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ABSTRACT

Graph domain adaptation (GDA), which transfers knowledge from a labeled
source domain to an unlabeled target graph domain, attracts considerable atten-
tion in numerous fields. However, existing methods commonly employ message-
passing neural networks (MPNNs) to learn domain-invariant representations by
aligning the entire domain distribution, inadvertently neglecting category-level
distribution alignment and potentially causing category confusion. To address
the problem, we propose an effective framework named Coupling Category
Alignment (CoCA) for GDA, which effectively addresses the category alignment
issue with theoretical guarantees. CoCA incorporates a graph convolutional net-
work branch and a graph kernel network branch, which explore graph topology
in implicit and explicit manners. To mitigate category-level domain shifts, we
leverage knowledge from both branches, iteratively filtering highly reliable sam-
ples from the target domain using one branch and fine-tuning the other accord-
ingly. Furthermore, with these reliable target domain samples, we incorporate
the coupled branches into a holistic contrastive learning framework. This frame-
work includes multi-view contrastive learning to ensure consistent representations
across the dual branches, as well as cross-domain contrastive learning to achieve
category-level domain consistency. Theoretically, we establish a sharper general-
ization bound, which ensures the effectiveness of category alignment. Extensive
experiments on benchmark datasets validate the superiority of the proposed CoCA
compared with baselines.

1 INTRODUCTION

Source domain Target domain Different class samples

ClassifierMisclassified samples

Figure 1: Left: The source and target graph do-
mains. Middle: GDA methods that align the en-
tire source and target domains, potentially con-
fuse category distribution (see the red triangles
and squares). Right: The proposed method,
which aligns category-level distributions, allevi-
ates the category-agnostic issue.

As a crucial problem in graph classification (Lin
et al., 2023; Luo et al., 2023), Graph Domain
Adaptation (GDA) has received substantial in-
terest, particularly in the fields of temporally-
evolved social analysis (Wang et al., 2021),
molecular biology (You et al., 2022b; Zhu et al.,
2023; Yin et al., 2023), and protein-protein in-
teraction networks (Cho et al., 2016). GDA
transfers graph representations learned from the
source domain to the target domain, which is
necessary in many applications. Domain adap-
tive learning is inherently challenging due to the
distribution shift between source and target do-
mains (i.e., PS(G, Y ) ̸= PT (G, Y )). This chal-
lenge is further amplified when handling graph-
structured data, which often represent abstrac-
tions of varying natures (You et al., 2022a).

Currently, various GDA methods have been proposed (Yin et al., 2022; 2023; You et al., 2022b;
Zhu et al., 2023) by combining domain adaptation techniques with graphs. They usually assume
the distribution invariance is limited (Garg et al., 2020; Verma & Zhang, 2019) and directly employ
adversarial training to align source and target distribution (Zhang et al., 2019b; Wu et al., 2020a).
However, the classifier still tends to favor source domain features and makes incorrect predictions
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on the target domain due to category-agnostic feature alignment (Zhang et al., 2019a). To solve the
issue and efficiently design the GDA framework, we still need to address the following challenges:
(i) How to fully exploit the features of the source and target domain for representation learning.
Previous approaches typically employ the MPNNs to capture implicit topological semantics. How-
ever, the absence of labels for the target domain poses challenges in obtaining sufficient topological
semantics. (ii) How to effectively align category-level distribution. While there has been progress
in matching the marginal distributions between two domains, they may not efficiently align the cat-
egory distribution, leading to a degradation in classification performance. Certain methods have
attempted to acquire pseudo-labels for the target graphs in target domain training (Yin et al., 2023;
Yehudai et al., 2021; Ding et al., 2021; Zhu et al., 2023), they are vulnerable to bias in cases of sig-
nificant domain shift, leading to error accumulation in subsequent optimization. (iii) How to design
the GDA framework with the grounded theoretical foundation. Theoretically, the generic domain
adaptation (DA) bound is not specific to graph data and models (You et al., 2023). However, we can
still design a more precise model tailored for graphs with the theoretical guarantee.

To tackle these challenges, we propose a framework named Copling Category Alignment (CoCA)
for unsupervised domain adaptive graph classification. Specifically, to fully exploit the features of
both source and target graphs, CoCA incorporates an MPNN branch and a shortest path aggrega-
tion branch. The MPNN branch leverages neighborhood aggregation to implicitly learn topological
semantics, while the shortest path aggregation branch generates paths for each node and utilizes po-
sition encoding to extract informative graph-level semantics. This shortest path aggregation branch
provides explicit high-order structural semantics, serving as a complementary enhancement. To col-
laborate knowledge from two branches, we jointly train the branches by iteratively filtering highly
reliable samples from the target domain using one branch and fine-tuning the other branch accord-
ingly. Specifically, with the dual pre-trained branches, CoCA first fine-tunes the shortest path branch
with the highly reliable samples filtered from the target domain with the MPNN branch and then opti-
mizes the MPNN branch with the filtered target domain samples labeled by the shortest path branch.
Theoretically, the interactive optimization of one branch with the support of the other one would
gradually mitigate the category-level distribution shift. Furthermore, we embed the iterative learn-
ing process into a holistic contrastive learning framework, incorporating cross-domain contrastive
learning to achieve category-level domain consistency, alongside multi-views contrastive learning
to ensure consistent representations between branches. Overall, our approach emphasizes a unique
focus on achieving category-level domain alignment. Specifically, our methodology is centered on
Coupling Category Alignment (CoCA), which systematically iterates between branches to identify
and select reliable samples. This process facilitates cross-branch adjustments, effectively mitigating
potential domain shifts in an unsupervised manner. By iteratively refining the alignment process,
our approach enhances the model’s ability to achieve category-level alignment, supported by solid
theoretical foundations, distinguishing it from prior methods. Extensive experiments conducted on
various datasets with domain shifts for graph classification demonstrate that the proposed CoCA
outperforms state-of-the-art baselines.

In summary, the main contributions can be summarized as three-fold: (1) Problem Formulation:
We present a novel problem in graph domain adaptation, which highlights the discrepancy in the
distribution of graph categories between the source and target domains, posing significant chal-
lenges for accurate graph classification across domains. (2) Methodology: We propose a framework
named CoCA, which utilizes two branches to explore structural semantics and integrates them into
a category-level domain-invariant model. We provide theoretical proof demonstrating that CoCA
is specifically designed to more accurately address the challenges of the graph domain. (3) Exper-
iments: Extensive experiments conducted on various domain shift datasets for graph classification
demonstrate the effectiveness of the proposed CoCA.

2 RELATED WORK

Graph Classification. GNNs (Kipf & Welling, 2017b) have shown exceptional performance across
a wide range of graph-based machine learning tasks, such as node classification (Rong et al., 2020;
Hu et al., 2019; Kipf & Welling, 2017b), graph classification (Fan et al., 2019; Song et al., 2016;
Liao et al., 2021; Wu et al., 2020b) and link prediction (Zhang & Chen, 2018; Cai et al., 2021).
The most prevalent GNNs follow the message-passing paradigm, which aggregates the neighbors
for node update and applies graph pooling for graph representation. Nevertheless, MPNNs have
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limited capacity to capture high-order topological structures, such as paths and motifs (Du et al.,
2019; Michel et al., 2023; Ju et al., 2022; Qiu et al., 2021). Therefore, numerous graph kernel
methods have emerged to overcome this flaw (Long et al., 2021; Cosmo et al., 2021; Wang et al.,
2022). However, these approaches typically require an ample supply of labeled annotations (Yin
et al., 2022; 2023) while this work delves into the realm of unsupervised graph domain adaptation
and introduces a novel approach CoCA to tackle this challenge.

Unsupervised Domain Adaptation. Unsupervised domain adaptation is to learn domain-invariant
representations that enable the transfer of a model from a source domain with abundant labels to a
target domain with a scarcity of labels (Ma et al., 2021; Singh, 2021; Feng et al., 2023; Kouw &
Loog, 2019). The majority of technical routes can be broadly categorized into domain discrepancy-
based methods and adversarial approaches. The former methods typically incorporate different dis-
tribution metrics like maximal mean discrepancy (Saito et al., 2018) and Wasserstein distance (Shen
et al., 2018) to measure the discrepancy between different domains. Conversely, adversarial ap-
proaches involve a domain discriminator that is fused to implicitly reduce the domain discrepancy.
However, these methods typically concentrate on Euclidean data such as images and texts, while
graph domain adaptation has not been extensively explored. In this work, we explores graph seman-
tics by utilizing dual perturbation branches for effective graph domain adaptation.

Graph Domain Adaption. Due to the potential economic value, graph domain adaptation (Lin
et al., 2023; Wu et al., 2022b; Luo et al., 2023) is a crucial problem in the fields of social analysis
and molecular biology (You et al., 2022b; Zhu et al., 2023). Existing methods mainly focus on
how to transfer information from source graphs to unlabeled target graphs to learn effective node-
level (Wu et al., 2022a; Zhu et al., 2021; Dai et al., 2022; Guo et al., 2022) and graph-level (Yin
et al., 2023; Yehudai et al., 2021; Ding et al., 2021; Yang et al., 2020) representation. However,
these approaches commonly merge GNNs with domain alignment (Luo et al., 2023) techniques,
which overlook the alignment of category distributions in the presence of label scarcity and domain
shift, consequently leading to a deterioration in classification performance. Towards this end, CoCA
couples the dual branch in a variational optimization framework to address the issue.

3 PRELIMINARY

Problem Setup. Denote a graph as G = (V,E,X) with the node set V , the edge set E, and the node
attribute matrix X ∈ R|V |×F with F denotes the attribute dimension and |V | denotes the number of
nodes. The labeled source domain is denoted as Ds = {(Gs

i , y
s
i )}

Ns
i=1, where ysi denotes the labels

of Gs
i . The unlabeled target domain is Dt = {Gt

j}
Nt
j=1, where Ns and N t denote the number of

source graphs and target graphs. Both domains share the same label space Y , but have different
distributions in the graph space. Our objective is to train a model using both labeled source graphs
and unlabeled target graphs to achieve superior performance in the target domain.

DA Bound for Graph. Applying GDA with optimal transport (OT), if the covariate shift holds on
representations that PS(Y |Z) = PT (Y |Z), the target risk ϵT (h, ĥ) is bounded with the theorem:

Theorem 1 (Redko et al., 2017; Shen et al., 2018) Suppose the learned discriminator g is Cg-
Lipschitz where the Lipschitz norm ||g||Lip = maxZ1,Z2

|g(Z1)−g(Z2)|
ρ(Z1,Z2)

= Cg holds for some distance
function ρ (Euclidean distance here). Let H := {g : Z → Y} be the set of bounded real-valued
functions with the pseudo-dimension Pdim(H) = d that g ∈ H, with probability at least 1− δ the
following inequality holds:

ϵT (g, ĝ) ≤ϵ̂S(g, ĝ) +

√
4d

NS
log(

eNS

d
) +

1

NS
log(

1

δ
) + 2CgW1(PS(Z),PT (Z)) + ω,

where ω = min||g||Lip≤Cg
{ϵS(g, ĝ) + ϵT (g, ĝ)} denotes the model discriminative abil-

ity, and the first Wasserstein distance is defined as (Villani et al., 2009): W1(P,Q) =
sup||g||Lip≤1

{
EPS(Z)g(Z)− EPT (Z)g(Z)

}
.

Theorem 2 (You et al., 2023) Assuming that the learned discriminator is Cg-Lipschitz continuous
as described in Theorem 1, and the graph feature extractor f (also referred to as GNN) is Cf -
Lipschitz that ||f ||Lip = maxG1,G2

||f(G1)−f(G2)||2
η(G1,G2)

= Cf for some graph distance measure η.
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Figure 2: An overview of the proposed CoCA. CoCA contains a message passing branch and a
shortest path aggregation branch. To align category-level distribution, we alternatively optimize each
branch with highly dependable pseudo-labels learned from the other branch. CoCA incorporates the
learning process in a multi-view and cross-domain contrastive learning framework.

Let H := {h : G → Y} be the set of bounded real-valued functions with the pseudo-dimension
Pdim(H) = d that h = g ◦ f ∈ H, with probability at least 1− δ the following inequality holds:

ϵT (h, ĥ) ≤ϵ̂S(h, ĥ) +

√
4d

NS
log(

eNS

d
) +

1

NS
log(

1

δ
) + 2CfCgW1(PS(G),PT (G)) + ω,

where the (empirical) source and target risks are ϵ̂S(h, ĥ) = 1
NS

∑NS

n=1 |h(Gn) − ĥ(Gn)| and

ϵT (h, ĥ) = EPT (G{|h(G) − ĥ(G)|}, respectively, where ĥ : G → Y is the labeling function for
graphs and ω = min||g||Lip≤Cg,||f ||Lip≤Cf

{ϵS(h, ĥ) + ϵT (h, ĥ)}.

The comprehensive justification of the OT-based graph domain adaptation bound demonstrates that
the generalization gap relies on both the domain divergence 2CfCgW1(PS(G),PT (G)) and model
discriminability ω.

4 METHODOLOGY

This work studies the unsupervised GDA problem (Yin et al., 2023; Yehudai et al., 2021) and pro-
poses a new approach CoCA (see Figure 1). CoCA consists of two parts, the dual graph branch
explores semantics from implicit and explicit perspectives; the branch coupling module interac-
tively optimizes one branch with highly reliable sample filtered from the other branch to minimize
the category distribution discrepancy. CoCA incorporates the iterative process into a learning frame-
work and theoretical proof the designed method is more precisely tailored for the graph domain.

4.1 DUAL BRANCH FOR SEMANTICS MINING

Current graph transfer learning methods (Sun et al., 2022; Lin et al., 2023; Wu et al., 2022b; Lee
et al., 2017) typically rely on MPNNs to implicitly capture topological semantics through neighbor-
hood aggregation for transfer learning. However, these approaches may be suffered under domain
shift. To address this issue, we introduce a dual-branch architecture for graph representation learn-
ing, comprising a MPNNs branch for implicit topological semantics and a shortest path aggregation
branch for explicit topological semantics derived from high-order structures.

Message Passing Branch. MPNNs extract graph semantics by aggregating neighborhood nodes to
update each central node representation. We update the representation of node u at layer l in the
massage passing branch fMP

θ (·) and summarize the node representations into graph-level as:

hl
u = Cl

MP

(
hl−1
u ,Al

MP

({
hl−1
v

}
v∈N (u)

))
, zMP = fMP

θ (G) = READOUT
({

hL
u

}
u∈V

)
,

4
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where N (u) is the neighbours of node u. Cl
MP and Al

MP are combination and aggregation functions
at layer l, and READOUT is the pooling function. In this way, the message passing branch learns
the topological structure in an implicit manner under label supervision.
Shortest Path Aggregation Branch. However, the message passing branch merely extracts topo-
logical structural semantics in an implicit manner, which would be challenged under the circum-
stance of domain shift. Considering an alternative technical route, graph kernels (Borgwardt &
Kriegel, 2005; Shervashidze et al., 2011; Gao et al., 2021) are capable of explicitly extracting high-
order semantics. We introduce a shortest path aggregation branch that generates various shortest
paths from local substructures to extract high-order semantics into graph-level representations. Thus,
the representations alleviate the impact of structural shift across domains.

In particular, denote Nk(u) as the set of nodes reachable from u through a shortest path of length k,
and the representation of node u can be updated with N1(u)∪ · · · ∪Nk(u)∪ · · · ∪NK(u), K is the
hyperparameter of largest length. We update the nodes on different path length k:

ml
u,Nk(u)

= Cl
SP

(
m̂l−1

u ,Al
SP

({
m̂l−1

v

}
v∈Nk(u)

))
,

where Cl
SP and Al

SP denotes combination and aggregation operators at layer l on short-
est path branch. Thus, we obtain the embeddings from different path length, i.e.,{
ml

u,N1(u)
, · · · ,ml

u,NK(u)

}
, and update the representation of u as follows:

αl = Atten
(
||Kk=1m

l
u,Nk(u)

)
, ml

u = MLP

(
(1 + ϵ)ml−1

u +

K∑
k=1

αl
km

l
u,Nk(u)

)
,

where ϵ ∈ R, Atten is the self-attention mechanism, || denotes the concatenation operation, and
||Kk=1m

l
u,Nk(u)

∈ RK×d′
, d′ is the feature dimension of ml

u,Nk(u)
. MLP is the fully connected

layer. After stacking L layers, we take the average of all nodes into a graph-level representation:

zSP = fSP
ϕ (G) = READOUT

({
mL

u

}
u∈V

)
. (1)

The READOUT function is similar to Eq. 1. The shortest path aggregation branch acquires topo-
logical semantics by focusing on paths of varying lengths, which help mitigate the impact of struc-
tural domain shifts, such as differences in density and graph size.

4.2 BRANCH COUPLING FOR CATEGORY ALIGNMENT

Recent work attempted to obtain target graph pseudo-labels for training (Yehudai et al., 2021; Ding
et al., 2021; Zhu et al., 2023). However, due to discrepancies in the category distribution, they may
suffer from error accumulation during subsequent optimization. To address this issue, we cleverly
utilize the characteristics of the dual branch to obtain pseudo-labels and mitigate error accumulation.

Considering the message passing branch (MP branch) and the shortest path branch (SP branch), our
objective is to identify highly dependable pseudo-labels in the target domain and integrate them with
the source domain to fine-tune the model. In this way, we can efficiently align the category distribu-
tion. Nevertheless, with the challenges of category discrepancy and error accumulation, we cannot
achieve satisfactory pseudo-labels in a signal branch. To address the issue, we introduce the distri-
bution pθ(·) and qϕ(·) for the MP and SP branches, and aim to align category distribution with the
source and target labels Y s and Y t. Specifically, in the MP branch, we filter the highly dependable
pseudo-labels with the threshold ζ, and use those samples to help fine-tune the SP branch:

L1 = Epθ(ŷt
i |Gs,Gt,Y s)>ζ

[
log qϕ

(
ŷti | Gt

i

)]
+

Ns∑
i=1

log qϕ (Y
s
i | Gs

i ) , (2)

where ŷt is the target graph pseudo-labels filtered from the MP branch. Similarly, we utilize the
target samples filtered from the SP branch to support the fine-tune of the MP branch:

L2 = Eqϕ(ŷt
i |Gs,Gt,Y s)>ζ

[
log pθ

(
ŷti | Gt

i

)]
+

Ns∑
i=1

log pθ(Y
s
i | Gs

i ). (3)
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The interactive optimization of the MP and SP branches offers two advantages. First, by incorpo-
rating highly confident target pseudo-labels into source domain training, we can effectively align
the category distribution. Second, the pseudo-labels filtered from the other branch help mitigate the
error accumulation issue caused by the single model.

Theoretical Analysis. Intuitively, incorporating training samples from target and source domains
would effectively align the category distribution between domains. However, the theoretical basis for
why iterative fine-tuning achieves category alignment still requires further investigation. Addition-
ally, the graph category alignment bound remains agnostic. To address this, we present Theorem 3,
which proves that the iterative learning process maximizes the Evidence Lower Bound (ELBO). Fur-
thermore, Theorem 4 demonstrates that employing a category distribution alignment module results
in a lower bound on the empirical risk in the target domain compared to without this module.

Theorem 3 The iterative learning process (i.e., Eq. 2 and 3) follows the optimization of maximizing
the Evidence Lower Bound (ELBO):

log pθ
(
Y s | Gs, Gt

)
≥Eqϕ(Y t|Gt)

[
log pθ

(
Y s, Y t | Gs, Gt

)
− log qϕ

(
Y t | Gt

)]
. (4)

Theorem 4 Under the assumption of Theorem 2, we further assume that there exists a small amount
of high dependable i.i.d. samples with pseudo labels {(Gn, Yn)}

N ′
T

n=1 filter from the target distri-
bution PT (G, Y ) (N ′

T ≪ NS) and bring in the conditional shift assumption that domains have

different labeling function ĥS ̸= ĥT and maxG1,G2

|ĥD(G1)−ĥD(G2)|
η(G1,G2)

= Ch ≤ CfCg(D ∈ {S, T})
for some constant Ch and distance measure η. Let H := {h : G → Y} be the set of bounded
real-valued functions with the pseudo-dimension Pdim(H) = d, with probability at least 1− δ the
following inequality holds:

ϵT (h, ĥT ) ≤
N ′

T

NS +N ′
T

ϵ̂T (h, ĥT ) +
NS

NS +N ′
T

(
ϵ̂S(h, ĥS) +

√
4d

NS
log(

eNS

d
) +

1

NS
log(

1

δ
)

+ 2CfCgW1 (PS(G),PT (G)) + ω′
)

≤ϵ̂S(h, ĥS) +

√
4d

NS
log(

eNS

d
) +

1

NS
log(

1

δ
) + 2CfCgW1(PS(G),PT (G)) + ω,

where ω = min||g||Lip≤Cg,||f ||Lip≤Cf
{ϵS(h, ĥS) + ϵT (h, ĥS)} and ω′ = min(|ϵS(h, ĥS) −

ϵS(h, ĥT )|, |ϵT (h, ĥS)− ϵT (h− ĥT )|).

The proof is detailed in Appendix A and B. Theorem 3 provides the theoretical guarantee of the iter-
ative learning with Eq. 2 and 3. From Theorem 4, we observe that the bound of CoCA is lower than
GDA by incorporating source and target samples during training, demonstrating that it is possible to
design a more accurate model specifically tailored for graphs with a theoretical guarantee.

4.3 LEARNING FRAMEWORK

Through the iterative learning process of the MP and SP branches, we integrate them into a uni-
fied contrastive learning framework. Specifically, this framework employs cross-domain contrastive
learning to achieve category-level domain consistency, while multi-view contrastive learning ensures
consistent representation between the branches.

Multi-view Contrastive Learning. For each a graph Gi, we first obtain the embeddings from
MP and SP branches, i.e., zMP

i and zSP
i . Then, we introduce the InfoNCE loss to enhance the

consistency representation cross coupled branches. Formally,

Lmv = − 1

|Ds|+ |Dt|
∑

Gi∈Ds∪Dt

log
exp(zMP

i · zSP
i /τ)∑

Gj ,j ̸=i exp(z
MP
i · zSP

j /τ)
,

where τ is the temperature parameter and set to 0.5 as default (He et al., 2020).

Cross-domain Contrastive Learning. To achieve the category-level domain consistency, we con-
strue the cross-domain contrastive learning with the help of pseudo-labels from each branch. Taking

6
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Table 1: The classification results (in %) on Mutagenicity under edge density domain shift
(source→target). M0, M1, M2, and M3 denote the sub-datasets partitioned with edge density. Bold
results indicate the best performance.

Methods M0→M1 M1→M0 M0→M2 M2→M0 M0→M3 M3→M0 M1→M2 M2→M1 M1→M3 M3→M1 M2→M3 M3→M2 Avg.

WL subtree 74.9 74.8 67.3 69.9 57.8 57.9 73.7 80.2 60.0 57.9 70.2 73.1 68.1
GCN 73.0±1.7 68.7±1.5 66.8±3.5 69.2±0.9 53.9±3.4 53.4±2.7 69.3±0.8 74.0±1.1 55.1±1.3 42.6±1.9 55.5±3.5 57.9±2.9 61.6
GIN 74.1±1.8 73.4±3.4 65.4±1.5 70.4±2.9 58.9±2.7 61.2±1.1 73.2±3.8 77.7±3.0 63.1±3.7 63.9±2.4 67.4±2.3 73.2±1.9 68.5
GMT 69.0±4.0 67.4±3.8 60.3±4.2 66.5±3.8 54.9±1.6 54.8±3.6 65.6±4.2 70.4±3.2 64.0±2.3 56.8±4.3 64.7±1.5 61.1±3.5 63.0
CIN 68.5±2.1 65.1±2.6 65.4±1.3 63.6±2.8 57.3±3.4 59.0±3.1 59.3±1.5 68.3±1.3 58.1±2.4 71.1±3.1 60.7±1.7 61.7±2.4 63.2

CDAN 74.2±0.3 73.7±0.5 68.8±0.2 71.8±0.4 59.9±2.0 58.6±1.9 70.7±1.4 74.3±0.3 59.2±1.2 69.0±1.6 60.0±1.2 62.7±1.3 66.9
ToAlign 75.5±1.9 67.1±3.8 68.1±1.5 63.3±2.7 55.6±1.2 67.3±4.3 69.4±3.3 77.0±1.2 57.6±1.6 74.9±2.4 59.0±3.3 64.6±3.4 66.6
MetaAlign 74.5±0.9 73.8±0.6 69.4±1.2 72.6±1.3 59.8±1.8 70.7±2.7 72.0±0.5 75.6±0.6 62.4±2.1 72.3±1.9 62.2±1.1 72.0±1.2 69.7

DEAL 76.3±0.2 72.4±0.7 68.8±1.0 72.5±0.7 57.6±0.6 67.6±1.9 77.4±0.6 80.0±0.7 64.9±0.7 72.8±1.4 70.3±0.3 76.2±1.3 71.4
CoCo 77.5±0.4 75.7±1.3 68.3±3.7 74.9±0.5 65.1±2.1 74.0±0.4 76.9±0.6 77.4±3.4 66.4±1.5 71.2±2.7 62.8±4.2 77.1±0.6 72.2
SGDA OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
DGDA OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
A2GNN 55.3±0.3 54.9±0.6 55.8±0.4 55.1±0.8 54.2±1.0 57.1±1.2 56.1±0.5 55.2±0.7 57.9±1.5 56.3±0.6 54.4±0.5 58.1±1.5 55.8
PA-BOTH 56.3±0.5 57.7±0.9 56.9±0.6 56.2±1.0 55.7±0.8 56.5±0.9 57.8±1.2 56.9±2.1 56.5±1.5 56.2±1.8 56.8±1.4 57.4±0.7 56.8

CoCA 82.4±1.5 80.8±1.2 74.5±1.7 79.6±2.1 74.8±2.2 79.2±0.7 83.4±0.9 85.7±0.6 73.9±0.8 81.3±1.5 77.8±0.7 83.3±1.4 79.7

the MP branch as an example, we first filter highly dependable samples with the threshold ζ as intro-
duced in 4.2, and then calculate the loss between source and target domain with the same category.

Lcd = −
∑

j∈Ω(j)

1

|Π(j)|
∑

i∈Π(j)

log
exp

(
zSP,t
j · zSP,s

i /τ
)

∑
Gk∈Ds,k/∈Π(i) exp

(
zSP,t
j · zSP,s

k /τ
) ,

where Π(j) = {i|ysi = ŷtj} denotes the index of all positives in the source domain, Ω(i) = {i|pθ(ŷti |
Gs, Gt, Y s) > ζ} is the index of filtered highly dependable samples from the target domain.

Iterative Optimization. As introduced in Section 4.2, we first filter the highly dependable samples
in the MP branch, i.e., Ω(i) = {i|pθ(ŷti | Gs, Gt, Y s) > ζ}, and then optimize the objective function
to update ϕ in the SP branch:

L = L1 + αLmv + βLcd. (5)
After that, we utilize the updated SP branch to filter the highly dependable samples, i.e., Ω(i) =
{i|qϕ(ŷti | Gs, Gt, Y s) > ζ}, and update θ in the MP branch:

L = L2 + αLmv + βLcd, (6)

where α and β are the hyper-parameters. The complete algorithm for the proposed CoCA is sum-
marized in Algorithm 1.

4.4 COMPLEXITY ANALYSIS.

The algorithmic complexity of CoCA consists of two main components: dual-branch learning and
branch coupling. The complexity of the dual-branch learning process is given by O(LN(N + E +
Kd) +LN2d), where L denotes number of layers in the network, d is the dimension of features, N
is the number of nodes in the graph, E is the number of edges, and d is the maximum path length.
The complexity of branch coupling, which involves the interaction between branches, is O(B2d),
where B is the number of selected samples for coupling. Thus, the overall complexity of CoCA is
O((LN2 +B2 + LNK)d+ LNE).

CoCA’s complexity is influenced by its hyperparameters d, L, B, and K. By appropriately control-
ling these values, the model’s complexity can be managed effectively to ensure scalability.For small
graphs, where N ≈ d and d ≈ E, the complexity simplifies to O((LN2+B2+LNK)d). For large
graphs, where N ≪ d, E ≪ d, N ≪ B with K customarily set to a small value, the complexity
reduces to O(LN2d+ LNE).

For large graphs, CoCA’s complexity approximates that of the Graph Multiset Transformer (GMT),
which is O(LN2d). This demonstrates that CoCA maintains competitive scalability while incorpo-
rating additional capabilities for category-level alignment.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets. We use 4 graph classification benchmarks: Mutagenicity (M) (Kazius et al., 2005),
FRANKENSTEIN (F) (Orsini et al., 2015), NCI1 (N) (Wale et al., 2008), and PROTEINS (P) (Dob-
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Table 2: The graph classification results (in %) on FRANKENSTEIN under node domain shift
(source→target). F0, F1, F2, and F3 denote the sub-datasets partitioned with node. Bold results
indicate the best performance.

Methods F0→F1 F1→F0 F0→F2 F2→F0 F0→F3 F3→F0 F1→F2 F2→F1 F1→F3 F3→F1 F2→F3 F3→F2 Avg.

WL subtree 65.7 71.8 57.9 71.1 47.4 43.4 65.5 75.1 45.3 34.9 52.7 49.8 56.7
GCN 70.6±2.1 60.3±1.5 60.5±3.4 62.3±1.1 58.4±0.5 43.2±0.2 63.8±1.0 70.3±0.3 50.6±1.0 32.8±0.3 50.1±0.4 42.2±0.2 55.4
GIN 66.7±2.1 73.7±2.4 57.3±3.1 69.4±2.3 58.6±0.4 43.1±0.3 66.4±2.7 74.8±1.8 42.2±1.6 33.5±1.0 57.4±0.8 43.9±2.3 57.2
GMT 67.3±0.3 56.8±0.4 58.0±0.2 56.8±0.2 60.6±0.3 56.8±0.5 57.8±0.1 67.3±0.1 39.5±0.3 67.3±0.2 39.5±0.5 57.8±0.4 57.1
CIN 67.6±0.4 63.7±2.1 58.9±1.0 56.8±0.4 63.6±0.4 59.5±2.7 58.7±1.2 67.0±0.5 61.7±1.6 67.8±0.7 62.2±2.1 56.0±1.3 61.9

CDAN 72.9±0.4 72.7±0.4 65.4±0.3 72.9±0.1 61.2±0.3 70.3±0.2 65.7±0.4 72.7±0.1 61.0±0.1 72.1±1.2 60.7±0.2 65.3±0.6 67.7
ToAlign 32.7±2.0 43.2±0.1 42.2±1.3 43.2±0.9 60.5±0.7 43.2±1.2 42.2±0.4 32.7±1.2 60.5±0.9 32.7±0.3 60.5±0.7 42.2±0.4 44.7
MetaAlign 67.3±0.7 56.8±0.2 57.8±0.6 56.8±0.4 60.5±1.3 56.8±0.8 57.8±1.1 67.3±1.2 60.5±0.4 67.3±0.6 60.5±0.7 57.8±0.6 60.6

DEAL 75.0±0.9 76.3±2.4 65.9±1.8 77.5±2.7 60.3±4.5 69.7±3.2 67.2±1.5 75.3±1.7 57.4±4.1 71.1±2.2 65.7±2.7 66.4±1.6 69.0
CoCo 74.2±1.7 74.3±0.6 65.9±1.2 72.7±2.1 61.1±0.2 71.0±1.7 68.6±0.3 75.9±0.2 60.7±0.2 73.9±0.4 59.7±1.1 67.3±0.8 68.8
SGDA 55.9±0.6 57.1±0.5 56.1±0.4 54.6±0.8 55.8±1.1 57.7±0.6 54.3±0.7 53.6±1.3 59.1±0.8 56.7±0.6 55.4±1.2 53.8±0.5 55.9
DGDA OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
A2GNN 55.9±0.7 55.7±0.4 56.6±0.6 57.1±1.0 56.1±1.2 55.8±0.5 56.5±0.7 55.5±0.4 55.9±0.8 56.2±0.6 56.5±1.5 56.0±0.5 56.2
PA-BOTH 56.4±0.5 55.9±0.6 56.0±0.5 56.4±0.4 56.3±0.6 57.7±0.7 56.6±0.2 58.8±0.9 56.9±0.7 57.2±0.3 56.5±0.5 58.3±0.8 56.9

CoCA 81.6±1.5 83.5±0.6 78.5±0.6 82.4±2.3 71.1±0.8 76.9±1.1 75.2±0.5 82.0±1.1 79.5±1.4 79.5±1.2 72.7±0.6 77.7±1.0 78.4

(c) Accuracy on Mutagenicity (d) Accuracy on FRANKENSTEIN(a) Accuracy on Mutagenicity (b) Accuracy on FRANKENSTEIN

Figure 3: The performance with different GNNs and kernels on different datasets. (a), (b) are the
performance of different GNNs, (c), (d) are the performance of different graph kernels.

son & Doig, 2003), obtained from TUDataset (Morris et al., 2020) to evaluate the effectiveness of
the proposed CoCA. The details are presented in Appendix D. To assess the domain shift in each
dataset, we follow (Yin et al., 2023) and partition each dataset into four sub-datasets (D0, D1, D2,
and D3, where D represents the respective dataset) based on edge and node density and graph flux.

Baselines. We compare the proposed CoCA with various state-of-the-art methods, including the
kernel-based approach: WL subtree (Shervashidze et al., 2011), GNNs methods: GCN (Kipf &
Welling, 2017a), GIN (Xu et al., 2019b), GMT (Baek et al., 2021), CIN (Bodnar et al., 2021),
and recent domain adaptation methods: CDAN (Long et al., 2018), ToAlign (Wei et al., 2021b),
MetaAlign (Wei et al., 2021a), and graph domain adaptation methods: DEAL (Yin et al., 2022),
CoCo (Yin et al., 2023), SGDA (Qiao et al., 2023), DGDA (Cai et al., 2024), A2GNN (Liu et al.,
2024a) and PA-BOTH (Liu et al., 2024b). The details are introduced in Appendix F and the imple-
mentation details are proposed in Appendix E.

5.2 PERFORMANCE COMPARISON

Table 1, 2 and 3 show the comparison performance of CoCA and baselines on Mutagenicity,
FRANKENSTEIN and NCI1 datasets under different domain shift. More results are shown in Ap-
pendix G. From the results, we find that: (1) The GDA methods, including DEAL, CoCo, CoCA,
etc., consistently outperform the kernel and GNN methods. This demonstrates that domain shift
limits the expressive capability of traditional graph methods. Therefore, it is critical to design the
domain invariant methods for GDA. (2) The GDA methods demonstrate competitive performance
compared to traditional domain adaptation approaches. This achievement can be attributed to the
challenges associated with obtaining high-quality graph representations, which make the direct ap-
plication of domain adaptation techniques to graphs a demanding task. (3) The proposed CoCA
outperforms recent GDA methods. We attribute this performance gain to two factors: (i) The
dual branch approach for graph semantic extraction, which effectively leverages the complemen-
tary strengths of message passing and shortest path aggregation models. (ii) The architecture of the
branch coupling module effectively aligns the category-level distribution, addressing the category-
agnostic limitations typically encountered with traditional GDA methods.
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Table 3: The graph classification results (in %) on NCI1 under graph flux domain shift
(source→target). N0, N1, N2, and N3 denote the sub-datasets partitioned with graph flux. Bold
results indicate the best performance. OOM means out of memory.

Methods N0→N1 N1→N0 N0→N2 N2→N0 N0→N3 N3→N0 N1→N2 N2→N1 N1→N3 N3→N1 N2→N3 N3→N2 Avg.

WL subtree 75.9 70.4 64.3 63.9 60.6 64.7 73.2 78.9 66.8 69.2 74.2 72.9 69.6
GCN 49.2±1.7 55.8±1.5 46.8±0.5 54.6±2.2 43.4±0.6 46.7±0.2 50.0±1.8 57.2±2.2 44.2±0.4 51.6±0.8 62.7±2.1 56.8±1.3 51.6
GIN 68.8±2.5 70.6±1.0 64.2±1.1 67.2±2.4 62.2±1.8 62.5±1.5 68.7±2.4 72.5±0.6 63.3±1.6 65.2±0.6 62.4±0.3 70.9±0.5 66.6
GMT 66.7±0.3 58.2±0.5 63.9±0.3 58.4±0.3 63.8±0.4 56.7±0.5 63.9±0.7 66.3±1.0 63.8±1.1 66.6±0.4 63.8±0.2 62.6±0.7 62.9
CIN 58.7±2.4 54.9±0.2 52.0±0.3 54.8±0.1 56.6±0.2 54.9±0.1 52.9±1.4 52.8±0.5 56.5±0.6 52.8±2.1 58.5±0.8 56.6±1.4 55.1

CDAN 64.0±1.1 68.1±0.3 60.1±0.5 64.0±1.3 60.9±0.2 57.8±1.0 64.3±1.6 61.2±0.2 66.3±0.7 59.0±0.5 68.9±0.3 63.7±0.6 63.2
ToAlign 52.8±0.5 54.8±0.2 48.2±1.1 54.8±1.5 44.0±0.8 54.8±2.0 48.2±1.7 52.8±0.6 44.0±0.2 52.8±0.3 44.0±1.0 48.2±1.2 50.0
MetaAlign 63.1±0.3 63.8±1.3 58.9±2.4 58.5±0.4 59.1±2.1 59.2±1.6 70.1±0.8 63.3±1.4 66.5±2.7 60.9±1.1 71.4±0.2 67.5±0.8 63.5

DEAL 70.7±0.9 72.3±0.2 69.9±0.8 68.9±0.7 64.1±0.6 65.6±0.9 71.9±0.4 69.9±1.7 70.6±0.4 66.5±0.3 71.6±0.7 69.9±0.5 69.3
CoCo 64.0±1.3 63.9±0.6 65.8±1.8 59.9±1.7 62.2±2.1 60.6±1.6 65.0±2.1 64.8±1.4 60.0±0.8 61.3±0.5 68.5±0.4 67.1±0.6 63.6
SGDA OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
DGDA OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
A2GNN 56.5±0.9 56.7±0.7 58.8±1.2 56.0±1.0 61.2±1.5 60.9±1.6 61.0±1.3 56.1±1.9 64.9±1.6 59.3±2.1 65.4±1.5 63.3±2.3 60.1
PA-BOTH 57.4±0.5 58.2±0.4 58.2±0.6 57.6±0.8 58.2±0.6 58.5±0.5 58.1±1.0 59.9±0.7 63.6±1.1 57.7±0.9 58.2±0.8 57.6±1.2 58.7

CoCA 81.4±0.9 76.3±1.5 75.1±0.7 74.3±1.2 72.6±1.5 78.4±0.8 77.4±2.3 73.2±2.0 75.3±0.5 76.9±1.0 80.1±1.3 74.0±0.3 76.3

Table 4: The results of ablation studies on Mutagenicity (source→target). Bold results indicate the
best performance.

Methods M0→M1 M1→M0 M0→M2 M2→M0 M0→M3 M3→M0 M1→M2 M2→M1 M1→M3 M3→M1 M2→M3 M3→M2 Avg.

CoCA-MP 77.3 70.1 70.8 71.6 68.3 71.1 77.2 82.8 68.3 77.6 67.8 76.2 73.2
CoCA-SP 80.6 74.1 68.8 70.8 65.7 72.5 78.3 83.3 67.2 78.5 69.6 81.3 74.2
CoCA/BC 76.0 76.3 69.3 74.4 67.4 64.9 78.8 82.2 68.5 73.2 69.4 77.5 73.2
CoCA/MV 77.3 77.2 71.8 76.4 70.2 75.7 79.3 83.1 71.4 79.5 74.2 78.5 76.2
CoCA/CD 78.1 75.4 70.4 76.7 72.7 77.2 78.8 86.4 72.3 80.1 73.4 79.3 76.7

CoCA 82.9 80.5 75.3 79.3 74.4 79.2 83.1 86.1 74.7 81.3 78.5 82.6 79.8

5.3 FLEXIBILITY OF COCA

To show the flexibility of CoCA, we replace the MP and SP branches with different GNNs and
kernels. Specifically, we replace the MP branch with GCN (Kipf & Welling, 2017a), GIN (Xu et al.,
2019a) and Graphsage (Hamilton et al., 2017), and the SP branch with Graph Sampling (Leskovec
& Faloutsos, 2006), Random Walk (Kalofolias et al., 2021) and WL kernel (Neumann et al., 2016).
Figure 3 shows the performance of different GNNs and graph kernels on four datasets, and we have
similar observations on other datasets. More results are shown in Appendix H. From the results, we
observe that when compared to other GNNs and graph kernels, GMT and shortest path aggregation
consistently achieve the best performance in most cases. This can be attributed to the powerful
representation capabilities of GMT and the shortest path kernel. This observation further justifies
our choice of GMT and shortest path aggregation to improve performance in our GDA task.

5.4 ABLATION STUDY

To assess the impact of each module on CoCA, we conduct ablation experiments with various con-
figurations: (1) CoCA-MP, where both branches exclusively use the message passing model; (2)
CoCA-SP, where both branches exclusively use the path aggregation model; (3) CoCA/BC, removal
of the branch coupling module; (4) CoCA/MV, removal of the multi-view contrastive learning mod-
ule; (5) CoCA/CD, removal of the cross-domain contrastive learning module.

We conducted these experiments on the Mutagenicity dataset, and the results are presented in Table
4. From the results, we observe that: (1) CoCA outperforms both CoCA-MP and CoCA-SP, under-
scoring the importance of extracting graph semantics from both implicit and explicit perspectives.
(2) The performance of CoCA is significantly superior to models without the branch coupling mod-
ule (i.e., CoCA/BC), indicating that by aligning the category-level distribution, the branch coupling
module effectively addresses the category-agnostic issue caused by aligning the entire feature distri-
bution. (3) CoCA/MV and CoCA/CD perform worse than CoCA. We attribute this to the fact that by
disregarding multi-view and cross-domain contrastive learning, CoCA cannot efficiently learn con-
sistent representations between the source and target, leading to diminished predictive performance.
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Figure 4: Hyperparameter sensitivity of threshold ζ and shortest path length K on different datasets.
(a), (b) are the performance of threshold ζ, (c), (d) are the performance of shortest path length K.

5.5 SENSITIVITY ANALYSIS

In this part, we investigate the influence of hyperparameters on the performance of the proposed
CoCA. We specifically examine the effects of two key hyperparameters, including the threshold
ζ in the branch coupling module for category alignment, and the shortest path length K in the
SP branch. We report the results of ζ and K in Figure 4. ζ determines the number of reliable
samples selected from each branch, and we vary ζ in the range from 0.5 to 0.9. The experimental
results presented in Figure 4 (a), (b) indicate an initial increase followed by stability or a decreasing
trend in performance as ζ increases. We attribute the reason to the fact that smaller values of ζ
introduce low-confidence samples, which would detriment the performance of CoCA. Conversely,
larger values of ζ introduce high-confidence samples for training. However, excessively high values
of ζ may lead to fewer filtered samples, potentially resulting in a decline in model performance.
Therefore, we set ζ to 0.7 as default. Additionally, the parameter K controls the number of shortest
paths extracted in the SP branch, and we vary K in the range of {2, 3, 4, 5, 6}. The results are
shown in Figure 4 (c) and (d). From the results, we observe that increasing K generally leads
to improved performance when the value is small. This suggests that incorporating more shortest
path aggregations can enhance the representation capability. However, when K becomes large, the
performance stays stable. Considering the significant increase in algorithmic complexity associated
with higher values of K, we set K = 5. Additionally, we examine the accuracy of filtered samples
from MP and SP branch within the branch coupling module, and the results are shown in Appendix I.

6 CONCLUSION

In this paper, we study a practical problem of unsupervised graph classification and propose a novel
approach named CoCA. We utilize the dual branch, i.e., a message passing and a shortest path ag-
gregation branch, to explore the graph semantics from the implicit and explicit perspectives. The
introduction of the branch coupling module ensures effective category-level alignment, mitigating
the category-agnostic issues typically encountered in traditional GDA methods. Furthermore, the
framework incorporates cross-domain and multi-view contrastive learning, enhancing the consis-
tency of representations across domains and branches. Theoretical analysis demonstrates that CoCA
achieves a tighter empirical risk bound compared to existing GDA methods. Extensive experiments
across multiple datasets validate the superiority of CoCA in handling domain shifts. In future work,
we aim to explore extending CoCA to more complex scenarios, such as domain generalization and
source-free domain adaptation.
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A APPENDIX

A PROOF OF THEOREM 3

Theorem 3 The iterative learning process (i.e., Eq. 2 and 3) follows the optimization of maximizing
the Evidence Lower Bound (ELBO):

log pθ
(
Y s | Gs, Gt

)
≥Eqϕ(Y t|Gt)

[
log pθ

(
Y s, Y t | Gs, Gt

)
− log qϕ

(
Y t | Gt

)]
. (7)

Proof. Considering the message passing branch (MP branch) and the shortest path aggregation
branch (SP branch), our objective is to identify highly dependable pseudo-labels in the target domain
and integrate them with the source domain to fine-tune the model. In this way, we can efficiently
align the category distribution. Nevertheless, with the challenges of category discrepancy and error
accumulation, we cannot achieve satisfactory pseudo-labels in a signal branch. To address the is-
sue, we introduce the distribution pθ(·) and qϕ(·) for MP and SP branch, and aim to maximize the
evidence lower bound (ELBO) of the log-likelihood with the source and target labels Y s and Y t:

log pθ
(
Y s | Gs, Gt

)
≥Eqϕ(Y t|Gt)

[
log pθ

(
Y s, Y t | Gs, Gt

)
− log qϕ

(
Y t | Gt

)]
. (8)

To maximize Eq. 8, we alternatively optimize the SP branch with distribution qϕ (Y
t | Gt) and the

MP branch with pθ (Y
s, Y t | Gs, Gt). Firstly, we fix the MP branch and update the SP branch

by minimizing Eqϕ(Y t|Gt) log qϕ (Y
t | Gt). To avoid error accumulation, we take the help of MP

branch to provide additional target graph information for SP branch optimization. In formulation,
we calculate the negative KL divergence between qϕ (Y

t | Gt) and pθ (Y
t | Gs, Gt, Y s):

−KL
(
qϕ
(
Y t | Gt

)
||pθ

(
Y t | Gs, Gt, Y s

))
= Epθ(Y t|Gs,Gt,Y s)[log qϕ

(
Y t | Gt

)
] + Cons,

where Cons is a constant. To avoid the category shift, we further select the highly dependable
pseudo-labels from the MP branch with a threshold ζ, and the objective is:

L1 = Epθ(ŷt
i |Gs,Gt,Y s)>ζ

[
log qϕ

(
ŷti | Gt

i

)]
+

Ns∑
i=1

log qϕ (Y
s
i | Gs

i ) , (9)

where ŷt is the target graph pseudo-labels filtered from the MP branch. Similarly, we utilize the
target samples filtered from the SP branch to support the training of the MP branch:

L2 = Eqϕ(ŷt
i |Gs,Gt,Y s)>ζ

[
log pθ

(
ŷti | Gt

i

)]
+

Ns∑
i=1

log pθ(Y
s
i | Gs

i ). (10)

The interactive optimization of the MP and SP branches offers two advantages. First, by incorpo-
rating highly confident target pseudo-labels into source domain training, we can effectively align
the category distribution. Second, the pseudo-labels filtered from the other branch help mitigate the
error accumulation issue caused by the single model.

B PROOF OF THEOREM 4

Theorem 4 Under the assumption of Theorem 2, we further assume that there exists a small amount
of i.i.d. samples with pseudo labels {(Gn, Yn)}

N ′
T

n=1 from the target distribution PT (G, Y ) (N ′
T ≪

NS) and bring in the conditional shift assumption that domains have different labeling function

ĥS ̸= ĥT and maxG1,G2

|ĥD(G1)−ĥD(G2)|
η(G1,G2)

= Ch ≤ CfCg(D ∈ {S, T}) for some constant Ch and
distance measure η. Let H := {h : G → Y} be the set of bounded real-valued functions with the
pseudo-dimension Pdim(H) = d, with probability at least 1− δ the following inequality holds:

ϵT (h, ĥT ) ≤
N ′

T

NS +N ′
T

ϵ̂T (h, ĥT ) +
NS

NS +N ′
T

(
ϵ̂S(h, ĥS) +

√
4d

NS
log(

eNS

d
) +

1

NS
log(

1

δ
)

+ 2CfCgW1 (PS(G),PT (G)) + ω
)

≤ϵ̂S(h, ĥ) +

√
4d

NS
log(

eNS

d
) +

1

NS
log(

1

δ
) + 2CfCgW1(PS(G),PT (G)) + ω,

(11)
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where ω = min||g||Lip≤Cg,||f ||Lip≤Cf
{ϵS(h, ĥS) + ϵT (h, ĥS)}.

Proof. Before showing the designated lemma, we first introduce the following inequality to be used
that:

|ϵS(h, ĥS)− ϵT (h, ĥT )| = |ϵS(h, ĥS)− ϵS(h, ĥT ) + ϵS(h, ĥT )− ϵT (h, ĥT )|
≤ |ϵS(h, ĥS)− ϵS(h, ĥT )|+ |ϵS(h, ĥT )− ϵT (h, ĥT )|
(a)

≤ |ϵS(h, ĥS)− ϵS(h, ĥT )|+ 2CfCgW1 (PS(G),PT (G)) ,

(12)

where (a) results from (Shen et al., 2018) Theorem 1 with the assumption
max(||h||Lip,maxG1,G2

|ĥD(G1)−ĥD(G2)|
η(G1,G2)

) ≤ CfCg , D ∈ {S, T}. Similarly, we obtain:

|ϵS(h, ĥS)− ϵT (h, ĥT )| ≤ |ϵT (h, ĥS)− ϵT (h, ĥT )|+ 2CfCgW1(PS(G),PT (G)). (13)

We therefore combine them into:

|ϵS(h, ĥS)− ϵT (h, ĥT )| ≤2CfCgW1(PS(G),PT (G))

+ min
(
|ϵS(h, ĥS)− ϵS(h, ĥT )|, |ϵT (h, ĥS)− ϵT (h, ĥT )|

)
,

(14)

i.e. the following holds to bound the target risk ϵT (h, ĥT ):

ϵT (h, ĥT ) ≤ϵS(h, ĥS) + 2CfCgW1 (PS(G),PT (G))

+ min
(
|ϵS(h, ĥS)− ϵS(h, ĥT )|, |ϵT (h, ĥS)− ϵT (h, ĥT )|

)
.

(15)

We next link the bound with the empirical risk and labeled sample size by showing, with probability
at least 1− δ that:

ϵT (h, ĥT ) ≤ϵS(h, ĥS) + 2CfCgW1 (PS(G),PT (G))

+ min
(
|ϵS(h, ĥS)− ϵS(h, ĥT )|, |ϵT (h, ĥS)− ϵT (h, ĥT )|

)
≤ϵ̂S(h, ĥS) + 2CfCgW1 (PS(G),PT (G))

+ min
(
|ϵS(h, ĥS)− ϵS(h, ĥT )|, |ϵT (h, ĥS)− ϵT (h, ĥT )|

)
+

√
2d

NS
log(

eNS

d
) +

√
1

2NS
log(

1

δ
),

(16)

and:

ϵT (h, ĥT ) ≤ ϵ̂T (h, ĥT ) +

√
2d

N ′
T

log(
eN ′

T

d
) +

√
1

2N ′
T

log(
1

δ
), (17)

which results from (Mohri et al., 2018) Theorem 11.8. Lastly, we combine the above two inequali-
ties, with probability at least 1− δ that:

ϵT (h, ĥT )
(a)

≤ N ′
T

NS +N ′
T

(
ϵ̂T (h, ĥT ) +

√
2d

N ′
T

log(
eN ′

T

d
) +

√
1

2N ′
T

log(
1

δ
)

)

+
NS

NS +N ′
T

(
ϵ̂S(h, ĥS) +

√
2d

NS
log(

eNS

d
) +

√
1

2NS
log(

1

δ
)

)

+
NS

NS +N ′
T

(
2CfCgW1 (PS(G),PT (G))

+ min
(
|ϵS(h, ĥS)− ϵS(h, ĥT )|, |ϵT (h, ĥS)− ϵT (h, ĥT )|

))
(b)

≤ N ′
T

NS +N ′
T

(
ϵ̂T (h, ĥT ) +

√
4d

N ′
T

log(
eN ′

T

d
) +

1

N ′
T

log(
1

δ
)

)
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+
NS

NS +N ′
T

(
ϵ̂S(h, ĥS) +

√
4d

NS
log(

eNS

d
) +

1

NS
log(

1

δ
)

)

+
NS

NS +N ′
T

(
2CfCgW1 (PS(G),PT (G))

+ min
(
|ϵS(h, ĥS)− ϵS(h, ĥT )|, |ϵT (h, ĥS)− ϵT (h, ĥT )|

))
(c)

≤ N ′
T

NS +N ′
T

ϵ̂T (h, ĥT ) +
NS

NS +N ′
T

ϵ̂S(h, ĥS)

+
NS

NS +N ′
T

(
2CfCgW1 (PS(G),PT (G))

+ min
(
|ϵS(h, ĥS)− ϵS(h, ĥT )|, |ϵT (h, ĥS)− ϵT (h, ĥT )|

))

+
N ′

T

NS +N ′
T

√
4d

N ′
T

log(
eN ′

T

d
) +

1

N ′
T

log(
1

δ
) +

NS

NS +N ′
T

√
4d

NS
log(

eNS

d
) +

1

NS
log(

1

δ
)

.
=

N ′
T

NS +N ′
T

ϵ̂T (h, ĥT ) +
NS

NS +N ′
T

ϵ̂S(h, ĥS) +
NS

NS +N ′
T

√
4d

NS
log(

eNS

d
) +

1

NS
log(

1

δ
)

+
NS

NS +N ′
T

(2CfCgW1 (PS(G),PT (G))

+min
(
|ϵS(h, ĥS)− ϵS(h, ĥT )|, |ϵT (h, ĥS)− ϵT (h, ĥT )|

))
=

N ′
T

NS +N ′
T

ϵ̂T (h, ĥT ) +
NS

NS +N ′
T

(
ϵ̂S(h, ĥS) +

√
4d

NS
log(

eNS

d
) +

1

NS
log(

1

δ
)

+2CfCgW1 (PS(G),PT (G))

+min
(
|ϵS(h, ĥS)− ϵS(h, ĥT )|, |ϵT (h, ĥS)− ϵT (h, ĥT )|

))
where (a) is the outcome of applying the union bound with coefficient N ′

T

NS+N ′
T

, NS

NS+N ′
T

respectively;
(b) and (c) result from the Cauchy-Schwartz inequality and (c) additionally adopt the assumption
N ′

T ≪ NS , following the sleight-of-hand in (Li et al., 2021) Theorem 3.2.

Due to the sampels are selected with high confidence, thus, we have the following assumption:

ϵ̂T ≤ ϵT ≤ ϵ̂S(h, ĥ) +

√
4d

NS
log(

eNS

d
) +

1

NS
log(

1

δ
) + 2CfCgW1(PS(G),PT (G)) + ω′, (18)

where ω′ = min||g||Lip≤Cg,||f ||Lip≤Cf
{ϵS(h, ĥ) + ϵT (h, ĥ)}, ϵ̂T is the empirical risk on the high

confidence samples, ϵT is the empirical risk on the target domain. Besides, we have:

min(|ϵS(h, ĥS)− ϵS(h, ĥT )|, |ϵT (h, ĥS)− ϵT (h, ĥT )|) ≤ min(ϵS(h, ĥS) + ϵT (h, ĥS)) (19)
Then,

ϵT (h, ĥT ) ≤
N ′

T

NS +N ′
T

ϵ̂T (h, ĥT ) +
NS

NS +N ′
T

(
ϵ̂S(h, ĥS) +

√
4d

NS
log(

eNS

d
) +

1

NS
log(

1

δ
)

+ 2CfCgW1 (PS(G),PT (G)) + ω
)

≤ϵ̂S(h, ĥ) +

√
4d

NS
log(

eNS

d
) +

1

NS
log(

1

δ
) + 2CfCgW1(PS(G),PT (G)) + ω′.

(20)

C ALGORITHM
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Algorithm 1 Learning Algorithm of CoCA
Input: Source data Ds; Target data Dt.
Output: Parameters θ and ϕ for two branches.

1: // Dual Graph Branch for Semantics Mining
2: Initialize θ and ϕ.
3: Warm up the SP and MP branch to update θ and ϕ.
4: while not convergence do
5: // Branch Coupling for Category Alignment
6: Filter target pseudo-labels with the MP branch;
7: Optimize parameters ϕ with fixed θ by Eq. 5;
8: Filter target pseudo-labels with the SP branch;
9: Optimize parameters θ with fixed ϕ by Eq. 6;

10: end while

D INTRODUCTION OF DATASETS

We briefly introduce the datasets as follows:

• Mutagenicity (Wale et al., 2008): Mutagenicity includes 4,337 molecular structures
and their corresponding Ames test results, comprising 2,401 mutagens and 1,936 non-
mutagens, each represented as a graph.

• FRANKENSTEIN (Orsini et al., 2015): FRANKENSTEIN is a composite dataset created
by merging the BURSI and MNIST datasets. Each data point is represented as a graph,
with vertices corresponding to chemical atom symbols and edges indicating bond types.

• PROTEINS (Wale et al., 2008): PROTEINS is a dataset of protein graphs, where nodes
represent amino acids, and edges signify connections between amino acids that are within
a distance of less than 6 Angstroms.

• NCI1 (Dobson & Doig, 2003): NCI1 consists of chemical molecules and compounds,
using atoms as nodes and bonds as edges. With a total of 4,100 compounds, labels are
assigned to determine whether a compound exhibits characteristics inhibiting cancer cell
growth.

E IMPLEMENTATION DETAILS

In our CoCA, we employ GMT (Baek et al., 2021) in the MP branch and the shortest path model (Ab-
boud et al., 2022) in the SP branch. For the SP branch, the maximum path lengths K are set to 5 for
all the datasets. For the adaptive perturbation, we set the T = 5 for perturbation learning. We warm
up the dual branch for 50 epochs and update the branch coupling module 10 times. The pseudo-
label filtering threshold ζ for the target dataset is set to 0.7. For all the methods, we use one of the
sub-datasets as source data and the remaining as the target data for performance comparison. We set
the hidden size to 128 and the learning rate to 0.001 as default. All the experiments are conducted
on the same device, equipped with NVIDIA A6000 GPU.

F INTRODUCTION OF BASELINES

We introduce the baselines as follows:

• WL subtree (Shervashidze et al., 2011): The WL subtree functions as a kernel technique,
gauging the resemblance among graphs through the designated kernel function.

• GCN (Kipf & Welling, 2017a): The fundamental concept of GCN is to update each central
node by incorporating neighborhood information, resulting in an iterative generation of a
representation vector.

• GIN (Xu et al., 2019b): GIN is a widely recognized neural network employing message
passing, known for its enhanced expressive capabilities.
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Table 5: Graph classification accuracy (in %) on FRANKENSTEIN under edge density domain shift
(source→target). F0, F1, F2, and F3 denote the sub-datasets partitioned with edge density. Bold
results indicate the best performance.

Methods F0→F1 F1→F0 F0→F2 F2→F0 F0→F3 F3→F0 F1→F2 F2→F1 F1→F3 F3→F1 F2→F3 F3→F2 Avg.

WL subtree 71.6 72.1 62.1 71.2 57.8 67.7 64.0 75.3 41.1 59.2 55.9 55.4 62.8
GCN 66.5±0.4 60.0±0.8 55.4±0.3 60.0±0.1 39.6±0.3 40.0±0.4 55.4±0.2 66.5±0.1 39.6±0.6 33.5±0.3 39.6±0.1 44.7±0.2 50.1
GIN 71.4±4.7 73.4±3.4 60.8±2.7 66.0±3.4 50.5±3.7 51.6±1.8 64.8±1.0 71.3±3.5 48.3±4.2 57.4±3.8 55.1±3.4 52.6±4.3 60.3
GMT 67.4±1.0 61.7±2.1 55.8±0.7 57.0±2.4 60.2±0.5 58.2±2.0 57.8±2.1 65.7±1.3 60.2±0.3 57.3±2.3 60.7±0.6 57.1±1.2 59.9
CIN 70.4±2.8 66.5±4.3 58.5±2.6 64.2±2.7 60.6±3.0 64.2±3.2 58.7±2.4 69.1±2.7 57.5±3.4 67.7±2.1 59.5±2.3 56.1±1.2 62.7

CDAN 72.9±0.2 74.0±0.3 62.7±0.3 73.8±0.5 61.2±1.0 70.0±1.2 62.8±0.1 73.0±0.3 60.6±0.2 71.6±1.5 60.5±0.2 61.1±1.4 67.0
ToAlign 68.0±3.8 73.4±2.7 64.5±1.1 63.7±2.4 60.6±1.2 61.9±1.3 64.8±1.3 74.0±1.3 60.0±0.6 65.7±3.1 61.0±1.4 56.2±2.3 64.5
MetaAlign 73.6±0.2 72.7±1.9 63.9±1.0 67.9±4.3 60.4±0.7 65.4±1.8 65.2±0.8 73.2±2.3 60.0±0.6 66.7±2.4 61.2±1.1 56.8±2.1 65.6

DEAL 75.4±0.3 74.6±1.1 66.1±0.6 74.6±0.8 53.8±1.0 69.6±1.8 66.4±0.3 73.9±0.6 61.6±1.4 69.8±0.2 60.7±1.0 58.3±0.9 67.1
CoCo 74.6±0.9 77.2±0.6 64.1±3.4 73.8±1.1 60.5±0.2 71.5±0.7 65.9±0.5 76.0±0.5 61.4±0.4 72.6±0.6 59.6±1.0 64.7±1.0 68.5
SGDA 56.6±0.6 56.9±0.8 55.3±1.2 54.6±0.5 57.9±1.3 58.3±0.4 56.1±0.9 55.9±0.6 54.6±1.3 56.7±0.5 53.3±0.7 56.8±1.1 56.1
DGDA OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
A2GNN 55.4±0.8 56.1±0.6 56.7±1.0 55.3±0.5 54.9±0.7 57.2±0.9 55.7±0.5 56.5±1.3 54.5±0.6 56.8±0.5 56.2±1.0 58.8±0.8 56.1
PA-BOTH 56.1±0.5 56.0±0.4 56.3±0.7 56.4±0.4 56.0±0.6 57.1±0.7 56.2±1.1 58.3±0.9 56.5±0.6 57.2±0.9 56.9±0.4 57.7±0.8 56.8

CoCA 82.3±1.1 85.1±2.3 76.5±1.5 79.7±1.8 71.2±1.9 78.6±2.1 74.3±0.5 82.3±0.4 70.3±2.3 75.4±1.7 71.8±0.3 72.4±1.6 76.7

Table 6: The classification results (in %) on NCI1 under edge density domain shift (source→target).
N0, N1, N2, and N3 denote the sub-datasets partitioned with edge density. Bold results indicate the
best performance.

Methods N0→N1 N1→N0 N0→N2 N2→N0 N0→N3 N3→N0 N1→N2 N2→N1 N1→N3 N3→N1 N2→N3 N3→N2 Avg.

WL subtree 72.6 80.3 62.7 75.5 52.0 63.6 69.1 69.8 70.7 59.4 80.0 70.6 68.9
GCN 49.5±0.4 71.1±0.4 46.8±0.5 33.7±2.8 32.7±0.4 27.4±0.1 56.2±1.5 55.3±0.4 58.2±1.7 51.0±0.2 60.7±3.7 53.2±0.2 49.6
GIN 67.3±2.7 67.9±4.8 61.5±4.2 65.4±3.7 58.9±4.1 61.0±3.4 62.5±3.2 66.2±2.1 69.7±0.9 56.8±0.7 72.4±2.8 64.0±1.6 64.5
GMT 50.3±1.2 42.5±3.4 51.1±3.7 42.5±4.5 56.1±4.7 42.5±4.1 53.2±4.9 51.0±0.2 68.2±0.4 51.0±0.3 68.2±0.5 53.2±0.4 52.5
CIN 51.1±0.2 72.6±0.1 54.0±0.9 72.6±0.2 68.2±0.3 71.5±1.3 55.0±2.1 53.5±1.8 68.2±0.3 52.0±0.3 68.3±0.1 53.6±0.6 61.7

CDAN 59.6±0.3 73.8±0.5 56.7±1.4 73.7±0.3 71.2±0.4 73.2±0.3 55.5±0.2 57.3±1.1 69.9±0.2 54.6±2.0 69.8±1.4 56.6±0.3 64.3
ToAlign 51.0±0.2 27.4±0.1 53.2±0.4 27.4±0.2 68.2±0.3 27.4±0.3 53.2±0.1 51.0±0.2 68.2±0.2 51.0±0.4 68.2±0.3 53.2±0.2 50.0
MetaAlign 65.0±0.7 77.6±1.6 62.0±0.6 77.1±0.9 68.2±0.8 74.5±2.0 64.2±0.9 65.4±0.3 68.0±0.3 56.1±2.3 68.2±0.1 66.2±1.1 67.7

DEAL 65.6±0.6 73.0±0.9 58.0±0.3 71.6±1.6 60.1±2.8 73.1±0.5 62.8±1.0 65.0±2.4 65.8±0.8 53.9±2.6 57.6±2.8 56.7±3.1 63.6
CoCo 70.4±0.7 80.4±0.9 62.4±0.8 75.8±1.2 65.7±2.0 73.7±0.3 67.0±0.8 70.4±0.7 69.7±0.4 62.7±0.9 74.4±0.5 63.7±0.9 69.7
SGDA OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
DGDA OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
A2GNN 59.2±0.8 58.7±0.5 59.0±1.1 58.7±0.8 58.9±0.6 59.2±1.2 58.7±0.6 58.6±1.2 59.0±1.0 59.5±0.6 58.7±0.5 58.5±1.1 58.9
PA-BOTH 57.6±0.5 58.4±0.4 58.9±0.6 57.4±0.6 57.1±1.0 58.4±0.5 58.0±1.0 58.1±0.5 58.4±0.6 57.7±1.1 57.5±0.6 58.0±0.4 58.0

CoCA 78.2±0.9 85.1±0.6 70.9±2.7 82.6±0.4 74.5±0.3 81.4±0.5 73.1±1.5 80.8±1.2 71.8±1.3 72.5±1.9 81.6±1.4 76.5±0.6 77.4

• GMT (Baek et al., 2021): GMT is a model based on multi-head attention, aiming to capture
interactions between nodes based on their structural dependencies.

• CIN (Bodnar et al., 2021): CIN extends the theoretical findings from Simplicial Complexes
to regular Cell Complexes, resulting in improved performance.

• CDAN (Long et al., 2018): CDAN employs an adversarial adaptation framework condi-
tioned on discriminative information extracted from the classifier’s predictions.

• ToAlign (Wei et al., 2021b): ToAlign strives to align the domain by conducting feature
decomposition, incorporating prior knowledge such as the classification task itself.

• MetaAlign (Wei et al., 2021a): MetaAlign disentangles domain alignment and classifi-
cation objectives into two distinct tasks, namely, meta-train and meta-test. It employs a
meta-optimization approach to optimize both tasks.

• DEAL (Yin et al., 2022): DEAL employs adaptive perturbations that undergo adversarial
training against a domain discriminator, aiming to address domain discrepancy.

• CoCo (Yin et al., 2023): CoCo leverages coupled branches and integrated contrastive learn-
ing techniques to mitigate domain discrepancies.

G MORE EXPERIMENTS

Table 6 and 7 shows the comparison performance of CoCA and baselines. From the results, we have
a similar observation as we proposed in Section 5.2. Additionally, we utilize other large datasets (e.g.
reddit threads with 203,088 graphs) that align with the requirements of graph domain adaptation to
validate our method. The results are reported in Table 14. From the results, we find that, the proposed
CoCA still outperforms other baselines.
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Table 7: The classification results (in %) on PROTEINS under edge density domain shift
(source→target). P0, P1, P2, and P3 denote the sub-datasets partitioned with edge density. Bold
results indicate the best performance.

Methods P0→P1 P1→P0 P0→P2 P2→P0 P0→P3 P3→P0 P1→P2 P2→P1 P1→P3 P3→P1 P2→P3 P3→P2 Avg.

WL subtree 68.7 82.3 50.7 82.3 58.1 83.8 64.0 74.1 43.7 70.5 71.3 60.1 67.5
GCN 73.4±0.2 83.5±0.3 57.6±0.2 84.2±1.8 24.0±0.1 16.6±0.4 57.6±0.2 73.7±0.4 24.0±0.1 26.6±0.2 39.9±0.9 42.5±0.1 50.3
GIN 62.5±4.7 74.9±3.7 53.0±4.6 59.6±4.2 73.7±0.8 64.7±3.4 60.6±2.7 69.8±0.6 31.1±2.8 63.1±3.4 72.3±2.7 64.6±1.4 62.5
GMT 73.4±0.3 83.5±0.2 57.6±0.1 83.5±0.3 24.0±0.1 83.5±0.1 57.4±0.2 73.4±0.2 24.1±0.1 73.4±0.3 24.0±0.1 57.6±0.2 59.6
CIN 74.5±0.2 84.1±0.5 57.8±0.2 82.7±0.9 75.6±0.6 79.2±2.2 61.5±2.7 74.0±1.0 75.5±0.8 72.5±2.1 76.0±0.3 60.9±1.2 72.9

CDAN 72.2±1.8 82.4±1.6 59.8±2.1 76.8±2.4 69.3±4.1 71.8±3.7 64.4±2.5 74.3±0.4 46.3±2.0 69.8±1.8 74.4±1.7 62.6±2.3 68.7
ToAlign 73.4±0.1 83.5±0.2 57.6±0.1 83.5±0.2 24.0±0.3 83.5±0.4 57.6±0.1 73.4±0.1 24.0±0.2 73.4±0.2 24.0±0.1 57.6±0.3 59.6
MetaAlign 75.5±0.9 84.9±0.6 64.8±1.6 85.9±1.1 69.3±2.7 83.3±0.6 68.7±1.2 74.2±0.7 73.3±3.3 72.2±0.9 69.9±1.8 63.6±2.3 73.8

DEAL 76.5±0.4 83.1±0.4 67.5±1.3 77.6±1.8 76.0±0.2 80.1±2.7 66.1±1.3 75.4±1.5 42.3±4.1 68.1±3.7 73.1±2.2 67.8±1.2 71.1
CoCo 75.5±0.2 84.2±0.4 59.8±0.5 83.4±0.2 73.6±2.3 81.6±2.4 65.8±0.3 76.2±0.2 75.8±0.2 71.1±2.1 76.1±0.2 67.1±0.6 74.2
SGDA 63.8±0.6 65.2±1.3 66.7±1.0 59.1±1.5 60.1±0.8 64.4±1.2 65.2±0.7 63.9±0.9 64.5±0.6 61.1±1.3 58.9±1.4 64.9±1.2 63.2
DGDA 58.7±0.8 59.9±1.2 57.1±0.6 57.9±0.8 59.2±1.3 58.9±0.4 61.1±1.2 60.3±1.6 58.6±0.9 57.5±1.2 58.4±0.5 62.3±1.5 59.2
A2GNN 65.4±1.3 66.3±1.1 68.2±1.4 66.3±1.2 65.4±0.7 65.9±0.9 66.9±1.3 65.4±1.2 65.6±0.9 65.5±1.2 66.1±2.0 66.0±1.8 66.1
PA-BOTH 63.1±0.7 67.2±1.1 64.3±0.5 72.1±1.8 66.3±0.7 64.1±1.2 69.9±2.1 67.5±1.8 61.2±1.4 67.7±2.3 61.2±1.6 65.5±0.6 65.9

CoCA 76.9±0.5 88.4±2.2 67.2±1.3 88.4±1.6 77.0±0.9 88.4±1.3 69.4±0.8 76.5±1.5 78.8±1.2 76.2±1.8 78.4±0.6 70.8±1.1 78.0

Table 8: The graph classification results (in %) on Mutagenicity under node domain shift
(source→target). P0, P1, P2, and P3 denote the sub-datasets partitioned with node. Bold results
indicate the best performance.

Methods M0→M1 M1→M0 M0→M2 M2→M0 M0→M3 M3→M0 M1→M2 M2→M1 M1→M3 M3→M1 M2→M3 M3→M2 Avg.

WL subtree 78.0 68.7 70.1 70.5 59.0 61.2 71.7 78.0 49.9 56.3 69.4 71.9 67.1
GCN 74.5±0.2 60.8±2.1 69.7±0.4 68.5±1.7 54.1±0.9 55.2±0.9 68.6±1.6 75.5±0.5 51.5±1.3 46.4±1.7 58.6±0.4 60.2±0.2 61.9
GIN 77.9±3.1 70.7±2.4 70.9±0.8 69.2±1.2 64.1±1.0 61.9±2.4 78.5±0.2 79.8±3.3 65.5±2.7 71.5±0.9 69.5±1.8 73.5±2.6 71.1
GMT 67.3±0.2 52.5±0.1 59.9±0.3 47.5±0.2 53.5±0.2 52.5±0.4 59.9±0.1 67.3±0.2 46.7±0.5 67.3±0.3 53.3±0.1 59.9±0.4 57.1
CIN 70.8±1.1 66.9±3.4 61.7±0.6 62.6±2.4 56.3±3.1 62.9±1.3 65.1±1.0 68.8±1.7 56.6±1.4 66.9±1.0 58.1±1.3 62.5±0.9 63.3

CDAN 75.5±0.1 71.3±0.4 70.7±0.3 70.3±0.1 58.7±0.6 58.4±0.6 70.2±0.5 76.1±0.5 58.5±0.6 69.4±1.5 59.0±0.1 63.7±1.4 66.8
ToAlign 67.3±0.2 47.5±0.4 59.9±0.6 47.5±0.5 46.7±0.4 47.5±0.2 59.9±0.7 67.3±0.3 46.7±0.1 67.3±0.4 46.7±0.5 59.9±0.3 55.4
MetaAlign 76.5±0.4 71.8±1.1 71.8±0.8 71.4±0.9 59.3±0.8 63.0±1.0 74.2±1.6 78.0±0.2 61.7±1.2 69.9±1.6 62.2±0.4 68.3±1.5 69.0

DEAL 76.6±0.8 68.8±1.0 69.9±0.4 66.4±0.8 59.3±2.1 64.2±2.2 79.1±0.1 81.9±0.6 64.5±1.1 75.3±0.6 69.8±1.6 76.5±0.2 71.0
CoCo 75.5±0.4 71.7±0.7 68.7±1.1 69.2±2.0 60.8±1.1 65.7±0.3 79.2±1.2 76.8±0.6 63.8±0.5 73.8±0.4 64.6±0.8 70.1±1.1 70.0
SGDA OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
DGDA OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
A2GNN 55.4±0.6 56.3±0.2 55.6±0.8 55.1±0.5 55.3±1.1 55.9±0.4 56.1±0.7 55.7±0.6 57.1±0.3 56.6±1.2 55.2±0.7 56.8±1.0 55.9
PA-BOTH 55.9±1.0 56.0±0.5 56.1±0.7 56.6±1.2 55.9±0.6 56.0±0.7 57.3±0.8 56.8±1.3 55.9±1.2 56.3±1.0 56.4±0.9 57.1±1.3 56.4

CoCA 82.9±1.3 77.5±1.7 79.3±0.5 77.3±0.7 77.4±1.1 74.2±0.9 82.1±0.4 86.1±1.0 77.7±0.8 81.3±1.2 78.5±0.3 81.6±0.7 79.7

H MORE FLEXIBILITY EXPERIMENTS

Figure 5 depicts the comparative results of NCI1 and PROTEINS datasets across different Graph
Neural Network (GNN) models and various kernel methods.

I CASE STUDY

To further elucidate the effective principles of the CoCA model and provide a more intuitive un-
derstanding of its operational mechanism, we showcase the accuracy of pseudo-label data filtered
during the branch coupling module. The results are illustrated in Figure 6, where solid lines denote
the accuracy of pseudo-labels filtered from the MP branch, and dashed lines represent the results
during the SP branch. From Figure 6, we have the following observations: (1) As the iterations of
the filtering process progress, the accuracy of the pseudo-labeled data for both branches shows an
upward trend. This is intuitively understandable, as the quality of the filtered samples improves,
enhancing the predictive capabilities of the model in subsequent steps, thus creating a positive feed-
back loop. (2) In most scenarios, the accuracy of the filtered samples during both the MP and SP
branches exhibits a similar changing trend, indicating mutual influence and reinforcement between
the two branches. (3) Comparatively, the accuracy of samples filtered during the MP branch is
noticeably higher than that of the SP branch. This difference could be attributed to the powerful
information retrieval capability of the GMT employed in the MP branch.

Additionally, we include experiments with GMT as the backbone and demonstrate that our method
still outperforms others under the same backbone, we have ensured a fair and robust comparison.
The results are shown in Table 15. From the results, we can validate the superiority of the proposed
CoCA.
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Table 9: The graph classification results (in %) on NCI1 under node domain shift (source→target).
P0, P1, P2, and P3 denote the sub-datasets partitioned with node. Bold results indicate the best
performance.

Methods N0→N1 N1→N0 N0→N2 N2→N0 N0→N3 N3→N0 N1→N2 N2→N1 N1→N3 N3→N1 N2→N3 N3→N2 Avg.

WL subtree 73.5 79.5 64.8 75.9 58.9 68.4 72.5 72.0 69.7 63.6 76.1 74.0 70.7
GCN 51.2±0.1 71.1±0.4 42.7±0.4 27.8±0.3 32.1±1.1 27.0±0.2 55.2±0.6 50.5±0.7 50.9±1.1 49.1±0.3 67.1±0.6 57.3±0.6 48.5
GIN 66.9±2.2 78.9±2.3 60.3±3.1 72.8±0.3 51.1±0.6 68.6±1.8 63.5±2.1 67.8±3.7 65.9±1.7 60.3±1.8 71.1±1.1 67.2±1.3 66.2
GMT 50.9±0.5 73.0±0.1 57.3±0.3 73.0±0.4 66.5±0.2 73.0±0.3 72.4±0.6 50.9±0.1 66.5±0.4 58.3±0.2 66.5±0.5 72.8±0.3 65.1
CIN 60.1±0.7 73.1±1.1 57.5±0.2 73.0±0.4 66.5±1.1 73.1±0.7 58.5±2.1 52.9±1.4 66.5±1.3 56.1±0.1 66.5±0.4 57.4±0.7 63.4

CDAN 57.1±0.4 75.0±0.7 61.2±0.4 73.7±0.1 68.2±0.4 73.3±0.3 60.2±0.1 56.5±1.4 68.2±0.2 53.9±1.4 68.4±0.2 59.6±0.5 64.6
ToAlign 49.1±0.3 27.0±0.6 57.3±0.5 27.0±0.4 66.5±0.5 27.0±0.2 57.3±0.3 49.1±0.4 66.5±0.2 49.1±0.3 66.5±0.1 57.3±0.4 50.0
MetaAlign 65.6±1.8 77.7±0.2 63.5±1.4 75.7±0.7 66.4±0.3 74.0±0.3 66.3±1.1 64.6±1.2 66.7±0.2 59.5±2.6 66.7±0.3 66.7±2.7 67.8

DEAL 64.0±0.9 71.9±1.2 61.4±0.3 73.3±0.3 64.9±1.4 71.9±1.9 62.5±2.1 66.2±0.5 54.2±1.4 55.6±0.8 64.6±0.4 58.8±0.4 64.1
CoCo 69.7±0.1 80.4±0.4 64.7±1.2 76.5±0.4 65.0±1.7 73.9±0.3 68.9±1.3 70.7±0.9 68.2±1.2 61.4±1.7 73.0±0.1 65.2±0.9 69.8

SGDA OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
DGDA OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
A2GNN 59.0±0.6 58.3±1.1 58.5±0.8 58.6±1.3 58.7±1.0 59.0±0.7 58.5±1.1 58.7±1.5 59.1±0.6 58.3±1.2 58.6±0.7 59.0±0.5 58.7
PA-BOTH 57.7±0.4 58.0±0.6 57.9±0.5 56.9±0.8 57.4±0.6 58.3±0.5 57.1±1.2 58.8±0.9 58.1±0.7 58.0±0.9 57.9±0.5 58.3±0.8 57.9

CoCA 82.4±0.7 85.9±1.0 70.4±0.6 80.4±1.5 74.2±0.5 86.3±0.7 79.1±1.1 78.4±1.6 75.5±0.5 81.9±1.7 80.9±1.4 75.2±0.8 79.2

Table 10: The graph classification results (in %) on PROTEINS under node domain shift
(source→target). P0, P1, P2, and P3 denote the sub-datasets partitioned with node. Bold results
indicate the best performance.

Methods P0→P1 P1→P0 P0→P2 P2→P0 P0→P3 P3→P0 P1→P2 P2→P1 P1→P3 P3→P1 P2→P3 P3→P2 Avg.

WL subtree 69.1 59.7 61.2 75.9 41.6 83.5 61.5 72.7 24.7 72.7 63.1 62.9 62.4
GCN 73.7±0.3 82.7±0.4 57.6±0.2 84.0±1.3 24.4±0.4 17.3±0.2 57.6±0.1 70.9±0.7 24.4±0.5 26.3±0.1 37.5±0.2 42.5±0.8 49.9
GIN 71.8±2.7 70.2±4.7 58.5±4.3 56.9±4.9 74.2±1.7 78.2±3.3 63.3±2.7 67.1±3.8 35.9±4.2 61.0±2.4 71.9±2.1 65.1±1.0 64.5
GMT 73.7±0.2 82.7±0.1 57.6±0.3 83.1±0.5 75.6±1.4 17.3±0.6 57.6±1.5 73.7±0.6 75.6±0.4 26.3±1.2 75.6±0.7 42.4±0.5 61.8
CIN 74.1±0.6 83.8±1.0 60.1±2.1 78.6±3.1 75.6±0.2 74.8±3.7 63.9±2.7 74.1±0.6 57.0±4.3 58.9±3.3 75.6±0.7 63.6±1.0 70.0

CDAN 75.9±1.0 83.1±0.6 60.8±0.6 82.6±0.2 75.8±0.3 70.9±2.4 64.7±0.3 77.7±0.6 73.3±1.8 75.4±0.7 75.8±0.4 67.1±0.8 73.6
ToAlign 73.7±0.4 82.7±0.3 57.6±0.6 82.7±0.8 24.4±0.1 82.7±0.3 57.6±0.4 73.7±0.2 24.4±0.7 73.7±0.3 24.4±0.5 57.6±0.4 59.6
MetaAlign 74.3±0.8 83.3±2.2 60.6±1.7 71.2±2.1 76.3±0.3 77.3±2.4 64.6±1.2 72.0±1.0 76.0±0.5 73.3±1.8 74.4±1.7 56.9±1.4 71.7

DEAL 75.4±1.2 78.0±2.4 68.1±1.9 80.8±2.1 73.8±1.4 80.6±2.3 65.7±1.7 74.7±2.4 74.7±1.6 71.0±2.1 68.1±2.6 70.3±0.4 73.4
CoCo 74.8±0.6 84.1±1.1 65.5±0.4 83.6±1.1 72.4±2.9 83.1±0.4 69.7±0.5 75.8±0.7 71.4±2.3 73.4±1.3 72.5±2.7 66.4±1.7 74.4
SGDA 64.2±0.5 61.0±0.7 66.9±1.2 61.9±0.9 65.4±1.6 66.5±1.0 64.6±1.1 60.1±0.5 66.3±1.3 59.3±0.8 66.0±1.6 66.2±1.3 64.1
DGDA 58.1±0.4 58.6±0.6 58.9±1.0 61.0±0.9 59.6±0.7 60.2±1.5 56.7±0.6 56.8±0.8 58.1±0.4 58.8±1.1 57.0±1.2 62.2±1.6 58.9
A2GNN 65.7±0.6 65.9±0.8 66.3±0.9 65.6±1.1 65.2±1.4 65.6±1.3 65.9±1.7 65.8±1.6 65.0±1.5 66.1±1.2 65.2±1.9 65.9±1.8 65.7
PA-BOTH 61.0±0.8 61.2±1.3 60.3±0.6 66.7±2.1 63.7±1.5 61.9±2.0 66.2±1.4 69.9±2.3 68.0±0.7 69.4±1.8 61.5±0.4 67.6±1.0 64.9

CoCA 77.6±0.9 85.3±1.1 70.5±0.6 84.8±1.4 76.6±0.7 83.9±0.9 71.9±0.6 76.9±1.1 76.1±0.8 73.7±1.0 77.0±1.2 72.3±0.7 77.2

J IMPACT STATEMENTS

This work introduces an innovative approach for unsupervised graph domain adaptation, with the
objective of advancing the machine learning field, particularly in the domain of transfer learning.
The proposed method has the potential to substantially enhance the efficiency and scalability of
transfer learning tasks. The societal implications of this research are multifaceted. The introduced
method has the capacity to contribute to the development of more efficient and effective machine
learning systems, with potential applications across various domains, including healthcare, educa-
tion, and technology. Such advancements could lead to improved services and products, ultimately
benefiting society as a whole.
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Table 11: The graph classification results (in %) on Mutagenicity under graph flux domain shift
(source→target). M0, M1, M2, and M3 denote the sub-datasets partitioned with graph flux. Bold
results indicate the best performance. OOM means out of memory.

Methods M0→M1 M1→M0 M0→M2 M2→M0 M0→M3 M3→M0 M1→M2 M2→M1 M1→M3 M3→M1 M2→M3 M3→M2 Avg.

WL subtree 74.4 72.9 64.9 68.9 49.1 59.8 70.0 70.5 76.9 60.7 82.6 70.5 68.5
GCN 63.1±1.0 68.1±0.3 48.8±0.4 62.6±0.3 29.1±2.1 38.8±0.3 54.3±0.1 61.8±0.5 30.4±0.2 43.6±0.3 67.8±0.1 57.9±1.3 52.2
GIN 68.1±1.6 74.2±0.6 59.6±2.3 65.2±1.4 40.3±2.7 54.6±1.8 61.3±1.1 63.1±3.2 71.6±3.0 60.0±1.4 79.7±1.3 69.2±0.7 63.9
GMT 56.5±0.3 60.7±0.4 57.9±0.2 40.2±1.2 80.6±0.4 39.3±0.6 57.9±1.1 45.0±2.1 80.6±0.5 43.5±1.1 80.6±1.4 57.9±2.2 58.4
CIN 64.1±3.0 61.3±0.5 63.5±2.3 63.6±1.5 78.2±0.5 63.9±2.7 60.6±1.5 57.0±0.4 73.7±3.2 61.4±1.0 79.1±2.1 61.1±1.9 65.6

CDAN 62.8±0.3 68.2±0.6 63.6±0.6 66.9±1.7 81.2±0.5 65.0±2.1 65.8±0.2 64.7±1.2 80.7±0.1 62.5±2.3 82.4±0.4 66.0±0.5 69.1
ToAlign 43.5±0.4 39.3±0.7 57.9±1.0 39.3±1.4 80.6±1.1 39.3±0.7 57.9±0.3 43.5±2.1 80.6±1.8 43.5±0.4 80.6±0.9 57.9±1.0 55.3
MetaAlign 63.1±2.5 68.8±2.6 63.3±0.6 65.2±2.2 81.9±0.1 64.5±1.4 65.0±0.6 68.3±0.6 81.0±0.3 65.2±0.2 82.5±0.4 68.3±0.6 69.7

0 DEAL 64.6±0.5 65.5±0.8 64.2±1.0 63.1±2.1 82.7±0.8 62.8±0.7 70.2±0.4 67.3±0.4 79.6±0.1 63.9±1.4 75.7±0.3 67.0±0.2 68.9
CoCo 65.7±1.8 74.1±0.7 65.1±0.2 67.6±0.9 80.5±1.3 56.5±1.7 68.4±1.3 70.7±0.4 78.9±1.2 67.3±0.3 83.7±0.1 71.5±0.9 070.8
SGDA OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
DGDA OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
A2GNN 55.4±0.3 55.7±0.7 55.6±0.5 54.7±0.8 63.3±1.0 56.6±0.9 55.3±0.6 55.7±0.5 65.5±0.8 56.6±1.2 69.9±1.4 55.0±0.5 58.3
PA-BOTH 55.9±0.9 56.0±0.4 56.4±0.8 56.2±0.5 67.1±1.2 59.8±0.7 57.3±0.9 56.0±1.2 69.9±1.5 58.0±0.8 67.5±0.9 56.4±1.0 59.7

CoCA 77.1±0.7 79.7±1.0 75.5±0.5 77.3±1.7 84.9±1.5 75.1±1.1 77.6±1.2 75.7±0.8 84.1±2.0 74.4±0.9 86.2±0.5 78.4±0.8 78.8

Table 12: The graph classification results (in %) on FRANKENSTEIN under graph flux domain
shift (source→target). F0, F1, F2, and F3 denote the sub-datasets partitioned with graph flux. Bold
results indicate the best performance. OOM means out of memory.

Methods F0→F1 F1→F0 F0→F2 F2→F0 F0→F3 F3→F0 F1→F2 F2→F1 F1→F3 F3→F1 F2→F3 F3→F2 Avg.

WL subtree 58.4 51.8 58.7 51.3 64.3 48.9 64.9 58.9 78.5 54.6 57.1 61.3 59.1
GCN 56.2±0.2 59.0±1.3 41.4±0.4 45.8±0.5 21.2±0.7 41.4±1.7 42.5±1.6 49.0±0.4 24.1±1.6 44.8±0.7 81.4±0.3 58.8±0.2 47.1
GIN 60.7±0.6 58.0±1.0 61.0±2.3 58.9±2.3 77.5±2.2 45.3±2.5 62.5±0.2 59.2±3.0 71.4±2.8 49.8±1.7 77.9±1.4 59.9±0.5 61.8
GMT 56.2±0.4 59.8±0.2 41.4±0.3 59.8±0.7 21.2±1.1 59.8±0.5 41.4±0.2 56.2±0.2 21.1±1.1 56.2±1.4 78.8±0.6 58.6±0.8 50.9
CIN 57.8±1.1 60.1±0.7 58.6±0.2 59.8±0.2 78.9±0.1 59.9±0.4 58.8±0.3 57.4±0.5 78.8±0.6 57.7±1.2 78.8±0.7 60.1±1.1 63.9

CDAN 60.9±0.7 59.8±0.5 61.1±1.3 61.0±0.2 80.5±1.2 59.8±0.3 64.0±0.4 61.4±0.1 81.8±0.1 58.0±1.2 81.8±0.3 63.8±0.7 66.1
ToAlign 56.2±0.2 59.8±0.2 41.4±0.1 59.8±0.2 21.1±0.3 59.8±0.7 41.4±1.1 56.2±1.2 21.1±0.4 56.2±0.6 21.1±1.3 41.4±0.5 44.6
MetaAlign 57.3±2.4 59.1±1.1 60.9±1.5 60.2±0.4 80.3±2.1 60.4±0.6 64.0±1.1 64.9±0.6 81.4±1.2 58.5±2.3 80.8±0.5 63.4±1.8 65.9

DEAL 65.3±0.6 64.0±0.2 61.3±0.6 61.0±0.9 78.3±2.1 55.5±1.8 64.9±1.2 64.8±1.1 80.1±1.3 60.1±2.1 81.8±0.4 65.7±0.7 66.9
CoCo 63.5±2.4 61.5±1.0 64.4±1.0 61.2±0.7 81.7±0.4 55.0±1.6 64.5±0.6 64.6±1.1 80.4±1.5 60.6±1.5 81.5±0.6 62.2±1.7 66.8
SGDA 55.7±0.5 55.4±0.9 54.8±0.3 55.3±0.7 56.1±0.5 55.4±0.8 53.2±1.1 55.1±0.6 58.4±0.4 55.3±0.5 57.7±1.0 54.9±0.6 55.7
DGDA OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
A2GNN 56.0±0.3 56.3±0.6 55.6±0.4 57.3±0.7 58.6±0.6 55.9±0.9 55.5±0.5 55.3±0.2 61.2±1.3 56.6±0.9 65.5±0.8 56.0±1.0 57.5
PA-BOTH 56.3±0.5 56.9±0.7 56.4±0.6 59.9±1.0 60.3±1.3 56.2±0.8 57.7±0.4 56.6±0.8 66.7±0.9 58.3±1.2 69.9±1.5 59.0±0.6 59.6

CoCA 74.2±1.3 75.6±1.4 78.2±0.6 75.7±0.5 86.1±1.2 79.4±1.2 78.1±0.3 82.4±1.3 85.7±1.0 78.7±1.9 86.5±0.9 81.8±2.8 80.2

Table 13: The graph classification results (in %) on PROTEINS under graph flux domain shift
(source→target). P0, P1, P2, and P3 denote the sub-datasets partitioned with graph flux. Bold
results indicate the best performance.

Methods P0→P1 P1→P0 P0→P2 P2→P0 P0→P3 P3→P0 P1→P2 P2→P1 P1→P3 P3→P1 P2→P3 P3→P2 Avg.

WL subtree 73.4 72.7 70.5 73.0 72.8 59.0 66.5 71.6 60.6 58.3 76.3 64.0 68.2
GCN 57.2±2.7 62.8±1.7 67.6±0.5 58.5±1.3 67.7±0.4 61.0±0.3 65.0±0.8 51.1±1.3 65.6±2.2 55.4±0.4 68.5±3.1 67.7±0.5 62.3
GIN 69.3±2.3 65.8±0.8 69.3±1.7 69.8±1.6 71.4±2.1 52.4±1.8 64.0±2.4 65.7±3.2 53.4±3.7 58.1±0.8 72.6±0.3 64.6±2.3 64.7
GMT 67.8±1.3 69.6±0.7 74.5±0.5 67.6±2.5 69.9±2.1 55.8±0.7 74.8±1.4 60.1±2.4 71.4±3.3 51.5±0.5 69.0±0.5 63.3±1.3 66.3
CIN 62.6±0.5 59.4±0.5 64.0±0.9 58.5±1.8 71.9±1.7 60.6±2.1 63.7±0.5 61.2±2.1 73.2±0.5 57.7±3.0 68.1±0.4 58.5±2.7 63.3

CDAN 75.6±0.5 70.5±0.6 71.6±0.5 69.8±0.5 76.6±0.8 71.4±0.3 71.4±0.3 72.1±0.3 75.5±0.7 74.3±0.8 78.2±1.1 74.0±0.8 73.4
ToAlign 51.1±0.6 55.8±0.1 63.3±0.2 55.8±0.4 68.1±0.7 55.8±0.3 63.3±0.5 51.1±0.2 68.1±1.0 51.1±0.4 68.1±0.6 63.3±0.2 59.6
MetaAlign 59.4±1.1 62.2±1.0 68.9±0.3 65.3±0.8 75.1±0.7 67.5±2.1 70.9±1.4 60.6±2.3 72.4±1.4 59.4±0.6 74.6±0.7 67.8±1.3 67.0

DEAL 76.6±0.4 62.8±0.8 72.8±1.3 67.3±2.2 77.2±2.3 67.6±1.9 71.2±1.6 56.0±2.5 73.9±2.1 66.0±0.3 76.4±1.1 65.5±2.1 69.4
CoCo 73.4±0.5 73.6±0.8 73.4±1.0 71.6±0.5 75.2±1.6 74.6±0.3 70.7±0.8 68.4±1.5 75.0±0.2 72.7±0.4 76.3±1.1 75.0±1.8 73.3
SGDA 63.8±0.8 65.2±0.5 66.7±0.3 59.1±1.2 62.3±0.7 60.6±0.4 65.2±0.9 61.8±1.0 64.5±1.3 60.9±0.8 59.4±1.2 64.9±1.1 62.9
DGDA 59.4±0.7 62.3±1.1 63.1±0.5 61.2±0.9 60.4±0.6 58.8±1.0 60.3±0.8 63.5±1.2 61.9±0.8 60.4±1.6 64.2±1.3 62.6±1.4 61.5
A2GNN 65.4±0.7 66.4±1.1 65.7±1.3 66.0±0.6 64.9±1.2 65.8±1.6 65.5±1.8 66.0±1.4 65.8±2.1 65.6±1.9 66.1±1.7 66.0±2.0 65.8
PA-BOTH 66.9±0.5 67.1±0.8 67.3±1.1 65.8±0.7 69.1±1.0 66.1±1.4 66.7±1.3 67.4±1.4 66.3±1.8 66.0±1.2 66.8±0.8 66.3±1.5 66.8

CoCA 75.8±0.2 76.6±0.5 74.8±1.3 79.1±0.9 80.2±0.6 78.0±1.2 75.1±0.5 76.2±1.0 79.9±0.9 78.3±0.6 80.2±1.6 74.4±0.6 77.4

Table 14: The classification results (in %) on reddit threads under edge density domain shift
(source→target). R0, R1, R2 denote the sub-datasets partitioned with edge density. Bold results
indicate the best performance.

Methods R0→R1 R1→R0 R0→R2 R2→R0 R1→R2 R2→R1 Avg.

CDAN 68.4±1.4 69.7±1.2 66.3±1.0 64.5±1.1 69.2±1.2 70.7±1.1 68.1
DEAL 70.7±1.3 71.4±1.0 70.5±1.0 71.3±0.9 72.4±0.9 74.8±1.2 71.9
CoCo 72.1±1.0 72.8±0.9 71.3±1.2 70.6±1.1 73.3±0.9 74.6±0.8 72.5

CoCA 77.6±1.1 78.3±1.3 74.1±1.2 69.5±1.1 75.7±1.3 77.1±1.0 75.4
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(c) Accuracy on NCI1 (d) Accuracy on PROTEINS(a) Accuracy on NCI1 (b) Accuracy on PROTEINS

Figure 5: The performance with different GNNs and kernels on different datasets. (a), (b) are the
performance of different GNNs, (c), (d) are the performance of different graph kernels.
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Figure 6: The accuracy of filtered samples on Mutagenicity and FRANKENSTEIN datasets. The
solid line denotes the ratio of correct labels for samples filtered in MP branch, and the dotted line
denotes the ratio of correct labels for samples filtered in SP branch.

Table 15: The classification results (in %) on Mutagenicity under edge density domain shift
(source→target). M0, M1, M2, and M3 denote the sub-datasets partitioned with edge density. Bold
results indicate the best performance.

Methods M0→M1 M1→M0 M0→M2 M2→M0 M0→M3 M3→M0 M1→M2 M2→M1 M1→M3 M3→M1 M2→M3 M3→M2 Avg.
GMT 69.0±4.0 67.4±3.8 60.3±4.2 66.5±3.8 54.9±1.6 54.8±3.6 65.6±4.2 70.4±3.2 64.0±2.3 56.8±4.3 64.7±1.5 61.1±3.5 63.0
DEAL 75.6±0.8 72.0±1.1 68.4±1.6 72.0±1.1 58.3±0.8 65.6±1.8 76.7±0.9 79.3±0.6 65.2±1.3 72.3±1.5 69.4±1.1 75.8±1.2 70.9
CoCo 77.8±0.6 76.3±1.2 67.8±2.5 75.3±1.2 65.7±1.8 74.3±0.9 76.4±1.1 77.8±2.7 66.4±1.1 71.7±1.8 63.3±2.1 76.4±1.0 72.4
CoCA 82.4±1.5 80.8±1.2 74.5±1.7 79.6±2.1 74.8±2.2 79.2±0.7 83.4±0.9 85.7±0.6 73.9±0.8 81.3±1.5 77.8±0.7 83.3±1.4 79.7
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