
An Empirical Study on Clustering Pretrained
Embeddings: Is Deep Strictly Better?

Tyler R. Scott
Google Research

University of Colorado, Boulder
tylersco@google.com

Ting Liu
Google Research

liuti@google.com

Michael C. Mozer
Google Research

mcmozer@google.com

Andrew C. Gallagher
Google Research

agallagher@google.com

Abstract

Recent research in clustering face embeddings has found that unsupervised, shal-
low, heuristic-based methods—including k-means and hierarchical agglomerative
clustering—underperform supervised, deep, inductive methods. While the re-
ported improvements are indeed impressive, experiments are mostly limited to
face datasets, where the clustered embeddings are highly discriminative or well-
separated by class (Recall@1 above 90% and often near ceiling), and the experi-
mental methodology seemingly favors the deep methods. We conduct an empirical
study of 14 clustering methods on two popular non-face datasets—Cars196 and
Stanford Online Products—and obtain robust, but contentious findings. Notably,
deep methods are surprisingly fragile for embeddings with more uncertainty, where
they underperform the shallow, heuristic-based methods. We believe our bench-
marks broaden the scope of supervised clustering methods beyond the face domain
and can serve as a foundation on which these methods could be improved.

Clustering—the process by which a set of items are semantically-partitioned into finite groups— has
been employed in many domains of computing including machine learning, graphics, information
retrieval, and bioinformatics. It has numerous applications including interpretability, compression, vi-
sualization, outlier detector, and zero-shot classification. While clustering methods have traditionally
ingested raw features (e.g., pixels) as input, an alternative explored particularly in the face-verification
literature is to use deep embeddings. Deep embeddings are latent-feature vectors discovered by
neural networks [11, 22, 28, 29, 34, 35, 41, 44, 43, 45, 46]. They form a natural space for clustering
because they are learned with loss functions that encourage grouping of semantically-similar inputs
[4, 6, 7, 13, 37, 42, 38] and explicit representation of task-relevant features [30, 31].

Face verification systems rely on large backbone networks that produce highly-discriminative embed-
dings of face images. The term discriminative refers to the network’s ability to separate embeddings
that belong to the same identity or class from those that do not, as measured by a distance func-
tion. Improvements to these systems come largely through increasing the available labeled data,
but with an expensive annotation cost. To overcome the annotation challenge, recent work has
successfully used clustering to pseudo-label [15, 41, 44, 43, 46, 34, 28]. Since the crux of the
approach is the clustering step, as improved clustering leads to better pseudo-labels and thus im-
proved embedding quality, research has shifted from unsupervised, shallow, heuristic-based clustering
methods [3, 5, 8–10, 16, 17, 21–23, 25, 27, 29, 33, 35, 36, 40] to supervised, deep, inductive methods
[11, 15, 28, 34, 41, 44, 43, 45, 46], with claimed improvements upward of 20% over k-means [25]
and hierarchical agglomerative clustering (HAC) [36], for example.
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Cars196 SOP

m n m
n

m n m
n

Backbone Train 3, 963 49 81 32, 277 5, 658 6
Clustering Train 4, 091 49 83 27, 265 5, 658 5

Validation 4, 058 49 83 32, 734 5, 658 6
Test 4, 073 49 83 27, 777 5, 660 5

Table 1: The dataset splits with number
of instances, m, number of classes, n,
and approximate number of instances
per class, m

n , for Cars196 and SOP.

One might, and arguably should, expect the deep methods to generalize beyond the face domain to
other visual domains, as an innumerable number of research articles attest to inter-domain gener-
alization. Additionally, the prior work on clustering pretrained embeddings has begun to expand
beyond the face domain to other datasets (e.g., DeepFashion [24]) showing similar, impressive results.
However, the prior work has limitations. First, by focusing primarily on face datasets, the clustering
methods operate on embeddings that are highly discriminative and not representative of the many
embedding spaces that could benefit from clustering. Deng et al. [7] show that both verification and
Recall@1 [26] performance of the embeddings are well-above 90% and can even approach ceiling
performance across a range of face datasets, including MegaFace [18]. We also confirm that the
embeddings for DeepFashion [24]—one of the only non-face datasets explored—exhibit Recall@1
performance above 90%. Second, common face datasets (e.g., MS-Celeb1M [12] and MegaFace
[18]) are no longer publicly available, with progress reliant on using shared embeddings extracted
from pretrained backbones. Third, similar to Musgrave et al. [26], we find methodological choices
that may implicitly favor the recent, deep methods; these choices include the lack of a validation split
and monitoring test performance for hyperparameter tuning and early stopping.

For the reasons above, we empirically studied methods for clustering pretrained embeddings. We
focused on outlining an end-to-end, reproducible pipeline, including dataset curation, backbone
training, and clustering. We then benchmarked 14 clustering methods—including two state-of-the-art,
supervised, deep methods, GCN-VE [43] and STAR-FC [34]—on two popular, non-face datasets:
Cars196 [20] and Stanford Online Products (SOP) [39]. We specifically chose to benchmark against
Cars196 and SOP because they are: (1) popular in the embedding-learning literature [26, 32, 4], (2)
extend beyond the face domain, and (3) produce embeddings that are significantly less discriminative.

Our results falsify conclusions that deep clustering methods strictly outperform shallow methods.
On Cars196 and SOP, we show that the state-of-the-art, deep methods underperform methods such
as k-means and HAC. We posit a relationship between Recall@1 performance of the embeddings
and the benefits provided by deep clustering methods, where the improvements shown with deep
methods only manifest for embedding spaces exhibiting strong retrieval performance. We affirm an
additional, but unrelated conclusion that `2-normalization of embeddings prior to clustering leads
to a stark improvement across all heuristic-based methods, exploiting the geometrical properties of
embeddings learned with softmax cross-entropy [32].

1 Methodology

We consider two datasets for our experiments: Cars196 [20] and Stanford Online Products (SOP)
[39]. Both datasets are partitioned into a backbone train split, used to train the backbone, a clustering
train split, used only to train the deep clustering methods, a validation split, used for hyperparameter
tuning and early stopping for the backbone and deep clustering methods, and a test split, used to
fit the unsupervised clustering methods and evaluate all clustering methods. All splits have disjoint
sets of classes. Table 1 has per-split statistics on the number of instances, number of classes, and
approximate number of instances per class for both datasets.

We use a ResNet50 [14] for the backbone with an additional fully-connected layer added after
global average pooling and prior to the classification head, which produces a 256D embedding. The
model is trained with cosine softmax cross-entropy—based on findings from Scott et al. [32]—using
the backbone-train split of each dataset, with Recall@1 monitored on the validation split for early
stopping and hyperparameter tuning. A hyperparameter search was performed for each of the datasets.
Additional details on training the backbone, including specifics on the architecture, data augmentation,
and hyperparameters are included in Appendix E.1.

The clustering methodology varies between the supervised, deep methods (e.g., GCN-VE and
STAR-FC) and the unsupervised, shallow methods (e.g., k-means), discussed below. Appendix C
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Figure 1: Harmonic mean of Pairwise (FP ) and BCubed (FB) F-scores across clustering methods
for Cars196 (top) and SOP (bottom). The left and right pane contain results for unsupervised
and supervised clustering methods, respectively, and the red and blue bars indicate clustering of
unnormalized and `2-normalized embeddings, respectively. GMM, vMF-MM, and Spectral could not
be run on SOP due to runtime inefficiencies, indicated by the gray, hatched bars. The methods that
omit a result for unnormalized embeddings assume `2-normalized embeddings, by default.

Unnormalized Embeddings `2-Normalized Embeddings

Clustering Train Validation Test Clustering Train Validation Test

Cars196 0.67 0.76 0.76 0.69 0.80 0.79
SOP 0.72 0.70 0.73 0.75 0.74 0.77

Table 2: Recall@1 on Cars196 and SOP for both unnormalized and `2-normalized embeddings.

enumerates and details both classes of methods. Appendix E.2 contains additional methodological
details, architecture details for GCN-VE and STAR-FC, and an enumeration of all hyperparameters
and their tuned values across all clustering methods.

For supervised clustering, we compute the 256D embeddings for the clustering-train, validation, and
test splits. Methods are trained using the clustering-train embeddings from each dataset with the loss
monitored on the validation split for early stopping and hyperparameter tuning. A hyperparameter
search was performed for each of the datasets and we report results using the set of hyperparameter
values associated with maximal clustering performance on the validation split. The model is then
applied, inductively, on the test embeddings and final performance is reported.

In contrast, the unsupervised methods operate directly on the test embeddings. A hyperparameter
search was also conducted for the unsupervised methods, however, we report results using the set of
values associated with maximal clustering performance on the test split. We admit that optimizing for
test performance appears to provide an unfair advantage to the unsupervised methods, however, the
supervised methods: (1) have access to a split of data unavailable to the unsupervised methods, (2)
have thousands of learnable parameters, and (3) have 12 and 16 hyperparameters for STAR-FC and
GCN-VE, respectively, compared to at-most 4 hyperparameters for the unsupervised methods.

2 Experimental Results

Using the methodology outlined in Section 1, we conduct extensive experiments on Cars196 and
Stanford Online Products (SOP) across 14 clustering methods. We measure clustering performance
on the test split of both datasets. The clustering results focus on two metrics: Pairwise (FP )
[35] and BCubed (FB) [1] F-scores. Because the metrics have different emphases—specifically,
FP emphasizes fidelity of larger clusters and FB emphasizes fidelity of clusters proportional to
their size—we report their harmonic mean when not reporting both, individually. Figure 1 shows
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Cars196 SOP

FP FB FP FB

GCN-VE [43] 0.26 0.37 0.44 0.63
GCN-VE (ours) 0.22 0.37 0.47 0.65

Table 3: Comparison of Pairwise (FP ) and
BCubed (FB) F-scores for the open-source
GCN-VE code and our reimplementation on
Cars196 and SOP.

clustering performance for Cars196 (top) and SOP (bottom) across 12 unsupervised methods and the
2 supervised methods. Appendix B contains tabulated results used to construct the figure, as well as
additional metrics such as normalized mutual information. There are two key takeaways: (1) using `2-
normalized embeddings (blue bars) consistently improves clustering performance, sometimes upward
of 30%, and (2) the supervised, deep methods are outperformed by unsupervised, shallow methods and
are not even among the top-3 performers, contrary to past work reporting consistent state-of-the-art
performance. Among the unsupervised methods, there is no clear best-performing method, however,
HAC performs strongly on both datasets. As a point of comparison, HAC outperforms GCN-VE and
STAR-FC by 16% and 6% for Cars196, respectively, and 3% and 1% for SOP, respectively.

We posit a relationship between the embedding’s discriminability, measured by Recall@1, and the
likelihood of deep clustering methods outperforming baselines. Table 2 contains Recall@1 for
the clustering-train, validation, and test splits of both datasets for unnormalized and `2-normalized
embeddings. Consistent with Scott et al. [32], we find that `2-normalization strictly improves
discrimination, as it removes intra-class variance. We emphasize that past conclusions on the deep
methods are based on results from embeddings with Recall@1 greater than 0.9. Cars196 and SOP
are more challenging benchmarks due to data limitations and thus exhibit Recall@1 less than 0.8.
The clustering results on Cars196 and SOP highlight a downside of the deep methods, particularly
that they become fragile in the presence of uncertainty (i.e., less discriminability) in the embedding
space. Due to the unexpected results for GCN-VE, we further investigated the method to verify our
findings. We compared our reimplementation of GCN-VE to the open-source version in Table 3. We
confirm that our reimplementation, within reasonable variance, matches the implementation from
Yang et al. [43]. Additionally, Appendix D contains an ablation study of GCN-VE, where we find
that one can recover the majority of GCN-VE’s perform without any deep components.

3 Conclusions

Many of the innovations in supervised methods for clustering pretrained embeddings are tied to
face verification. The methods were benchmarked primarily on face datasets and motivated by
enlarging them via pseudo-labeling the vast amounts of unlabeled face data. Common face datasets
(e.g., MS-Celeb1M [12] and MegaFace [18]) are no longer publicly available, with progress reliant
on using shared embeddings extracted from pretrained backbones. Additionally, the impressive
improvements of supervised methods are bound to face embeddings, shown to have verification and
Recall@1 performance well above 90% and in some cases near ceiling [7]. Finally, results of recent
work may implicitly favor the novel, supervised methods based on methodological choices such as
the lack of a validation split and hyperparameter tuning based on test performance.

Our goals in conducting an empirical study on clustering pretrained embeddings are to: (1) broaden
the scope of supervised methods beyond faces, (2) present an end-to-end pipeline including backbone
training along with results for benchmarking future methods, and (3) benchmark the robustness
of supervised, deep methods on embeddings with less discriminability. We do so by presenting
benchmarks on 14 clustering methods using two common embedding-learning datasets: Cars196 and
SOP. Cars196 and SOP are not only from diverse visual domains, but have very different dataset
statistics (Table 1) and embedding discriminability (Table 2) compared to common face datasets.

Our clustering results on Cars196 and SOP exemplify the fragility of deep clustering methods, where
they underperform unsupervised, shallow methods such as HAC despite having thousands of learnable
parameters and three times more hyperparameters. We attribute the surprising results to (1) our
careful, systematic methodology, which corrects for past methodological choices such as not using a
validation split and using the test split for hyperparameter tuning and early stopping, and (2) exploring
datasets from diverse visual domains with both dataset statistics and embedding discriminability that
differs significantly from the common face verification benchmarks. Additionally, we encourage
practitioners working on embedding clustering to consider `2-normalization, as we find robust
improvements to clustering, corroborating results from Scott et al. [32].
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A Compute Resources

Each backbone was trained using a single NVIDIA Tesla T4, 16 CPUs, and 64 GB of RAM on
Google Cloud Platform. Code was implemented using PyTorch v1.6.0 and Python 3.8.2 on Ubuntu
18.04.

For clustering, all methods had access to 16 CPUs, 96 GB of RAM, and a single NVIDIA Tesla T4,
when appropriate. Code was implemented with PyTorch v1.6.0, scikit-learn v0.24.2, FAISS v1.7.1,
and Python 3.8.2 on Ubuntu 18.04. Additionally, we note that both HAC and spectral clustering could
be made faster by computing the nearest-neighbor subgraph on GPU instead of CPU.

B Cars196 and SOP Tabulated Results

The tables below contains tabulated clustering results for Cars196 and SOP. The FP and FB values
are used to compute the harmonic means for `2-normalized embeddings presented in Figure 1.

Cars196

Adj. Rand NMI AMI FP FB
Time to Number of

Index Cluster (s) Clusters

DBSCAN 0.10 0.63 0.28 0.12 0.35 3 2, 425
MeanShift 0.18 0.65 0.42 0.20 0.38 177 1, 407

ARO 0.28 0.69 0.49 0.29 0.36 3 1, 415
DP k-Means 0.37 0.69 0.61 0.38 0.41 10 403

DP vMF k-Means 0.36 0.67 0.61 0.38 0.40 12 155
k-Means 0.40 0.65 0.62 0.41 0.42 12 50

Spherical k-Means 0.40 0.65 0.62 0.41 0.42 12 50
GMM 0.40 0.66 0.62 0.41 0.43 62 50

vMF-MM 0.37 0.65 0.61 0.38 0.40 267 60
HAC 0.42 0.68 0.65 0.44 0.45 4 55
CDP 0.24 0.68 0.46 0.26 0.36 2 1, 686

Spectral 0.47 0.70 0.68 0.48 0.50 99 50
GCN-VE 0.20 0.65 0.49 0.22 0.37 1140, 16 905
STAR-FC 0.36 0.71 0.53 0.37 0.40 341, 1 1, 624

SOP

Adj. Rand NMI AMI FP FB
Time to Number of

Index Cluster (s) Clusters

DBSCAN 0.29 0.93 0.49 0.29 0.58 0.8 17, 801
MeanShift 0.35 0.93 0.48 0.35 0.57 54 18, 096

ARO 0.52 0.94 0.64 0.52 0.66 0.2 9, 915
DP k-Means 0.45 0.93 0.59 0.45 0.63 13 12, 261

DP vMF k-Means 0.45 0.93 0.59 0.45 0.63 3 11, 282
k-Means 0.46 0.92 0.58 0.46 0.61 210 7, 750

Spherical k-Means 0.45 0.93 0.59 0.45 0.62 242 8, 250
HAC 0.52 0.93 0.64 0.52 0.65 4 7, 250
CDP 0.56 0.94 0.67 0.56 0.69 0.1 11, 480

GCN-VE 0.47 0.93 0.62 0.47 0.65 20, 13s 8, 808
STAR-FC 0.50 0.93 0.61 0.50 0.65 8, 2s 10, 393

Table 4: Clustering results for Cars196 and SOP. NMI, AMI, FP , and FB represent normalized
mutual information, adjusted mutual information, Pairwise F-score, and BCubed F-score, respectively.
The time to cluster for Cars196 and SOP are measured in seconds and minutes, respectively. The time
to cluster for GCN-VE and STAR-FC contains the train time and test time separated by a comma.
Boldface indicates the highest value for a metric.
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C Related Work

C.1 Unsupervised Clustering

Clustering is normally characterized as an unsupervised learning task where methods leverage
heuristics based on assumptions about the data-generation process or the structure of the data.
Adopting the terminology of Jain [17], we discuss four common classes of heuristics: partition-based,
density-based, hierarchical, and graph-theoretic.

Methods using partition-based heuristics [9, 16, 21, 25, 33, 40] have a representation of clusters and
decide which data points belong to each cluster, in many cases, using a similarity or distance function.
The most popular of these methods is k-means clustering [25] which estimates empirical cluster
centers minimizing within-cluster variance. Other variants of k-means make assumptions about the
geometry of the data, e.g., spherical k-means [16], make assumptions about the scale of the data, e.g.,
mini-batch k-means [33], or explore alternative formulations that remove the need for a predefined
number of clusters, e.g., Dirichlet-process (DP) k-means [21, 40].

Density-based methods assume that clusters represent high-density regions in the feature space and
are separated from other clusters by low-density regions. Popular density-based methods attempt to
estimate cluster densities via expectation-maximization, e.g., the Gaussian mixture model (GMM) &
the von Mises–Fisher mixture model (vMF-MM) [3], variational inference [10], Parzen windows,
e.g., DBSCAN [8] & deep density clustering [22], and kernel density estimation, e.g., MeanShift [5].

Hierarchical methods form clusters by starting either with a singleton cluster containing all data
points and iteratively splitting it (i.e., top-down or divisive) or with a cluster for each data point and
iteratively merging them (i.e., bottom-up or agglomerative). The split or merge is decided greedily
using a linkage rule until a criteria is satisfied such as the total number of clusters. We experiment
with hierarchical agglomerative clustering (HAC) [36] and several popular linkage rules (single,
complete, average, and Ward linkage), as well as approximate rank-order (ARO) [29] based on the
rank-order linkage metric [47].

The final common class of heuristics use graph theoretics. These methods represent data points as
a graph with edges weighted by pairwise similarities. One of the most popular methods, and the
one we employ in our experiments, is spectral clustering [27]. Spectral clustering performs k-means
clustering on the eigenvectors of the normalized Laplacian matrix constructed from the graph’s
affinity matrix.

C.2 Supervised Clustering

Recent research, instead of relying on heuristics, has proposed deep, supervised methods that
inductively cluster. These methods rely on supervision that indicates which data points belong to
the same cluster. By inductive, we refer to methods that learn a function, for example a function
that predicts if two data points should be clustered together, which can then be applied to unseen
data. This is in contrast to the unsupervised clustering methods which lack generalizability from one
dataset to another. Generally, the idea is to leverage local and/or global structure in the feature space
to learn what points belong to the same cluster or what pairs of points should be linked. Clusters can
then be formed using simple algorithms such as connected-component labeling.

Consensus-driven propagation (CDP) [46] uses an ensemble of backbone networks to produce
statistics across many k-nearest-neighbor affinity graphs and then trains a mediator network to
predict links between data points from which clusters are formed. Wang et al. [41] improves link
prediction by capturing structure in local affinity graphs directly with graph convolutional networks
(GCNs) [19]. A series of GCN-methods followed that incorporate both local and global structure via
density information [11] and multi-scale views [44], for example. Alternatives beyond GCNs have
been proposed such as using self-attention via transformers [28, 45] and learning an agglomerative
clustering policy with inverse reinforcement learning [15].

Our experiments include results from CDP, as well as two state-of-the-art GCN approaches: GCN-VE
[43] and STAR-FC [34]. GCN-VE is a supervised approach that trains two GCNs. The first, GCN-V,
estimates a confidence for each data point based on a supervised density measure. The second,
GCN-E, constructs subgraphs based on the estimated confidences and predicts pairwise links. The
links are used in a tree-deduction algorithm to construct final clusters. STAR-FC trains a single GCN
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to predict pairwise links, but uses a structure-preserving sampling strategy to train the GCN with both
local and global graph structure. During inference, links are predicted followed by graph parsing and
refinement steps to construct clusters.

Consistent with past work, we do not train an ensemble and mediator for CDP, but rather use just
the unsupervised label-propagation step to form clusters. Note that this removes all supervised
components of CDP, which is why we classify it as an unsupervised method in Section 2.

D GCN-VE Ablation Study

Cars196 SOP

FP FB FP FB

Tree Deduction 0.13 0.36 0.44 0.63
+ `2-Norm 0.25 0.37 0.44 0.63
+ GCN-E 0.19 0.37 0.44 0.62

GCN-VE 0.22 0.37 0.47 0.65

Table 5: Ablation study comparing GCN-VE to simpler variants. The reported results are Pairwise
(FP ) and BCubed (FB) F-scores on Cars196 and SOP. Boldface indicates the highest value for a
metric.

Due to the unexpected results of GCN-VE on Cars196 and SOP, we conducted an ablation study of
the method to better understand which components contributed most to the final performance. In
general, GCN-VE works by: (1) estimating a confidence for each embedding via the GCN-V graph
convolutional network, (2) constructing subgraphs based on the estimated confidences, (3) estimating
which edges in the subgraphs are valid connections via the GCN-E graph convolutional network, and
(4) running a tree-deduction algorithm to form the final clusters.

We consider three ablated variants of GCN-VE, described below. All that is needed to form clusters
is to run tree deduction on a k-nearest-neighbors subgraph with edges pruned by a distance threshold.
We refer to this first ablation as Tree Deduction. Based on empirical analysis from Scott et al. [32],
the embedding `2-norm is a measure of confidence, thus, we can replace the GCN-V network with the
`2-norm of each embedding. Additionally, we can replace the GCN-E network simply by considering
edges valid if they are connected to higher-confidence embeddings within a distance threshold, and
run tree deduction as is. We refer to this second ablation as Tree Deduction + `2-norm. The third
ablation, Tree Deduction + `2-norm + GCN-E, reintroduces GCN-E, but still uses `2-norm instead of
the GCN-V network.

Table 5 measures the clustering performance of the three ablations against GCN-VE for Cars196
and SOP. Interestingly, one can recover the majority, if not all, of GCN-VE performance with the
Tree Deduction + `2-norm variant, corroborating results from Scott et al. [32] on `2-norm conveying
embedding confidence. Note that the Tree Deduction + `2-norm variant has no deep components.
Additionally, the critical component of GCN-VE is not the GCN-E network, but GCN-V, as GCN-E
adds no performance gain on top of Tree Deduction + `2-norm.

E Experimental Details

E.1 Backbone

The experimental details mimic Scott et al. [32] unless explicitly noted. For completeness, we recount
the details below.

E.1.1 Architecture

The backbone network architecture is a ResNet50 [14]. The network is initialized using weights
pretrained on ImageNet and all batch-normalization parameters are frozen. We remove the head
of the architecture and add two fully-connected layers, with no activations, directly following the
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global-average-pooling layer. The first fully-connected layer maps from 2048 units to 256 units, and
the second fully-connected layer maps from 256 units to Y units, where Y is the number of classes in
the backbone-training split of the dataset. The embedding dimensionality is thus 256 for all datasets.
For Cars196 and SOP, Y = 49 and Y = 5658, respectively.

E.1.2 Dataset Augmentation

Cars196. Data augmentation during training includes: (1) resizing images to 256×256, (2) random
jittering of brightness, contrast, saturation, and hue with factors in [0.7, 1.3], [0.7, 1.3], [0.7, 1.3],
and [-0.1, 0.1], respectively, (3) cropping at a random location with random size between 16% and
100% of the input size, (4) resizing the final cropped images to 224×224, and (5) random horizontal
flipping and z-score normalization. Data augmentation during validation and testing includes: (1)
resizing images to 256×256, (2) center cropping to 224×224, and (3) z-score normalization. The
mean and standard deviation for z-score normalization are the same values used for ImageNet. We
match Boudiaf et al. [4] and sample batches randomly.

SOP. Data augmentation during training includes: (1) resizing images to 256×256, (2) cropping
at a random location with random size between 16% and 100% of the input size with the aspect
ratio randomly selected in [0.75, 1.33], (3) resizing the final cropped images to 224×224, and (4)
random horizontal flipping and z-score normalization. Data augmentation during validation and
testing includes: (1) resizing images to 256×256, (2) center cropping to 224×224, and (3) z-score
normalization. The mean and standard deviation for z-score normalization are the same values used
for ImageNet. We match Boudiaf et al. [4] and sample batches randomly.

E.1.3 Backbone Network Hyperparameters

Models are trained with SGD and either standard or Nesterov momentum. Based on results from
Scott et al. [32], we use cosine softmax cross-entropy as the loss. The validation split’s Recall@1 is
monitored throughout training and if it does not improve for 15 epochs, the learning rate is cut in half.
If the validation split’s Recall@1 does not improve for 35 epochs, model training terminates early.
The model parameters are saved for the epoch resulting in the highest validation Recall@1.

The inverse-temperature, β, is parameterized as β = exp(τ) where τ ∈ R is an unconstrained
network parameter learned automatically via gradient descent. Unlike Scott et al. [32], τ is optimized
using the same learning rate as all other network parameters.

The remaining hyperparameters for training the backbone network are:

• Learning rate
• `2 weight decay
• Momentum
• Nesterov momentum
• Initial value of τ

Hyperparameters were optimized with a grid search. The table below contains the hyperparameter
values used for the model achieving the best validation Recall@1 for each dataset.

Learning rate `2 weight decay Momentum Nesterov momentum Initial value of τ

Cars196 0.005 5× 10−5 0.0 False 0.0
SOP 0.005 5× 10−5 0.9 True −2.773

Table 6: Backbone hyperparameter values for Cars196 and SOP.

E.2 Clustering

For clustering, the inputs are the 256D embeddings from the penultimate output of the trained
backbone network. The embeddings are `2-normalized unless explicitly noted otherwise. To produce
the embeddings for clustering, the images were augmented using the testing augmentation for each
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dataset, which is: (1) resizing images to 256×256, (2) center cropping to 224×224, and (3) z-score
normalization.

E.2.1 GCN-VE Details

We match Yang et al. [43] and use a one-layer graph convolutional network (GCN) [19] with mean
aggregation [44] and ReLU activation for GCN-V, and a similar four-layer graph convolutional
network for GCN-E. GCN-V maps the 512D output of the GCN through a fully-connected layer to
512 units, then through a PReLU activation, followed by a final fully-connected layer to a single output
unit. The model is trained with mean-squared-error to match an empirically-estimated confidence
based on the density of an embedding’s neighborhood. GCN-E has identical structure to GCN-V
except that it contains a four-layer GCN, the GCN output is 256D, and the first fully-connected
layer has 256 units. GCN-E is trained with softmax cross-entropy to predict the likelihood that
a pair of nearby embeddings belong to the same cluster. The GCN layers are initialized using
Xavier-uniform for the weights and zero for the biases. The fully-connected layers are initialized
using Kaiming-uniform for both weights and biases.

Both GCN-V and GCN-E are trained with SGD and standard momentum. If the validation split’s
loss does not decrease for 100 epochs, the learning rate is cut in half, and if it does not decrease for
250 epochs, model training terminates early. The model parameters are saved for the epoch resulting
in the lowest validation loss.

E.2.2 STAR-FC Details

We match Shen et al. [34] and use a one-layer graph convolutional network (GCN) [19] with mean
aggregation [44] and ReLU activation. The GCN output is 1024D which is then passed through
a fully-connected layer to 512 units, then through a PReLU activation, followed by a final fully-
connected layer to a single output unit. The model is trained with softmax cross-entropy to predict the
likelihood that a pair of embeddings belong to the same cluster. The GCN layers are initialized using
Xavier-uniform for the weights and zero for the biases. The fully-connected layers are initialized
using Kaiming-uniform for both weights and biases.

STAR-FC is trained with SGD and standard momentum. If the validation split’s loss does not decrease
for 15 epochs, the learning rate is cut in half, and if it does not decrease for 35 epochs, model training
terminates early. The model parameters are saved for the epoch resulting in the lowest validation loss.

E.2.3 Clustering Hyperparameters

For each clustering method, we list the hyperparameters and values for each dataset. All hyperparam-
eters were optimized with a grid search.

k-Means with Random Initialization [25, 33]. The only hyperparameters are k, the number of
clusters, and the minibatch size. A minibatch size of -1 indicates the batch size is equal to the full
dataset size.

k Minibatch size

Cars196 40 −1
SOP 8, 250 −1

Table 7: Hyperparameter values for k-means with random initialization.

k-Means with k-Means++ Initialization [2, 33]. The only hyperparameters are k, the number of
clusters, and the minibatch size. A minibatch size of -1 indicates the batch size is equal to the full
dataset size.

11



k Minibatch size

Cars196 50 −1
SOP 7, 750 −1

Table 8: Hyperparameter values for k-means with k-means++ initialization.

Spherical k-Means with Random Initialization [16]. The only hyperparameter is k, the number
of clusters.

k

Cars196 45
SOP 8, 000

Table 9: Hyperparameter values for spherical k-means with random initialization.

Spherical k-Means with k-Means++ Initialization [16]. The only hyperparameter is k, the num-
ber of clusters.

k

Cars196 50
SOP 8, 250

Table 10: Hyperparameter values for spherical k-means with k-means++ initialization.

Dirichlet-Process (DP) k-Means [21]. The hyperparameters are:

• λ, the cluster penalty
• Initialization strategy, either ‘Global Centroid’ or ‘Random’
• Whether to do an online EM update

λ Initialization strategy Online EM

Cars196 0.9 Global Centroid True
SOP 0.85 Random False

Table 11: Hyperparameter values for DP k-means.

Dirichlet-Process (DP) von Mises–Fisher (vMF) k-Means [40]. The hyperparameters are:

• λ, the cluster penalty
• Initialization strategy, either ‘Global Centroid’ or ‘Random’
• Whether to do an online EM update

λ Initialization strategy Online EM

Cars196 −0.55 Random True
SOP −0.38 Random False

Table 12: Hyperparameter values for DP vMF k-means.
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Gaussian Mixture Model (GMM). The hyperparameters are:

• k, the number of clusters

• Initialization strategy, either ‘k-Means’ or ‘Random’

• Type of covariance, either ‘Full’ or ‘Diagonal’

GMM was run only on Cars196 due to runtime inefficiencies.

k Initialization strategy Covariance type

Cars196 50 k-Means Diagonal

Table 13: Hyperparameter values for GMM.

von Mises–Fisher Mixture Model (vMF-MM) [10, 3]. The hyperparameters are:

• k, the number of clusters

• Initialization strategy, one of ‘k-Means++’ or ‘Random’, ‘Random-Class’, or ‘Random-
Orthonormal’

• Posterior type, either ‘Hard’ or ‘Soft’

vMF-MM was run only on Cars196 due to runtime inefficiencies.

k Initialization strategy Posterior type

Cars196 50 Random-Class Soft

Table 14: Hyperparameter values for vMF-MM.

Hierarchical Agglomerative Clustering (HAC) [36]. The hyperparameters are:

• k, the number of clusters

• Affinity metric, one of ‘Euclidean’ or ‘Cosine’

• Linkage criterion, one of ‘Ward’, ‘Complete’, ‘Average’, or ‘Single’

• Number of neighbors for computing the nearest-neighbor affinity subgraph

k Affinity metric Linkage criterion Number of neighbors

Cars196 55 Euclidean Ward 40
SOP 7, 250 Euclidean Ward 2

Table 15: Hyperparameter values for HAC.

Approximate Rank Order (ARO) [29]. The hyperparameters are:

• Number of neighbors for computing the nearest-neighbors subgraph

• Threshold on rank-order distances

• Distance metric, one of ‘Euclidean’ or ‘Cosine’

Note that for `2-normalized embeddings, both Euclidean and cosine distance metrics produce identical
results because the rank-order is unchanged.
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Number of neighbors Threshold Distance metric

Cars196 30 0.65 Euclidean
SOP 5 1.0 Euclidean

Table 16: Hyperparameter values for ARO.

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [8]. The hyperparam-
eters are:

• ε, the maximum distance between two embeddings in the same neighborhood
• Minimum number of samples in neighborhood for core point
• Distance metric, either ‘Euclidean’ or ‘Cosine’
• Whether a sparse matrix is used for nearest-neighbor subgraph

ε Minimum number of samples Distance metric Sparse matrix

Cars196 0.25 5 Cosine False
SOP 0.66 2 Euclidean False

Table 17: Hyperparameter values for DBSCAN.

MeanShift [5]. The hyperparameters are:

• Bandwidth for RBF kernel
• Minimum bin frequency
• Whether to cluster all embeddings including orphans

Bandwidth Minimum bin frequency Cluster all embeddings

Cars196 0.75 5 True
SOP 0.65 1 False

Table 18: Hyperparameter values for MeanShift.

Spectral Clustering [27]. The hyperparameters are:

• k, the number of clusters
• Method for constructing the affinity matrix
• Number of neighbors for computing the nearest-neighbor affinity subgraph
• Number of components for the spectral embedding

Spectral clustering was run only on Cars196 due to runtime inefficiencies.

k Affinity Number of neighbors Number of components

Cars196 50 Nearest neighbor subgraph 20 50

Table 19: Hyperparameter values for spectral clustering.

Consensus-Driven Propagation (CDP) [46]. The hyperparameters are:

• Number of neighbors for computing the nearest-neighbor subgraph
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• Threshold on cosine similarity in the nearest-neighbor subgraph for pruning edges

• Threshold step size

• Max cluster size

Number of neighbors Threshold Threshold step size Max cluster size

Cars196 2 0.6 0.01 320
SOP 5 −0.2 0.05 10

Table 20: Hyperparameter values for CDP.

Tree Deduction [43]. The hyperparameters are the number of neighbors for computing the nearest-
neighbor subgraph and a threshold on cosine similarity for pruning edges during tree deduction.

Number of neighbors Threshold

Cars196 2 0.75
SOP 1 0.6

Table 21: Hyperparameter values for tree deduction.

Tree Deduction with Embedding `2-Norm Confidence. The hyperparameters are the number of
neighbors for computing the nearest-neighbor subgraph and a threshold on cosine similarity for
pruning edges during tree deduction.

Number of neighbors Threshold

Cars196 20 0.6
SOP 3 0.65

Table 22: Hyperparameter values for tree deduction with embedding `2-norm confidence.

Embedding `2-Norm Confidence + GCN-E + Tree Deduction. The hyperparameters are:

• Number of neighbors for computing the adjacency matrix (N)

• Threshold on cosine similarity for pruning edges in the adjacency matrix (τ1)

• Ignore ratio (IR)

• Threshold on cosine similarity for pruning edges during tree deduction (τ2)

• Number of units in the hidden layers of the network (H)

• Learning rate (LR)

• Momentum (MOM)

• `2 weight decay (`2)

• Dropout probability (D)

N τ1 IR τ2 H LR MOM `2 D

Cars196 60 0.0 0.1 0.6 512 0.01 0.9 1× 10−5 0.2
SOP 5 0.0 0.7 0.7 512 0.01 0.9 1× 10−5 0.0

Table 23: Hyperparameter values for embedding `2-norm confidence + GCN-E + tree deduction.
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GCN-VE [43]. GCN-VE has two sub-networks, GCN-V and GCN-E. We present the hyperparam-
eters associated with each sub-network independently.

The hyperparameters for GCN-V are:

• Number of neighbors for computing the adjacency matrix (N)
• Threshold on cosine similarity for pruning edges in the adjacency matrix (τ )
• Number of units in the hidden layers of the network (H)
• Learning rate (LR)
• Momentum (MOM)
• `2 weight decay (`2)
• Dropout probability (D)

N τ H LR MOM `2 D

Cars196 10 0.0 512 0.01 0.9 1× 10−5 0.0
SOP 2 0.0 512 0.1 0.9 1× 10−5 0.0

Table 24: Hyperparameter values for GCN-E.

The hyperparameters for GCN-E are:

• Number of neighbors for computing the adjacency matrix (N)
• Threshold on cosine similarity for pruning edges in the adjacency matrix (τ1)
• Ignore ratio (IR)
• Threshold on cosine similarity for pruning edges during tree deduction (τ2)
• Number of units in the hidden layers of the network (H)
• Learning rate (LR)
• Momentum (MOM)
• `2 weight decay (`2)
• Dropout probability (D)

N τ1 IR τ2 H LR MOM `2 D

Cars196 200 0.0 0.0 0.7 512 0.01 0.9 1× 10−5 0.0
SOP 5 0.0 0.7 0.8 512 0.01 0.9 1× 10−5 0.0

Table 25: Hyperparameter values for GCN-E.

STAR-FC [34]. The hyperparameters are:

• Number of neighbors for computing the adjacency matrix (N)
• Threshold on cosine similarity for pruning edges in the adjacency matrix (τ )
• Number of seed clusters (SC)
• Number of nearest clusters (NC)
• Number of random clusters (RC)
• Random node proportion (RNP)
• Prune threshold (P)
• Intimacy threshold (I)
• Number of units in the hidden layers of the network (H)
• Learning rate (LR)
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• Momentum (MOM)
• `2 weight decay (`2)

N τ SC NC RC RNP P I H LR MOM `2

Cars196 10 0.0 4 6 10 0.9 0.15 0.6 512 0.1 0.9 1× 10−5

SOP 3 0.0 4 500 250 0.9 0.5 0.7 512 0.1 0.9 1× 10−5

Table 26: Hyperparameter values for STAR-FC.

17


	Methodology
	Experimental Results
	Conclusions
	Compute Resources
	Cars196 and SOP Tabulated Results
	Related Work
	Unsupervised Clustering
	Supervised Clustering

	GCN-VE Ablation Study
	Experimental Details
	Backbone
	Architecture
	Dataset Augmentation
	Backbone Network Hyperparameters

	Clustering
	GCN-VE Details
	STAR-FC Details
	Clustering Hyperparameters



