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ABSTRACT

Test-Time Training (TTT) models context dependencies by adapting part of the
model’s weights (often referred to as fast weights) at inference time. This adapted
fast weight, similar to recurrent states in RNNs, stores temporary memories of past
tokens in the current sequence. Existing TTT methods have struggled to demon-
strate effectiveness in handling long-sequence data, due to their computational
inefficiency on modern GPUs. The TTT layers in many of these approaches operate
with extremely low FLOPs utilization on modern GPUs(often below 5%) because
they deliberately apply small online mini-batch sizes (e.g., updating fast weights
every 16 or 64 tokens). Moreover, a small mini-batch implies fine-grained block-
wise causal dependencies in the data, making them unsuitable for data beyond 1D
ordered sequences, like sets or N-dimensional grids such as images or videos. In
contrast, we pursue the opposite direction by proposing an extremely large chunk
update, ranging from 2K to 1M tokens across tasks of varying modalities, which
we refer to as Large Chunk Test-Time Training (LaCT). This approach improves
hardware utilization by orders of magnitude, and more importantly, facilitates
scaling of nonlinear state size (up to 40% of model parameter size), hence substan-
tially improving state capacity, all without requiring cumbersome and error-prone
custom kernel implementations. It also allows easy integration of sophisticated
optimizers like Muon for online memory updates. We validate our approach across
diverse data modalities and tasks, including novel view synthesis from image sets,
language models, and auto-regressive video diffusion models. Our approach can
scale up to 14-billion-parameter auto-regressive video diffusion models handling
sequences of up to 56K tokens. In our longest sequence experiment, we perform
novel view synthesis with more than one million context length. Our results high-
light the computational and performance benefits of large-chunk test-time training,
paving the way for more efficient and scalable long-context sequence modeling.
We hope that this work will inspire and accelerate new research in the field of
long-context modeling and test-time training. See visual results on project website
https://ttt-done-right.github.io/.

1 INTRODUCTION

The demand for handling long contexts is rapidly growing. While softmax attention (Vaswani
et al., 2017) has become the de facto solution for modeling various types of data, its computational
cost grows quadratically with sequence length, motivating extensive research into more efficient
long-context modeling.

Recently, Test-Time Training (TTT) (Sun et al., 2024) has emerged as a promising approach for
efficient sub-quadratic sequence modeling. TTT extends the concept of recurrent states in RNNs
to a small, online-adapted sub-network. The parameters of this sub-network also referred to as fast
weight (Schlag et al., 2021), as they are rapidly adapted online via self-supervised objectives to
memorize in-context information. Numerous recent studies (Wang et al., 2025b; Behrouz et al.,
2024; 2025b; Karami & Mirrokni, 2025) have explored various online objectives, optimizers, and
architectures for fast weight networks.

Despite these efforts, existing TTT methods struggle to scale effectively to long contexts, primarily
due to extremely low hardware utilization in their TTT layers (often below 5% peak FLOPS on
modern GPUs). This inefficiency is because of the usage of small mini-batch sizes, i.e. updating fast
weights every token or every 16 to 64 tokens, which is conventionally assumed to be more effective
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for in-context learning. Such small mini-batch results in poor parallelism and low compute intensity,
and presents significant challenges for hardware-efficient implementation, especially when using
large, nonlinear fast weights, making it difficult to achieve non-trivial (above 10%) FLOPs utilization.

In this paper, we adopt the opposite strategy and introduce Large Chunk Test-Time Training (LaCT).
LaCT leverages extremely large chunk (from 2048 to 1M tokens) as the basic unit to update the fast
weight. Since the tokens within each large chunk are treated as an unordered set, we further integrate
window attention into LaCT to capture local dependencies within the chunk. LaCT significantly
enhances parallelism, leading to substantially improved GPU utilization (up to 70% on NVIDIA
A100s) with just a few dozen lines of pure PyTorch code (see Appendix C.1). This efficiency enables
the scaling of non-linear fast weights to enhance the memory capacity. And simple implementation
allows easy integration of more effective test-time optimizers, such as Muon (Jordan et al., 2024).

Furthermore, LaCT’s large-chunk design is also natural to model diverse N-dimensional data as we
can align chunk-size with the internal structure of the data (e.g., grouping tokens within an image or
consecutive video frames as a chunk).

We extensively validate LaCT on three tasks spanning different modalities and data structures:

• Novel View Synthesis. Our model is capable of processing up to 128 input images at a
resolution of 960×536 leading to a maximum of 1M tokens, and outperforms 3D Gaussian
Splatting (Kerbl et al., 2023) in terms of rendering quality under such input scale.

• Language Modeling. Our model achieves competitive performance compared to SoTA
methods such as DeltaNet (Yang et al., 2024b), even though a chunk structure is not
explicitly present in language data.

• Autoregressive Video Diffusion. We adapt a 14-billion-parameter bidirectional video diffu-
sion transformer into an autoregressive model by incorporating LaCT with sliding window
attention. This adapted model generates consistent videos up to 56,000 visual tokens.

To summarize, our approach establishes an efficient, scalable, and highly performant framework
for long sequence modeling across diverse modalities. By removing the dependency on low-level,
hardware-specific implementations, LaCT enables broader exploration of the architectural design
space. We believe this can democratize research in efficient long-context modeling and inspire the
development of more novel and effective designs.

2 PRELIMINARY

2.1 TEST-TIME TRAINING

Consider a one-dimensional sequence of N tokens x = [x1, x2, . . . , xN ], where each token xi ∈ Rd.
Following attention formulation, each input tokens xi is projected into query (qi), key (ki), and value
(vi) vectors. For clarity, we assume all these vectors qi, ki, vi ∈ Rd.

Test-Time Training (TTT) (Sun et al., 2024) introduces a neural network with rapidly adaptable
weights—called fast weights (Schmidhuber, 1992; Schlag et al., 2021)—that are updated during both
training and inference to dynamically store context information. This contrasts with the slow weights
(i.e., model parameters) that are frozen during inference. Formally, TTT defines fast weights in the
form of a neural network: fW (·) : Rd → Rd parameterized by the fast weights W , and it involves
two primary operations:

Update operation: W ←W − η∇WL
(
fW (k), v

)
(1)

where L(·, ·) is a loss function between the transformed key fW (k) and the value v, commonly Mean
Squared Error, designed to encourage the network to associate keys with corresponding values. η is
the learning rate. Intuitively, this learning objective is to encode the KV cache into a neural memory
with fixed state size as accurate as possible (Wang et al., 2025b).

Apply operation: o = fW (q), (2)

where the updated fast weights W are used to compute the output vector o given the query q. The
per-token TTT layer iteratively perform the update and apply operations on each token xi in sequence.
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Figure 1: Using larger chunk sizes significantly improves GPU utilization compared to the original
test-time training (TTT) method that even uses customized kernels (a). This enhanced utilization
enables efficient and effective scaling to larger state sizes (b), (c), leading to better overall performance
in less wall-clock time (d). The dotted line in (a) is the theoretical peak BF16 throughput of the
GPU. Panel (c) measure average validation loss of the last 2K tokens in sequences processed by a
LaCT language model across varying state sizes, demonstrating benefits of larger state size. Panel (d)
compares performance versus training time across different baselines on the novel view synthesis
benchmark. Further experimental details can be found in App. E.4.

2.2 CHALLENGES IN EFFICIENT IMPLEMENTATION

Frequent online update of fast weights is inefficient due to memory bandwidth limitations. Conse-
quently, previous works (Sun et al., 2023; Gu & Dao, 2023; Yang et al., 2024a; Qin et al., 2024;
Yang et al., 2024c) often employ customized kernels that keep fast weights in SRAM across updates
to reduce memory load. However, this strategy typically requires fast weights to evolve mostly
independently within SMs to reduce communications, which is not valid for large nonlinear states
(e.g., the nonlinear SwiGLU fast weight in Sec. 3.1 and the Muon update in Sec. 3.2). Moreover,
developing such kernel code is cumbersome, with far longer development cycles than native PyTorch
code, hindering rapid research exploration.

On the other hand, a PyTorch-based implementation, while simpler, is typically bounded by memory
speed. As an illustration, consider a PyTorch implementation of simple MLP fast weight, the core of
which is a matrix multiplication between fast weight (e.g., h× h matrix) and the mini-batch input
(b× h where b is the chunk size). The ideal compute-to-memory ratio is:

r =
2h2b

2h2 + 4hb
=

h/2

1 + h
2b

=
b

1 + 2b
h

≤ min(h/2, b). (3)

Here, 2h2b is the FLOPs to for matrix multiplication, the denominator 2h2 + 4hb is the memory
workload for two input matrices and the output in BF16 (2 bytes). Small fast weight size (e.g.,
h = 64) or small chunk size (e.g., b = 16) will bound the ratio r far below the theoretical peak (e.g.,
290 FLOPs per byte on H100), making the operation memory-bound and limiting compute usage.

In light of this, we advocate for using large chunk sizes (from 2048 to 1M). This allows us to achieve
higher throughput (Fig. 1a) leading to better performance in less training wall-clock time(Fig. 1d).
Our design also allows the state size to be scaled up efficiently(Fig. 1b), leading to significant results
improvement with such scaling (Fig 1c, Fig. 7a). Our architecture achieves a state-to-parameter size
ratio ≥ 40%, which is an order of magnitude larger than previous methods’ ratio of 0.1% to 5%.
Detailed pseudocode is provided in Appendix 1.

Parallelism over the sequence length dimension, in addition to the batch and head dimensions, is
crucial to achieve high occupancy when handling long sequences (where the batch size is often small).
Linear Attention variants like Mamba (Gu & Dao, 2023), Gated Linear Attention (Yang et al., 2024a)
and DeltaNet (Yang et al., 2024c) enable such parallelism by utilizing the associative property of linear
recurrence. Attention (Vaswani et al., 2017) can be parallelized along the sequence length dimension
due to independent computation between different queries. Supporting such parallelism is a key
improvement of FlashAttention-2 (Dao, 2023) over FlashAttention-1 (Dao et al., 2022). For test-time
training with non-linear updates, sequence dimension parallelism can only be implemented within
online chunks, further motivating the use of extremely large chunk sizes. When implementing large-
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Figure 2: The basic diagram for a LaCT block. The large-chunk TTT layer updates the fast weight W
to store historical context information, while the window attention handles the locality and internal
structures within the chunk. The solid line denotes the information flow over model depth and the
dashed line denotes the information flow over time (i.e., the fast weight W passing through chunks).
Various instantiations in Sec. 4 use different chunk sizes and window attention types according to the
specific data structure. Additionally, window attention and large-chunk TTT layers can be combined
within the same layer by sharing the QKV and summing their outputs; this in-layer mixing is used in
our language modeling and video generation experiments (see Appendix 2 for such pseudocode).

chunk TTT with PyTorch, this sequence dimension parallelism within a device across multiple thread
blocks is automatically handled by PyTorch and low-level compilers. An example of such sequence
parallelism across multiple devices is provided in Section 3.4, with pseudocode in Appendix 3.

3 LACT MODEL ARCHITECTURE

As in Fig. 2, LaCT block consists of three types of layers: a window attention layer, a large-chunk
TTT layer, and a feed-forward layer. Each layer is equipped with residual connections (He et al.,
2015) following the practice in Transformer (Vaswani et al., 2017). The window attention layer
performs local self-attention to capture the local dependency. In the TTT layer, we split the sequence
into large chunks. The history context is gradually compressed into the fast weights through an
‘update’ operation (regarding vector key K and value V ), and latest weight is ‘applied’ to the current
query vector (Q) to compute the output. The feed-forward layer performs channel mixing as in
Transformer. We omit several linear and normalization layers in Fig. 2 for clarity and details are in
Appendix C.1. Our framework offer great flexibility in handling diverse data types. In this section,
we present general designs in our approach and later describe data-specific variations in Sec. 4.

3.1 LARGE-CHUNK TTT LAYER

Different from the per-token update in Eqn. 1, the chunk-wise update computes the gradient of the
summed loss over all keys {ki} and values {vi} within the chunk. As the chunk size is large, weight
updates are performed infrequently. This enables more sophisticated weight-update rule designs
(discussed in Sec. 3.2) and amortizes the update cost. The ‘update’ operation for the fast weight is:

g = ∇W

b∑
i=1

ηiL
(
fW (ki), vi

)
(4)

W ← weight-update(W, g), (5)

where b is the chunk size, g is the gradient of the fast-weight loss function, and ηi is the learning rate
of each token (usually predicted from input tokens). The ‘apply’ operation oi = fW (qi) is the same
as Eqn. 2 and all query vectors {qi} in the chunk share the same updated fast weight W .

Motivated by recent LLMs (Touvron et al., 2023), we adopt SwiGLU-MLP (Shazeer, 2020) without
bias terms as the fast-weight network. Our fast weights consists of three weight matrix W =
{W1,W2,W3}, and the network is:

fW (x) = W2 [SiLU(W1x) ◦ (W3x)] (6)

4
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Figure 3: Different ‘Update’ and ‘Apply’ orders and their equivalent attention mask. A blue mask in
i-th row and j-th column means the i-th token’s output depends on the j-th token.

where ◦ is an elementwise multiplication. We apply a simple dot product loss as our loss function:

L
(
fW (ki), vi

)
= −fW (ki)

⊤vi (7)

Execution orders for ‘apply’ and ‘update’. Note that the ‘update’ operation and ‘apply’ operation
of TTT are decoupled, and we can set the chunk size adaptively and apply these operation in different
orders; this allows us to model diverse kinds of data dependencies, similar to different attention
masks in self-attention. Figure 3 illustrates this concept. In Figure 3a, when the chunk size equals the
full sequence length, performing the apply followed by the update operation is conceptually similar
to full attention. Using update and apply alternately leads to a block-wise causal mask (Fig. 3b),
where the block size corresponds to the chunk size. Switching the order between the two operations
results in the a shift in the mask (Fig. 3c). This shifted mask does not leak future information within
the chunk and is important when building the full causal mask in Language Modeling (Sec. 4.2).
Moreover, only updating on a subset of chunks and applying to all (Figure 3d) is analogous to strided
block-wise causal mask.

3.2 NON-LINEAR UPDATE OF FAST-WEIGHT

Fast-weight updates in TTT repeatedly accumulate gradients, and thus suffer from magnitude ex-
plosion or decayed memory. Large-chunk TTT allows non-linear updates to improve stability and
effectiveness while preserving efficiency. For the ‘weight-update’ operation in Eqn. 5, our vanilla
implementation involves gradient descent followed by weight normalization:

weight-update(W, g) = L2-Normalize(W − g). (8)

We have also explored a more robust nonlinear Muon (Jordan et al., 2024) update rule 1 with weight
normalization:

weight-update(W, g) = L2-Normalize(W −Muon(g)) (9)

Fast-weight normalization. We apply L2 weight normalization to the updated fast weights along
the input dimension. We do not use explicit weight-decay term as in previous methods (Behrouz
et al., 2024; Dao & Gu, 2024; Yang et al., 2024a; Sun et al., 2023). When the network is conceptually
rotated 90 degrees, treating the sequence dimension as the depth of a virtual model, the test-time
training updates act as residuals over time (He et al., 2015). In this view, our fast-weight normalization
is analogous to the post-layer norm in Transformer architectures, which constrains activation scales
within the residual path.

Muon-update rule. Essentially, Muon normalizes the spectral norm of matrix gradient using Newton-
Schulz iterations. In short, let g = USV T be the Singular Value Decomposition(SVD) of the gradient
g, then Muon operator approximately converts the gradient as:

Muon(g) ≃ UV T (10)

1Muon requires weights in matrix form, and our current fast-weight function SwiGLU-MLP has three
matrices as the weights (i.e., W1,W2,W3 in Eqn. 6).

5
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Muon also improves the numerical stability in our setup. For example, the learning rate (ηi in Eqn. 4)
now only reflects the relative importance of tokens within a chunk as Muon normalizes the absolute
scale. See (Jordan et al., 2024) and Appendix C for analysis of its computational cost.

3.3 WINDOW ATTENTION

The large-chunk TTT layer treats data as sequences of sets because its fast weight updates inherently
disregard token order and spatial locality within each chunk. However, many data modalities—such
as videos (sequences of grids), image collections (sets of grids), or text (1D sequences)—do not fully
align with this set-based perspective . For these modalities, intra-chunk structure and locality are
vital for capturing the overall data structure. We therefore integrate local window attention (either
causal or bidirectional) alongside TTT layers to handle data structure within a chunk. Moreover,
window attention efficiently handles localities in the data, enabling the TTT layer to focus its
fixed-size fast weight capacity on modeling non-local dependencies. This hybrid strategy is also
employed in other notable works like BASED (Arora et al., 2024), GAU (Hua et al., 2022a) and
InifinitAttention (Munkhdalai et al., 2024). In summary, LaCT is a hybrid architecture with the
quadratic-compute attention for local structure and linear-compute TTT for non-local context.

3.4 CONTEXT PARALLELISM

Context Parallelism (CP) partitions the sequence along the context length dimension and distributes
the shards across multiple devices for parallel computing. The feed-forward layer and window
attention are local operators thus natively support CP. For TTT layer, small chunks hardly support
CP thus tensor parallelism (i.e., parallel over the heads) is preferred. Our large-chunk TTT layer
allows CP by sharding the tokens within a chunk. This can be implemented through distributed
all-reduce-sum and is logically the same as Distributed Data Parallelism (DDP), except that the
parameters are the fast weights and input data are the tokens in the chunk. We adopt such parallelism
in training the novel view synthesis task (Sec. 4.1) and observe minimal throughput overheads (1% to
3%). See Appendix for pseudocode (Alg. 3) and other parallelism(Alg. 4).

4 LACT FOR N-DIMENSIONAL DATA

In this section, we introduce the three tasks we address using LaCT—novel view synthesis, language
modeling, and autoregressive video generation. These tasks have different inherent data structures
and we address them with corresponding design choices. The full model architecture details for these
data types are provided in Appendix D.

4.1 NOVEL VIEW SYNTHESIS - IMAGE SET

Novel view synthesis (NVS)(McMillan & Bishop, 1995; Levo & Hanrahan, 1996) aims to render
images of a static scene from previously unseen viewpoints. Formally, given a set of N input
posed images {(Ii, Pi)}Ni=1 of a static scene, where Ii ∈ RH×W×3 is an RGB image and Pi is its
corresponding camera pose, the model needs to synthesize new images from novel camera poses that
typically do not overlap with the input views.

We find that NVS is an effective test bench for evaluating a model’s online memory and compression
capabilities. Firstly, NVS is challenging as it requires spatial compression, dense retrieval, and basic
physical reasoning. Secondly, NVS can be formulated as a non-generative task, significantly reducing
training computation and the need for extensive model parameters to store world knowledge, thereby
enabling rapid experimentation. Thirdly, the substantial redundant information in dense input views
incentivizes the model to learn effective compressions. Given these observations, we use NVS for our
initial research iterations. We find that some of the insights gained are transferrable to other tasks.

Our NVS model follows the basic LaCT diagram in Sec. 3. Both the posed input images and poses
of the target novel views are tokenized by patchify and linear layers, following LVSM (Jin et al.,
2024a). The window attention exactly covers the tokens from a single image. The LaCT layer adapts
a single-round of strided block-wise causal mask (Fig. 3d), which updates the fast weight using all
input view tokens, and applies to both the input and novel view tokens. The update step resembles a
prefill stage, while the apply operation resembles parallel decoding. During rendering of novel views,

6
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Table 1: Summary of our experiments on three different data structures. ‘d’ denotes model dimension.
The state size denotes the size of the fast weight per model block.
Task name Data Structure Chunk Size State Size Model Size Max Length Context Parallelism

Novel View Synthesis Image set Full sequence 6d2 0.3B 1M Within-chunk parallel
AR Video Diffusion Image sequence Three frames 3d2, 0.75d2 1.3B, 14B 56160 Head-dim parallel
Language Models 1D Sequence 2K, 4K tokens 0.75d2 0.7B, 3B 32768 N/A

each test-time training layer functions as a static weight layer, making the entire model a static vision
transformer (Dosovitskiy et al., 2020). We illustrate this design in Figure 9.

4.2 LANGUAGE MODELING - TEXT SEQUENCE

Autoregressive language models predict the probability distribution of the next token given preceding
tokens, pθ(xn|x1, . . . , xn−1). Text sequences lack inherent chunk structures, so for LaCT, we define
chunk size as a hyperparameter (e.g., 2048 or 4096 tokens). We utilize the shifted block-wise causal
mask as in Fig. 3(c) for the TTT apply-update sequence to avoid seeing future tokens in a chunk.
Since LaCT lacks per-token causality within each chunk, we employ sliding window attention—with
window size equal to the chunk size—to efficiently model per-token causal dependencies. The sliding
window is integrated into the same TTT layer with shared QKV similar to GAU (Hua et al., 2022a).
We illustrate the detailed architecture in Fig. 10 and pseudocode 2.

4.3 AUTOREGRESSIVE VIDEO DIFFUSION - IMAGE SEQUENCES

Chunkwise autoregressive video diffusion iteratively denoises a number of subsequent video frames,
conditioned on the previously generated clean frames, where each chunk can contain thousands
of visual tokens. We use teacher-forcing training by interleaving noisy and clean frame chunks.
Specifically, a video of N frame chunks is structured as:

S = [Xnoise
1 , X1, X

noise
2 , X2, . . . , X

noise
N ] (11)

where each noisy chunk Xnoise
i is produced by adding unit Gaussian noise ϵ to the i-th clean video

chunk as Xnoise
i = Xi(1− ti) + ϵti and ti ∈ [0, 1] denotes the strength of chunk-independent noise.

To handle such a data structure, we employ the strided block-wise causal mask in Fig. 3d for LaCT.
Specifically, it applies fast weights to each chunk sequentially while only updating fast weights on
clean chunks. This simple strategy ensures that each denoising operation only accesses previously
cleaned frames. The windowed attention uses a non-overlapping window with 2 consecutive chunks
(i.e., [Xi, X

noise
i+1 ]) to build temporal and spatial locality. Within each window, the attention from Xi

to Xnoise
i+1 is excluded. We adopt all attention and TTT masking patterns similar to Fig. 3c. The details

of this hybrid architecture and efficient trainings are in the Appendix D.3.

5 EXPERIMENTS

In this section, we present our experiment results on novel view synthesis (Sec. 5.1), language
modeling (Sec.5.2), and autoregressive video generationo (Sec. 5.3), and an in-depth analysis (Sec. A)
of different design choices. Tab. 1 summarizes key factors in each experiment. When comparing with
linear-cost baselines, we augmented them with the same window attention for fair comparisons. The
full experimental details for all tasks are provided in Appendix E.

5.1 NOVEL VIEW SYNTHESIS

Datasets & metric. We evaluate our method on both object-level (Deitke et al., 2023) and scene-level
(Ling et al., 2024) datasets. For object-level experiments, models are trained on Objaverse and tested
on the Google Scanned Objects (GSO) dataset (Downs et al., 2022), at 256 × 256 and 512 × 512
resolutions. Each evaluation uses 4–48 input views and 8 novel views per object. For scene-level
experiments, we adopt 140 test scenes from DL3DV, evaluated at 960× 536 resolution. Performance
is reported in Peak Signal-to-Noise Ratio (PSNR), with additional metrics provided in Appendix E.1.

Model & Training details. Our default model has 312M parameters, including 84M fast weights
(6d2 per block). We train on 1.25T tokens for object-level datasets and 1.8T tokens for scene-level

7
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Table 2: Complexities of methods on novel view synthesis w/ n input. Prefill and rendering speed are
measured on A100 with 48 512×512 input images (196K input tokens, 4K decoding tokens).

State Size Prefill Compute Decoding Compute # Params Prefill speed Rendering FPS

Full attention O(n) O(n2) O(n) 284M 16.1 s 2.3 FPS
Perceiver Attention O(1) O(n2) O(1) 287M 16.8 s 34.4 FPS
Ours O(1) O(n) O(1) 312M 1.4 s 38.7 FPS

48 views
48 views

8 views
8 views

GSO 256×256 GSO 512×512 DL3DV 960×536

(a) Object dataset (b) Performance v.s. Prefill speed (c) Scene dataset with 1M tokens

Figure 4: (a, b) our method achieves quality comparable to full-attention models with significantly
lower prefill latency, and it clearly outperforms perceiver-attention baselines. (c) On the high
resolution scene dataset, our approach surpasses LongLRM, limited to 32 views, and outperforms 3D
Gaussian Splatting with sparse views, remaining competitive up to 128 input views (1M total tokens).

datasets, using a maximum sequence length of one million tokens. High-resolution models employ
inner-chunk context parallelism (Sec. 3.4). More details are provided in Appendix E.1.

Baselines. For object-level evaluation, we compare against two representative attention designs: one
without in-context compression and one with compression: (1) the non-compressed baseline is a full-
attention model, where TTT layers are replaced by block-wise causal attention enabling bidirectional
input interactions and cross-attention from novel views, and (2) the attention-with-compression
baseline is a perceiver-style register-attention model (Jaegle et al., 2021), which compress inputs to
4096 registers and decodes novel views via cross-attention. For scene-level evaluation, we benchmark
against LongLRM (Ziwen et al., 2024), which integrates Mamba (Gu & Dao, 2023) with full attention
for 3D Gaussian splat prediction, as well as pure optimization-based 3D Gaussian splatting methods.
Table 2 summarizes computational complexity across all models. Figure 4 present experimental
results and analysis. See more results and details in Appendix. E.1.

5.2 LANGUAGE MODELING

Datasets & Metrics. We train our models on the Long-Data-Collections dataset (AI, 2024), using
approximately 60B tokens. For evaluation, we employ the per-token loss metric from (Xiong et al.,
2023; Lin et al., 2025), assessing models’ ability to effectively use the full context. A monotonically
decreasing loss indicates successful context utilization, whereas plateauing suggests limited context
usage. Additionally, we report retrieval accuracy (Hsieh et al., 2024) at various sequence lengths.

Model & Training details. We integrate the sliding window-attention(SWA) layer directly into the
Large-Chunk TTT layer by sharing Q, K, and V vectors with the fast-weight network, following
GAU Hua et al. (2022a). The pseudocode for this design is in Algorithm 2. We trained models at
two scales using a 32768-token sequence length: a 760M-parameter model with a 2048-token sliding
window and a 3B-parameter model with a 4096-token sliding window. See more details in App. E.2.

Baselines. We compare against transformer, Gated Linear Attention (GLA) (Yang et al., 2024a),
DeltaNet (Schlag et al., 2021; Yang et al., 2024c). To ensure fairness, we enhance both GLA and
DeltaNet with the same SWA. Tab. 6 summarize the mechanism and training throughput of all
methods. Fig. 5 presents experimental results and analysis. See more results and details in App. E.2.

5.3 AUTOREGRESSIVE VIDEO DIFFUSION

We fine-tune the pretrained Wan 2.1 (Wang et al., 2025a) text-to-video diffusion model into an
autoregressive video diffusion model. Specifically, we replace all bidirectional attention layers with
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Transformer Transformer SWA GLA SWA DeltaNet SWA Ours MuonOurs Momentum

(a) 760M Validation loss (b) 760M S-NIAH-1 (c) 3B Validaiton loss (d) 3B S-NIAH-2

Figure 5: Language Model results. (a, c) Our model achieves lower per-position loss at larger token
indices compared to GLA and DeltaNet at both 760M and 3B scale, indicating stronger long-context
modeling capability. (b, d) Our model consistently outperforms GLA and DeltaNet in retrieval
accuracy. Furthermore, our Muon variant consistently outperforms our Momentum variant.

Transformer OursMamba SWATransformer SWA

6 frames per window

4 frames per window

(a) Comparison with baselines (b) Ablate on window size (c) Eval on longer videos

Figure 6: (a) We achieve comparable validation loss to the full-attention baseline and outperform
both Mamba with sliding window and sliding window attention baselines. This improvement over
SWA is consistent across different window sizes (b) and when evaluating on longer videos (c).

our LaCT layers combined with sliding window attention, then fine-tune the model using an internal
proprietary collection of videos, each accompanied by a short text prompt.

Training details. We train on 5-second videos at 16 FPS and 480×832 resolution, autoregressively
denoising in 3 latent-frame chunks. Later we fine-tune the 1.3 billion parameter model with 10 second
videos and 14 billion parameter model with 8.8 second videos. Each 8.8-second clip contains 56,160
visual tokens, resulting in interleaved noisy-clean chunks totaling 107K tokens under teacher-forcing
training. Full details are listed in App. E.3.

Baselines. We compare our method against three baselines: sliding window attention (SWA) alone,
Mamba2 (Dao & Gu, 2024) combined with SWA (using a similar in-layer hybrid strategy as our
method), and full block-wise causal attention.

Evaluation. We evaluate all models on a collection of 2,000 videos after 5,000 training iterations by
computing the denoising loss at five timesteps (550, 650, 750, 850, 950). Figure 6 plots the chunk-
wise denoising loss across evaluated video frames. See Appendix E.3 for results on VBench (Huang
et al., 2024). See the anonymous website in abstract for our autoregressively generated videos.

6 CONCLUSION

We presented LaCT, a novel model architecture that integrates large-chunk test-time training for
capturing long context with window attention for modeling local structure. We validated LaCT
across three diverse tasks spanning different modalities—novel view synthesis, language modeling,
and autoregressive video diffusion—and demonstrate its effectiveness by achieving superior or
competitive performance when compared to state-of-the-art baselines. LaCT achieves high GPU
efficiency even with native PyTorch implementation with dozens of lines of code and supports efficient
scaling up of the state size and more flexible designs in test-time training models and optimizers. By
open-sourcing the code and weights, we hope that LaCT can advocate future research explorations
into more performant architectures for long-context modeling.

9
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Reproducibility statement. We provide pseudocode for large-chunk test-time training (App. 1),
the in-layer hybrid strategy with sliding-window attention (App. 2), and context/tensor-parallel
implementations (App. 3, App. 4). The source code, included in the supplementary materials,
contains the model and full training details. It also provides a benchmarking code to evaluate the
running speed of our method against two baselines.
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Below is the Appendix of the submission.

A ANALYSIS ON DESIGN CHOICES

In this section, we analyze several key design choices in our model, focusing on both the novel
view synthesis and language modeling tasks, where good metrics exist. Specifically, we evaluate
the impact of state size (Fig. 7a), test-time optimizers (Fig. 7b), linear versus nonlinear fast weights
(Fig. 8a), and per-token recurrence versus chunk-wise recurrence (Fig. 8b). Overall, we find that a
large state size, advanced optimizers such as Muon, and nonlinear fast weights significantly improve
our model’s performance. For comparing chunk recurrence with per-token recurrence, in a controlled
NVS experiment, our linear large-chunk recurrence strategy outperforms linear per-token recurrence
with the same state size. For language modeling, where chunk structures are not inherent, our linear
large-chunk recurrence variant—while initially underperforming per-token methods like GLA and
DeltaNet—surpasses them when combined with a large nonlinear state and the Muon optimizer. We
refer the readers to each figure and its caption for more detailed analysis.

1.5𝑑! 3𝑑! 6𝑑! 12𝑑!0.75𝑑!0.375𝑑! Momentum MuonVanilla Gradient Descent

novel view synthesis language model novel view synthesis language model

(a) State Size Scaling (b) Different Test-Time optimizer

Figure 7: (a) Scaling up the state size consistently improves performance in both novel view synthesis
and language modeling tasks. Note, the largest version has state size of 12d2 per block, totaling
40% of model weights as fast weights. (b) Comparison of test-time optimizers demonstrates Muon’s
surprising effectiveness over Vanilla Gradient Descent and Momentum.

SwiGLU MLP 6𝑑!
Linear 9𝑑!

Ours SwiGLU + Large State + Muon
Ours Linear

DeltaNet SWA
GLA SWAMamba2

SwiGLU MLP 0.375𝑑!
Linear 0.5𝑑!

novel view synthesis language model novel view synthesis language model

(a) Linear v.s. NonLinear Fast weight (b) Large-Chunk v.s. Per-token Recurrence

Figure 8: (a) Nonlinear fast weights consistently outperform linear fast weights despite using smaller
state sizes. (b) Our linear large-chunk recurrence approach significantly outperforms linear per-token
recurrence (bidirectional Mamba2) for view synthesis tasks at the same state sizes. In language
tasks, linear large-chunk recurrence of the same state size underperforms the GLA baseline, but
when combined with larger nonlinear states and Muon test-time optimizer, it surpasses all per-token
recurrence methods.

State size scaling. These controlled experiments utilize a SwiGLU MLP for fast weights and the
Muon as the test-time optimizer. For NVS, experiments were conducted on the object dataset. All
models were trained for 167B tokens, using 14 stacked blocks and a model dimension d = 768.
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To change the state size, we keep the head dimension fixed as model dimension. i.e. single head,
and vary the intermediate dimension of SwiGLU MLP, such that the intermediate dimension ranges
from 192 to 3072. The largest configuration results in a state size per model block as 12d2, totaling
40% of model weights as fast weights. For the language model experiments, we use the 760 milion
parameter setup, where the chunk size and sliding window attention (SWA) window size were set
to 2048 tokens. We keep the intermediate dimension of the fast weight SwiGLU MLP the same as
the head dimension. We increase the state size while proportionally decreasing the number of heads
to maintain a fixed model dimension. Figure 7(a) demonstrates that larger state sizes consistently
improve performance. Notably, the performance gap between small and large state sizes widens with
increasing sequence length.

Test-Time optimizer comparison. We compare Muon with vanilla Gradient Descent (GD) and
GD with momentum. Details on momentum implementation are in Appendix C. For NVS, we train all
compared approaches for 671 tokens using model specs of 24 stacked blocks with model dimension
of 768. Language modeling experiments used the 760M parameter setup. Figure 7(b) shows Muon
consistently outperforming other optimizers.

Linear v.s. NonLinear fast weight. Our default fast weight function is a SwiGLU MLP without
bias terms (nonlinear). We compare this against a simple linear fast weight, fW (x) = Wx. Both are
updated using the same online dot product loss for key-value association. Figure 8 (a) presents this
comparison for NVS and language modeling. Although the linear fast weights were configured with
a larger state size than the nonlinear SwiGLU, they achieved lower performance. NVS models were
trained for 671B tokens with 24 blocks and d = 768. Language modeling used the 760M parameter
setup.

Large-chunk v.s. Per-token recurrence. Figure 8(b) presents controlled experiments comparing
our large-chunk recurrence with per-token recurrence. In the novel view synthesis (NVS) task, “Our
Linear" variant employs a linear fast weight: fW (x) = Wx and is benchmarked against a Mamba-2
baseline (a linear per-token recurrence model) with an identical state size. To accommodate the
bidirectional context required by NVS over input image tokens, the Mamba-2 baseline uses two
Mamba-2 layers applied in opposite directions within each model block. Both our linear variant and
this bidirectional Mamba-2 have state size of d2 per block. Both of these two approaches employs
a per-image window attention within each model block. Under this fair comparison, our linear
large-chunk recurrence achieves significantly better view synthesis performance.

For the language modeling experiments also shown in Figure 8(b), the blue line “Our Linear"
variant uses the same state size (0.25d2) as the GLA SWA baseline. It initially underperforms GLA
SWA (blue line underperforms yellow line), likely because language data lacks the inherent chunk
structures that benefit our basic linear chunk recurrence. However, when LaCT is equipped with
a larger non-linear state (1.5d2) and Muon updates, we significantly outperform these per-token
recurrence baselines.

B RELATED WORK

Test-time training. Test-Time Training (TTT) (Sun et al., 2024) is an emerging concept in sequence
modeling that extends the concept of recurrent states in RNNs to online-adapted neural network
components. In TTT models, a subset of weights, termed "fast weights," are updated to learn in-
context. Existing methods typically employ a self-supervised loss that encourages these fast weights
to memorize key-value associations from in-context tokens, using variants of gradient descent for
online adaptation. TTT (Sun et al., 2024; Wang et al., 2025b) has opened a vast design space for
new recurrent model architectures. For instance, many recent works have developed novel test-time
optimizers (Behrouz et al., 2024; Karami & Mirrokni, 2025; Behrouz et al., 2025a) and online training
objectives (Behrouz et al., 2025c). However, current nonlinear TTT approaches often suffer from
low hardware utilization and limited state sizes, and consequently have not yet demonstrated their
full potential. Our work primarily addresses these challenges by advocating for a new paradigm of
using extremely large online minibatch (chunk) sizes for updating the fast weights. This paradigm
can achieve orders-of-magnitude higher hardware utilization without relying on error-prone custom
kernel implementations. Furthermore, it enables efficient scaling of nonlinear state sizes and offers
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the flexibility to use diverse fast weight neural networks and optimizers, thereby accelerating research
progress in this area.

Combining chunk attention with recurrence. Several recent models combine local chunk at-
tention with linear recurrence, such as Gated Attention Unit (GAU) (Hua et al., 2022b), MEGA
(Ma et al., 2023), MEGALODON (Ma et al., 2024), and InfiniAttention (Munkhdalai et al., 2024).
Among these, InfiniAttention is conceptually closest to our work, as it incorporates recurrence at
the chunk level using the delta rule—interpreted as an online linear regression objective from the
perspective of Test-Time Training (TTT). However, this update rule is limited in expressivity. In
contrast, we employ a significantly more expressive update mechanism derived from a more general
TTT framework, and demonstrate the substantial gains this brings.

Block-Recurrent Transformer (Hutchins et al., 2022) also explores large chunk memory updates,
where memory tokens act as recurrent states that can self-attend and cross-attend with input tokens
during each chunk update via attention mechanisms. The Perceiver-style register-token attention
baseline used in our novel view synthesis experiments (Sec. 5.1, Table 2) is conceptually similar to
the Block-Recurrent Transformer in its use of register tokens for context compression. As shown
in Figure 4, our method significantly outperforms this approach in both speed and quality, with a
comparable state size.

Novel view synthesis. Novel view synthesis (NVS) is a long-standing task at the intersection of
computer vision, graphics, and computational photography, requiring algorithms to render images
of a static scene from previously unobserved viewpoints. Optimization-based approaches, such
as NeRF (Mildenhall et al., 2021) and 3D Gaussian Splatting (Kerbl et al., 2023), have achieved
significant breakthroughs. These methods optimize a set of parameterized graphics primitives (i.e.,
explicit or implicit representations of radiance fields) through differentiable volumetric rendering to
minimize reconstruction loss on input images. After an optimization process typically lasting tens of
minutes, these approaches can render novel views photorealistically, and the optimized parameters
form a 3D representation of the input scene.

Recently, data-driven approaches (Zhang et al., 2024; Jin et al., 2024a; Ziwen et al., 2024; Han et al.,
2024; Liu et al., 2023) have also shown promising results. These methods can either directly render
novel views or predict 3D representations given input images. Although successful on simpler object
datasets, these methods often struggle with densely sampled scenes (e.g., scenes with over 100 input
images). Our experiments demonstrate that our large-chunk test-time training approach outperforms
or achieves comparable performance to 3D Gaussian Splatting on challenging scene datasets with up
to 128 input images with 960× 536 resolution at challenging scene datasets.We hope our method
will inspire further research into effectively scaling data-driven NVS methods to longer and more
complex input sequences.

Autoregressive video diffusion. Current state-of-the-art video generation is dominated by bidirec-
tional diffusion transformers operating in latent space (Brooks et al., 2024; Yang et al., 2024d; Polyak
et al., 2024; Wang et al., 2025a). These methods factorize the video distribution into a sequence of
conditional distributions based on noise levels, following diffusion processes (Sohl-Dickstein et al.,
2015; Song et al., 2020) or flow matching (Lipman et al., 2022), then use a diffusion transformer to
jointly learn all the conditional distribution. Autoregressive video diffusion (Alonso et al., 2024; Jin
et al., 2024b; Valevski et al., 2024; Ruhe et al., 2024; Yin et al., 2024; Song et al., 2025) introduces
an additional temporal dimension to this factorization, where the neural networks learns to model the
conditional probability of the next chunks of videos at different noise levels, conditional on previous
videos and noisier version of current video frames.

During training, some autoregressive methods employ teacher forcing, supervising the model on
noisy video frames given previous clean context frames as condition (Alonso et al., 2024; Jin et al.,
2024b; Valevski et al., 2024), though this can lead to low token utilization, i.e. only a small portion
of tokens get supervision. To improve token efficiency, other techniques such as progressive noise
injection (Ruhe et al., 2024) or the use of frame-independent noises (sometimes in a diffusion-forcing
style) (Yin et al., 2024; Chen et al., 2024a; Sand-AI, 2025) have been proposed. When applying our
large-chunk design to autoregressive video generation, we format the input sequence with interleaved
clean and noisy chunks (see Equation 11). This strategy achieves over 50% token utilization and
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integrates effectively with our large-chunk TTT implementation, by only changing a few lines to
constrain fast-weights are only updated on clean frame chunks.

C LACT MODEL IMPLEMENTATION DETAILS

State Size calculation. Motivated by recent progress in LLM, we adopt SwiGLU-MLP (Shazeer,
2020) without bias terms as the fast-weight network. Our fast weights consists of three weight matrix
W = {W1,W2,W3}, and the forward pass of the fast weight model is:

fW (x) = W2 [SiLU(W1x) ◦ (W3x)] (12)

where ◦ is an elementwise multiplication. We define hd as the head dimension, nh as the number
of heads, and the intermediate dimension of the SwiGLU-MLP as hd × r, where r is a scaling
multiplier.When r > 1, the intermediate dimension surpasses the input head dimension, which is
the current common practice in LLMs. Thus, matrices W1,W2 ∈ Rhd×hd and W3 ∈ Rhd×hd×r.
Consequently, the total state size becomes nh × hd × hd ∗ r. Given that typically the total head
dimension across all heads equals the model dimension d (i.e., nh × hd = d), the total state size
simplifies to:

State Size =
d2

nh
∗ r. (13)

Therefore, we can increase the state size either by reducing the number of heads or by increasing the
intermediate dimension multiplier.

FLOPs calculation. When using then negative dot product loss as the online test-time training
objectives, we don’t need to compute the final results of fW (v). We only need to compute W1v,W3v
when running forward pass with keys k, thus there are two matmuls in the forward pass with keys.
When computing the gradients, there are four matmuls. And in the final forward pass the queries,
there would be three matmuls. So the total FLOPs with n tokens would be:

FLOPs = 4n
d2

nh
r + 8n

d2

nh
r + 6n

d2

nh
r = 18n

d2

nh
r = 6 ∗ State Size (14)

Model initializations. We randomly initialize the linear layers using a standard deviation of 0.02.
For the learnable initial fast weights, we initialize them with a standard deviation of 1.0/

√
fan-in.

Specifically, in the SwiGLU FFN fast weights, the matrices w1 and w3 have their fan-in set as the head
dimension, while the fan-in of w2 is the intermediate dimension of the SwiGLU FFN fast weights.
Additionally, when local window attention is incorporated within the LaCT layer, we introduce four
extra learnable embeddings: two scales and two reshifts for queries and values. We initialize the
scale embeddings as ones and the reshift embeddings as zeros.

Details of Muon. Muon (Jordan et al., 2024) is a recently proposed optimizer that orthogonalizes
the matrix gradients during updates of matrix weights. It utilizes Newton-Schulz iterations to achieve
orthogonalization. Given a matrix gradient G, Muon first normalizes it as G0 = G/|G|F , then
iteratively applies:

Gk = aGk−1 + b(Gk−1G
T
k−1)Gk−1 + c(Gk−1G

T
k−1)

2Gk−1, (15)

where the constants a, b, c are carefully chosen for optimal convergence. Following the original
implementation, we set a = 3.4445, b = −4.7750, c = 2.0315, and perform five iterations.

Each Muon iteration requires three matrix multiplications, resulting in a computational cost per fast
weight head of 2hd3r+2hd3 +2hd3r = hd3(4r+2) FLOPS. Hence, the total computation for five
iterations across all fast weights is:

5× nh × hd3 × (4r + 2). (16)

For the case where r = 1 (head and intermediate dimensions are equal), the total computational cost
simplifies to:

30× nh × hd3 = 30× hd × State Size. (17)
This indicates that the computational overhead of Muon becomes less significant than computing
token outputs only if the online chunk size exceeds 5

3hd .
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Algorithm 1 Large Chunk Test-Time Training Layer Pseudocode

def apply_fw(fast_weight, q):
w1, w2, w3 = fast_weight
hidden = silu(matmul(q, w1)) * matmul(q, w3) # [b, l, dh] = [b, l, d] x [b, d, dh]
return matmul(hidden, w2)

def update(fast_weight, k, v, lr, use_muon=True):
"""
Fast-weight update for a SwiGLU MLP using chunk of tensors.
Args:

fast_weight : tuple(w1, w2, w3) with shapes: w1, w3: [b, d, dh]; w2: [b, dh, d]
k, v : key / value tensor of shape [b, l, d]
lr: : per-token learaning rates of shape [b, l, 3] -> (lr1, lr2, lr3)
use_muon : weather to apply Muon to orthogonalize the update

Note:
The head dimension for input tensors k, v, lr are assumed to be merged into the

batch dimension. This simplifies shape annotation in this pseudocode.
"""
# Forward with k:
gate_before_act = matmul(k, w1) # [b, l, dh] = [b, l, d] x [b, d, dh]
hidden_before_gate = matmul(k, w3) # [b, l, dh] = [b, l, d] x [b, d, dh]
hidden = silu(gate_before_act) * hidden_before_gate

# Backward:
dhidden = matmul(v, w2.transpose(-1, -2)) # [b, l, dh] = [b, l, d] x [b, d, dh]
dhidden_before_gate = dhidden * silu(gate_before_act)
dgate = dhidden * hidden_before_gate
dgate_before_act = silu_backprop(dgate, gate_before_act)

# Compute gradients:
w2.grad = -matmul(hidden.transpose(-1, -2), v * lr2) # [b, dh, d]
# [b, d, dh] = [b, d, l] x [b, l, dh]
w1.grad = -matmul((k * lr1).transpose(-1, -2), dgate_before_act)
w3.grad = -matmul((k * lr3).transpose(-1, -2), dhidden_before_gate)

# Weight update
if use_muon:

for w in fast_weight:
w.grad = zeropower_via_newtonschulz5(w.grad)

for w in fast_weight:
w = (w - w.grad) / (w - w.grad).norm(dim=1) * w.norm(dim=1)

return fast_weight

def silu_backprop(dy, x):
sigma = sigmoid(x)
return dy * sigma * (1 + x * (1 - sigma))

############################## MultiHead LaCT layer ##############################
# x: input sequence [b, l, d], b is the batch dim, l is length, d is model dimension
# fast_weight: tuple of initial fast weights-(w1, w2, w3); w1, w3 of shape [nh, d, dh

], w2: [nh, dh, d]
# ttt_config: list of (operation, begin, end) tuples
qkv = silu(LinearQKV(x)) # [b, l, d * 3]
q, k, v = rearrange(qkv, `b l (nh hd) -> (b nh) l hd`, nh=num_heads).split(3)
q, k = q / q.norm(-1), k / k.norm(-1)
lr = softplus(LinearLR(x) + const_lr_bias) # [b, l, 3 * num_heads]
lr = rearrange(lr, `b l (nh 3) -> (b nh) l 3`, nh=num_heads)
fast_weight = repeat(fast_weight, dim=0, repeat=b) # [nh, ...] -> [b * nh, ...]

o = zeros_like(v) # [b * nh, l, hd]
for mode, begin, end in ttt_config:
qi, ki, vi, lri = q[:, begin:end], k[:, begin:end], v[:, begin:end], lr[:, begin:

end]

if mode == 'update_then_apply': # figure-3(a, b) bidirectional attention
fast_weight = update(fast_weight, ki, vi, lri, use_muon)
o[:, begin: end] = apply_fw(fast_weight, qi)

elif mode == 'apply_then_update': # figure-3(b) shifted block-wise causal
o[:, begin: end] = apply_fw(fast_weight, qi)
fast_weight = update(fast_weight, ki, vi, lri, use_muon)

elif mode == 'update_only':
fast_weight = update(fast_weight, ki, vi, lri, use_muon)

elif mode == 'apply_only':
o[:, begin: end] = apply_fw(fast_weight, qi)

o = RMSNorm(o) # per-head norm
o = LinearOutput(rearrange(o, `(b nh) l hd -> b l (nh hd)`, nh=num_heads))
return o
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Algorithm 2 LaCT Layer with In-Layer Hybrid Window Attention Pseudocode

# Input:
# x: input sequence [b, l, d], b is the batch dim, l is length, d is model dimension
# fast_weight: tuple of initial fast weights-(w1, w2, w3); w1, w3 of shape [d, dh],

w2 of shape [dh, d]
# ttt_config: list of (operation, begin, end) tuples

q, k, v = LinearQKV(x).split(3)

#### Local quadratic-cost window attention
attn_q = q * learnable_q_scale + learnable_q_offset # per-channel rescale and shift
attn_k = k * learnable_k_scale + learnable_k_offset # per-channel rescale and shift
attn_o = local_softmax_multihead_attn(attn_q, attn_k, v, attn_mask)

#### large chunk test-time training for long memory
q, k = rearrange(q, k, `b l (nh hd) -> (b nh) l hd`, nh=num_heads)
q, k = silu(q), silu(k)
q, k = q / q.norm(-1), k / k.norm(-1)
lr = softplus(LinearLR(x)) # [b, l, 3 * num_heads]
lr = rearrange(lr, `b l (nh 3) -> (b nh) l 3`, nh=num_heads)

# Perform update and apply_fw operations iteratively over chunks of tokens.
lact_o = lact(fast_weight, q, k, v, lr, ttt_config)
lact_o = RMSNorm(lact_o)

scale_per_head = rearrange(silu(Linear(x)), `b l nh -> (b nh) l 1`, nh=num_heads)
lact_o = lact_o * scale_per_head
lact_o = rearrange(lact_o, `(b nh) l hd -> b l (nh hd)`, nh=num_heads)

#### Merge attention results (shape: [b, l, d])
o = attn_o + lact_o

o = LinearOutput(o)

return o

Rotation invariance. Softmax attention and linear attention exhibit rotation invariance: rotating
the queries and keys by the same rotation matrix does not alter the output. This property is also used
in developing relative positional encodings, like RoPE (Su et al., 2023). In contrast, our SwiGLU and
Linear Fast Weight components do not possess this property.

Implementing momentum for test-time optimizers. Muon uses momentum by default. Following
Titans (Behrouz et al., 2024), we implement momentum in the test-time optimizer by predicting a
scalar momentum βi from each token:

βi = σ(Linear(xi)), (18)

where σ is the sigmoid function. This βi is then averaged over all tokens in the chunk, and the average
momentum is applied as follows:

g ←
b∑
i

ηi∇WL(fW (ki), vi),

M ←M(

b∑
i

βi/b) + g,

W ←weight-update(W,M),

(19)

where the weight-update can be simple subtraction followed by L2 normalization normalization (as
in Equation 8). or Muon update before subtraction (as in Equation 9).

C.1 PSEUDOCODE

See Algorithm 1 for pseudocode of a full LaCT layer. For details on how to mix local window
attention inside each layer with shared query, value, embedding, see Algorithm 2 for pseudocode.
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D LACT ARCHITECTURE DETAILS FOR N-DIMENSIONAL DATA

D.1 LACT ARCHITECTURE FOR NOVEL VIEW SYNTHESIS

Novel view synthesis (NVS) renders images of a static scene from novel viewpoints. Formally, given
a set of N input posed images {(Ii, Pi)}Ni=1 of a static scene, where Ii ∈ RH×W×3 is an RGB image
and Pi is its corresponding camera pose, the model needs to synthesize new images from novel
camera poses Pnovel that typically do not overlap with the input views.

Traditional methods in 3D vision usually solved the NVS task by reconstruction and rendering. The
reconstruction compresses the posed input into a compact representation and then the render renders
the novel view from it. Our method mimics such pipeline, where we first compress the posed input
images into fast weights by the ‘Update Operation’ (Sec 3.1) in LaCT. Then we render the novel
view images from the information in the compressed weights with the ‘Applying Operation’.

In details, we first convert the input and output into tokens. The camera pose P for each view
is represented in dense ray information for each pixel (usually from the camera intrinsics and
extrinsic), i.e., P = (rayso, raysd). rayso ∈ RH×W×3 is the 3D coordinate for the origins of the
ray, and raysd ∈ RH×W×3 is the direction of the ray. We follow GS-LRM (Zhang et al., 2024) to
use the Plücker ray embedding for the rays. Plücker ray embedding computes the cross product
between the ray origin and ray direction for a normalization. The final positional embedding is
a concatenation of the ray’s origin, the ray’s direction, and the cross product of the above two:
[rayso, raysd, rayso × raysd]. We add ray’s origin into the embedding since different origins in
the same ray can results in different colors due to the occlusions. We then use patchifying and
two different Linear layers to convert the RGB map and ray map (i.e., the positional embedding)
into tokens. For the posed RGB input images, we simply the sum the RGB embedding and pose
embedding as model input. For the novel view cameras, we only use the pose embedding.

We illustrate the design of NVS’s LaCT block in Fig. 9. We first apply the attention for each image
(either input or the novel target). The attention is bidirectional for the tokens belonging to the same
image, and is independent among different images. Then, the TTT update operation is applied to all
input tokens, i.e., all tokens that belonging to all input images. The updated weight then is applied to
all tokens. The two updates blocks in Fig. 9 take the same updated fast weight thus can be combined,
and we left two ‘Apply’ block for clearance. Note that the original NVS task definition renders
novel views independently. We here supervise multiple novel image poses and their corresponding
images in a single data point for better training efficiency. Given the design, the novel images are
independent to each other, which is illustrated in the ‘Overall LaCT Mask’ in the right of Fig. 9.
The layer normalization layer, the residual connections, and the feed-forward network is omitted for
clarity. The block is repeated by number of layers times to formulate the full model. The general
model largely follow the design of the encoder-decoder model in LVSM (Jin et al., 2024a), except we
use TTT in replace of transformer for long-context modeling.

For actually using this model for NVS task during inference, we first get the updated fast weight
with all input images. Then, we would not change the fast weight during the rendering process (i.e.,
the process to convert novel camera poses to the novel images). The LaCT during rendering would
be similar to a ViT (Vision transformer) architecture despite having two feed-forward networks:
the feed-forward network from the fast weight stores the scene information, and the feed-forward
network from the slow weight (i.e., the FFN in Fig. 2) stored the world knowledge like physical
rendering rules.

D.2 LACT ARCHITECTURE FOR LANGUAGE MODELS

Autoregressive Language Models (LM) predicts the distribution of the next tokens
pθ(xn|x1, . . . , xn−1) from its history context. It is a factorization of the full sequence distribu-
tion pθ(x1, . . . , xn) through chain rule pθ(x1, . . . , xn) = pθ(x1)pθ(x2|x1) . . . pθ(xn|x1, . . . , xn−1).
Thus it requires a token-level causal mask (demonstrated in the topright of Fig. 10) and this is the
main difficulty for the large-chunk design in LaCT. We use a combination of TTT layer with ‘Shifted
Causal Block Mask’ (introduced before in Fig. 3c) and a sliding window attention to facilitate it.
By shifting the mask of TTT, it excludes the information leakage from future tokens. As shown in
the right part of Fig. 10, the overall dependency mask is the union of the TTT mask and the sliding
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Figure 9: Detailed LaCT model for our Novel-View Synthesis. Dashed line indicates flow of fast
weight. Solid line indicates flow of tokens. Window attention is bidirectional within a single image,
either the input image or the novel target image. TTT updates over all input tokens and apply to all
tokens.
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Figure 10: Detailed LaCT model for language models. Dashed line indicates flow of fast weight.
Solid line indicates flow of tokens. We illustrate with TTT chunk size 4 or 2, and the actual chunk
size is over 2048 in LaCT. We take the parallel design for the window attention and TTT block with
shared QKV. The overall mask is the causal mask.

window attention mask. To achieve a token-level causal mask without bubbles, the only requirement
is that the window size of the sliding window attention is greater or equal to the chunk size from
the TTT. We illustrate two example of such mask with ‘Window Size’ = ‘TTT Chunk Size’ = 2 or
4. The actual chunk size and attention window size is above 2048 in our implementation for better
utilization and state size scaling (discussed in Sec. 2.2).

As illustrated in the left most of Fig. 10, we employ a parallel design of the TTT layer and sliding
window attention to save the number of model parameters and computation FLOPs. In details, the
query (Q), key (K) and value (V) are shared between the TTT layer and window attention. Sliding
window attention is an attention with constant window size over the past history, starting from
the target tokens. For the TTT layer, we start with an apply operation over the first chunk using
the initialized fast weight (i.e., unupdated yet). The ‘apply’ operation is followed by the ‘update’
operation over the first chunk. In this way, the ‘apply’ operation would not see information inside the
current chunk to avoid leaking future token information inside the chunk. Alternatively using ‘apply’
followed by ‘update’ over subsequent blocks completes the desired ‘shifted block-wise causal mask’
illustrated in Fig. 10. For details of the parallel design, please refer to the Pseudocode Algorithm 2.
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Figure 11: Detailed LaCT model for autoregressive video generation by diffusion model. The purple
tokens are noisy frame chunk for training the diffusion model. The green tokens are clean frame
chunk. Each token is a large chunk in TTT, e.g., 3 consecutive frames with 4680 tokens in total.
Noise and Noise’ are two noisy frames with independent Gaussian noise and time stamps over the
same clean frame. We denoise them simultaneously to improve the utilization. Dashed line indicates
flow of fast weight. Solid line indicates flow of tokens. We take the parallel design for the window
attention and TTT block with shared QKV. The TTT mask is shifted (i.e., started with apply) strided
causal. The window attention excludes the attention from clean frame to future noisy frame, and also
excludes the attention between the independent noisy frames.

We use the multi-head design for both TTT layer and window attention, although their number
of heads are different. We empirically take less number of heads for TTT layer (i.e., larger head
dimension) to enable larger state size, as state size is propotional to the head dimension in our design
(Sec. C, and Equation 13). By default, we use four heads in langugae model experiments. For
positional encoding, we use the same RoPE as the window attention branch.

D.3 LACT ARCHITECTURE FOR AUTOREGRESSIVE VIDEO DIFFUSION

Chunkwise autoregressive video diffusion generates videos by iteratively denoising sequential chunks
of video frames, conditioned on previously generated clean frames. Each chunk can contain several
video frames and span thousands of visual tokens. We use teacher-forcing training by interleaving
noisy and clean frame chunks. Specifically, a video of N frame chunks is structured as:

S = [Xnoise
1 , X1, X

noise
2 , X2, . . . , X

noise
N ] (20)

where each noisy chunk Xnoise
i is produced by adding unit Gaussian noise ϵ to the i-th clean video

chunk as Xnoise
i = Xi(1 − ti) + ϵti and ti ∈ [0, 1] denotes the strength of chunk-independent

noise. However, compared to previous methods that employs progressive (Ruhe et al., 2024) or
frame-independent noise strategies (Yin et al., 2024) like diffusion forcing (Chen et al., 2024a), our
teacher-forcing formulation in Equation 20 only uses around 50% of the tokens of the entire sequence
to compute the denoising loss. To improve token utilization, we consider an alternate approach by
repeating each video chunk with two noise levels in the training sequence as:

S = [Xnoise
1 , Xnoise∗

1 , X1, X
noise
2 , Xnoise∗

2 , X2, . . . , X
noise
N , Xnoise∗

N ], (21)

where Xnoise
i and Xnoise∗

i represent two different noise levels applied to each clean video chunk Xi.
This increases token utilization from 50% to about 67%. While more repetition could further increase
token utilization, it would also reduce training sample diversity; thus, we limit the repetition to twice.
We use such repeating strategy when training the 1.3 billion parameter video diffusion model on five
seconds videos.

To process these interleaved noisy and clean chunks, LaCT fast weights are updated exclusively
using the clean video chunks. These updated weights are then applied to the current clean chunk
and subsequent noisy chunks. The integrated local window attention uses a window size of two
frame chunks and employs a block-wise causal mask. This mask allows noisy chunks to attend only
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to themselves and the immediately preceding clean chunk. By doing this, we main bidirectional
dependies within each chunk and causal dependency across chunks.

Similarly to our language model experiments, we integrate the TTT and local window attention
into the same layer. Figure 11 illustrates this design for autoregressive video generation. The input
sequence depicted in the figure follows Equation 21 with each video chunk repeated twice with
different noise levels. The pink color in the figure indicates noisy chunks and the green color indicates
clean chunks.

E EXPERIMENTAL DETAILS

E.1 NOVEL VIEW SYNTHESIS

Datasets & metric. We evaluate our approach on both object-level and scene-level datasets. We
use Objaverse dataset (Deitke et al., 2023) for object-level training, and render 32 random views per
object, following the setup from LVSM (Jin et al., 2024a) and GS-LRM (Zhang et al., 2024). After
training, we perform evaluations on the Google Scanned Objects (GSO) dataset (Downs et al., 2022),
at resolutions of 256× 256 and 512× 512. To ensure stablized evaluation results, we render at fixed
view points instead of random view points as in training. Each evaluation involves 4–48 input views
and 8 novel views per object. For scene-level evaluations, we adopt the challenging DL3DV scene
dataset (Ling et al., 2024), which contains over 11K training scenes and 140 testing scenes, each with
approximately 300 views. Evaluations are performed at a resolution of 960× 540 2. We report Peak
Signal-to-Noise Ratio (PSNR) in the paper’s main figures, and other metrics Structural Similarity
Index Measure (SSIM) and LPIPS (Zhang et al., 2018) can be found in Tables below. For DL3DV
evaluation, we follow the original paper (Ling et al., 2024) and LongLRM (Ziwen et al., 2024) to use
one frame from every 8 frame in the full video sequence as the target frames. The input frames are
from the K-means clustering of all frames as in (Ziwen et al., 2024).

Model details. Our models consist of 24 stacked LaCT blocks, each with a model dimension of 768.
The detail of such block is illustrated in Sec. E.1: Unless otherwise specified, we use a single-headed
fast-weight SwiGLU-MLP with a hidden dimension of 1536. The window attention has 12 heads with
head dimension 64, and is equipped with QK-normalization (Henry et al., 2020). The Feed-forward
Network has 3072 as its intermediate hidden dimension. The model has a total of 312M parameters,
of which 84M are fast weights (i.e., 6d2 per block). We use an fast-weight lr initialization of 0.01 by
setting ‘const_lr_bias’ in Algorithm 1 to softplus(const_lr_bias) = 0.01. As we used Muon in fast
weight update for NVS, LaCT is not sensitive to lr scale as discussed in Sec. 3.2.

Baselines. For object-level evaluations, we compare against two baselines, including a full-attention
model, and a register-attention model in a Perceiver style (Jaegle et al., 2021), In the full-attention
baseline, we replace the TTT layer in our model with a block-wise causal attention layer, where the
input tokens interact bidirectionally and the novel view tokens cross-attend to the input tokens. Such
a design resembles our method’s prefill and parallel decoding strategy described in Section 4.1, and
the key-value caches of the input tokens server as scene representations for novel view renderings.
In the Perceiver-style model, we replace half of the TTT layers with input-to-register full-attention
layers and the remaining half with register-to-novel-view cross-attention layers. Such a model first
compresses the input tokens into a constant set of register tokens and then decoding the novel view
tokens by attending to the registers. For scene-level evaluations, we compare against a state-of-the-art
long-sequence 3D reconstruction work LongLRM (Ziwen et al., 2024) that applies Mamba (Gu &
Dao, 2023) hybrid with full attention to predict 3D Gaussian splats (Kerbl et al., 2023). We also
include comparisons with pure optimization-based 3D Gaussian splatting methods. Tab. 2 compares
the computational complexity of the baseline models and our models.

Training details. For object-level experiments, we first train all the model with 671B tokens at 8 input
view and 8 novel view setting at a resolution of 256× 256. We then finetune them with 512× 512
resolution for an additional 587B tokens. For scene dataset, we first pre-train our model first with 32
input views and 32 novel views at 128× 128 resolution for 1.5T tokens, then progressively finetune
at larger resolutions, larger field-of-views, and more input views. The finetuning is always go with a

2The original DL3DV 960p frames released in resolution of 960× 536. To accommodate the patch-size 8 in
our modeling, we crop it to 960× 536 and the camera parameters are changed accordingly.
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non-squared FoV to match the raw data. Non-squared FoV has larger view range than the squared
FoV, thus is harder. The input and novel views in fine-tuning are both 64 to support better view
coverage. The curriculum of the fine-tuning resolution is set as 128× 72, 256× 144, 512× 288, and
960× 536. The training tokens for each stage is around 100B. High-resolution models (starting from
512× 288) are trained with inner-chunk context parallelism (Sec. 3.4).

At each training stage, we always use AdamW with linear learning rate warmup and weight decay of
0.05. The peak learning rate of the pre-training is 4e− 4. During fine-tuning, we use smaller learning
rate (usually 1e− 5 to 5e− 5).

The training is completed with 64 A100 GPUs. The pre-training takes 8 days, and each fine-tuning
stage is about 12hours (thus 2 days in total).

Detailed Result Numbers We here provided the detailed number for object-level results on the
GSO dataset (at resolution 256× 256 in Table 3, 512× 512 in Table 4) and DL3DV evaluations (at
resolution 960× 536 in Table 5).

Table 3: 256-Res object-level novel view synthesis results on GSO. Both the input and output are
with resolution 256× 256. ↑: higher is better, ↓: lower is better.

Input # Input Tokens LaCT Full Attention Perceiver Attention
Views PSNR (↑) LPIPS (↓) SSIM (↑) PSNR (↑) LPIPS (↓) SSIM (↑) PSNR (↑) LPIPS (↓) SSIM (↑)
4 4,096 32.4 0.030 0.962 32.6 0.029 0.964 30.3 0.039 0.950
8 8,192 35.3 0.019 0.976 35.6 0.018 0.978 32.8 0.026 0.967
12 12,288 36.3 0.017 0.980 36.6 0.015 0.982 33.6 0.023 0.971
20 20,480 37.2 0.015 0.982 37.5 0.014 0.984 34.3 0.021 0.974
32 32,768 37.5 0.014 0.982 37.9 0.013 0.985 34.2 0.021 0.974
48 49,152 37.6 0.014 0.983 37.9 0.013 0.985 33.7 0.022 0.972

Table 4: 512-Res object-level novel view synthesis results on GSO. Both the input and output are
with resolution 512× 512 comparison across methods. ↑: higher is better, ↓: lower is better.

Input Views # Input Tokens LaCT Full Attention
PSNR (↑) LPIPS (↓) SSIM (↑) PSNR (↑) LPIPS (↓) SSIM (↑)

4 16,384 33.4 0.029 0.969 33.6 0.027 0.971
8 32,768 36.6 0.020 0.979 36.7 0.017 0.982
12 49,152 37.7 0.017 0.983 37.9 0.015 0.985
20 81,920 38.6 0.016 0.984 38.9 0.013 0.987
32 131,072 39.0 0.015 0.985 39.3 0.013 0.988
48 196,608 39.1 0.015 0.985 39.3 0.012 0.988

Table 5: 960P scene-level novel view synthesis results for LaCT on DL3DV. Both the input and
output are with resolution 960× 536 (width x height). ↑: higher is better, ↓: lower is better.

Input Views # Input Tokens PSNR (↑) LPIPS (↓) SSIM (↑)
16 128,640 24.7 0.224 0.793
32 257,280 26.9 0.185 0.837
64 515,520 28.3 0.169 0.857
128 1,031,520 28.9 0.166 0.861

E.2 LANGUAGE MODELING

Datasets & Metrics. We train our models on the Long-Data-Collections dataset (AI, 2024), con-
taining approximately 68.8B tokens tokenized using Mixtral tokenizer (32,000 codebook size). The
dataset is a mix of 41.4% General Data (e.g., RedPajama-Book, RedPajama-ArXiv, 1B tokens from
RedPajama, and a Pile subsample) and 58.6% Instruction Data (e.g., UL2 Oscar, NI, and P3). To
evaluate long-context capabilities, we utilized the per-token loss metric from (Lin et al., 2025). A
consistently decreasing per-token loss across the input sequence indicates effective use of the entire
context, while a plateau suggests an inability to leverage information beyond that point. Specifically,
we evaluated next-token prediction loss on 2.5B tokens from the Book-3 dataset (Gao et al., 2020)
for our 760M-parameter model, and on 5B tokens for our 3B-parameter model. Additionally, we
measured retrieval accuracy using the RULER benchmark (Hsieh et al., 2024) across various se-
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quence lengths to assess context memorization and information retrieval, evaluating up to the trained
sequence length.

Model details. We modified the original LaCT block by removing its window-attention layer. Instead,
we incorporate a causal sliding window-attention(SWA) layer directly into the Large-Chunk TTT
layer. The SWA layer shares the same Q, K, and V vectors as the fast-weight network, except that a
per-channel leranable scale and shift is applied to Q and K before they are fed to the SWA layer (as
done in GAU (Hua et al., 2022a)). We sum up the output of the SWA layer and that of the TTT layer,
where the output of the TTT layer is scaled by another per-head learnable scalar. We use an fast-weight
lr initialization of 0.001 by setting ‘const_lr_bias’ in Algorithm 1 to softplus(const_lr_bias) = 0.001.
We illustrate this archtecture in Figure 10.

To ensure a fair comparison with baselines in terms of trainable parameters.we adjusted the LaCT
block’s extra learnable initial fast weights W = [W1,W2,W3]. o reduce parameters, we employed
a low-rank version for W1,W3 with a rank of 32. For instance, if W1 ∈ Rd×d, its low-rank initial
fast weight is W1 = L · R + 0.5 ∗ Id, where L ∈ Rd×32, R ∈ R32×d, and Id is identity matrix.
This reduces the extra trainable parameters for the fast weights in each block to 128 ∗model-dim +

1
num-heads (model-dim2). Additional minor parameters for learning rate projection, per-head scalers, an
extra RMSNorm, and the SWA’s learnable scale and shift are of order O(model-dim). Standard blocks
typically have 12 ·model-dim2 parameters. Our approach adds approximately 1

num-heads (model-dim2)
extra parameters, which is less than 3% of total trainable weights with four heads, and below 4.5%
with two heads. By default, LaCT use four heads in the experiments, unless noted otherwise, which
means that the default state size per block is 3

4 (model-dim2).

Baselines. We compare our approach with full attention, Gated Linear Attention (GLA) (Yang et al.,
2024a), DeltaNet (Schlag et al., 2021; Yang et al., 2024c). To ensure fairness, we enhance both
GLA and DeltaNet with the same sliding window attention. As pointed out in previous work (Lin
et al., 2025; Xiong et al., 2023; Men et al., 2024), a large RoPE (Su et al., 2023) base is critical
for transformers in long-context training, thus we adopt a large RoPE base of 1 million for training
with 32K token contexts whenever softmax attention is used. Tab. 6 compares the mechanism and
computing complexity of the baseline methods and our method. Training throughput (tokens per
second per GPU, TPS) was using a 3B-parameter model on eight A100-40GB SXM4 GPUs with
activation checkpointing and FSDP. At the 3 billion parameter scale, all models use 24 softmax
attention heads. The GLA baseline has eight linear attention heads with heads dimension as 384,
resulting in a total state size of 384d, with d = 3072 representing the model dimension. DeltaNet
employs 24 linear attention heads, each with a dimension of 128, leading to a total state size of 128d.
Our approach uses four TTT heads with head dimension as 768, and since each block has three fast
weights, the total state size is 2304d.

Table 6: Comparison of baseline methods in terms of state size, training throughput (measured in
tokens per second, TPS), update rules, and memory read-out mechanisms. Training throughput is
evaluated using a 3B-parameter model with 32K-sequence length on A100-40GB GPUs.

State size Train TPS Update Rule Memory read-out
Transformer – 4.1K – –
Transformer SWA – 6.4K – –

Per-token recurrence
GLA SWA 384d 5.0K St ← St−1Diag(αt) + vtk

⊤
t ot = Stqt

DeltaNet SWA 128d 5.1K St ← St−1(I− βtktk
⊤
t ) + βtvtk

⊤
t ot = Stqt

Large-chunk recurrence
Ours GD 2304d 5.0K W ← L2norm(W −

∑b
i ηi∇WLi) ot = fW (qt)

Ours Momentum 2304d 4.9K M ← βM +
∑b

i ηi∇WLi; W ← L2norm(W −M) ot = fW (qt)

Ours Muon 2304d 4.3K M ← βM +
∑b

i ηi∇WLi; W ← L2norm(W −Muon(M)) ot = fW (qt)

Training Details. We trained models at two scales using a sequence length of 32,768 tokens:

• 760M parameters: We use 24 stack blocks, with model dimension as 1536. All models are
trained for 40B tokens (40,960 steps) with a sliding window of 2048 tokens and a batch size
of 1 million tokens. Each experiment ran on 32 A100-40GB SXM GPUs for approximately
20 hours.
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• 3B parameters: We use 25 stack blocks, with model dimension as 3072. All models are
trained for 60B tokens (30,000 steps) with a sliding window of 4096 tokens and a batch size
of 2 million tokens. Each experiment ran on 64 A100-40GB SXM GPUs for approximately
50-60 hours.

For both scales, we used a base learning rate of 1× 10−3 with a cosine decay scheduler and 1024
warmup steps. All models were randomly initialized with a standard deviation of 0.02.

Results. Detailed results on the RULER benchmark (Hsieh et al., 2024) are presented in Tables 7
and 8. We evaluated models on S-NIAH-1, S-NIAH-2, and S-NIAH-3 tasks, which represent
varying difficulties of the single "needle in a haystack" retrieval. We also report performance on
NIAH-MultiKey-1, NIAH-MultiQuery, and NIAH-MultiValue. Other RULER tasks are not reported
as the full attention baseline also achieved trivial results beyond a 16K sequence length. In addition
to these long context evaluations, we also report some major language model benchmark in Table 9.

Table 7: RULER benchmark results for Single Needle in a Haystack (S-NIAH) tasks. * Our method
with two heads (default is four).

S-NIAH-1 S-NIAH-2 S-NIAH-3 Average

Model 4K 8K 16K 32K 4K 8K 16K 32K 4K 8K 16K 32K 4K 8K 16K 32K

760M parameters
Transformer 99.2 96.6 85.2 68.0 100 100 85.8 82.2 81.0 73.8 74.8 36.8 93.4 90.1 81.9 62.3
DeltaNet + SWA 84.0 85.2 87.8 86.8 62.8 29.4 14.2 7.8 53.8 21.8 11.2 5.8 66.9 45.5 37.7 33.5
GLA + SWA 51.8 26.2 14.4 8.6 55.8 26.4 15.8 7.8 58.0 23.8 16.2 5.0 55.2 25.5 15.5 7.1
Ours 94.8 53.2 26.0 14.8 74.0 28.0 14.2 7.8 42.8 26.6 14.4 6.8 70.5 35.9 18.2 9.8
Ours Momentum 95.6 84.8 83.4 84.8 91.4 73.4 22.8 7.8 82.6 34.8 16.6 6.6 89.9 64.3 40.9 33.1
Ours Momentum* 59.0 30.0 12.4 8.4 93.4 50.0 18.2 7.8 60.2 25.6 14.2 6.8 70.9 35.2 14.9 7.7
Ours Muon 98.0 95.0 92.2 92.4 86.6 60.2 17.0 7.8 49.2 26.2 10.9 5.2 77.9 60.5 40.0 35.1

3B parameters
Transformer 100 100 100 100 100 99.8 100 98.6 98.6 95.8 90.8 75.0 99.5 98.5 96.9 91.2
GLA SWA 100 52.8 26.0 13.2 100 51.8 29.6 14.4 98.0 54.4 27.6 12.4 99.3 53.0 27.7 13.3
DeltaNet SWA 100 89.6 76.2 54.8 100 76.4 42.2 17.0 90.6 57.6 27.4 13.4 96.9 74.5 48.6 28.4
Ours Momentum 99.4 97.0 98.6 93.4 100 75.6 39.6 15.0 91.8 63.0 27.8 13.4 97.1 78.5 55.3 40.6
Ours Muon 98.8 99.2 98.6 93.4 100 99.0 83.2 30.8 95.4 90.8 55.6 19.8 98.1 96.3 79.1 48.0

Table 8: Performance on Multi-Key (MK-NIAH), Multi-Query (MQ-NIAH), and Multi-Value (MV-
NIAH) Needle in a Haystack tasks from the RULER benchmark. * Our method with two heads
(default is four).

MK-NIAH MQ-NIAH MV-NIAH Average

Model 4K 8K 16K 32K 4K 8K 16K 32K 4K 8K 16K 32K 4K 8K 16K 32K

760M parameters
Transformer 63.8 72 71.4 54 33.4 28.9 24 23.1 27.95 24 20.5 27.35 41.7 41.6 38.6 34.8
DeltaNet+SWA 41.2 30 14.6 8.2 33 22.45 7.5 4.3 32.4 22.8 9.15 6.6 35.5 25.1 10.4 6.4
GLA + SWA 45.4 28.4 15.8 6.6 26.1 17.75 10.2 5.85 25.4 16.85 10.1 6.6 32.3 21.0 12.0 6.3
Ours 60.8 34.6 16.8 7 35 23.65 14.1 7.45 20.7 22.05 12.7 6.85 38.8 26.8 14.5 7.1
Ours Momentum 62 41 21.2 10.4 35.3 24.95 17.7 8.6 27.9 23.15 16.65 8.2 41.7 29.7 18.5 9.1
Ours Momentum* 59.8 37.8 19.2 8.8 36.65 20.45 12.5 7.4 24.45 16.95 11.6 6.8 40.3 25.1 14.4 7.7
Ours Muon 62.8 46.6 22 8.6 37.7 26.55 15.7 7.1 28.35 23.15 13.6 6.85 42.9 32.1 17.1 7.5

3B parameters
Transformer 95 90.4 81.6 65.2 86.45 81.55 71.70 40.85 61.8 42.8 30.75 22.9 81.1 71.6 61.4 43.0
GLA 3B 78 45.8 28.6 14.4 50.05 28.05 19 10.7 29.4 21.4 16.75 9.9 52.5 31.8 21.4 11.7
DeltaNet SWA 75.8 57.4 34.2 17.8 66.25 33.05 21.45 13.45 43.7 23.2 18.85 13.2 61.9 37.9 24.8 14.8
Ours Momentum 96.2 59.6 35 17.2 87.05 40.25 25.6 13.2 88.08 30.65 21.9 12.3 90.4 43.5 27.5 14.2
Ours Muon 75.2 69.2 46.2 25.2 44.75 39.1 24.9 19 26.55 29.1 25.05 19.3 48.8 45.8 32.0 21.2

E.3 AUTOREGRESSIVE VIDEO DIFFUSION

We fine-tune the pretrained Wan 2.1 (Wang et al., 2025a) text-to-video diffusion model into an
autoregressive video diffusion model, that generates videos by iteratively denoising successive chunks
of video frames.

Model details. The original Wan 2.1 is a bidirectional diffusion transformer operating on the latent
space of a causal video VAE, which performs 8x spatial and 4x temporal downsampling. The diffusion
transformer uses a 2× 2× 1 patchification layer to convert VAE video latents to tokens. Each block
of the diffusion transformer comprises an MLP layer, a bidirectional self-attention layer for visual
tokens, and a cross-attention layer for visual and text tokens.
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Table 9: Language model results across common reasoning/knowledge benchmarks (higher is better
unless noted). All results are obtained through lm-evaluation-harness (Gao et al., 2021)

.

Model
ARC-c
(acc)

ARC-e
(acc)

Hella.
(acc_norm)

PIQA
(acc_norm)

BoolQ
(acc)

Wino
(acc)

OpenBook
(acc)

LAMBADA
(acc)

SciQ
(acc)

LAMBADA
ppl ↓

Wiki
ppl ↓

Avg.
(acc)

760M models
Transformer 0.247 0.465 0.405 0.664 0.588 0.526 0.190 0.375 0.864 22.574 20.750 0.496
Transformer SWA 0.234 0.479 0.418 0.663 0.456 0.502 0.172 0.407 0.879 19.537 21.215 0.496
Ours Momentum 0.247 0.474 0.413 0.645 0.611 0.523 0.188 0.393 0.861 20.519 21.300 0.500
Ours Muon 0.235 0.477 0.420 0.653 0.502 0.534 0.182 0.392 0.897 20.584 20.702 0.496
GLA SWA 0.238 0.475 0.420 0.649 0.501 0.528 0.184 0.393 0.897 20.621 20.695 0.502
DeltaNet SWA 0.253 0.466 0.417 0.650 0.608 0.515 0.184 0.386 0.888 20.415 23.285 0.502

3B+ models
Transformer 0.258 0.488 0.515 0.655 0.548 0.539 0.204 0.479 0.900 12.092 15.570 0.517
Transformer SWA 0.243 0.462 0.522 0.629 0.557 0.554 0.214 0.490 0.905 11.751 15.737 0.513
Ours Momentum 0.273 0.496 0.529 0.628 0.556 0.533 0.218 0.480 0.905 11.419 15.439 0.528
Ours Muon 0.263 0.473 0.523 0.621 0.522 0.546 0.210 0.495 0.894 10.988 15.313 0.516
GLA SWA 0.259 0.466 0.517 0.628 0.508 0.535 0.190 0.465 0.897 12.547 17.284 0.506
DeltaNet SWA 0.255 0.475 0.504 0.648 0.491 0.547 0.190 0.453 0.891 12.682 17.950 0.498

Our primary modification is to the bidirectional self-attention. We first replace it with block-causal
sliding window attention (SWA), using a window size of two chunks of video frames. We then
integrate our LaCT into the same layer. We initialize learnable fast weights for LaCT. Consistent with
our language modeling experiments, SWA and our test-time training mechanism are combined within
each layer: Q and K vectors are rescaled and shifted before input to the test-time training operation.
The outputs of SWA and the test-time training layer are summed, with a per-head learnable scalar
(from a zero-initialized linear projection) applied to the latter. We do not use Muon in the fast-weight
update, as it showed no significant difference in validation loss empirically. We use an fast-weight lr
initialization of 0.001 by setting ‘const_lr_bias’ in Algorithm 1 to softplus(const_lr_bias) = 0.001.
This allows small update to the fast weight in the beginning of the fine-tuning. To maintain minimal
changes to the original Wan architecture, LaCT layers utilize the original RoPE from the Wan model,
and we remove the SiLU activation function previously applied to queries and values.

Datasets. We fine-tune the model using an internal, filtered proprietary collection of videos, each
accompanied by a short text prompt generated by a visual language model(Chen et al., 2024b).

Training details. Following (Esser et al., 2024; Wang et al., 2025a), we use time-step shifting
(scale factor 3.0) and logit-normal denoising loss weighting (mean=0.5, std=1.0). We also apply an
exponential moving average with a decay rate of 0.995 to the model weights. Each 5-second video
(16 FPS, 480×832 resolution) is encoded by the Wan VAE into a [21,60,104] latent representation.
Denoising is performed autoregressively in chunks of three latent frames (4680 visual tokens each).
We employ teacher-forcing with an interleaved noisy-clean chunk sequence (see Section 4.3).

• 1.3B Parameter Model: For initial training on 5-second videos, noisy chunks are repeated
twice. This results in sequences of 60 latent frames (14 noisy, 6 clean chunks), totaling
93,600 tokens. We finetune the model with a batch size of 64 for 5000 iterations. The base
learning rate is set to 2× 10−5 with a linear warm-up of 1000 iterations and linear decay.
Subsequently, the model is fine-tuned on 10-second video clips for 1,000 iterations. These
clips correspond to 42 latent frames for the clean video portion, forming an interleaved
sequence of 81 latent frames (approximately 126K tokens including noisy chunks). Training
for 5-second videos takes ∼20 seconds per iteration on 64 A100 80GB SXM GPUs (or ∼10
seconds on 64 H100 80GB SXM GPUs).

• 14B Parameter Model:. To manage GPU memory usage, noisy chunks are not repeated
in this setting. We train the model on five-second videos with a batch size of 64 for 5000
iterations with a base learning rate of 5× 10−6, and use a sequence parallel size of 2 GPUs.
This phase takes ∼80 seconds per iteration on 64 A100 GPUs. The model is then fine-tuned
on 8.8-second video clips (36 latent frames for the clean portion) for an additional 600
iterations, using sequence parallelism (4 GPUs). This fine-tuning takes ∼80 seconds per
iteration on 64 H100 GPUs.
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Table 10: Summarized VBench scores using the standard prompt set. (higher is better).

Type Method
Temporal
Quality

Frame
Quality

Text
Alignment

Quality
Score

Semantic
Score Total Score

Full Seq Original Wan (1.3B) 91.94% 64.27% 25.06% 83.59% 67.13% 80.30%
AR Ours (1.3B) 92.50% 63.60% 24.75% 82.51% 62.17% 78.44%
AR Transformer SWA (1.3B) 91.14% 63.03% 24.77% 81.62% 60.09% 77.31%
AR Transformer (1.3B) 92.32% 62.19% 24.78% 82.28% 60.40% 77.90%

Full Seq Original Wan (14B) 93.08% 64.52% 25.79% 84.31% 69.53% 81.35%
AR Ours (14B) 92.79% 63.30% 25.67% 82.89% 65.86% 79.49%

Baselines. We compare our method with three baselines: sliding window attention, Mamba2 (Dao &
Gu, 2024) with sliding window attention, and full block-wise causal attention, where the window
attention in the baselines is implemented the same as in our model. For the Mamba2 layer, we follow
(Wang et al., 2024) to apply the original projected k, q, and v as B, C, and x, respectively. The
Mamba2’s state is updated token-by-token, we revert the state after processing a noise chunk of
frames to ensure only clean chunk state updates propagate. The full block-wise causal attention
baseline is implemented with FlexAttention (He et al., 2024).

Evaluation. We compute validation loss for all models on a collection of 2,000 videos after 5,000
training iterations by computing the denoising loss at five timesteps (550, 650, 750, 850, 950).
The denoising losses are measured with respect to each video frame chunk and plotted in Figure 6.
Figure 6(a) compares validation loss (up to 5s videos) of LaCT against SWA, Mamba2 with SWA,
and full block-wise causal attention. Our LaCT is comparable to full attention and outperforms other
baselines. Figure 6(b) shows comparisons with the SWA baseline using different window sizes for
both our method and the baseline (up to 5s videos). The default window covers six latent frames
(two chunks). An additional experiment used a four-frame window. Results indicate that increasing
window size from four to six frames improves validation loss, but this improvement is smaller than
that achieved by incorporating LaCT. Figure 6(c) presents validation loss (up to 10s videos) after
fine-tuning LaCT and the SWA baseline on 10-second videos for 1,000 iterations.

Generated video samples from our model are provided in an appended folder. Each video chunk is
sampled following the original Wan method, using a UniPC (Zhao et al., 2023) sampler with 50 steps,
classifier-free guidance of 5.0, and a timestep shift of 3.0.

Results on VBench. VBench (Huang et al., 2024) offers a comprehensive suite of metrics for video
generation. Using 942 prompts from the standard set, we generate two videos per prompt for our
1.3B model and one video per prompt for our 14B model. Summary scores are reported in Table 10,
with detailed results across 16 dimensions in Table 12.

Because the standard prompts are short, the Wan team also provides augmented prompts with richer
descriptions. We evaluate on this augmented set as well, reporting summary results in Table 11 and
detailed scores in Table 13.

Overall, we observe two key trends: (1) autoregressive models do not yet match their full-sequence
diffusion counterparts, and (2) among autoregressive approaches, our test-time training method
consistently outperforms sliding-window and full-attention variants in temporal quality, semantic
score, and total score, while maintaining parity on other metrics. The performance gap is even larger
under the standard prompt set.

E.4 EXPERIMENT DETAILS IN FIGURE 1

Fig. 1(c) shows results for training a 760M-parameter LaCT language model. We employ a SwiGLU
MLP fast weight with the Muon test-time optimizer. To scale the fast weight size, we fix the
intermediate dimension of the fast-weight MLP to match the head dimension, then increase the
head dimension from 128 to 1536 while proportionally decreasing the number of heads to maintain
a constant total model dimension. Validation loss is computed on the last 2,048 tokens of each
32,768-token sequence, averaged over 76K sequences from the Book3 dataset.
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Table 11: Summarized VBench scores using the WAN-augmented prompt set. (higher is better).

Type Method
Temporal
Quality

Frame
Quality

Text
Alignment

Quality
Score

Semantic
Score Total Score

Full Seq Original Wan (1.3B) 92.20% 66.52% 26.16% 84.48% 75.98% 82.78%
AR Ours (1.3B) 93.97% 66.58% 26.04% 84.41% 74.25% 82.38%
AR Transformer SWA (1.3B) 93.20% 66.53% 26.09% 84.48% 73.00% 82.18%
AR Transformer (1.3B) 93.62% 66.37% 26.00% 84.57% 72.95% 82.25%

Full Seq Original Wan (14B) 93.18% 66.85% 26.27% 85.13% 77.07% 83.52%
AR Ours (14B) 94.60% 66.17% 26.16% 84.99% 72.85% 82.57%

Table 12: VBench subscores using standard text prompt set. (higher is better).

Models Type
Subject

Consistency
Background
Consistency

Temporal
Flickering

Motion
Smoothness

Dynamic
Degree

Aesthetic
Quality

Imaging
Quality

Object
Class

Full Seq Original Wan (1.3B) 95.36% 96.60% 99.42% 98.24% 63.19% 61.10% 67.44% 76.98%
AR Ours (1.3B) 93.94% 94.47% 96.98% 98.20% 74.31% 59.81% 67.40% 69.66%
AR Transformer SWA (1.3B) 92.23% 91.49% 97.62% 98.11% 74.31% 58.59% 67.46% 66.10%
AR Transformer (1.3B) 92.90% 93.68% 98.05% 98.00% 77.08% 58.36% 66.02% 67.76%

Full Seq Original Wan (14B) 95.04% 96.89% 99.28% 98.44% 70.83% 62.27% 66.78% 81.96%
AR Ours (14B) 93.57% 94.69% 97.65% 98.31% 76.39% 59.83% 66.78% 73.26%

Type Models
Multiple
Objects

Human
Action Color

Spatial
Relationship Scene

Appearance
Style

Temporal
Style

Overall
Consistency

Full Seq Original Wan (1.3B) 60.86% 77.50% 91.91% 72.69% 19.44% 20.24% 23.62% 23.64%
AR Ours (1.3B) 44.74% 73.50% 81.39% 66.01% 21.69% 20.41% 23.12% 22.92%
AR Transformer SWA (1.3B) 35.75% 75.50% 81.49% 58.91% 21.18% 20.26% 23.14% 22.86%
AR Transformer (1.3B) 37.08% 70.00% 85.17% 61.99% 19.73% 20.22% 23.06% 23.12%

Full Seq Original Wan (14B) 62.80% 77.00% 90.24% 72.96% 27.33% 21.36% 23.38% 24.99%
AR Ours (14B) 49.85% 85.00% 86.18% 63.62% 22.24% 21.86% 23.28% 24.51%

Fig. 1(d) uses the object-level novel view synthesis experiment. All models consist of 14 stacked
blocks with a fixed model dimension of 768 and were trained for 167 billion tokens. Training time
(wall-clock) is measured on an A100-40GB SXM GPU.

F DETAILS FOR MAMBA BASELINES

Mamba is an efficient model architecture, it is logically similar to a linear TTT taking per-token
linear update rule of the fast weight (i.e., state in Mamba’s context). Thus it serves as a baseline to
understand the gap between the chunk-wise update and per-wise update in Fig. 8 and Fig. 6. In this
section, we detailed the experimental setup.

We take the official Mamba-2 implementation3 in all our experiment. The original Mamba-2 has
multiple components, and we largely simplify its implementation to keep a measurable architecture
while still maintaining the performance. In detail, our Mamba-2’s formulation in experiment is:

X,B,C, δ = Linear(u)

δ = softplus(δ + δinit)

Ht = exp(−δt)Ht−1 + δtB
T
t Xt

yt = CtHt (22)

where X , B, C is of shape (L, d), and δ is of shape (L, 1). Ht is a matrix state of shape (d, d).

3https://github.com/state-spaces/mamba
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Table 13: VBench subscores using the WAN-augmented prompt set. (higher is better).

Type Method
Subject

Consistency
Background
Consistency

Temporal
Flickering

Motion
Smoothness

Dynamic
Degree

Aesthetic
Quality

Imaging
Quality

Object
Class

Full Seq Original Wan (1.3B) 94.87% 96.64% 99.31% 98.55% 65.28% 65.71% 67.34% 87.22%
AR Ours (1.3B) 92.87% 94.77% 97.49% 98.19% 86.11% 65.36% 67.81% 88.13%
AR Transformer SWA (1.3B) 91.69% 94.63% 98.75% 98.22% 83.33% 64.81% 68.26% 88.37%
AR Transformer (1.3B) 92.26% 94.68% 98.39% 98.35% 84.72% 64.72% 68.02% 82.04%

Full Seq Original Wan (14B) 95.05% 97.13% 99.27% 98.55% 70.83% 66.18% 67.52% 91.38%
AR Ours (14B) 92.39% 95.35% 98.33% 98.21% 90.28% 64.18% 68.17% 85.05%

Type Method
Multiple
Objects

Human
Action Color

Spatial
Relationship Scene

Appearance
Style

Temporal
Style

Overall
Consistency

Full seq Original Wan (1.3B) 73.21% 95.00% 90.59% 74.53% 45.09% 21.58% 23.02% 25.36%
AR Ours (1.3B) 63.03% 92.00% 89.83% 70.95% 47.09% 21.35% 22.70% 25.45%
AR Transformer SWA (1.3B) 62.65% 95.00% 86.24% 66.75% 41.79% 21.31% 22.72% 25.56%
AR Transformer (1.3B) 66.23% 96.00% 82.58% 72.45% 40.70% 21.07% 22.93% 25.87%

Full Seq Original Wan (14B) 72.87% 94.00% 90.45% 75.29% 49.85% 22.66% 21.83% 25.37%
AR Ours (14B) 64.33% 93.00% 83.47% 68.03% 43.24% 22.34% 21.94% 25.75%

Transferring the above formula to a standard linear-attention / TTT / DeltaNet notations, it is
equivalent to:

V,K,Q, lr = Linear(input)

lr = softplus(lr + lr init)

Wt = exp(−lr t)Wt−1 + lr tK
T
t Vt

Ot = QtWt (23)
We will denote the above equations as O = Mamba(input).

We use the multi-head design as in Transformer’s multi-head attention. Multiple independent Mamba-
2 layer are run in parallel and their outputs are concatenated. Suppose the number of heads is nh , the
formula is:

Ok = Mambak(input)

O = [O1, . . . , Onh ] (24)

where each Mambak is a Mamba with its own parameters. In Mamba-2’s terminology, this design is
equivalent to setting the number of ‘groups’ to be the same as the number of heads.

For the novel view synthesis task, we take a bidirectional Mamba over the input image tokens. In
detail, we take two independent multi-head Mamba with one reading from left to right and the other
reading from right to left. The bidirectional model builds a better connection among input tokens
and also doubles the state size. We use a similar ‘apply’ operation as in LaCT that only updates
the state for input tokens, and the state is static for the target tokens. We also tested with ‘update’
for the target image tokens, but it empirically leads to worse results. We use a head dimension
of 192 and 8 heads. The overall state size, 8 (num heads) × 1922 (head dim) × 2 (bidir), matches
LaCT with a standard large-chunk large-weight linear attention of dimension 768 (768 input dim×
768 intermediate dim in Fig. 8. We take lr init= − 4.6, which corresponds to a 0.01 initialized
learning rate (i.e., softplus(−4.6) = 0.01).

For the autoregressive video diffusion task, we apply a unidirectional Mamba over the flattened video
tokens. As mentioned in Sec 5.3, we follow (Wang et al., 2024) to inherit the Wan’s self-attention
projected k, q, and v as B, C, and x in the Mamba layer, respectively. Unlike in the NVS task, each
token will ‘update’ the state, which will be ‘applied’ to the current output and future tokens. Our
Mamba uses 12 heads, each of dimension 128, matching the original multi-head self-attention in
Wan. The overall state size is 12 (num heads) × 1282 (head dim). We take lr init= − 4.6, which
corresponds to a 0.01 initialized learning rate.

G DETAILS OF LACT CONTEXT PARALLELISM IMPLEMENTATION

Context Parallelism(CP) partitions the input sequence along its sequence length dimension and
distributed the shards across multiple devices for parallel computing. The feed-forward layer and
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window attentions are local operations thus support CP naively. Our large-chunk Test-Time Training
(TTT) approach facilitates CP by sharding tokens within each large chunk.

Within our large-chunk TTT mechanism, the per-token apply operation naively supports CP due
to its independent nature. The update allows CP by shading tokens within a chunk over multiple
devices. This CP can be easily implemented by adding a few lines of distributed all-reduce-sum after
computing the local fast weight gradients on each device, logically the same as the Distributed Data
Parallellism. Note that the distributed all-reduce-sum is a differentiable operator and its backward is
all-reduce-sum over the gradient, thus the network can be trained end-to-end. Algorithm 3 presents the
pseudocode detailing this intra-chunk context parallelism specifically for the large-chunk TTT update
operation. We employed this parallelism in our view synthesis experiments, handling maximum
chunk sizes exceeding half a million tokens and maximum sequence lengths over one million tokens
during training.

H DETAILS OF LACT TENSOR PARALLELISM IMPLEMENTATION

Beyond Context Parallelism, our large-chunk Test-Time Training (TTT) mechanism also supports
Tensor Parallelism (TP). This is primarily achieved by sharding the TTT heads across multiple
devices, a strategy similar to that employed in methods like DeepSpeed Ulysses (Jacobs et al., 2023).

Specifically, while static feed-forward layers in the model might process inputs sharded along the
sequence dimension (Context Parallelism), for the TTT operations within our LaCT layer, the data
undergoes a gather-then-scatter transformation. Input tensors (Q, K, V, and learning rates for TTT)
that are initially sharded by sequence length are first gathered along the sequence dimension to
reconstruct the full sequence context on each device within the tensor-parallel group. Then, these
full-sequence tensors are scattered along the head dimension. As a result, each device processes the
complete sequence but operates on only its assigned subset of TTT heads during the TTT update and
apply iterations. The reverse transformation (gather heads, scatter sequence) is applied to the output
of TTT operation. Algorithm 4 provides pseudocode detailing this tensor parallelism implementation,
omitting minor details like padding. While this gather-then-scatter method effectively enables head-
sharded tensor parallelism, more sophisticated communication strategies (Fang & Zhao, 2024; Jacobs
et al., 2023) could potentially be employed to further optimize communication overhead.

We utilized this tensor parallelism strategy in our autoregressive video generation experiments,
sharding, for example, four TTT heads across four local GPUs. This enabled us to train 14-billion-
parameter diffusion models with sequence lengths exceeding 100K tokens.
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Algorithm 3 Large Chunk Test-Time Training Layer with Context Parallel Sharded inside chunk
Pseudocode

def update(fast_weight, k, v, lr, cp_group, use_muon=True):
"""
Fast-weight update for a SwiGLU MLP using a context-parallel chunk.

Args:
fast_weight : tuple(w1, w2, w3) with shapes: w1, w3: [b, d, dh]; w2: [b, dh, d]
k, v : key / value tensor of shape [b, l, d]
lr: : per-token learaning rates of shape [b, l, 3] -> (lr1, lr2, lr3)
cp_group : process group metadata for context parallelism
use_muon : weather to apply Muon to orthogonalize the update

Note:
The input tensors k, v, lr are assumed to be already partitioned (sharded)

along the sequence
dimension over multiple devices. l represents the local sharded sequence length

on each device.
The total effective chunk size processed is l * cp_group.size.

"""

# Forward with k:
gate_before_act = matmul(k, w1) # [b, l, dh] = [b, l, d] x [b, d, dh]
hidden_before_gate = matmul(k, w3) # [b, l, dh] = [b, l, d] x [b, d, dh]
hidden = silu(gate_before_act) * hidden_before_gate

# Backward:
dhidden = matmul(v, w2.transpose(-1, -2)) # [b, l, dh] = [b, l, d] x [b, d, dh]
dhidden_before_gate = dhidden * silu(gate_before_act)
dgate = dhidden * hidden_before_gate
dgate_before_act = silu_backprop(dgate, gate_before_act)

# Compute gradients:
w2.grad = -matmul(hidden.transpose(-1, -2), v * lr2) # [b, dh, d] = [b, dh, l] x [

b, l, d]
# [b, d, dh] = [b, d, l] x [b, l, dh]
w1.grad = -matmul((k * lr1).transpose(-1, -2), dgate_before_act)
w3.grad = -matmul((k * lr3).transpose(-1, -2), dhidden_before_gate)

# [Standard forward pass and local backward gradient computations are performed
above,

# resulting in local w.grad for each device.]

#################################################################################
# BEGIN CONTEXT PARALLELISM SPECIFIC MODIFICATION: Global Gradient Aggregation
# The following AllReduce operation is the key step introduced for context
# parallelism. Operations before this point compute local gradients; operations
# after this point use the globally aggregated gradients.
#################################################################################
for w in fast_weight:

w.grad = distributed_all_reduce(w.grad, cp_group, op="SUM")
#################################################################################
# END CONTEXT PARALLELISM SPECIFIC MODIFICATION.
# Subsequent operations (Muon, weight updates) now use the globally summed w.grad.
# The formulas for these subsequent operations remain the same as in a
# non-parallel version, but they act upon these aggregated gradients.
#################################################################################

# Weight update
if use_muon:

for w in fast_weight:
w.grad = zeropower_via_newtonschulz5(w.grad)

for w in fast_weight:
w = (w - w.grad) / (w - w.grad).norm(dim=1) * w.norm(dim=1)

return fast_weight

I LIMITATION

One limitation of our method is the absence of rotation invariance. Unlike softmax attention and
linear attention, which remain invariant under uniform rotations of queries and keys (a property
leveraged by relative positional encodings such as RoPE Su et al. (2023)), our SwiGLU and Linear
Fast Weight components do not exhibit this property. The practical implications of this absence
remain underexplored.

On the language modeling task, some key aspects are not explored due to computation limitation.
These aspects include the reasoning capacity of our LaCT model and also the scalability regarding

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Algorithm 4 Large Chunk Test-Time Training Layer with Tensor Parallelism by sharding heads
Pseudocode

def gather_scatter(x, gather_dim, scatter_dim, process_group=cp_group):
"""
Gathers tensor x along gather_dim across process_group,
then scatters the result along scatter_dim to each device locally.
Example: Transform [B, N_full, L_local, D] with gather_dim=2, scatter_dim=1

to [B, N_local, L_full, D] on each device.
"""
x = all_gather(x, gather_dim, process_group)

# Calculate slicing indices for the scatter operation
local_rank, group_size = process_group.rank, process_group.size
scatter_stride = x.size(scatter_dim) // group_size
start_idx = local_rank * scatter_stride
end_idx = (local_rank + 1) * scatter_stride

# Slice the tensor to get the local shard for the current device
x = slice_tensor(x, scatter_dim, start_idx, end_idx)
return x

######### MultiHead LaCT Layer with Tensor Parallelism (sharding TTT heads) #########
# Input:
# x: input sequence sharded by sequeunce length (CP). Shape [b, l, d], b is the batch

dim, l is local sequence length, d is model dimension.
# fast_weight: tuple of sharded initial fast weights, sharede among heads. (w1, w2,

w3); w1, w3 of shape [nh, d, dh], w2 of shape [nh, dh, d]. nh: number of local
heads.

qkv = silu(LinearQKV(x)) # [b, l, d * 3]
qkv = rearrange(qkv, `b l (nh hd) -> b nh l hd`, nh=num_heads).split(3, dim=-1)
q, k = q / q.norm(-1), k / k.norm(-1)
lr = softplus(LinearLR(x) + const_lr_bias) # [b, l, 3 * num_heads]
lr = rearrange(lr, `b l (nh 3) -> b nh l 3`, nh=num_heads)

####################################################################################
# BEGIN TENSOR PARALLELISM SPECIFIC TRANSFORMATION
# Gather along Sequence Length (dim 2), then Scatter along Head Dimension (dim 1).
# Transforms [b, nh_full, l_local, X] -> [b, nh_local, l_full, X]
# Each device now has the full sequence for a subset of heads.
q, k, v, lr = map(lambda x: gather_scatter(x, gather_dim=2, scatter_dim=1), (q, k, v,

lr))
# END TENSOR PARALLELISM SPECIFIC TRANSFORMATION
####################################################################################

# [b, nh_local, l_full, X]
o_local_heads = ... # Placeholder for actual TTT computation on sharded heads
o_local_heads = RMSNorm(o_local_heads) # per-head norm

#################################################################################
# BEGIN TENSOR PARALLELISM SPECIFIC REVERSE TRANSFORMATION
# Gather along Head Dimension (dim 1), then Scatter along Sequence Dimension (dim 2).
# Transforms [b, nh_local, l_full, X] -> [b, nh_full, l_local, X]
# This reconstructs the full head dimension but shards sequence back.
o = gather_scatter(o_local_heads, gather_dim=1, scatter_dim=2)
# END TENSOR PARallelism SPECIFIC REVERSE TRANSFORMATION
#################################################################################
o = rearrange(o, `b nh l hd -> b l (nh hd)`, nh=num_heads)
o = LinearOutput(o)

return o

the parameter size. Previous papers showed that a main weakness of the state-based model (where
LaCT belongs to) is its reasoning ability. However, the reasoning ability is only gained with certain
amount of training compute thus it is beyond our budget.

Lastly, for the autoregressive video diffusion, it is hard to find a reliable and distinguishable metric to
measure the model’s scalability. It is in contrast to the language modeling with perplexity (i.e., log
likelihood loss) and the novel-view synthesis with PSNR. We show the validation loss in our paper
and it is a common choice in evaluating the scalability of video generation. This is a general problem
for the video generation evaluation and is not specific to our paper.
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J LLM USAGE

We employ large language models (LLMs) in three main scenarios. During the experimental stage,
we use LLMs to generate portions of tedious code based on clear instructions and guidelines to
acclerate experimental iteration. During the writing stage, we leverage LLMs to polish the text and
identify grammatical issues. Finally, we also use LLMs to generate Python code for plotting figures
with matplotlib.
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