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Abstract

A common step in differentially private (DP) Riemannian optimization is sampling from
the (tangent) Gaussian distribution as noise needs to be generated in the tangent space to
perturb the gradient. In this regard, existing works either use the Markov chain Monte Carlo
(MCMC) sampling or explicit basis construction based sampling methods on the tangent
space. This becomes a computational bottleneck in the practical use of DP Riemannian
optimization, especially when performing stochastic optimization. In this paper, we discuss
different sampling strategies and develop efficient sampling procedures by exploiting linear
isometry between tangent spaces and show them to be orders of magnitude faster than
both the MCMC and sampling using explicit basis construction. Furthermore, we develop
the DP Riemannian stochastic variance reduced gradient algorithm and compare it with
DP Riemannian gradient descent and stochastic gradient descent algorithms on various
problems.

1 Introduction

Differential privacy (DP) provides a rigorous treatment for the notion of data privacy by precisely quantifying
the deviation in the model’s output distribution under modification of a small number of data points
. Provable guarantees of DP coupled with properties like immunity to arbitrary post-processing,
and graceful composability have made it a de-facto standard of privacy with steadfast adoption in the real
world (Erlingsson et al., 2014; |Apple} 2017; Near} |2018} |[Abowd] [2018). Furthermore, it has been shown
empirically that DP models resist various kinds of leakage attacks that may cause privacy violations
et al 2018} [Carlini et all [2019; [Sablayrolles et al., 2019; [Zhu et al.l 2019} Balle et al. 2022; [Carlini et al.]
2022,

Various approaches have been explored in the literature to ensure differential privacy in machine learning
models. These include output perturbation (Chaudhuri & Monteleoni, |2008; |(Chaudhuri et al., |2011; Zhang]
et al.,|2017) and objective perturbation (Chaudhuri & Monteleoni, [2008; |Chaudhuri et al., 2011} Kifer et al.,
2012} [Iyengar et al) 2019; Bassily et al., 2021), in which a perturbation term is added to the output of
a non-DP algorithm or the optimization objective, respectively. Another approach, gradient perturbation,
involves perturbing the gradient information at every iteration of gradient based approaches and has received
significant interest in the context of deep learning and stochastic optimization (Song et al., |2013; Bassily|

et all, 2014} [Abadi et all [2016} [Wang et all, 2017 Bassily et al., 2019} Wang et all 2019a; Bassily et al.l
2021)).

Recently, achieving differential privacy over Riemannian manifolds has also been explored in the context
of obtaining Fréchet mean (Reimherr et al.| [2021) and, more generally, solving empirical risk minimization
problems (Han et all[2022). Riemannian geometry is a generalization of the Euclidean geometry 2006
Absil et al.| 2009) and includes several non-linear spaces such as the set of positive definite matrices (Bhatia
2009)), set of orthogonal matrices (Edelman et al., [1998; [Absil et al. [2009), and hyperbolic space (Ungar
2008} [Nickel & Kiela},[2017), among others. Many machine learning tasks such as principal component analysis
(Absil et al., [2007)), matrix completion (Boumal & Absil, [2011)), low-rank tensor learning (Nimishakavi et al.)
@D, metric learning (Bhutani et al.,2018)), covariance estimation, natural language processing (Jawanpuria
et al,[2019), learning embeddings (Nickel & Kiela) [2017; 2018} [Suzuki et al., [2019; [Qi et al., [2021)), etc., may
be viewed as problem instances on Riemannian manifolds.
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In differentially private Riemannian optimization (Han et al., 2022)), a key step is to use tangent Gaussian
sampling at every iteration to perturb the gradient direction in the tangent space. [Han et al.| (2022)) proposed
to use the Markov Chain Monte Carlo (MCMC) method (Robert & Casellal [1999)), which is computationally
expensive especially on matrix manifolds with large dimensions. When the underlying Riemannian metric is
induced from the Euclidean metric, such as for sphere, Han et al|(2022)) showed one can avoid MCMC via
basis construction for the tangent space. For general manifolds of interest, however, a discussion on basis
construction and computationally efficient sampling is missing. The sampling step is computationally pro-
hibitive, especially when performing differentially private stochastic optimization over Riemannian manifolds,
where the number of sampling calls is relatively high compared to the case of deterministic optimization.
It should also be noted that generalizing more sophisticated differentially private FEuclidean stochastic al-
gorithms like differentially private stochastic variance reduced gradient (Wang et al.l 2017)) to Riemannian
geometry is non-trivial and is an active area of research. The benefits of (non-private) Riemannian stochastic
variance reduction gradient (RSVRG) methods over Riemannian stochastic gradient (Bonnabel, 2013) has
been studied in existing works (Zhang et al., [2016; [Zhou et al., [2019; [Han & Gao, 2021} [Sato et al., [2019).

In this work, we propose generic fast sampling methods on the tangent space for various matrix manifolds
of interest. This makes differentially private Riemannian optimization more practically appealing for real-
world applications. We also propose a differentially private Riemannian stochastic variance reduced gradient
(RSVRG) and illustrate its efficacy in different applications. Our main contributions are summarized below.

1. Sampling. We propose a novel sampling strategy based on linear isometry between tangent spaces.
We show that it is computationally efficient and orders of magnitude faster than other sampling
schemes, MCMC, and explicit basis construction, presented in (Han et al., |2022]).

2. DP-SVRG. We propose a differentially private Riemannian stochastic variance reduced gradi-
ent (DP-RSVRG), expanding the suite of differentially private stochastic Riemannian optimiza-
tion methods. We empirically evaluate DP-RSVRG with existing differentially private Riemannian
(stochastic) gradient methods and study its benefits.

Organization. The rest of the paper is organized as follows. Section [2| gives a background on Riemannian
geometry, Riemannian optimization, and differential privacy. We then use various properties of tangent
Gaussian distribution and discuss different possible sampling strategies in Section [3] Section [d] presents our
proposed sampling procedure and gives exact details about how to implement it in practice for several man-
ifolds of interest. In Section [5} we develop a differentially private Riemannian stochastic variance reduction
gradient algorithm (DP-RSVRG). Section |§| discusses the empirical results. Section [7| concludes the paper.

2 Preliminaries and related work

Riemannian Geometry. A Riemannian Manifold M of dimension d is smooth manifold with an inner
product structure (.,.),, (i.e., having a Riemannian metric) on every tangent space T, M. Given a basis
B = (P1,...,0aq) for T, M at w € M, the Riemannian metric can be represented as a symmetric positive
definite matrix G, and the inner product can be written as

<V17 V2>w = V_1>TGw72>7

where 7{,72) are coordinates of the tangent vectors vq,v9 € T, M in the coordinate system given by 2.
An induced norm is defined as ||v||, = \/(V,V)w for v € T,yM. Let v : [0,1] — M denote any smooth
curve and 7/(t) € Ty M its derivative, then distance between wy,ws € M is defined as dist(w;,ws) =

. 1
lnfy:'y(o):wl,’y(l)zuu f() H’Y/(t)”'y(t) dt.

A smooth curve v : [0,1] — M is called the geodesic if it locally minimizes distance between v(0) and ~(t).
For any v € T, M, the exponential map is defined as Exp,(v) = ¥(1) where v(0) = w and 4/(0) = v. If
between any two points w,w’ € W C M there is a unique geodesic connecting them, then the exponential
map has inverse Exp;1 : W — Ty M, which maps a point on the manifold to the tangent space T, M.
Transporting the vectors on the manifold requires the notion of parallel transport. In particular, parallel
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transport from w; € M to wy € M denoted as PT**7"2 : T,,, M — T,,M is a linear isometry (i.e.,
inner product preserving) along a geodesic. In this work, the curvature of a manifold refers to the sectional
curvature, which provides a local measure of curvature at each point on the manifold.

The Riemannian gradient of a real valued function f : M — R, denoted as grad f(w), is a tangent vector
such that for any v € T,, M,

(grad f(w), v)w = Df[w](v),

where D fw](v) denotes the directional derivative of f at w along v. We refer the readers to (Do Carmo &
Flaherty Francis, [1992; [Lee, 2006) for a detailed exposition of Riemannian geometry and (Absil et al., 2009;
Boumal, [2022) for Riemannian optimization.

Function classes on Riemannian Manifolds. We call a neighbourhood W C M totally normal if for
any two points, the exponential map is invertible. Let W C M be a totally normal neighborhood and Dyy
be its diameter and x5, be the lower bound on the sectional curvature of W.

A function f: W — R is called Lg-geodesically Lipschitz continuous (L-g-lipschitz) if for any wi,ws € M
| f(wy)— f(we)| < Lodist(wy, we). Under the assumption of continuous gradient, function f is Ly geodesically
Lipschitz continuous if and only if

lgrad f(w)|| < Lo,

for all w € M (Boumal, 2022). A differentiable function f : M — R is geodesically L-smooth (L-g-smooth)
if its gradient is L-Lipschitz, i.e., ||grad f(w;) — PT*2 7" grad f(wy) < Ldist(wy,wsy). Additionally, it
can be shown that if f is geodesically L-smooth, then

[

Flwr) < flws) + (grad f(ws), Expy, (1)), + éllExp;i(wl)lliz,

for all wy,we € M. A function f is called geodesically u-strongly convex (u-strongly g-convex) (Zhang et al.,
2016) if for all wq,wy € W, it satisfies

flwr) > f(w2) + (grad f(w2), Expy, (w1))w, + gHEXPJ;(wl)Hg&-

Let w* be a global minimizer of f. Then f: W — R is said to satisfy the Riemannian Polyak-t.ojasiewicz
(PL) condition if there exists 7 > 0, such that,

f(w) = f(w*) < 7 |lgrad f(w)],,

for any w € M(Zhang et all 2016). The Riemannian PL condition is a strictly weaker notion than the
geodesic strong convexity, i.e., every geodesic u-strongly convex function satisfies Riemannian PL condition
(with 7 = 1/(2u)) and there exist functions that satisfy the Riemannian PL condition but are not geodesically
strongly convex. The trigonometric distance bound from Zhang & Sra| (2016|) (see Lemma , which is
crucial for deriving convergence analysis of Riemannian optimization algorithms makes use of the curvature
constant, defined as,

_VEmlow
¢ = { tanh (\/‘f@n]in'DW) m

1 Rmin Z 0.

Differential privacy. Let Z be an input data space and two datasets of size Z, Z' € Z™ of size n are called
adjacent if they differ by at most one element. We represent adjacent datasets Z, Z’ by notation Z ~ Z’. A
manifold-valued randomized mechanism R : Z™ — M is said to be (e, §)-approximately differentially private
(ADP) (Dwork et al.l |2006a; [Wasserman & Zhoul, [2010)) if for any two adjacent datasets Z ~ Z’ and for all
measurable sets S C M we have

P[R(Z) € S] < exp (€)P[R(Z') € S] + 6.
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Rényi differential privacy (RDP) (Mironov, 2017) is a refinement of DP which gives tight privacy bounds
under composition of mechanisms. A-th moment of a mechanism R is defined as

- p(R(Z) = o) \*
Kr(N\) = ZSEIZ), log <0~7]]§(Z) KP(R(Z')O)) }>,

and mechanism R is said to satisfy (A, p)-RDP if 215Kz(A — 1) < p. If mechanism R : Z — M is the

2

(adaptive) composition of k mechanisms {R;}*_,, i.e., R; : Hj;11 M x Z™ — M; then

k
Kr(A) < Z Kr,(N).

Using the moments accountant technique (Abadi et al.,|2016)), (X, p)-RDP mechanism can be given (¢, d)-ADP
certificate. We refer the interested readers to (Dwork et al.l 2014 Vadhan| 2017)) for more details.

Differential privacy on Riemannian manifolds. Reimherr et al.|(2021) are the first to consider differen-
tial privacy in the Riemannian setting and derived the Riemannian Laplace mechanism based on distribution
from (Hajri et al., |2016)). [Utpala et al.| (2022) derive output perturbation for manifold of symmetric positive
definite matrices (SPD) with the Log-Euclidean metric based on distribution from (Schwartzman| |2016]).
While (Reimherr et al., [2021} [Utpala et al., [2022) focus on output perturbation, [Han et al. (2022) propose
a unified differentially private Riemannian optimization framework through gradient perturbation.

Han et al.| (2022) consider the following problem where the parameter of interest lies on a Riemannian
manifold M and z;,i = 1,...,n represent the set of data samples, i.e.,

min {F(w) = %Zﬁ(w) = iZf(w;zn}. (1)

i=1

The aim of differentially private Riemannian optimization is to privatize the solution from a Riemannian
optimization solver by injecting noise to the Riemannian gradient similar to the Euclidean case. The Rieman-
nian gradient grad F(w) belongs to the tangent space (T, M, (, ),,) and to perturb the Riemannian gradient,
Han et al.|(2022) define an intrinsic Gaussian distribution on the tangent space T,, M with density

p(v) o exp(—|lv = plly, /20%), v € TuM,

and refer to it as the tangent Gaussian distribution. They propose differentially private Riemannian gradient
and Riemannian stochastic gradient descent algorithms.

3 Sampling from tangent Gaussian

In this section, we derive various properties of the tangent Gaussian distribution to discuss different sam-
pling strategies for different manifolds. The proofs of the claims discussed in this section are provided in

Appendix

We begin with the definitions of the Lebesgue measure on the tangent space and the tangent Gaussian distri-
bution. We then show that the tangent Gaussian reduces to the multivariate Gaussian when an appropriate
basis is constructed. This allows sampling to be performed in the intrinsic coordinates of the tangent space
and then generate a tangent Gaussian sample by a linear combination of the basis vectors with the sampled
coordinates.

Definition 1 (Lebesgue measure on tangent space). Consider a Riemannian manifold M with the intrinsic
dimension d. For w € M, let Z = {B1,...,Ba} be an orthonormal basis of T,,M with respect to the
Riemannian metric (.,.),,. Define ¢z : R? — T,M as ¢z(cr,...,cq) = Z?:l ¢;B;. Let \ denote the standard
Lebesgue measure on R?. Then, we define the Lebesgue measure on Ty M as the pushforward measure ¢Z

given by
(@7N(S) £ A (65 (9)) -
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Algorithm 1: Sampling from tangent Gaussian: a general algorithm

Input : Manifold M of dimension d, base point w € M, Riemannian metric (.,.),,, mean u € M
and standard deviation o > 0.
Output: & such that & ~ N, (0,02).
1 Construct a basis # of T,,,M orthonormal wrt to (.,.).
2 Generate d-dimensional coordinates a ~ N(0,0%1y).

3 Generate the sample £ € T,,M as £ = 2?21 a; B;.

Remark 1. Let %, %> be two orthonormal bases of T, M then ¢Z1 X\ = ¢Z2\ because the Lebesgue measure
is invariant under orthogonal transformation (with respect to the Riemannian metric). Hence, in the rest of
this draft, we drop the superscript & for clarity and denote the pushforward measure as ¢, A\.

We now define the tangent space Gaussian distribution (Han et al |2022)) under the measure in Deﬁnition

Definition 2 (Tangent Gaussian (Han et al}[2022)). Let w € M, a random tangent vector £ € T, M follows
a tangent space Gaussian distribution at w, denoted as & ~ Ny (i, 0?) with mean p € T,y M and standard
deviation o > 0 if its density is given by

2
pw(l/) = Cw,o exp <_||V'uw> y

202

under the pushforward measure given in Definition [1].

Lemma 1. Let w € M and £ be any orthonormal basis of TyyM. Also, let & € T,M denote a random
tangent vector. Then, the following holds:

1. If € ~ Noy(p, 02) for some p € Ty M and for o > 0, then Cy, 5 = (2m0?)'/2.
2. & ~ Noyp(p, 02) <= € ~ N (ji,021,) where &, i € RY denote coordinates in basis B.

3. If € ~ Nyw(0,0?), then E H{Hi = do?, where d is the dimension of the manifold.

Remark 2. Statement 3 of Lemma [I| improves the bound on variance from (Han et al., 2022] Lemma 4) by
removing the dependency on the metric tensor G,,.

Statement 2 of Lemma [I] implies that a random tangent vector follows tangent Gaussian if and only if
its random coordinates in any orthonormal basis follow from the Euclidean Gaussian distribution of the
intrinsic dimension. This allows to avoid the computationally expensive MCMC based sampling, which is
suggested in (Han et al.,|2022)) for manifolds with non-Euclidean Riemannian metrics, and instead apply the
basis construction approach for any manifold. We summarize the procedure in Algorithm [I| However, the
practical efficiency depends on how Steps 1, 2, and 3 of Algorithm [I]are implemented for different manifolds.

One natural approach for sampling from tangent Gaussian is to perform an explicit basis construction (Step
1) in which we fully enumerate the basis elements in %. Steps 2 and 3 can subsequently be performed in
a straightforward manner. The other approach is to combine Steps 1, 2, and 3 implicitly. We discuss these
approaches in the following sections.

3.1 Sampling with explicit basis enumeration

Here, we construct a basis explicitly either analytically or by using Gram-Schmidt orthogonalization.

Gram-Schmidt orthogonalization. The tangent space at a point on a manifold is parameterized by a
system of linear equations. One approach to perform sampling is to first solve the underlying linear equations
to get the basis £ of T,, M that is orthonormal in the sense of the Euclidean metric. Depending on the
Riemannian metric, we now have two further scenarios.



Under review as submission to TMLR

Algorithm 2: Sampling from tangent Gaussian using isometric transportation

Input : Manifold M of dimension d, base point w € M, Riemannian metric (.,.),, mean p €
standard deviation o > 0, reference point .
Output: & such that & ~ N, (0,02).
1 Sample d coordinates a ~ N(0,021,).
2 Generate the sample ¢ € Tz M at .

3 Generate the sample £ € T, M by isometric transportation of ¢ from Tz M to T, M : € = LI@_””(C ).

o When the Riemannian metric {.,.),, is a scaled Euclidean metric, then the orthonormal basis with
respect to the Riemannian metric (., .),, can be obtained by appropriate scaling of Z.

o If the Riemannian metric (., .),, is a more general metric, we employ the Gram-Schmidt (GS) orthog-
onalization process on % to generate a new basis that is orthonormal with respect to the Riemannian
metric (.,.),. This is computationally expensive because if d is the dimension of manifold, then we
have to evaluate O(d?) inner products (., .},.

Analytic basis construction. One way to avoid the computationally prohibitive GS orthogonalization
strategy is to analytically construct bases for different manifolds. This can be done for various manifolds
by exploiting the geometry of the space. We construct the full orthonormal basis with respect to the metric
(., .)w explicitly by full enumeration. We empirically observe (refer Section @ that sampling with the explicit
basis construction strategy is computationally expensive even if the basis is known analytically.

3.2 Sampling implicitly using isometric transportation

Since our end goal is to efficiently generate tangent Gaussian samples, instead of first fully constructing
the orthonormal basis and then performing linear combinations, we aim to combine Steps 1, 2, and 3 of
Algorithm [I] Hence, we do not fully enumerate the basis but rather create a basis implicitly.

Given a manifold with a Riemannian metric and depending on the basis chosen, there are many ways of
implementing the implicit basis strategy. We propose a unified way that is both computationally efficient
and easy to implement using linear isometric transportation between tangent spaces.

The key observation of this strategy is the following claim which states that to sample from the tangent
Gaussian on T,, M for w € M, one can simply sample from the tangent Gaussian from any other base
(reference) point @ and then transport the sample using any linear isometry operator from the reference
point @ to the required base point w.

Claim 2. Let © € M and let LI°7" : ToM — TyM be any linear isometric transportation. If & ~
Ng(p, 0?) for some p € TyM and o > 0, then

LIP(€) ~ Ny (LT (1), 0%).

Remark 3. Linear isometry, as defined above, encompasses the parallel transport and more generally some
classes of vector transport on manifolds (Absil et all |2009; [Boumal, [2022; Huang et al.| [2015; 2017). We
denote the parallel transport operation as PT and the vector transport operation as VT.

We choose the reference point @ such that it is relatively easy to sample from the tangent Gaussian at Tz M,
and then, isometrically transport from @ to the required point w. To be precise, we choose a reference
point where two things happen: (i) the tangent space Tz M is parametrized freely and (i7) the underlying
Riemannian metric (.,.) becomes a scaled Euclidean metric. We term this procedure as isometric trans-
portation and summarize it in Algorithm [2l The isometric transportation strategy can be seen as performing
implicit basis construction, i.e., transporting the samples from the @ to the required point w is equivalent
to transporting the tangent space basis from @ to w as £ = LI?~w (2?21 azﬂi) = 2?21 a; LI" 7Y (Bi)-

Efficient implementations of these isometric transportation procedures (parallel transport and vector trans-
port) are extensively studied in the literature (Absil et al.| [2009; Xie et al. |2013; [Huang et al., 2015; 2017}
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Table 1: Reference points @ for Algorithm [2l T € R™*™ denotes the identity matrix. (ey,...,e;) denotes
the standard basis vectors of R™ and o € R™ denotes the zero vector. (,)p and (, )2 denote the standard
Euclidean inner product on matrices and vectors, respectively. We observe that at specific reference points
both the Riemannian metric and tangent space expressions simply.

Manifold Metric Reference point w  Tangent space Tz M Metric (,)s Algorithm  Cost
Affine-Invariant IeR™*™ SYM(m) () Alg 3] O(m3)
SPD Bures-Wasserstein IeR™*™ SYM(m) (,)r/4 Algid O(m?)
Log-Euclidean IeR™*™ SYM(m) (,)r Algls O(m?)
. Poincaré ball ocR™ R™ (,)2 Alg 6] O(m)
Hyperoblic Lorentz hyperboloid e; € R™ {0} x R™~1 ()2 Algl7 O(m)
Sphere Euclidean e € R™ {0} x R™! (,)2 Alg O(m)
Stiefel Euclidean le1,...,e,] € R™X"  SKEW(r) x Rm=mxr (g Alg[o] O(mr?)
Grassmann Euclidean [e1,...,e,] €R™XT  {O}rxT x Rm—r)xr () Alg O(mr?)

Thanwerdas & Pennec| 2021; |(Guigui & Pennec, [2022) and are readily available in many of the existing
Riemannian optimization libraries (Boumal et al., 2014} [Townsend et al., |2016; Miolane et al., [2020). Hence,
a benefit of the isometric transportation strategy (Algorithm [2)) is that one only needs to take care of the
sampling at w and the rest follows through. As we see later that implementing tangent Gaussian sampling at
a properly chosen reference point @ can be made computationally efficient. For all the manifolds, sampling
at @ amounts to simply reshaping samples from the standard normal distribution to certain a size and is
readily implementable.

4 Isometric transportation based sampling for different manifolds

In this section, we discuss the proposed sampling strategy and provide details about how to implement it for
several interesting manifolds. The rest of the section deals with how to concretely implement Algorithm
for several manifolds of interest. For each manifold, we include a summary of the reference points, the
metric at the points, and the concrete algorithm for sampling in Table[I} For the expressions of the parallel
transport and vector transport operations on different manifolds, see Appendix [A] We illustrate through
the experiments that Algorithm [2] is significantly better than other discussed procedures in computational
efficiency and renders implementation of differentially private optimization computationally viable, especially
for high dimensional matrix manifolds.

4.1 SPD manifold

Let SPD(m) denote the set of symmetric positive definite matrices of size m x m. At W € SPD(m), the
tangent space at W is TywwSPD(m) = SYM(m), where SYM(m) denotes the set of symmetric matrices of
size m x m. (Bhatial [2009). We consider three Riemannian metrices: the Affine-Invariant (AI) metric (Pen-
necl, 2006} Bhatia, 2009), Bures-Wasserstein (BW) metric (Bhatia et al) 2019), and Log-Euclidean (LE)
metric (Arsigny et al., [2007)) to endow SPD(m) with a Riemannian structure.

Let W, W € SPD(m), U,V € SYM(m) and denote C € SYM(m) such that C;; = 1 if i = j and C;; = -

e
for i # j and ¢;; = C;;. W = PDP7 is the eigenvalue decomposition of W, where P,D € R™*™ and
D is diagonal matrix of eigenvalues [A1,...,Ay] and P is an orthogonal matrix. We denote the Hadamard

between product two square matrices with ©.

SPD with Affine-Invariant metric. The AI metric defined as (U, V)ix = Tr (WflUW%V). The
reference point for Algorithm [2[ is W = I and the AI metric at I simplifies as <U,V>évé = Tr(UV). As
the parallel transport operation is well-known for the Al metric, we choose it as the linear isometric trans-
portation operation in Algorithm |2} The concrete implementation of Algorithm [2|for the SPD manifold with
the AT metric is shown in Algorithm The computational cost of implementing Algorithm [3| is O(m?).
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Furthermore, the implicit basis that is being used by Algorithm [3|at W is
%’{}é = {cij.Wl/Q [eiejr—i—ejeﬂ W2 = 1,....,m,J :i+1,...7m},

where W/2 = PD'/2P denotes the principal square root of W.

Algorithm 3: Sampling on SPD with Affine-Invariant metric

Input : Base point W.
Output: Tangent Gaussian sample U ~ Ny (0, 02).
1 Generate normal random vector a ~ N (0, 0?Lm(m+1) ).
2
2 Reshape a € R™("m+1/2 into A € SYM(m).
3 U=PT!"""W(CoA).

SPD with Bures-Wasserstein metric. The BW metric is defined as (U, V)5V := Tr(Lw[U]V), where
Lw[U] is the solution to the matrix equation Lyw|[U]U+ULw|[U] = U. The reference point for Algorithm
is W =T and the BW metric at I simplifies as (U,V>%\VW = Tr(UV)/4. We choose the parallel transport

as the preferred isometric transportation procedure. The concrete implementation is shown in Algorithm
and the cost of implementation is O(m?3). The implicit basis at W that is being used by Algorithm [4| is

W = {ciiP [Ko (P" [eel +e;el |P) [P i=1,...omj=i+1,....,m},

where K € R™*™ such that K, = /252

Algorithm 4: Sampling on SPD with Bures-Wasserstein metric

Input : Base point W.
Output: Tangent Gaussian sample U ~ Ny (0, 02).
1 Generate a normal random vector a ~ N(0, 2L m(m+1) ).
2
2 Reshape a € R™(m+1)/2 into A € SYM(mn).
3 U=PT"""W4CoA).

SPD with Log-Euclidean metric. The LE metric is defined as (U, V)i =
Tr (DLogm[W](U)DLogm|[W](V)), where DLogm[W](U) is directional derivative of matrix logarithm of
W evaluated at U.

The reference point for Algorithm [2|is W = I and the LE metric at T simplifies as (U, V>%\g = Tr(UV). With
the parallel transport as the preferred isometric transportation procedure, the sampling implementation is
shown in Algorithm |5 The computational cost of this implementation is O(m?3). The implicit basis that is
being used by Algorithm [5] at W is

B = e P [Ko (PT [eel +ejef | P)| P i=1,..,mj=i+1,...,m},

where K € R™*™ gsuch that K,s = f(Ar, As), where f(z,y) = m if ¢ # yelse f(z,y) = expl(:v)

when x = y.

Algorithm 5: Sampling on SPD with Log-Euclidean metric

Input : Base point W.
Output: Tangent Gaussian sample U ~ Ny (0, 02).
1 Generate a normal random vector a ~ N(0, 0L m(m1) ).
2
2 Reshape a € R™("™+1)/2 into A € SYM(m).
3 U=PT""*(CoA).
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4.2 Hyperbolic

We consider the two popular geometric models of the hyperbolic space: the Poincaré ball and the Lorentz
hyperboloid model (Nickel & Kielal 2017} 2018)).

Poincaré ball. The Poincaré ball model is defined as PB(m) = {w € R™ : ||w|, < 1} with the metric
given by (u, v)P'B = 4(u,v)y/(1 — HW||§) The tangent space at any w € PB(m) is TwPB(m) = R™. The
reference point for Algorithm [2]is w = o € R™, where o denotes the zero vector. The PB metric at o is

(u,v)2B = (u,v),. The sampling algorithm is concretely shown in Algorithm @ whose implementation cost
is O(m). The implicit basis that is being used by Algorithm @] is

B° = {ei(l— [wlp)/4:i=1,...,m},

where e; € R™, i =1,...,m denotes the standard basis vector.

Algorithm 6: Sampling on Poincaré ball

Input : Base point w € PB(m).

Output: Tangent Gaussian sample u ~ Ny (0, 0%).
1 Generate a normal random vector a ~ N(0, 0%1,,).
2 u=PT°"7*(a/4).
Lorentz hyperboloid. The Lorentizian inner product for x,w € R™ is given by (x,w); = —z1y1 +
Zf:z z;y;. The Loretnz hyperboloid model is defined as LH(k) = {w € RF|(w,w), = —1} with the

Lorentizian inner product as the Riemannian metric. The tangent space at w € LH(k) is given by
TwLH(k) = {u € R*|(w,u)z = 0}. The reference point for Algorithmis w = e; € R™, the LH metric at e;
simplifies as (u, v) = (u, v); for u, v € T PB(m) and tangent space simplifies as T PB(m) = {0} x R™~1,
The sampling algorithm is concretely shown in Algorithm The implementation cost is O(m). The implicit
basis that is being used by Algorithm [7] at w is

C@LH:{_I'— Wit i ce=1,... —1}
w € 1+w1(e +W) g ’ , M )

where e; = (0,¢;) and e; € R™,&; € R™~! denotes standard basis vectors for i = 1,...,m — 1.

Algorithm 7: Sampling on Lorentz hyperboloid

Input : Base point w € PB(m).

Output: Tangent Gaussian sample u ~ Ny (0, 02).
1 Generate a normal random vector a ~ N(0, 0%L,,_1).
2 Perform zero padding a = [0,a] € R™.
3 u=PT" 7"V (a).

4.3 Sphere manifold

The sphere manifold is denoted as the set SP(m) = {w € R™|||w||, = 1} and the tangent space at w is given
by TwSP(m) = {u € R™|(w,u)s = 0}. The Riemannian metric is the induced by the Euclidean metric, i.e.,
(u,v)w = (u,v)s. The reference point for Algorithm [2|is w = e; € R™ and SP metric at e; simplifies as
(u, V>SP (u,v)2. With parallel transport as the preferred isometric transportation procedure, the sampling
implementation is shown in Algorithm |8 with implementation cost O(m). The implicit basis being used by
Algorithm [§] is

933,13 :{éi—wiﬂ-w:i:l,...,m—l},
where e; = (0,¢;) and €; € R™~! denotes the standard basis vector for i = 1,...,m — 1.

4.4 Stiefel manifold

The Stiefel manifold is the set of column orthonormal matrices, i.e., ST(m,r) = {W € R™*"[W'W = I}
and its tangent space at W is TywST(m,r) = {U € R™*"|[U'W + WU = 0O}, where O € R"™ " is
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Algorithm 8: Sampling on sphere

Input : Base point w € SP(m).

Output: Tangent Gaussian sample u ~ Ny (0, 02).
1 Generate a normal random vector a ~ N(0, %I, _1).
2 Perform zero padding a = [0,a] € R™.
3 u=PT""V(a).

the zero matrix. The Riemannian metric is the induced by the Euclidean metric (U, V)¢ = Tr(UTV)

(Edelman et al.l 1998). The reference point for Algorithm [2| is W = [e1,...e.] € R™*" where the metric
is (U, V)2F = Tr(U" V) and the tangent space is TwST(m,r) = SKEW(r) x RM=7)%" " where we denote
SKEW(r) as the set of skew-symmetric matrices of size r x r. [Huang et al.| (2017)) have proposed an efficient
isometric vector transport procedure, which we choose for implementing Algorithm[2] The concrete sampling
procedure is shown in Algorithm [0] with an implementation cost O(mr?). The implicit basis that is being
used by Algorithm [J] is

1 ~ . .
%%5 :{EW(eieijejezr):i:1...r,j:i+1,...,r}U{WLeie]T:z:l,...,mfr,] =1,...,r}
where e; € R",&; € R™ " denotes the standard basis vectors for i = 1,...,m — 1 and W, e R™*(m=7)
denotes a matrix such that the columns form an orthonormal basis of the orthogonal complement of the
columns of W.

Algorithm 9: Sampling on Stiefel manifold
Input : Base point W € ST(m).
Output: Tangent Gaussian sample, U ~ Ny (0, 0?).
1 Generate a normal random vector a; ~ N(0,0?I._1 ) and reshape into A; € SKEW(r).

2 Generate a normal random vector as ~ A(0, U2I(m,r)w) and reshape into Ay € R(m=7)x7

3 W= le1,...,e] , A= {AX\@} € Rmxr,
2

4 U=VITV=W (A).

4.5 Grassmann manifold

The Grassmann manifold GR(m,r) consists of r-dimensional linear subspaces of R™ (r < m) and is rep-
resented as GR(m,r) = {colspan(W)|W € R"™*" ' W!W = I,.}, where colspan denotes the column space.
The tangent space at W is TwGR(m,r) = {U € R™*"|U € R WIU = O,} where O, € R"™"
is zero matrix (Edelman et all [1998). The Riemannian metric is induced by the Euclidean metric
(U, V)GR = Tr[U' V] for U,V € TwGR(m,r). (Edelman et al., [1998). The reference point for Algo-
vithm [2is W = [e1,...e,] € R™*" the metric at W is (U,V>‘%R = Tr(UTV) and tangent space at N4
simplifies as T GR(m,7) = {0} x R(™=7)%" wwhere we denote {0}"*" as the singleton set of zero ma-
trix of size r x r. Similar to the Stiefel case, we use the vector transport may as the preferred isometric
transportation procedure (Huang et al., 2017)). The sampling implementation is shown in Algorithmwith
computational cost O(mr?). The implicit basis that is being used by Algorithm [10]is

%&}q’:{WLEie]T:i: L...om—rj=1,...,r},
where e; € R",¢; € R™ ! denote the standard basis vectors for i = 1,...,m — 1 and W, € R™*(m—7)

denotes a matrix such that the columns form an orthonormal basis of the orthogonal complement of the
column space of W.

10
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Algorithm 10: Sampling on Grassmann manifold
Input : Base point W € GR(m).
Output: Tangent Gaussian sample, U ~ AN (0, 02).
1 Generate a normal random vector a ~ N(0, 021(,,L_T)XT) and reshape into A € R(m=7)xr,
O,
A

2 W:[el,...,er} ,Az{ }ER’"X’”.

3 U=VIV=W(a).

5 Private Riemannian variance reduced stochastic optimization

Variance reduced stochastic optimization methods (Roux et all [2012; |Johnson & Zhang) [2013; Defazio
et al.l |2014; |Reddi et al., |2016) employ a hybrid update rule that uses both full gradient and stochastic
gradient information simultaneously. By doing so, variance reduced methods improve the gradient complexity
compared to the stochastic and the full gradient descent methods by requiring less gradient calls to achieve
the same convergence rates than the full gradient descent method. Many variance reduction strategies that
work in the Euclidean space have also been generalized to manifolds (Zhang et al.l |2016; [Sato et al.l |2019;
Zhou et all 2019; Han & Gaol [2021)).

In this section, we privatize the Riemannian stochastic variance reduced gradient (RSVRG) algorithm (Zhang
et al.,[2016) for solving and develop a differentially private RSVRG algorithm, henceforth denoted by DP-
RSVRG. Our proposed DP-RSVRG is summarized in Algorithm [II] DP-RSVRG with restart is presented
as Algorithm

DP-RSVRG has two loops. In the inner loop, an unbiased variance reduced stochastic gradient is constructed
by correcting the Riemannian stochastic gradient with the full gradient calculated at the outer loop. We
add noise from the tangent Gaussian distribution to the variance reduced gradient. The clipping operation
clip, : Ty M — T, M is defined as clip, (v) = min {%, 1} v and it ensures that the norm of v is at most 7.
The norm of the full gradient is clipped with parameter Cy and the variance reduced gradient with parameter
Cy, respectively. PT refers to the parallel transport operation.

5.1 Privacy guarantee

In this section, we analyze the privacy guarantees of DP-RSVRG. We begin by noting that the variance
reduced stochastic gradient has a deterministic and a subsampled component. Hence, Step 7 of Algorithm
can be equivalently re-written as

s . s W —wi Tt : ~g s s s
vt = clip, (grad f(wi™sz,)) = PTY 7" (clipe, (grad f(@% z;,)) — (9" +€1)) + &5, (2)
2 is split into into o? for

the full gradient query and o3 for the variance reduced stochastic gradient query such that o? + 02 = o2.

where &) ~ Ng:(0,07) and &, ~ wa+1(0, 03). Specifically, the noise variance o

. w° s+1 . .
Clalmensures that PTY 7% & +&5" = e ~ N o+1(0,02). Hence, (2) can be viewed as a composition
t

of a full gradient tangent Gaussian mechanism

S S 1 . : S S
R(Z) =rT! = - Z;chpco (grad f(w®; 2)) + &1,
where £ ~ Ng-(0,0%) and a variance reduced Gaussian mechanism
RiH(2) = clipe, (grad f(w; ! 2,)) = PT™ " (clipe, (grad f(@%; 2,)) — ™) + €57,

where ff; L~ waH(O, 02). We now prove the moments bounds on the full gradient mechanism Kxs and

variance reduced mechanism Kgs+1 in the following claims and the proofs are given in Section

11
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Algorithm 11: DP-RSVRG

Input : update frequency m, learning rate 7, number of epochs S, clipping parameters Cy,C;, and

initial iterate w?®.

initialize W = w°.
for s=0,1,...,5—-1do
s+1 ~

1
2
3 wy' = wd.

a | gt = L300 clipg, (grad f(w*; 2:)).
5 fort=0,1,...,m—1do

6 Randomly pick i; € {1,...,n}.

v || ot = lipe, (grad f(wf s 2,) — PTT " (clipe, (grad £(3% 21,)) — g°*1) + i, where
€f+1 ~ Nwts+1 (0, 0'2).

8 wf—ill = Expw.:+1 (—nUerl).

9 | Set w, =ws .

10 Output I : wP'V = %,

11 Output IT : wP' is choosen uniformly randomly from {{w; ™} 1151

Algorithm 12: DP-RSVRG with restarts
Input : update frequency m, learning rate n, number of epochs S, and initial iterate w".
1 for k=0,1,...,K—1do
2 ‘ wk*t! = DP-RSVRG(m, 1, S, w*) with output option II.

Claim 3. The moments bounds satisfy

2 1)C? 1)C?
Ko () < 2OEDC ey < AAEDE
n 0'1 t 0'2

Now we derive the moments bound on subsampled version of R{™! using the results given in (Wang et al.|
2019blc) and the proof is given in Section

Claim 4. Define subsample : 2" — Z as the process of sampling a single data point from n data points
sub

uniformly randomly. Define the subsampled mechanism for Rf“ as R = RSt o subsample. Suppose

oz > 12CF and X < 2/303 log (n(A + 1)(1 + (05/16C}))), we have

28\(\ + 1)C3
ICsuij+1 ()\) S To’%

. . s —175-1 —175-1
The full mechanism R can be seen as an adaptive composition of {{’CsubR:Jrl oo by and {{Kr= 120 oo -

Since 02402 = 02, we can rewrite 02 = ao?, 03 = (1—a)o? for some a € (0, 1). Using this claim, minimizing

over «, and setting C = max{Cy,C;}, we have

m S—1 m S—1
2mSA(\ + 1)C§ 28mSA(\ + 1)C?
Kr(A) <) Ko o (A) + DN Kren() < nia? + w0l
t=0 s=0 t=0 s=0
. mSA\+1)C? {2 28 }
< — .
= Kr() = anig,lm n2o2 o + 1—a 3)

It should be noted that for a given A, the minimization over a has a closed-form solution.

The moments bound Kx given in can be converted to (e, ) guarantee using conversion rules, e.g., based

on (Mironov}, 2017, Proposition 3): Given 0 < ¢ < 1, € = miny> Kr(A=1)+log1/6

vl . Recently, however, the

12
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optimal conversion rule has been given in (Asoodeh et al., 2020, Theorem 3) for which there exists no closed-
form expression but can be solved numerically to get e. The solver is available in the autodp library (Wang
et al., 2019c). The above result connecting the moment bound Kz with « in implies that tighter (e, d)
guarantees can be obtained by optimizing over «, i.e., by exploiting the inter-play between the the noise
added to the full gradient and that to the variance reduced gradient.

It should be emphasized that in the Euclidean setting, [Wang et al.| (2017)) have not considered optimization
of o as in We empirically show that such an optimization of a obtains significant improvement in privacy
in Sectlon We end this section with the following privacy result for Algorithms [T1] and [12]

Claim 5. Algorithms and are (€,0)-differentially private with o® > 01%1/6)6'2 and o2 >

n2e?
co %, respectively, for some positive constants c1,co and C = max{Cp,C1}.

5.2 Utility guarantee

In this section, we prove the utility guarantees of DP-RSVRG under various function classes on manifolds
including geodesic strong convex functions, general nonconvex functions, and functions that satisfy the
Riemannian Polyak—F.ojasiewicz (PL) condition. In particular, the geodesic strong convexity and Riemannian
PL conditions generalize the notions of strong convexity and PL condition from the Euclidean space to
manifolds, allowing fast convergence (for problems satisfying these conditions) to global optimality when
optimizing on manifolds. The proofs of the results discussed in this section are included in Sections
B.4.3]

Let W C M be a totally normal neighborhood and D,y denotes its diameter and K, is the lower bound
on curvature of W (discussed in details in Section. Following (Zhang & Sraj, 2016; Han & Gaol [2021; [Han
et al.l |2022)), we make the below standard assumption.

Assumption 1. Fach f; in is L-geodesically smooth and Lq-geodesically Lipschitz over W.

The gradient complexity of an algorithm is measured in the number of incremental first-order oracle
(IFO) calls needed. An IFO (Agarwal & Bottou, 2015) takes an index ¢ € [n], w € W and returns
(fi(w), grad f;(w)) € R x T, M. Also, for readability we hide the log factors through notation O in the
utility bounds and gradient complexities. The exact expressions are in , for p-strongly convex func-
tions; , for non-convex functions; and , for functions with the Riemannian PL condition in
the appendix section.

Theorem 6 (Utility under geodesic strong convexity). Suppose that Assumption |I| holds and F is p-
strongly geodesic convexr over W. If we run the Algorithm with learning rate n = ( Fs), fre-
quency m = 5(%%2) for S = O(log(=+2E~=)) outer loops with output 1, then E[F(wP™) — F (w*)] =

log (1/5){L§d
5 (dgLLg log(1/8)E[dist? (w®,w*)]
12n2e?

) . Furthermore, the gradient complexity is given by 5(71 + CM—L;)

Theorem 7 (Utility under nonconvex functions). Suppose that Assumption || holds. If we run the Algo-

rithm with output 11, learning rate n = O(W), frequency m = ©(n) and for S =/ ﬁé/&)%

Lo/dLlog(1/8)E[F (w0)—F(w*)]

outer loops, then E| grad F(wP'V)||? <

L n5/36
O(\/ dlog(Cl/zS) Lo )

We now use Algorithm [12] to achieve utility guarantee under the Riemannian PL condition.

. The gradient complexity is given by

Theorem 8 (Utility under Riemannian PL condition). Suppose that Assumption I holds and F =
%Z?:l fi(w) satisfies the Riemannian PL condition with parameter T. If we run Algorithm . wzth

learning rate n = O( ), frequency m = ©(n), S = O(1), and K = log(m), then
0
privy __ * A dL*log(1/8)L3 ; ; : ; %1 1/2,,2/3
E[F(wP™) — F(w*)] < O( 32 ). Furthermore, the gradient complexity is given by O(LT¢Y?n?/3).

1
Ln2/3<1/2

5.3 Discussion: DP-RGD vs DP-RSGD vs DP-RSVRG

In this section, we compare DP-RSVRG with DP-RGD (Han et al., |2022) and DP-RSGD (Han et al., 2022).

13



Under review as submission to TMLR

1. Strongly geodesic convex: DP-RSGD and DP-RGD both assume f; in to be pu—strongly
g-convex. Whereas DP-RSVRG in Theorem |§| just assumes that F = " | f; to be p-strongly g-
convex, which is a much weaker assumption. Furthermore, DP-RSVRG assumes f; to be L-g-smooth
while DP-RGD, DP-RSGD do not make any smoothness assumption.

For p-strongly g-convex functions, DP-RGD and DP-RSGD obtain the utility bound

O (dng log (1/;2]]2‘{(3151;2(100,10*)]

) with gradient complexities n? and n?, respectively (Han et al., 2022,

Theorem 3). On the other hand, DP-RSVRG obtains a utility bound o (dCLLg log(l/é)%[dftz(wg’w*”)

u2n2e
in 5(n + CTL;) IFO calls. DP-RSVRG bounds are worse in terms of condition number L/ due to
the weaker assumption required as discussed above.

2. Riemannian PL condition: DP-RSGD and DP-RGD both assume f; in to satisfy Riemannian
PL condition with parameter 7. Whereas DP-RSVRG in Theorem [§8| assumes that F' = Z?:l fi to
satisfy the same condition, which is weaker.

DP-RGD, DP-RSGD obtains utility bound of O (T_lc“‘)g“/ 5>L§EEF(WO)’F(w*>]) in nlog (m)
- 0]

and log (%) IFO calls respectively and DP-RSVRG obtains a utility bound
5(%) in 5(LTC1/2n2/3) IFO calls. DP-RSVRG bounds are worse in terms of PL

parameter 7 because of weaker assumption as mentioned above.

3. Nonconvex: In the nonconvex setting, only a bound on the gradient norm can be obtained instead
of a bound on the excess risk. Both DP-RGD and DP-RSGD obtain bound on gradient norm

Loy/dLlog(1/8)y . VIn2e VILne . . .
as O(—Y——") in O(iLo\/m) and O(iLo\/m) iterations respectively (Han et al.

2022, Theorem 5). From Theorem DP-RSVRG obtains bound on gradient as O(Loi vdLlog(l/é)) in

O(4/ #5/5)%/:6) iterations. Hence in this case, DP-RGD, DP-RSGD, DP-RSVRG have matching
utility bounds.

6 Experiments

In this section, we illustrate the efficacy of the proposed sampling procedures and the proposed DP-RSVRG
algorithm. We also show the benefit of o optimization (Section [5.1)) in terms of the gain in privacy guarantee.

6.1 Benchmarking of different sampling procedures

We benchmark our proposed isometric transportation (Algorithm based sampling, denoted as ‘Trans-
portation’, with the following three baselines.

1. Sampling using Gram-Schmidt. We perform Gram-Schmidt orthogonalization on the basis %
that is orthonormal wrt the Euclidean metric. This is a baseline for the SPD and Lorentz hyperboloid
manifolds because for other manifolds, the orthonormal basis with respect to the underlying metric
(., )w can be simply obtained by scaling 2. This is denoted as ‘Gram-Schmidt’.

2. Sampling using explicit basis. We take the implicit bases generated by the isometric trans-
portation strategy (Algorithm and generate them explicitly, i.e., construct the full basis and then
perform linear combinations. This is denoted as ‘Explicit’.

3. Sampling using explicit basis by exploiting sparsity. As an additional baseline, we implement
sampling with explicit basis construction using sparse operations. Sparsity is present in Stiefel,
Grassmann, and Poincaré ball bases, and is therefore a baseline only for these three manifolds. This
is denoted as ‘Explicit-Sparse’.

14
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Figure 1: Benchmarking of different sampling strategies. As can bee seen, our proposed method ‘Trans-
portation’ consistently outperforms the other baselines on the manifolds.

In Figure [I, we benchmark the sampling time for generating a single sample from the tangent Gaussian
distribution on various manifolds discussed in Section |4} For SPD(m), we consider m = {5, 10, 20, 30, 50}.
For PB(m), LH(m), and SP(m), we consider m = {250, 500, 1000, 1500, 2000}. For GR(m,r) and ST (m, ),
we consider m = {100, 250, 500, 750, 1000} and r = {10, 20}.

Table 2: Overhead of privatizations for DP-RSGD (with 3 x 10° epochs) for the SPD Fréchet mean and
the principal eigenvector problems. Our proposed isometric transportation based sampling strategy lead to
orders of magnitude improvements than those of |Han et al.| (2022).

Manifold — Size

Han et al.|(2022

This work

SPD

Sphere

11 x 11
786

660 hrs
668 seconds

41 seconds (~ 10* improvement)

24 seconds (~ 10 improvement)
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Figure [1| shows the average sampling time over five different base points chosen at random. From the figure,
we see that the transportation sampling strategy is faster by two to four orders of magnitude than all the
considered baselines. It also shows the benefit of the transportation strategy as a unified sampling framework.

We study the benefits of the proposed sampling procedures in two problems: private estimation of the SPD
Fréchet mean and the principal eigenvector (discussed in Section . We use DP-RSGD algorithm for both
problems and compare our sampling strategy with that developed in (Han et all [2022)). The results are
shown in Table [2] We observe that the proposed sampling strategy offers significant improvements leading
to minimal overhead due to privatization.

6.2 Optimizing « in moments bound for better (¢, §) guarantees

06 & opt(c=0.1)

—&— half(c=0.1)

We now show better privacy guarantees can be empirically achieved by optimizing o5 opt{o =0.05)
« in moments bound (Section(5.1). We use the autodp library (Wang et al.,[2019¢)) ' o hallo=0.05)
and set 01 = \Jao,00 = /(1 — a)o instead of the standard setting o1 = 09 = W

o/vV2. We fix C; = 0.1,C = 0.01 and frequency to m = 10000 and n = 100000. 03
The results are shown in Figure [2] for epochs S = {1, 5, 10, 25, 50,100} and noise 0.2

o = {0.1,0.05}. We observe that the proposed optimization over « significantly 0.1 Ak x —2
improves the privacy guarantees than the standard setting. For noise level o = o 20 0
0.05, we obtain € = 0.47 while the standard setting achieves ¢ = 0.64, a 1.6x Epochs(s)
improvement in privacy guarantee. Figure 2: Improving pri-

vacy with a.
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(a) Private Fréchet mean on medical imaging data. (b) Private principal eigenvector on MNIST dataset.

Figure 3: Comparison between DP-RGD, DP-RSGD, and DP-RSVRG. Each row in (a), (b) corresponds to
a set consisting of images from a particular class. We see the proposed DP-SVRG achieves a comparable
excess risk compared to the baselines with lower number of IFO calls.

6.3 Benchmarking DP-RSVRG

In this section, we compare our proposed DP-SVRG with DP-RGD and DP-RSGD (Han et al., [2022)) for the
task of computing the Fréchet mean and leading eigenvector with privacy configuration ¢ = {0.1,0.3,0.5}
and § = 1076, The parameter details for all the algorithms are in Section

Private Fréchet mean on SPD manifold. We consider the problem of privately estimating the Fréchet
mean of SPD matrices under the Affine-Invariant metric. We select images from PATHMNIST medical
imaging dataset (Yang et al., 2021) and pass them through the covariance descriptor pipeline to generate
images, each represented as a SPD matrix of size 11 x 11. Please refer to Section [C.I] for more details
on the problem formulation and covariance descriptors. We consider the two sets consisting of 10704 and
10356 images from two different classes. For each set, we compute the optimal Fréchet mean by running
the (non-private) RGD for 1000 epochs with learning rate set to 0.5. For both the sets, we plot excess risk
against the IFO calls in Figure [3a] averaged over five randomized runs.
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Private principal eigenvector computation on sphere. We also consider the problem of computing the
leading eigenvector a symmetric matrix, details in Section We take images from two classes of MNIST
and generate 784 vectors to form two sets of 6903 and 7877 images. For each set, we compute the covariance
matrix and compute its leading eigenvector by using eigen-decomposition of matrix 1/n >, z;z! to find
the optimal solution. We plot the excess risk against the IFO calls in Figure[3b]averaged over five randomized
runs.

Experiment results. For both the applications, we observe that the proposed DP-RSVRG obtains better
or comparable excess risk against DP-GD and DP-SGD with generally fewer IFO calls. This is particularly
true for larger €, where the level of noise injected is small.

7 Conclusion

In this work, we have improved the framework of differentially private Riemannian optimization via efficient
sampling and variance reduction. We have proposed a linear isometry based sampling strategy to generate
tangent Gaussian samples. This largely reduces the cost of privatizing Riemannian optimization. In addition,
we have shown how variance reduction improves the gradient complexity in practice. We believe this work
allows Riemannian optimization to be privatized efficiently for large-scale applications.
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A Details about parallel transport and vector transport

A.1 Parallel transport expressions for SPD, hyperbolic, and sphere manifolds

SPD manifold. For the Affine-Invariant and the Log-Euclidean metrics, the parallel transport operation
of a tangent vector U € SYM(m) from W to W, W, W € SPD(m) is available is closed form (Bhatiay, 2009;
Pennec et al, 2006; [Thanwerdas & Pennec, [2021)).

For the Bures-Wasserstein metric, there is no closed form expression for the parallel transport operation for
general W, W. However, when W and W commute, there exists a closed-form expression (Thanwerdas &

Pennec, 2021)). We exploit this for our case as W=1 (Algorithm , i.e., any base point always commutes
with the reference point. Below, we list the parallel transport expressions for all the three metrics, i.e.,

Affine-Invariant: PTW_}W(U) = (Wwil)%U(VVﬂW)%,
Bures-Wasserstein: PTW_}W(U) =P [KBW ©] (PTUPH P,

Log-Euclidean: PTVW(U) = P [Ki5 © (PTUP)] P,

where Kpw € R™*™ such that (Kpw)rs = gfig‘?, Kig € R™ ™ such that (Kig)rs = f(Ar, As). Here,

flz,y) = ﬁ if © £y else f(z,y) = Wl(m) when z = y and (d1,...,0,) and (Aq,...,\y) € R™

T)—exp

denotes the eigenvalues of W and W, respectively.

Hyperbolic manifold. The parallel transport expressions can be found in (Lou et al., |2020)),

o~ 1—||w?2 —~ ~ o~ ~
Poincaré ball: PTV 7V (u) = 1::1)\vz§“gyr[w, —w|(u),gyr[w,w](u) = (oo (W w)) e (W (wdu)),
— Wy
—~ —~ -~ 2
[+ 25, w)o + W)W + (1= [Wp)w] o

where W § w = L WOW=WO —wW.

— 2 2
[1+2(w, w2 + [[wll; [|wl]3]
<W7 u>£

Lorentz hyperboloid: PT¥ ¥ (u) =u— —— 25
1—(w,w)¢

(W+w).

Sphere manifold. The parallel transport expression can be found in (Absil et al. 2009; Boumal, 2022),

~ vvl wv’l
PTY () = (14 (cos ], — 1) —sin vl o ) w,
= U 2o,

I-ww )(w—W)

I —ww" ) (w —w)[2

where v = Exp_'w = arccos (W, w)s

A.2 Vector transport for Stiefel and Grassmann manifolds

Efficient vector transport on the Stiefel and Grassmann manifolds are provided in (Huang et al., 2017)) which
proposes a strategy called transportation by parallelization (Huang et all 2015). For the exact algorithms,
see (Huang et al.| [2017, Algorithms 3, 4, and 5).

B Proofs

B.1 Proof of Lemmalll

Theorem 9 (Change of variable formula). Let X,Y be measurable space and ¢ : X =Y and f:Y = R is
measurable mapping and let X\ be measure on X and ¢\ denote the pushforward measure of A through ¢ on

Y then [, fd(¢.N) = [y foddA
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Proof.
1. Let ji € R? denote the coordinates of y and consider the normalizing constant
2
d d -
o T AYNE |Ees-sma], |
vo= [ ow ()o@ [ e - — (©
d d VB (s — 1) B d - \2
j— — Ci — s, G — ) *k . i — Mg
:/ exp —Zl*l 2= (e = )P (¢ = 15)55) dX(c) (:)/ exp N SIChllile dX(e)
R 202 R 202
D (2702)9/2, (4)
where we use the change of variable rule (Theorem E[) under transformation ¢ in (x), that (81,...,Bq4)
ijl(ci—ﬁi)Q

is orthonormal tangent vectors in (xx), and that [, exp(— )dA is the normalizing constant of

N (ji;,0?.I) in ().
2.
Now, let & ~ N, (i, %), we show that Ew N (ji,0%1;). Let A C R? be a measurable set, then consider

202

pige = preconi) = [ oo (<L ) a

bo(4) (2m02 202

1 (41_1 C; — _'i 2
= /A 7(27r02)d/2 exp (—ZZ_ (202 fii) )d)\(c).

The last equality is obtained similarly as in . Since the last expression is exactly probability that a random
vector distributed as N(ji,0?1;) belongs to set A, we are done. The converse is shown in a similar way.

3. This simply follows Statement 2 of Lemma [l and the variance bound from the standard Gaussian
distribution.

O

B.2 Proof of Claim

Proof. Given that LI"* "2 is a linear isometric mapping, one can show that it is invertible and its inverse is
again isometry, which we will denote by LI"27"1. If ¢, \ is Lebesuge measure on T, M then LI** 7", (4. \)
is the Lebesgue measure on Ty,, M. This can be seen by observation that, if = {f1,..., 84} is orthonormal
basis for Ty, M then {LI"*7"23;,... LI*7"23,} is orthonormal basis for Ty, M. Let & ~ Ny, (1, 0?), we
will show that LI"*7"2¢ ~ N, (LI 721, 02). consider measurable set S C T, M

2
Pr[LI"'7"2(&;) € S] = Pr[§, € LI*7"(S)] = /Llwwwl(s) (@ro?)il2 exp (W) d(\)(v)

=) L) -, B V
—/S( p( )d(LI* (6.3) ()

21o2)d/2 20?
w w 2
(%) 1 ||V — L1~ 2(:U’)Hw wy —w
2 [ e (1 40 ) )

where we used change of variables formula Theorem [J] (with X = LI"27"*(S),Y = S and ¢ = LI"*7"?)
and that LI is isometry in () . Since LI"*7"2, (¢,)) is the Lebesuge measure on Ty, M, we have that
LI 72¢ o Ny, (LT 792, 02),

O
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B.3 Proofs of Section

B.3.1 Proof of Claim 3

Proof. Let Q' denote full gradient query given by Q***(Z) = 13"  orad f(w®; z). Let Z,Z' € Z"
denote adjacent datasets, consider the sensitivity, denoted as A?,
1 . 2C

A = sup [Q(Z) — @TNZ)| < — (|| grad £(@; z)] .
AL n n

@ + || grad f(w"; )|

ae] <

()

Following (Han et al., [2022] Lemma 2), the moments bound of the full gradient mechanism R?® is given by

AA+1), L, G 2)\(/\ +1)C3
s < —F= _
IC"R (/\) = 20% (A ) ) = n2 2
it 2)

Let Qf‘H denote variance reduced stochastic gradient query given by Q:i"'(Z) = grad f(w

pT —wi” (grad f(w®;2) — g**1). Let Z,Z" € Z denote adjacent datasets, consider its sensitivity, denoted
at A7y,

At
— sup [ Q51(2) — QN2
Z~Z! t
(%) s s ~ —
< Zsu;Z)/ {ngadf wit; 2) — grad f(wit; 2 )| wi + HPT“’ —wy (grad f(w®; z) — grad f(ws;z’))‘ s+1}

W sup [ngadf with: 2) — grad f(wi T 2 )|

N

wrt + llgrad (57 2)ll g + llgrad £(@* 2|

et + lgrad £(% 2) — grad (% ')

< sup [
Z~Z!

1)
< 4Cq, (6)

|gradf( s+1’ )H +1+ngadf s+17 )’

where we used linearity of parallel transport and triangle’s inequality in (x) and that parallel transport is
isometric in (1) and triangle inequality and assumption of lipschitz in (). Now moments bound of R is
given by,

AA+1) @ sax(A+1)C?

s4+1)2
Kree1(X) < 207 (AfFh)? < — oz (7)
O
B.3.2 Proof of Claim [
Proof. By using (Wang et al.l [2019b, Lemma 3.7) and by choice of parameters 2, A we have
3.5 l 28\(A + 1)C3
ICsube+1()\) S ﬁ’CRjJrl()\) W
O

B.3.3 Proof of Claim

Proof. For R can be show (e, 0)-differentially private by solving for € and § as follows, i.e.,

2 2
N mSA(A+1)C {2 N 28 } _ mSAA+1)C {3 N 28 } < E,exp <_&) <5
a€(0,1) n2o2 a1 —a* 2 2

(8)

11—« n2o?

where a* = (1/14 — 1)/13 and there exists constant ¢; > 0 such that o2 > ¢; %61/5)2 satisfies (8). Hence,

Algorlthm n satisfies (e, d)-DP. For Algorithm E 12| using similar arguments there exists constant ¢y > 0 such

that 02 > ¢y W guarantees (e,d)-DP . O
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B.4 Proofs of Section

Lemma 10 (Trigonometric distance bound (Zhang & Sral 2016))). Let wg, w1, ws € W C M lie in totally
normal neighborhood of Riemannian manifold with curvature lower bounded by K and £y = dist(wp, wq)
and ¢ = dist(wy,ws) and ¢y = dist(wg,ws). Denote 6 as the angle on T,,M such that cos(f) =
40161 (Expy,. (w1), Expy (w2))uw,- Let Dy be the diameter of W i.e., Dyy := max,, . dist(w,w’). Define curva-

ture constant ¢ = X=72=— V}l'i}“;i if Kmin < 0 and ¢ = 1 if Kmin > 0. Then, we have that £3 < (03403 —20ol5 cos 6.

Lemma 11.

E'Lt €t ||’US+1|

cor < B llgrad f(wfz,) — PTZ 0 (grad (% 2,) — 9" )20 +do®. (9)

Proof.

Us+1|

9‘*'1 = ’Lt76t || gradf( s th) PTw —Mﬂt (gradf(w th) gs+1) + Et‘ 2

Zt75t H S‘H

- ]Elt €t || grad f( e th) PT{F—Muz (grad f(ﬁ;s; Zit) gs+1)|

- +E, [lel?, 1
+ (B, grad f(wit; z;,) —PTGS_””fH(grad F@% 21,) = 0", Ee, ) 0

< ]E’Lt H grad f( RS ZH) PTU} _m) (grad f(w th) gé+1) 1+ dU

where we used that E,[e;] = 0 and E, ||e]

fuzﬂ < do? in last inequality. O

B.4.1 Proof of Theorem

Proof. We bound first term B, || grad f(wi™h; 2;,) — PTJSwaH(grad f@%;2:,) — "2 o1 as in (Zhang
et al., 2016])

B, ||grad f(with; z;,) — PTm£_>wf+1(grad fw®;z;,) — QSH)’ : i1
Wy

< E;, ||grad f(with; 2;,) — pT@ —wi grad f(w®; z;,) + pTo —wi (grad F(@*) — PTY 7% grad F(w*)) i‘
< 2K, ||grad f(wiT; z;,) — pro o grad f(w®; z;,) ’ e

+2E,, |[PT™ %" (grad F (@) — PT” =% grad F(w H
= 2E;, ||grad f(with; 2;,) — pTo —wi grad f(w®; z;,) ‘2 o T 2E;, ||grad F(w") — PTY =% grad F(w") 1

Wy w

< 4L2||EXP;:1+1(W*)||,2U:+1 + 617 HEXP%L}UJ &
= 4L%dist? (wi T, w*) + 6 L2dist® (0, w*). (10)

*

Using the trigonometric distance bound in Lemma |10| with wg = xf“, wy = wfill, wo = w*,
dist? (wiH, w*) < Cdist®(wif, wi ™) + dist? (w1 w) — 2(Bxp b (i), Bxp L () o
— 12 * — *
= [t i) 2 B s ()

= ¢ [loi I,

s+ + dist?(wi ™, w*) + 2n(vi T Exp” ;+1(w*)>wf+l.
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Applying expectation we have
dist (w:ill, w™)
< C77 ]Elt,ﬁt HvtSJrl‘

=(n’L? [4d18t (w SH, *) + 6dist? (w®, w )] + 2n(grad F(w ST, Exp;iﬂ(w*))wtsﬂ + d¢n*o?

o+ dist? ] 07) + 2B o0} Exp s () 0

< (n?L? [4d18t (wiT w*) 4 6dist? (@°, w*)] + 2n[F(w*) — F(w; ™) — %distz(wa, w*)] + d¢n?o?

< (14 4¢n*L? — nu)dist® (wi ™, w*) + 6¢n* L2dist*(@°, w*) + d¢n’o?

Defining u; = dist (wfill, w*), ¢ = (1 +4¢(n*L? — nu), p = 6(n*L?,c = d(n?c? we have following recurrence
ugr1 — puo < q(up — pug) + ¢ from which we have that u, < (p+ ¢™(1 — ))uo + > L gic. Now choosing
n= ﬁ and m > 1052]“2. we get ¢ =1— 10<L2 and p = 1/5. Note that 0 < 10<L2 <1(L>p,¢>1)and
hence 0 < ¢ < 1 and from which we have that (p + ¢™(1 —p)) = 1/2.

Eld®(wit, w")] < E[dist*(w},, )]+d<289C2L4 Z< 10CL2>

.2 E
< E[dist*(w;,, w*)] + d<289(2L4 ( )
2 2 IOCLQ 1002
 Eldi 9 s " u-o — Eldi 2 s * -
[dist” (wy,, w")] + d<289C2 LA 2 [dist™ (wp,, w)] + de s

from which we have

= 27%E[dist? (w? , w* — 3" = <27 9E[dist?(w? , w*)] + 2dc T 0
E[dist? (w3, w*)] [dist” (w,,,, w")] +d289L2 2.5 = [dist” (wy,, w*)] + 2de 28912 n2e2
200¢ Slog(1/6)L2
s * 0
< 2” E[dISt ( m7w )} +d289u2 71262 '

—_

E[f(z*) — f(w")] < =E [Ldlst (zq,w*)] < 275 LE[dist?(w®, w*)] + Ld < M.

2 n2e

s _ log(1/8)L3 S _ 22891 E[dist? (w°,w*)] .
Now, setting 2~ = d5 % ne 2]Eo[§hst2(w° W] = 2 = d1ogg 1og(1/6)L2 e s =
O (log ("Efg[d(lf;é)zv%d )) substituting this we have that, and now for S = O (1og (neﬁg‘zf/té L2d )
d¢LL31og(1/8)E[dist?(w®, w*))] ( neuy >
E ) — N <O 1 . 11
[F) ~ f(w")] < ( s o8 (e ()
Gradient complexity: S xn plus m x 2 IFO calls = 2nS + 2m.S,
CL? ) nepE[dist? (w®, w*)]
@) ( — )1 . 12
( n ) 8 T log (1/0)CLod (12)
This completes the proof. O

B.4.2 Proof of Theorem [7]

Before proving Theorem [7] we state and prove following lemma that we will be using later.
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Lemma 12. Assume that each f; is L-g-smooth, the sectional curvature in X is lower bounded by K and we
run Algomthm. 11| with Option II. For ¢y, ciy1,,m > 0 and suppose we have ¢; = ci1 (14 Bn+2¢ L*n?)+ L3n?
and §(t) = Ct*”’ — Ln? — 2¢i11(n? > 0, then the iterate wi™" satisfies the bound

R — Rfill + (%dLUQ + Ct+1Cd7l2) o2

EH gradf( 8+1)H2 S 61» 6t ?

where Ry = E[F(w; ™) + ¢, |[Expgew T[] for 0< s < S — 1.

Proof. The proof is adapted from (Zhang et al.l 2016, Lemma 2). Denoting AS™ = grad f(w;™; z;,) —
~s s+l - ~s s+l ~
pr? e grad f(w®; z;,) it can be seen that E, ;.. wit! [AsH] = grad F(w; ') — PTY —wyt grad F'(w®)

5+1 @ Ezt

—E,, |AT — B, A7+ grad F(w |2

. 2
E;, e, ||vt+1| grad f(wi™h; z;,) — PTY _>w*+1(grad fw®; z;,) — QSH)’ o T do?

Wy

5+1 + dO'

(221&, At — “AS“H + 2 ||grad F/( S+1)|

s+1 +d0'
(<) QE“ HASJr1| s+1 + 2 ngadF S+1)‘ s+1 +d0’
T
(<) 2L ||Exp 6+1)’ +2 ||gradF S+1)| st do?,

where [la+b? < 2a|® + 2[b)® in (+) and B, [|A7T —E, A = B, (A7) - |[EASTY

E,;, ||Af+1||2 in (%) and assumption that f; is L-g-smooth in (). Taking full expectation we have

E oy 2 w1 < 2L7 [[ExpZl (w SO, + 2]Jgrad Fwi™)|2 o1+ do?. (13)
For bounding the Lyapunov function R := E [F(wfi'll) + cri1 ||Expgs (wii))]| }, we need to bound on
E[F(wii])], E[||Expgs( (wii) H First consider

E [F(wif)]

(%) s s — s L — s
B Pl ™) + (grad Flui ™), Bl (i) S+l+§HExpw;+l<wti%>\

o]

2
s+1
t

L
5+1+lHt

(*g*) E {F(wf+1 o/ ngadF SH)’

L _

2B [P - o s P 2+ E0 L2 Exp3! g )2 + 2] mad Fus ) 2 + %)

— (L )| grad F (w2 + F(wf“) L Expg (wf )2 + Lo (14)
where we used the assumption that f; is L-g-smooth implies that F' is L-g-smooth in (x) and Exp;él,+1 =itt

and E [v; '] = grad F(w;*"') in (+*). Using the trigonometric distance bound on w{ ", wi}}, @w* we have,

[ (it 5. < [Exogt i )],

oot it ., — (B ot B @)
wy

s+1
Wy

= [Espz g DI+ o [0 | + 2n(erad Fwi ™) Bxpp ()

27



Under review as submission to TMLR

Taking the expectation we have

E |[Expz w2

<E[!|Exp-1 PP+ P of I + 2nterad Fuwit), Bxp, L ()]

1]

[(1'1‘577 HEXP with) H + (P [ZLQHEXp wiTh) H +2||grad F(w; sty H +a2dH

<E{||Exp PN+ 6o ot + 20 |5 lsrad sp I + 5 [Exw (@)

—HEV ||gradf s+1 H }

= (14 2(n°L? +nB) || Expzt (wi™h)||” + (2@7 + )ngadF S|+ ¢dnPo (15)

Putting and into R;T}, we have

Rift = Elf (i) + coen [Bxpz! (wi )|
= i1 (14 2¢n°L? + nB) ||Exp! (wi™) H + Cia1 <2<n + )ngadF st H + 1 CdnPo?
+ (Ln? = ) ||lgrad Fwi || + Fwith) + Ln? |Bxps (wit)||* + dL
— F(uwg™) + (a1 (142077 L% +B) + L¥?) |[Expz! (wi ||

1
+ (Ln2 — N+ Ca1 (2072 )) lgrad F(w; ™) + <§dLn2 + Ct+1Cdn2> o’

1
=R = (o (2074 3 ) ) d P DI+ (GaLa? + i) o

Rearranging, we get

, 1
(77 —Ln? — i1 (2477 + B)) E| grad F(w;™)|1> < Rt — Ry + <§dLn2 + ct+1Cdn2) o?

from which we have

Rt - Rif) BL+ewQd?

E dF s+1y12 <
e w1 = (77 —Ln? —ciq1 (2CH2 + %)) " (LUQ —N G (2@72 * %))

We now give the proof of Theorem [7]
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Proof. Proof is adapted from (Zhang et al., 2016, Theorems 2, 6 and Corollary 6) Let d,, = min; d; and
T=mS

m—1

Z E ngad f(wf"’l)H2

t=0
Rt - Ry (5L + c41€) d77202

<Z 5 T,

<§> Rg+1 — RsH! N (3L + ci41€) mdn? 2

On On
E [F(w8+1) ~ Fws) + e HEXpr s+1)” — Cm HExpwg (w;fn+1)H2] . (AL + coC) mdi?
= g
On On
<*§*> E [F(w*) 5_ F(wsth)] N (5L + c;() mdn? -

where §; > 0p,, ¢t < ¢g is used in (*) and that wS‘H = w*,wi = w1 and that ¢, = 0,co > 0 in ().

Now, summing the gradient norm square over all the epochs and using F(w*) < F(w™), we get

S—1m—1 0y . 1 )
73 3 B s | < EER0) | GIra0ar
s=0 t=0 n n

Choosing 3 = L(1—%2/ n®/? and solving recurrence relation ¢, using 1, m given by theorem as (Zhang et al.,
2016, Theorem 2) one can get ¢y = nfx‘féc(e — 1) . Substituting that in 6,, > W and finally using this
we have

1 S—1m-—1
- E d S+1
T2 2 lsrad £t
2
Ln®1oe L’I’LO”CO‘2 lL_A'_ foLf (6_1)C %
< Mt = VT;SC E [F(@°) — F(w")] + (i+5 = ) i do®.
Finally, putting the values of a; = 2/3, a0 = 1/2p9 = 1/10,v = 1/2, and 0% = ¢, mSth(elQ/&)Lz = 03Slog£¥6)Lg
one can get that
w2 L¢M? 0 . { 1 1 } dSlog(1/8)L3
E|/grad f(w®)||" < c4 <n1/3SE [F(@°) - F(w")] + 230172 + nC1/? ne2
L¢Y? 0 . dSlog(1/5)L32
§C4 <n1/35E[F(w )—F(’LU )] +W .
wO) w*
Setting S = \/LCE Z(log 1/5)( ] n , we have
Lo+/dL1og(1/0)E [F(w?) — F(w*
E||gradf(wa)H2 < cy O\/ g( / )ne[ ( ) ( )] (16)
The gradient complexity is given by
LCEF(2°) — F(w* 2/3 LCE[F(@°) — F(w* 5/3
S+ 2m) = [ FEE @) —FGr] e (| ny _ [EEFG —Falwe
dlog(1/9) Lo 30 dlog(1/6) Lo
This completes the proof.
O
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B.4.3 Proof of Theorem [§

2
Proof. With  the values given in the theorem statement, o2 = mSK log(1/9) Lo

n2e?
Knf6+218 1 Lr¢l/2 —E0 1og(1/6)L3 K [6+ 851 Lr¢l/2 25000
sl i ek B a1 —5 | This implies that
18 1/21og(1/8)L§
k+1y(|2 1 ~0 * 1 1 1dK[6+ ;55]L7¢ onI/S
E([|grad f (w7 < EE [F(@°) = F(w)] + n2/3(1/2 + nci/? 3ne2
1 > . 24dKLrlog(1/8)L2
SEE[F(’U) ) — F(w*)] + 32c2 :
Using the Riemannian PL condition we have
1 24dK L72log(1/6 L2
B [£(u*) - )] < 7B{Jrad f(wb)) < LB [Pk) - pruy] + 24KET 08(1/9)
Recursively applying the above for k =0 to K — 1, we have
. 1 .o 8dKLr%log(1/6)L2 "= 1
E [f() = f(w")] < SpE[F(u®) = Fw")] + 3 > 5
i=0
1 0 . 8dK L1%log(1/8) L3
< ok [F) - F")] + =22 5
=0
1 o . 16dK L2 1og(1/6)L2
= Z—KE [F(w’) — F(w*)] + 32
n2e2 W) — F(w*
Putting K = log < di[fl(og()l/;;ig )]) there is a constant ¢ such that
dL7?log(1/6) L3 n?e?E [F(w®) — F(w")]
E By~ f(w*)] <c 1 :
[£(w™) = fw)] < n2e2 e\ T dLrl0g(1/6)L2
Ignoring the log factors,
. dLr%log(1/8) L2
B () — ()] = 0 (TR0 ), (19)
Finally, the gradient complexity is given by,
n?e®E [F(w®) — F(w*)] ( n
K 2m) =1 1/2 ) ( — )
S(n+2m) Og( dL72log(1/8)L2 [6+ M ¢ 1/3 ne L3MJ
2% [F(w®) — F(w*)}
< Lrcl/2p2/3] n-e '
< Lr¢ 7 n™ log dL72log(1/6)L2 (19)
O

C More experimental details for Section [0]

Details on the parameter configurations of DP-RSVRG, DP-RSGD, and DP-RGD. For DP-
RGD, we tune the clipping parameters from the set C = {1,0.1,0.01} and the number of epochs from
{10,20,30}. For DP-RSGD, clipping parameter is chosen from C = {1,0.1,0.01} and number of epochs from
{100000, 200000, 300000}. For DP-RSVRG number of epochs is chosen from {5,10} and set the frequency
as m = 1000 and full gradient clipping parameter C is tuned from {1,0.1} and variance reduced gradient
clipping parameter Co from {1,0.1,0.01}. For all three algorithms we tune the learning rate from n =
{e75,1le7%be 4 le™4, ... e 1e71,1,2,...,5}.
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C.1 Details on the the Fréchet mean of SPD matrices computation and the covariance descriptors

The Riemannian distance induced by the metric is given by dist(Zq,Zs) = ||Logm(Z271/2Z1Z271/2)Hp7
where Logm denotes matrix logarithm. Given points {Z1,...,Z,} € SPD(m),
the Fréchet mean is defined as the solution to following optimization problem:
minwespp(m) {F(W) =150 F(W3Z) =230 ||logm(W71/2ZiW71/2)H%} . Riemannian gra-
dient of f is given in terms inverse Exponential map grad f(W,X;) = 72Exp§\}(X,;) =
—2W2Logm(W™2X, W/ )W1/2 We take first two classes from PATHMNIST (Kather et al.,
2019) (ADI, adipose tissue; BACK, background).

Covariance descriptors. Let Z € R"***3 denote a RGB image with height h and width w. Let ¢ :
Rhxwx3 _y Rhwxk he a feature extractor of dimension k, i.e. ¢(Z)(x) is a k-dimensional vector at each spatial
coordinate x in the image’s domain S. Given a small 7 > 0, the covariance descriptor R, : Rhxwx3 5 SPD(k)
associated with ¢ is defined as

Ry(T) = l|§| D (BD)(x) = w)(ST)(x) = )" | + .1,

where = |S|71 Y .5 #(Z)(x), and 7.1 ensures R, (Z) € SPD(k). Our experiments on the private Fréchet
mean computation problem (Section use the covariance descriptors with following feature vector:

7L
D) = [0, T L B o [ TP+ 1 Parctan (7 )|
Yy

where x = (,y), intensities derivatives are denoted by Z,, Z,, Z5, Z,, and n = 1076, Let + denote convolution
operation, then first and second order intensity derivatives are computed as below,

Lo +10 —1
T,=Tx-|420 —2| .7, =T+~ |+2 0 -2,
4146 0 —12 4146 0 —12

410 -2 01 1 44 46 +4 +1

L0 s 04 Lo 0 0 0 o0

Too =T g5 |46 0 12 0 6| T, =Tw o5 |2 —8 —12 —8 —2

440 -8 04 00 0 0 0

410 -2 01 1 44 46 +4 +1

For RGB images, ¢(Z)(x) is a 11-dimensional vector that makes R, (Z) a 11 x 11 SPD matrix.

C.2 Details on the private leading eigenvector computation problem

The problem of computing the leading eigenvector of sample covariance matrix is

minwegm {F(w) = 230 | f(wyz;) = -2 5", wl(z;z )w}. It has been shown that above problem
satisfies Riemannian PL condition (Zhang et al., |2016) while the problem is nonconvex in the Euclidean
setting. Riemannian gradient of f is given by grad f(w;z;) = —2(I411 — ww’)z;z7 w.
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