion process, i.e., p(P0:T
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2 ). Besides, instead of predicting representations, we use the repre-
sentations from one trajectory to recover the other trajectory, which reflects more information than its
representation. With these approximations, the lower bound above can be further written as:

1
2E
[
log

p(P0:T
1 |P0:T

2 )

q(P1:T
1 |P0

1)
+ log

p(P0:T
2 |P0:T

1 )

q(P1:T
2 |P0

2)

]
≈ 1

2EP0:T
1 ,P0:T

2

[
log

p(P0:T
1 |P0:T

2 )

q(P1:T
1 |P0

1 )
+ log

p(P0:T
2 |P0:T

1 )

q(P1:T
2 |P0

2 )

]
We now show the first term on the right hand side can be written as the loss defined in (6). The
derivation is very similar with the proof of Proposition 3 in Xu et al. (2022). We include it here for
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completeness:

EP0:T
1 ,P0:T

2

[
log

p(P0:T
1 |P0:T

2 )

q(P1:T
1 |P0

1 )

]

=EP0:T
1 ,P0:T

2

[
T∑

t=1

log
p(Pt−1

1 |Pt
1,P

0:T
2 )

q(Pt
1|P

t−1
1 )

]

=EP0:T
1 ,P0:T

2

[
log

(P0
1 |P1

1 ,P
0:T
2 )

q(P1
1 |P0

1 )
+

T∑
t=2

log

(
p(Pt−1

1 |Pt
1,P

0:T
2 )

q(Pt−1
1 |Pt

1,P0
1 )

· q(P
t−1
1 |P0

1 )

q(Pt
1|P0

1 )

)]

=EP0:T
1 ,P0:T

2

[
− log q(PT

1 |P0
1 ) + log p(P0

1 |P1
1 ,P

0:T
2 ) +

T∑
t=2

log
p(Pt−1

1 |Pt
1,P

0:T
2 )

q(Pt−1
1 |Pt

1,P0
1 )

]

=− EP0:T
1 ,P0:T

2

[∑T

t=1
DKL

(
q(Pt−1

1 |Pt
1,P0

1 )||p(Pt−1
1 |Pt

1,P
0:T
2 )

)]
+ C(2→1)

=− L(2→1) + C(2→1),

where we merge the term p(P0
1 |P1

1 ,P
0:T
2 ) into the sum of KL divergences for brevity and use C(2→1)

to denote the constant independent of our encoder. Note that the counterpart can be derived in the
same way. Adding these two terms together finishes the proof of Proposition 1. □

B.2 PROOF OF PRE-TRAINING LOSS DECOMPOSITION

We restate the proposition of pre-training loss decomposition rigorously as below.

Proposition 2 Given the assumptions 1) the separation of the diffusion process on protein structures
and sequences

q(Pt
a|Pt−1

a ) = q(Rt
a|Rt−1

a ) · q(St
a|St−1

a ), (13)

and 2) the conditional independence of the generation process

pθ(Pt−1
a |Pt

a,P
t
b) = pθ(Rt−1

a |Pt
a,P

t
b) · pθ(St−1

a |Pt
a,P

t
b), (14)

it can be proved that

L(b→a) = L(R,b→a) + L(S,b→a), (15)

where the three loss terms are defined as

L(b→a) :=E
[∑T

t=1 DKL
(
q(Pt−1

a |Pt
a,P0

a)||pθ(Pt−1
a |Pt

a,P
t
b)
)]

,

L(R,b→a) :=E
[∑T

t=1 DKL
(
q(Rt−1

a |Rt
a,R0

a)||pθ(Rt−1
a |Pt

a,P
t
b)
)]

,

L(S,b→a) :=E
[∑T

t=1 DKL
(
q(St−1

a |St
a,S0

a)||pθ(St−1
a |Pt

a,P
t
b)
)]

,

with b → a referring to the term from trajectory P0:T
b to P0:T

a .

Proof. Let L(·)
t to denote the t-th KL divergence term in L(·). Then, we have

L(b→a)
t = DKL

(
q(Pt−1

a |Pt
a,P0

a)||pθ(Pt−1
a |Pt

a,P
0:T
b )

)
= DKL

([
q(Rt−1

a |Rt
a,R0

a)q(St−1
a |St

a,S0
a)
]
||
[
pθ(Rt−1

a |Pt
a,P

0:T
b )pθ(St−1

a |Pt
a,P

0:T
b )

])
= DKL

(
q(Rt−1

a |Rt
a,R0

a)||pθ(Rt−1
a |Pt

a,P
0:T
b )

)
+DKL

(
q(St−1

a |St
a,S0

a)||pθ(St−1
a |Pt

a,P
0:T
b )

)
= L(R,b→a)

t + L(S,b→a)
t ,

where we use the assumptions (13) and (14) in the second equality. The third equality is due to the
additive property of the KL divergence for independent distributions. Adding T KL divergence terms
together will lead to (15). □
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B.3 PROOF OF SIMPLIFIED STRUCTURE LOSS

For completeness, we show how to derive the simplified structure loss. The proof is directly adapted
from (Xu et al., 2022).

Proposition 3 Given the definition of the forward process

q(Rt
a|Rt−1

a ) = N (Rt
a;
√

1− βtRt−1
a , βtI), (16)

and the reverse process

pθ(Rt−1
a |Pt

a,P
t
b) = N (Rt−1;µθ(Pt

a,P
t
b, t), σ

2
t I), (17)

µθ(Pt
a,P

t
b, t) =

1
√
αt

(
Rt

a −
βt√
1− ᾱt

ϵθ(Pt
a,P

t
b, t)

)
, (18)

the structure loss function

L(R,b→a) :=E
[∑T

t=1 DKL
(
q(Rt−1

a |Rt
a,R0

a)||pθ(Rt−1
a |Pt

a,P
t
b)
)]

, (19)

can be simplified to

L(R,b→a) =
∑T

t=1 γtEϵ∼N (0,I)

[
∥ϵ− ϵθ(Pt

a,P
t
b, t)∥22

]
, (20)

where γt =
βt

2αt(1−ᾱt−1)
with αt = 1− βt, ᾱt =

∏t
s=1 αs and b → a is either 2 → 1 or 1 → 2.

Proof. First, we prove q(Rt
a|R0

a) = N (Rt
a;
√
ᾱtR0

a, (1− ᾱt)I). Let ϵi be the standard Gaussian
random variable at time step i. Then, we have

Rt
a =

√
αtRt−1

a +
√
βtϵt

=
√
αt−1αtRt−2

a +
√
αt−1βt−1ϵt−1 +

√
βtϵt

= · · ·

=
√
ᾱtR0

a +
√
αtαt−1...α2β1ϵ1 + · · ·+

√
αt−1βt−1ϵt−1 +

√
βtϵt,

which suggests that the mean of Rt
a is

√
ᾱtR0

a and the variance matrix is (αtαt−1...α2β1 + · · · +
αt−1βt−1 + βt)I = (1− ᾱ)I .

Next, we derive the posterior distribution as:

q(Rt−1
a |Rt

a,R0
a) =

q(Rt
a|Rt−1

a )q(Rt−1
a |R0

a)

q(Rt
a|R0

a)

=
N (Rt

a;
√
αtRt−1

a , βtI) · N (Rt−1
a ;

√
ᾱt−1R0

a, (1− ᾱt−1)I)

N (Rt
a;
√
ᾱtR0

a, (1− ᾱt)I)

= N (Rt−1;

√
ᾱt−1βt

1− ᾱt
R0

a +

√
αt(1− ᾱt−1)

1− ᾱt
Rt

a,
1− ᾱt−1

1− ᾱt
βtI).

Let β̃t =
1−ᾱt−1

1−ᾱt
βt, then the t-th KL divergence term can be written as:

DKL
(
q(Rt−1

a |Rt
a,R0

a)||pθ(Rt−1
a |Pt

a,P
t
b)
)

=
1

2β̃t

∥∥∥∥√ᾱt−1βt

1− ᾱt
R0

a +

√
αt(1− ᾱt−1)

1− ᾱt
Rt

a −
1

√
αt

(
Rt

a −
βt√
1− ᾱt

ϵθ(Pt
a,P

t
b, t)

)∥∥∥∥2
=

1

2β̃t

Eϵ

∥∥∥∥√ᾱt−1βt

1− ᾱt
· R

t
a −

√
1− ᾱtϵ√
ᾱt

+

√
αt(1− ᾱt−1)

1− ᾱt
Rt

a −
1

√
αt

(
Rt

a −
βt√
1− ᾱt

ϵθ(Pt
a,P

t
b, t)

)∥∥∥∥2
=

1

2β̃t

· β2
t

αt(1− ᾱt)
Eϵ

∥∥ϵ− ϵθ(Pt
a,P

t
b, t)

∥∥
=γtEϵ

[
∥ϵ− ϵθ(Pt

a,P
t
b, t)∥22

]
,

which completes the proof. □
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B.4 PROOF OF SIMPLIFIED SEQUENCE LOSS

Now we show the equivalence of optimizing sequence loss L(S,b→a) and the masked residue type
prediction problem on S0

a .

Proposition 4 Given the definition of reverse process on protein sequences

pθ(St−1
a |Pt

a,P
t
b) ∝

∑
S̃0
a
q(St−1

a |St
a, S̃0

a) · p̃θ(S̃0
a |Pt

a,P
t
b), (21)

the sequence loss L(S,b→a) reaches zero when p̃θ(S̃0
a |Pt

a,P
t
b) puts all mass on the ground truth S0

a .

Proof. The loss function can be written as:

L(S,b→a) := E
[∑T

t=1 DKL
(
q(St−1

a |St
a,S0

a)||pθ(St−1
a |Pt

a,P
t
b)
)]

= E

[∑T

t=1
DKL

(
q(St−1

a |St
a,S0

a)

∣∣∣∣∣∣∣∣
∑

S̃0
a
q(St−1

a |St
a, S̃0

a) · p̃θ(S̃0
a |Pt

1,P
t
2)

Z

)]
,

where Z is the normalization constant. Hence, when p̃θ(S̃0
a |Pt

a,P
t
b) puts all mass on the ground

truth S0
a , the distribution pθ(St−1

a |Pt
a,P

t
b) will be identical with q(St−1

a |St
a,S0

a), which makes the
KL divergence become zero. □

C MORE EXPERIMENTAL RESULTS

C.1 ABLATION STUDY

(a) (b)

Figure 2: Ablation study of (a) structure perturbation scale ϵ and (b) time step number T on EC.

Effect of structure perturbation scale ϵ. In Fig. 2(a), we present the performance of SiamDiff on
EC under different structure perturbation scales. We can observe the superiority of ϵ = 0.3 over other
settings on both evaluation metrics. This result illustrates that moderately large structure perturbations
favor SiamDiff’s effectiveness. Under such condition, the correlated views can distinguish from each
other while share sufficient common information, leading to the moderate difficulty of the SiamDiff
pre-training task.

Effect of time step number T . Fig. 2(b) shows SiamDiff’s performance on EC by using different
time step numbers. It can be observed that too few time steps (i.e., 1 or 10 time steps) and too many
time steps (i.e., 1000 steps) both lead to the inferior performance. In these situations, the task of
each denoising step is either too hard (with too few time steps) or too simple (with too many time
steps). Therefore, it is suggested to use moderately many time steps (e.g., 50 or 100 time steps) in the
SiamDiff pre-training method.

D EXPERIMENTAL DETAILS

In this section, we introduce the details of our experiments. All these methods are developed based
on PyTorch and TorchDrug (Zhu et al., 2022).
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Graph construction. For atom graphs, we connect atoms with Euclidean distance lower than a
distance threshold. For PSR and MSP tasks, we remove all hydrogen atoms following Jing et al.
(2021b). For residue graphs, we discard all non-alpha-carbon atoms and add three different types of
directed edges: sequential edges, radius edges and K-nearest neighbor edges. For sequential edges,
two atoms are connected if their sequential distance is below a threshold and these edges are divided
into different types according to these distances. For two kinds of spatial edges, we connect atoms
according to Euclidean distance and k-nearest neighbors. We further apply a long range interaction
filter that removes edges with low sequential distances.

Backbone models. We directly borrow the best hyperparameters reported in the original paper of
GearNet-Edge (Zhang et al., 2022). We adopt the same configuration of relational graph construction,
i.e., the sequential distance threshold dseq = 3, the radius dradius = 10.0Å, the number of neighbors
k = 10 and the long range interaction cutoff dlong = 5. We use one-hot features of residue types as
node features and concatenate (1) one-hot features of end nodes, (2) one-hot features of edge types,
(3) sequential distance, (4) spatial distance as edge features. Then we use 6 message passing layers
with 512 hidden dimensions and ReLU as the activation function. For edge message passing, the
edge types on the line graph are determined by the discretized angles. The hidden representations in
each layer of GearNet will be concatenated for the final prediction. Since only alpha carbon atoms
are kept in the graph, their representations are used for both atom and residue representations.

For GVP, the original design only includes atom types as node features, which makes pre-training
tasks with residue type prediction very difficult to learn. To address this issue, we slightly modify
its architecture to add add the embedding of atom and corresponding residue types as atom features.
Then, the default configurations in Jing et al. (2021b) are adopted. We construct an atom graph
for each protein by drawing edges between atoms closer than 4.5Å. Each edge is featured with a
16-dimensional Gaussian RBF encoding of its Euclidean distance. We use five GVP layers and hidden
representations with 16 vector and 100 scalar channels and use ReLU and identity for scalar and
vector activation functions, respectively. The dropout rate is set as 0.1. The final atom representations
are followed by a mean pooling layer to obtain residue and protein representations.

Pre-training methods. Here we briefly introduce the considered baselines. Multiview Contrast
aims to maximize the mutual information between correlated views, which are extracted by randomly
chosen augmentation functions to capture protein sub-structures. Residue type, distance, angle and
dihedral prediction masks single residues, single edges, edge pairs and edge triplets, respectively, and
then predict the corresponding properties. Denoising score matching performs denoising on noised
pairwise distance matrices based on the learnt representations.

For all baselines in (Zhang et al., 2022), we adopt the original configurations. For Multiview Contrast,
we use subsequence cropping that randomly extracts protein subsequences with no more than 50
residues and space cropping that takes all residues within a 15Å Euclidean ball with a random center
residue. Then, either an identity function or a random edge masking function with mask rate equal
to 0.15 is applied for constructing views. The temperature τ in the InfoNCE loss function is set as
0.07. We set the number of sampled items in each protein as 256 for Distance Prediction and as 512
for Angle and Dihedral Prediction. The mask rate for Residue Type Prediction is set as 0.15. When
masking a residue on atom graphs, we discard all non-backbone atoms and set the residue features
as zero. Since the backbone models and tasks in our paper are quite different with those in Guo
et al. (2022), we re-implement the method on our codebase. We consider 50 different noise levels
log-linearly ranging from 0.01 to 10.0.

For our method, we set the variance of structure perturbation noises ϵ as 0.3 when constructing the
other view. For structure diffusion, we use a sigmoid schedule for variances βt with the lowest
variance β1 = 1e − 3 and the highest variance βT = 0.1. For sequence diffusion, we simply set
the cumulative transition probability to [MASK] over time steps as a linear interpolation between
minimum mask rate 0.15 and maximum mask rate 1.0. The number of diffusion steps is set as 1000.

All other optimization configurations for these pre-training methods are reported in Table 3. All
methods are pre-trained on four Tesla A100 GPUs and Table 3 reports the batch sizes on each GPU.

Fine-tuning on downstream tasks. For all models on all downstream tasks, we apply the a three-
layer MLP head for prediction, the hidden dimension of which is set to the dimension of model
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Table 3: Optimization configurations for pre-training methods. Here max length denotes the maximum
number of residues kept in each protein and lr stands for learning rate.

Method Max length Batch size Optimizer lr
residue atom residue atom

Residue Type Prediction 100 100 96 64 Adam 1e-3
Distance Prediction 100 100 128 64 Adam 1e-3
Angle Prediction 100 100 96 64 Adam 1e-3
Dihedral Prediction 100 100 96 64 Adam 1e-3
Multiview Contrast - - 96 64 Adam 1e-3
Denoising Score Matching 200 200 12 12 Adam 1e-4
SiamDiff 150 100 32 32 Adam 1e-4

outputs. The batch sizes for each model are chosen according the memory limit. For all residue-level
tasks, we fine-tune the GearNet-Edge on 4 GPUs (A100 for EC/GO and V100 for PSR/MSP) with
the batch size on a single one as 2. For all atom-level tasks except RES, we set the batch size as 2 and
fine-tune the model on a single V100 GPU. For RES, we fine-tune the pre-trained GVP on 4 A100
GPUs with the batch size on a single one as 32.

Evaluation metrics. We clarify the definitions of Fmax (used in EC), global Spearman’s ρ (used in
PSR) and mean Spearman’s ρ (used in PSR) as below:

• Fmax denotes the protein-centric maximum F-score. It first computes the precision and recall for
each protein at a decision threshold t ∈ [0, 1]:

precisioni(t) =

∑
f 1[f ∈ Pi(t) ∩ Ti]∑

f 1[f ∈ Pi(t)]
, recalli(t) =

∑
f 1[f ∈ Pi(t) ∩ Ti]∑

f 1[f ∈ Ti]
, (22)

where f denotes a functional term in the ontology, Ti is the set of experimentally determined
functions for protein i, Pi(t) is the set of predicted functions for protein i whose scores are greater
or equal to t, and 1[·] represents the indicator function. After that, the precision and recall are
averaged over all proteins:

precision(t) =
1

M(t)

∑
i

precisioni(t), recall(t) =
1

N

∑
i

recalli(t), (23)

where N denotes the total number of proteins, and M(t) denotes the number of proteins which
contain at least one prediction above the threshold t, i.e., |Pi(t)| > 0.
Based on these two metrics, the Fmax score is defined as the maximum value of F-measure over
all thresholds:

Fmax = max
t

{
2 · precision(t) · recall(t)
precision(t) + recall(t)

}
. (24)

• Global Spearman’s ρ for PSR measures the correlation between the predicted global distance
test (GDT_TS) score and the ground truth. It computes the Spearman’s ρ between the prediction
and the ground truth over all test proteins without considering the different biopolymers that these
proteins lie in.

• Mean Spearman’s ρ for PSR also measures the correlation between GDT_TS predictions and
the ground truth. However, it first splits all test proteins into multiple groups based on their
corresponding biopolymers, then computes the Spearman’s ρ within each group, and finally
reports the mean Spearman’s ρ over all groups.
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