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ABSTRACT

Voltage prediction in distribution grids is a critical yet difficult task for main-
taining power system stability. Machine learning approaches, particularly Graph
Neural Networks (GNNs), offer significant speedups but suffer from poor general-
ization when trained on limited or incomplete data. In this work, we systematically
investigate the role of inductive biases in improving a model’s ability to reliably
learn power flow. Specifically, we evaluate three physics-informed strategies: (i)
power-flow-constrained loss functions, (ii) complex-valued neural networks, and
(iii) residual-based task reformulation. Using the ENGAGE dataset, which spans
multiple low- and medium-voltage grid configurations, we conduct controlled ex-
periments to isolate the effect of each inductive bias and assess both standard
predictive performance and out-of-distribution generalization. Our study provides
practical insights into which model assumptions most effectively guide learning
for reliable and efficient voltage prediction in modern distribution networks.

1 INTRODUCTION

Distribution networks are shifting from passive delivery systems to actively managed infrastruc-
tures shaped by high DER penetration, electrification, and frequent reconfigurations. These condi-
tions create volatile conditions and tight real-time decision windows. Voltage prediction is a central
task in this setting because maintaining voltages within operational limits is essential for efficiency,
equipment safety, and system stability. For an n-bus distribution system, typically containing only
a slack bus and load buses, the AC power-flow problem determines bus voltage magnitudes and
phase angles from specified injections based on a coupled system of 2(n − 1) nonlinear equations.
Classical solvers can be accurate but scale poorly and may fail to converge under realistic operating
conditions. Simplified linear methods are computationally efficient but unreliable for distribution
grids, where higher resistance-to-reactance (R/X) ratios cause more voltage drops, which can lead
to greater active power losses and impact voltage stability. These limitations have motivated in-
creasing attention to machine learning approaches, which approximate the mapping from loads and
network parameters to voltages without repeated numerical iterations. Recent studies, particularly
those using Graph Neural Networks (GNNs), demonstrate that ML-based solvers can achieve orders-
of-magnitude speedups while retaining strong accuracy and flexibility (Donon et al., 2020; Jeddi &
Shafieezadeh, 2021). Unlike tabular models that must be retrained for each topology, GNNs natu-
rally adapt to varying grid sizes and configurations with little structural modification. This adapt-
ability makes them well-suited for distribution systems, which are characterized by heterogeneity
and frequent reconfigurations. However, purely data-driven models suffer from poor generalization,
especially under unseen configurations or operating conditions, a key barrier for deployment in real
grids. This motivates a systematic investigation into how inductive biases can guide ML models
toward more accurate, generalizable, and reliable predictions.

Inductive biases are assumptions embedded in a model’s architecture, training process, or data rep-
resentation that guide learning toward specific solutions. For voltage prediction, relevant induc-
tive biases include the integration of graph-based models, physical laws, or operational constraints.
These biases help models better capture the underlying structure of the problem, leading to improved
performance and robustness. Among inductive biases, physics-informed approaches have received
particular attention as they embed prior knowledge of the system’s governing equations to enforce
physical consistency in a supervised or unsupervised training regime. Nevertheless, most prior re-
search has focused narrowly on equation-constrained losses, without investigating alternative ways
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of embedding physical knowledge. Moreover, little is known about the empirical impact of these
inductive biases on generalization performance, which is crucial for deployment in real-world grids
where unseen configurations are the norm.

In this work, we investigate the role of inductive biases in learning voltage prediction for distribution
grids. Specifically, we analyze three classes of physics-informed inductive biases:

1. Power-flow-constrained loss functions, which incorporate the physical equations directly
into the optimization objective.

2. Complex-valued neural networks, which align model representations with the natural
complex-valued structure of electrical quantities.

3. Task reframing as residual prediction, where the model learns to approximate deviations
from a baseline solver rather than absolute voltages.

For each inductive bias, controlled experiments are conducted across a dataset of common distribu-
tion grid topologies, evaluating standard predictive accuracy as well as generalization performance
under unseen network configurations 1. Due to their inherent generalization advantage, we focus
on Graph Neural Network architectures in this study. By isolating and comparing the presented in-
ductive biases, we provide a systematic assessment of their effectiveness in guiding learning toward
physically meaningful and generalizable solutions, highlighting new pathways for learning voltage
prediction. Ultimately, our findings provide concrete guidance for the design of ML models that
are not only fast and accurate but also reliable for safety-critical, real-world deployment in modern
distribution grids. In this light, we make the following contributions:

• We provide a systematic assessment of standard accuracy and out-of-distribution general-
ization of physics-informed inductive biases for voltage prediction across heterogeneous
distribution networks.

• We contribute the first complex-valued neural network architecture for distribution grid
voltage prediction and demonstrate its generalization advantage.

• We derive actionable design guidelines, identifying which methods most effectively en-
hance real-world reliability and where more research is required.

2 LITERATURE REVIEW

2.1 ROLE OF INDUCTIVE BIASES IN MACHINE LEARNING

Inductive biases are the foundational assumptions embedded in a machine learning model or algo-
rithm. They encode prior knowledge, constraints, or assumptions to guide how a model generalizes
from training data to unseen examples. Thus, the design and selection of inductive biases allow
models to perform well in varied settings, boosting generalization and interpretability, while also
imposing tradeoffs between efficiency and flexibility. These inductive biases are essential when
learning from finite data, as they help constrain the hypothesis space and enable effective learning.
Without assumptions, there are infinitely many functions that can fit the training data equally well,
so machine learning models need a way to prioritize certain hypotheses over others.

Inductive biases have been systematically applied via algorithmic design (i.e., neural network ar-
chitecture), training strategies (e.g., regularization), priors in Bayesian inference, and even feature
selection. For example, one of the simplest inductive biases often followed in machine learning
is Occam’s razor (Blumer et al., 1987), which suggests the preference for simpler functions over
more complex ones. Occam’s razor is often implemented via regularization techniques that penal-
ize model complexity, such as L1 or L2 regularization, and is one of the first principles taught in
machine learning to overcome overfitting. However, inductive biases can take many other forms,
such as the smoothness bias in kernel methods (Schölkopf & Smola, 2002), sparsity bias in Lasso
regression (Tibshirani, 1996), maximum margin in SVMs (Cortes & Vapnik, 1995), and locality
assumptions in nearest neighbors algorithms (Cover & Hart, 1967). In deep learning, architectural
choices such as convolution or recurrent layers impose structural priors, often enabling remarkable

1All experiment models and code available at: [Under review]
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generalization without explicit specification of inductive biases. When the assumptions align with
the structure of the domain, certain biases can accelerate model training or make algorithms more
sample-efficient; without them, a model may simply memorize the training data (overfit) or fail to
learn altogether. However, inappropriate bias can lead to poor performance if the assumptions do
not match the underlying data distribution. This highlights the importance of carefully selecting and
designing inductive biases to suit the specific problem and data at hand.

2.2 PHYSICS-INFORMED MACHINE LEARNING IN POWER SYSTEMS

Physics-informed (PI) machine learning integrates physical laws and domain knowledge into ma-
chine learning models to enhance their performance, interpretability, and reliability (Karniadakis
et al., 2021). This approach is particularly relevant in engineering domains like power systems,
where physical principles govern system behavior. By embedding these principles into the learn-
ing process, this technique aims to provide more trustworthy models that can generalize better to
unseen scenarios. In power systems, physics-informed neural networks (PINN) have been applied
to various tasks, including state estimation, dynamics analysis, and optimal power flow (Huang &
Wang, 2023). Although these approaches claim to improve model generalization, there have been no
dedicated generalization studies of these methods for power systems, thus motivating our systematic
assessment. In the following, we review three strategies of physics-informed machine learning that
are particularly relevant to our study of voltage prediction in distribution grids.

2.2.1 POWER-FLOW-CONSTRAINED LOSS FUNCTION

Constraining loss functions is one of the most common approaches to physics-informed machine
learning in power systems and was highlighted as a core PINN paradigm by a recent review paper
(Huang & Wang, 2023). This is typically achieved by assigning physical meanings to the variables in
the output neural networks (NNs) and embedding the governing equations of these physical variables
as an additional loss term. The loss function can thus be formally written as:

L = Lpred(ŷ,y) + λLreg(W) + γLphys(X, ŷ)

where Lpred is a typical loss function (such as mean-squared error) which measures the difference
between the predicted and target output (ŷ and y respectively); Lreg is a regularization term (such as
L1 or L2 norm) imposed on the weights W of the neural network; and Lphys is a physical regulariza-
tion term that quantifies the degree to which the model’s predictions violate the governing physical
equations, with X representing the input features. λ and γ are thus hyperparameters that balance
the contributions of the different loss components.

For power flow estimation, Lphys is generally composed of the power balance equations of the AC
power flow formulation, or a linearized version of this. More specifically, using P as the active
power, Q as the reactive power, V as the voltage magnitude, and θ as the voltage angle, we can
express the AC power flow loss term as follows:

LPi
= Pi −

N∑
k=1

|Vi||Vk| (Gik cos(θi − θk) +Bik sin(θi − θk))

LQi
= Qi −

N∑
k=1

|Vi||Vk| (Gik sin(θi − θk)−Bik cos(θi − θk))

Lphys =

N∑
i=1

(L2
Pi

+ L2
Qi
)

where i is a particular bus in an N -bus network, and Gik and Bik are the real and imaginary parts
of the admittance between buses i and k, respectively.

Since this method applies to the training process itself, it is model-agnostic and can be adapted for
arbitrary neural network architectures. Due to the ubiquity of this approach, we only highlight the
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most relevant studies here. GraphNeuralSolver (Donon et al., 2020) was one of the first works to ap-
ply this technique for power flow estimation, using their own custom GNN architecture and serving
as a benchmark for many future works in this direction. (Jeddi & Shafieezadeh, 2021) integrates this
method into a Graph Attention Network (GAT) model in order to learn the importance of neighbour-
ing nodes, while (Böttcher et al., 2023) adopts a randomized, recurrent GNN architecture, so that its
predictor learns how to solve the power flow problem from many different starting points. All three
works solve the problem in a strictly unsupervised manner, completely skipping the need for labeled
training data and the Lpred term. Other notable works include (Zamzam & Sidiropoulos, 2020) and
(Habib et al., 2024) who successfully apply this technique to distribution grid state estimation using
non-GNN architectures. However, many of these works focus their analysis on the transmission
system context, and none of them evaluate the generalization performance across a structured suite
of distribution grid configurations.

2.2.2 COMPLEX-VALUED NEURAL NETWORKS

Complex-Valued Neural Networks (CVNNs) extend traditional real-valued neural networks by al-
lowing weights, biases, and activations to be complex numbers. This enables the model to capture
phase relationships and interactions between real and imaginary components more naturally, poten-
tially leading to improved performance in tasks involving complex-valued data. CVNNs have been
shown to be effective in various domains, including computer vision, speech and signal processing,
medical image reconstruction, and control systems (Lee et al., 2022).

A typical layer computes

z′ = Wz + b, W ∈ Cm×n, z ∈ Cn,

which in real–imaginary form expands as

z′ = (Wrx−Wiy) + i(Wry +Wix), (z = x+ iy).

Nonlinearities are either applied directly component-wise, σ(z) = σ(x) + iσ(y), or in polar form,
σ(z) = f(|z|)eig(∠z), where f and g are nonlinear functions applied to the magnitude and phase,
respectively. Training employs Wirtinger derivatives, which calculates partial derivatices based on
the complex weights and their complex conjugates, allowing standard gradient-based optimization
in C. Normalization and loss functions are defined analogously to the real case, often by acting
on real and imaginary parts separately or jointly via |z|. For more details on CVNNs, the reader is
referred to (Lee et al., 2022). In power systems, CVNNs naturally accommodate phasor quantities
such as complex voltages and power flows, preserving their inherent algebraic structure.

To date, there are relatively few works that explore complex-valued neural networks for power sys-
tem applications, despite the fact that electrical quantities such as voltages and currents are in-
herently complex-valued. For distribution grid voltage prediction, this allows voltage magnitudes
and angles to be modeled jointly, rather than separately as in real-valued models. Though not di-
rectly a neural network model, the recently-proposed Physics-Informed Symbolic Regression (PISR)
method leverages complex-valued representations to learn analytical approximations of the power
flow equations (Eichhorn et al., 2025). The model embeds complex information directly into the
symbolic regression process, drastically elevating the performance and allowing the model to learn
more reliably with less data samples compared to the MLP baseline. This study is limited to two
small-scale systems, but the results are indicative of the promise of complex-valued representa-
tions for power system tasks. A much earlier work made a first attempt at a CVNN for load flow
prediction and noted improved reliability compared to a real valued neural network baseline (Cey-
lan et al., 2005). However, both models were very small MLPs, consisting of one hidden layer
of maximum 8 neurons, and evaluation was performed on a toy 6-bus network. Thus, the results
seem hardly tractable for a real-world setting. Lastly, a more comprehensive study is presented in
(Wu et al., 2023), which introduces a complex-valued spatio-temporal graph convolutional network
(Cplx-STGCN) for the task of power system state forecasting (PSSE) and highlights the advantages
of this model against several baselines. However, their performance increase cannot be attributed
to the complex valued network, as their CplxFNN model performs poorly and they do not evaluate
real-valued counterpart of Cplx-STGCN. Similarly, their evaluation is limited to a single IEEE Ad-
ditionally, the evaluation examines a single IEEE 118-bus transmission system. Furthermore, the
PSSE task is fundamentally different from our setting as it aims to predict unknown voltages in a
network using historical voltages and a set of available measurements, while our voltage prediction
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task aims to estimate complex nodal voltages given only complex power measurements, effectively
learning the power balance equations. To our knowledge, this study contributes the first evaluation
of complex valued neural networks for voltage prediction in a realistic distribution grid setting and
illustrates their efficacy in robust voltage estimation for out-of-distribution use cases.

2.2.3 RESIDUAL PREDICTION

Residual prediction reframes the learning task from predicting absolute values to predicting devia-
tions from a known baseline or approximate solution. This can simplify the learning problem, as
the model only needs to learn the residuals, which are often smaller in magnitude and may exhibit
simpler patterns than the original target variable. The approach has been popularized in models
such as ResNet (He et al., 2016) and XGBoost (Chen & Guestrin, 2016), which have had significant
impacts in domains like computer vision and time-series forecasting.

Due to the complex physics of power systems, machine learning training can be unstable and heav-
ily reliant on initializations and hyperparameters. Currently, state of the art power-flow methods
typically predict the absolute voltage targets directly. However, voltage magnitudes and angles are
generally close to a constant baseline set by the slack bus, thus motivating the use of residuals. By
focusing on capturing deviations, the redundant learning of the trivial baseline is eliminated, thereby
reducing complexity. Residual learning was employed in (Chen & Zhang, 2023) for probabilistic
power flow and simulated on standard transmission system test cases. Beyond voltage prediction,
(Eddin Za’ter et al., 2025) use residual learning to learn the nonlinear residual between a given DC-
OPF solution and the corresponding AC-OPF solution. When compared against models that directly
learn the AC-OPF solution, the residual-learning framework achieved a 35–45% reduction in volt-
age, power, and feasibility errors, demonstrating its effectiveness for OPF prediction. The success
of this approach suggests that residual learning may also be advantageous for voltage prediction.

3 METHODOLOGY

3.1 EXPERIMENT SETUP

The experimental overview is presented in Figure 1. We evaluate a baseline model and physics-
informed variants in the tasks of in-distribution and out-of-distribution voltage prediction. For con-
trolled comparison of the three inductive biases, we conduct a series of experiments using a consis-
tent dataset, model architecture, and evaluation metrics. The ENGAGE dataset is a collection of low
and medium voltage grids based on the SimBench networks. This test suite was introduced by Okoy-
omon & Goebel (2025) to evaluate generalization capabilities of power flow models across several
distribution grid configurations and promote robust grid planning and operation. With 3000 sample
networks derived from 10 base distribution grids, the dataset contains test cases with varying sizes,
topologies, and electrical characteristics, making it ideal for evaluating generalization performance.
A summary of the experiment data and task formulation can be found in Appendix C.

We first establish a baseline to identify how well each model performs under known network con-
figurations and learned data distributions. We randomly shuffle the data with all grids and adopt a
75/15/10 train/validation/test split for model training. To evaluate generalization performance, we
conduct an out-of-distribution (OOD) experiment. We use a leave-one-out approach where we train
on all but one of the base grid configurations and test on the held-out configuration. We thus ap-
ply the same train/validation/test split, with 300 samples (10%) in the held-out configuration. This
approach allows us to assess how well each model can generalize to unseen grid topologies and
operating conditions, which is critical for real-world deployment. Though a one-to-one grid evalua-
tion is possible, previous studies indicate that current ML solvers are not mature enough for this use
case (Böttcher et al., 2023; Hansen et al., 2022; Jeddi & Shafieezadeh, 2021; Okoyomon & Goebel,
2025). As such, we focus on the OOD setting for our generalization study.

To evaluate model performance, we employ the standard metric of Root Mean Squared Error
(RMSE) between the predicted and true voltage magnitudes and angles across all buses in the net-
work. Additionally, we report the training time, inference time, and model capacity to assess com-
putational efficiency. To evaluate generalization performance, the RMSE of each held-out configu-
ration is compared against the RMSE on the baseline test set. A tighter and lower RMSE distribution
on the held-out configuration indicates better generalization.
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OOD setting
Leave-one-out

ENGAGE Dataset
10 Base SimBench grids
3000 sample networks

Known topology setting
All 10 grids for training

Baseline Complex

Physics-
informed

Train & Test

RMSE 𝑉, 𝜃Residuals

Physics-informed 
and residuals

Complex and 
residuals

Physics-informed 
and complex

For each model 

Figure 1: Experiment methodology for in-distribution and out-of-distribution model evaluation

3.2 MODEL DESIGN

We provide a baseline GNN architecture to serve as a control model for our experiments. We employ
a GraphConv-based message-passing architecture with batch normalization, following the standard
GNN framework established by Morris et al. (2019). This provides strong representational capacity
while maintaining theoretical grounding in GNN expressivity research. As input, the model accepts
the active and reactive power injections and topological distance to slack bus as node features, and
the line resistances and reactances as edge features. Additionally, every graph has access to the slack
bus information (slack voltage magnitude, angle, resistance, and reactance) as global features. The
model’s task is then to predict the voltage magnitude and angle at every bus.

The model utilizes two-stage preprocessing and postprocessing layers, implemented using fully con-
nected networks with ReLU activations and batch normalization. The core processing consists of 7
128-dimensional message-passing layers using the GraphConv update scheme. To attribute gener-
alization performance to inductive bias rather than the specific GNN backbone, we validate results
through additional experimentation on a GAT backbone (Brody et al., 2021) in Appendix B.2.

For all models, we keep the architecture as similar as possible to the baseline, only changing the
components necessary to implement each inductive bias. This allows us to isolate the effects of each
inductive bias while minimizing confounding factors. As an additional analysis, we present results
of combined inductive bias models in Appendix B.1. For all models, we apply uniform training
procedures to ensure a fair comparison, using MSE as the supervised loss function, 3000 epochs,
batch sizes of 128, and an Adam optimizer with an adaptive learning rate starting from 10−3 until
10−5. Using a hyperparameter tuning, we determine the optimal model configuration and ensure
strong performance on standard accuracy metrics before proceeding with the experiment variants.

3.3 POWER-FLOW-CONSTRAINED LOSS MODEL

We implement a loss function that combines the standard supervised loss with a physics-based reg-
ularization that penalizes violations of the AC power flow equations. More specifically, we train the
baseline GNN as usual, and then fine-tune the model using the physics informed loss for 20 epochs.
This limit was deliberately chosen to ensure this phase acts solely as a structural refinement, prevent-
ing it from becoming a deep re-optimization of the landscape. We observed no significant gain in
OOD performance when extending this phase up to 30 epochs. This scheme proved to be much more
reliable than training completely unsupervised or with a weighted physics loss, since these methods
are highly reliant on hyperparameters. Furthermore, since the data is derived using pandapower
(Thurner et al., 2018), we replicate their AC power balance equations and model assumptions to
implement our loss function. We ensure that the physics informed loss function provides near-zero
values for the ground truth voltage targets before using it for model training.

3.4 COMPLEX-VALUED MODEL

We implement a GNN architecture that operates on complex-valued inputs and outputs, using
complex-valued layers and activation functions. This approach allows the model to naturally cap-
ture the relationships between voltage magnitudes and angles, which are inherently complex-valued
quantities in power systems. Where applicable, we use the complexPyTorch library (Popoff, 2021)
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Table 1: Model Performance Comparison: OOD Experiments Statistical Summary

Model RMSE VM (p.u.) RMSE VA (deg)
Min Max Mean Std Min Max Mean Std

Base 0.0087 0.0287 0.0179 0.0062 0.6049 2.7343 1.3271 0.6458
Res 0.0094 0.0389 0.0183 0.0083 0.6101 4.2366 1.3419 1.0598
Cplx 0.0102 0.5842 0.0715 0.1802 0.0093 0.0651 0.0212 0.0179
PFLoss 0.0070 0.0266 0.0166 0.0060 0.6013 2.3928 1.2628 0.5595

and implement custom complex-valued GNN layers such as complex batch normalization and com-
plex GraphConv to ensure compatibility with the base GNN framework.

3.5 RESIDUALS MODEL

We implement a GNN architecture that predicts the residuals as deviations from the slack bus volt-
age. This simplifies the learning task, as the model only needs to learn the differences from a known
baseline (the slack bus voltage), which are often smaller in magnitude and may exhibit simpler pat-
terns than the original target variable. We implement the residuals model by enforcing a single skip
connection that connects the neural network’s output to the slack bus reference value (Donti et al.,
2017). This way, the model learns to output residuals, which are added to the slack bus reference val-
ues to produce the final voltage predictions. This allows us to keep the input data format consistent
across all models, simplifying data handling and preprocessing.

4 RESULTS

We evaluate three inductive-biases for voltage prediction in distribution grids compared to a purely
data-driven baseline model. We report performance for prediction on grids with familiar structures
and on unseen (i.e. OOD) grids. In this section, we present general model performance results using
predictive performance and model efficiency metrics. For a complete view of individual benchmark-
ing results and additional experimentation, we refer the reader to Appendices A and B.

Table 1 provides a statistical summary of the generalization experiments, while Figure 2 displays
overall performance metrics. Voltage magnitude RMSE is presented using p.u. values, meaning that
results are normalized with respect to the reference voltage of the network, allowing for interpreta-
tion as relative errors (e.g., 0.01 p.u. is equivalent to 1% of the nominal voltage).

In terms of voltage magnitude, the supervised physics-informed variant achieves the highest relia-
bility across the simulated topologies, indicating greater robustness as a magnitude predictor. The
complex-valued model attains the best angle accuracy, with an improvement of two orders of mag-
nitude across all experiments, at the cost of extra computational burden. Although the residual
learning model performs the best in certain cases, it does not provide any significant advantages.

4.1 BASELINE MODEL

When predicting voltage magnitude on known grid configurations, the baseline GNN attains an
average RMSE of 0.0067p.u. for voltage magnitude, and 0.1573◦ for voltage angle. For the
OOD experiments, the baseline yields a mean performance of RMSE(|V |) = 0.0179 p.u. and
RMSE(∠V ) = 1.3271◦. Notably, this model proves to be quite stable in its OOD prediction of
voltage magnitude. The model contains 302.7K parameters and its training and inference times are
approximately 1200s and 2ms for all experiments.

4.2 COMPLEX-VALUED LEARNING

The complex-valued model excels on both magnitude and angle prediction across test cases. It
achieves 0.00239◦ angle RMSE and 0.00555 p.u. magnitude RMSE when predicting on known
grid configurations, proving to be the best among all methods. Across the generalization experi-
ments, we observe a very tight distribution for both voltage magnitude and angle. One bad per-
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(a) Voltage Prediction

(b) Model Efficiency

Figure 2: Summary of physics-informed model benchmarking metrics across all experiments

formance outlier drives the RMSE(|V |) up to 0.0715 p.u, while RMSE(∠V ) remains stable at
0.0212◦. These results underscore the remarkable angle predictive performance of this model for
both familiar and unseen networks. This performance gain comes with the highest computational
burden, producing an average of approximately 4x training time, 3x inference time, and 2x model
capacity compared to the other variants.

4.3 PHYSICS-INFORMED LEARNING

The supervised physics-informed variant exhibits an increase in performance compared to the base-
line model for almost all experiments, illustrating the impact of this PI fine-tuning mechanism. For
the known grids setting, it reaches RMSE(|V |) = 0.00638 p.u. and RMSE(∠V ) = 0.1488◦.
Across OOD benchmarks, the method exhibits the most accurate and stable performance for voltage
magnitude prediction, with RMSE(|V |) = 0.0166 p.u., and the smallest standard deviation. When
considering voltage angle, its mean performance (RMSE(∠V ) = 1.263◦) is only outperformed by
the complex-valued model. Model efficiency metrics are very similar to the baseline model, with a
slight increase in training time (≈ 100s) due to the physics-informed fine-tuning step.

4.4 RESIDUAL LEARNING

The residual approach provides performance comparable to the baseline model. When predicting on
familiar grids, it attains RMSE(|V |) = 0.00662 p.u. and RMSE(∠V ) = 0.1573◦, showing nearly
identical performance to the baseline. Across generalization experiments, accuracy and stability
are also similar to the baseline, with RMSE(|V |) = 0.01828 p.u. and RMSE(∠V ) = 1.342◦.
However, it is worth noting that, unlike the baseline, the residuals model proved to be the best
performing model in certain situations, as made evident in the LV-semiurb5 and LV-urban6 OOD
experiments. Model efficiencies are comparable to the baseline.

5 DISCUSSION

5.1 INDUCTIVE BIASES FOR VOLTAGE PREDICTION

When estimating voltage magnitude and angle for networks similar to those seen in training, our
new complex-valued model provides the most accurate predictions. Voltage angle is particularly

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

impressive, significantly outperforming the other variants by approximately two orders of magni-
tude. Generally, all physics-informed inductive biases seem to improve the results of the already-
performant baseline model for the known grids experiment case. This demonstrates that all three
inductive biases can be used to assist in data-driven learning of power grid characteristics.

When looking at the results of the generalization experiments, the presence of unseen grid topologies
clearly influences model accuracy, with average performance dropping by one order of magnitude
on average. In this setting, the physics-informed variant attains the best performance on average for
voltage magnitude and the lowest variability across individual OOD grids, though the improvements
are minor. The complex-valued model continues to thrive in voltage angle prediction. In fact,
the complex-valued model’s results on the OOD tests greatly surpass even the predictions of other
models under known grid configurations, highlighting its fidelity for voltage angle prediction.

In light of these results, we propose that machine learning models leverage complex-valued neural
networks to truly capture the interdependence between the real and imaginary components of the
voltage phasors. Fine-tuning using physics-informed losses can also be a worthwhile add-on to
enhance model accuracy, so long as one has accurate physical equations and relatively accurate
initial predictive performance.

5.2 REAL-WORLD APPLICATION

The complex-valued variant demonstrates noteworthy performance overall, achieving both high ac-
curacy and stability across most tasks. This model surpasses the ML-based power-flow implemen-
tations of previous comparable studies, particularly in voltage angle prediction (Lin et al., 2024;
Suri & Mangal, 2025; Okhuegbe et al., 2024; Hu et al., 2020). Contrary to prevalent data-driven
approaches, the complex-valued variant naturally captures the inherent coupling between voltage
magnitude and angle, treating them as interdependent variables. This precision helps satisfy a crit-
ical requirement in distribution system voltage prediction, where real power flows depend on angle
differences and incorrectly estimated angles can lead to instability, congestion, or cascading failures.

The proposed physics-informed variant demonstrates particularly robust performance in predicting
voltage magnitudes across diverse grid topologies. The incorporation of the AC power flow equa-
tions as a regularization term leads the learning process to remain consistent with Kirchhoff’s laws,
thereby reducing the likelihood of systematic deviations that might exist otherwise when extrapolat-
ing to unseen grid configurations.

Over known topologies, all models achieve a voltage magnitude RMSE of roughly 0.5%, matching
the accuracy of iMSys household meters (EFR GmbH, 2022) and aligning with the practical noise
floor of commercially deployed measurement hardware. Voltage angle errors are also well below the
1◦ metering standard, reaching RMSE values up to three orders of magnitude below this threshold.
These findings support the use of such models for distribution grid operation in familiar networks,
as they can safely be deployed with limited uncertainty. However, under the OOD testing, voltage
angle errors increase by one order of magnitude and only the complex-valued model reliably stays
under this 1◦ threshold over all cases. A similar observation can be made for voltage magnitude
prediction, as even the best performing model produces errors that are higher than the 0.5% mea-
surement standard by one order of magnitude. This highlights the significance of comprehensive
generalization studies for robust assessment of machine learning in distribution grids and represents
a key finding for establishing practically viable solutions for real-world deployment. Unlike previ-
ous works that primarily assess performance on seen or similarly sized topologies, we systematically
show that state of the art GNN architectures do not attain the necessary level of accuracy in OOD
scenarios. While physics-informed inductive biases may improve the generalization capability, only
for the complex valued model did performance stay below the desired threshold for voltage angle,
while all other variants exceed acceptable error margins. This indicates the need for a shift in focus
in machine learning methodology from standard predictive accuracy to generalization performance
assessment in order to take meaningful steps towards real-world application.

As an additional interpretation, we compare the best performing models for voltage prediction to a
commonly used simplification of the full AC Power Flow solution: DC Power Flow. The DC power
flow approximation linearizes the full AC method such that a non-iterative, convergent solution can
be found. However, this simplification ignores reactive power and assumes small angle differences
and a fixed voltage magnitude of 1.0 p.u. for all buses, and thus often leads to inaccurate predictions

9
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(a) Voltage Magnitude (b) Voltage Angle

Figure 3: Comparison of Best-Performing models to DC PF

in situations with larger voltage drops. We present this baseline not due to its sophistication but
rather due to its relevance as an empirically observed baseline for generalization failure, as estab-
lished in prior benchmarking studies (Hansen et al., 2022; Yaniv et al., 2023; Okoyomon & Goebel,
2025). These works commonly observe the limitation that GNN-based power flow methods perform
well on known-configurations but are ineffective in predicting PF from unseen grids during training,
and are usually outperformed by simplified models such as DC PF. Looking at Figure 3, we see that
our PFLoss GNN solver is able to significantly outperform DCPF for known networks and match its
performance for unseen grids. Additionally, by using complex-valued neural networks, we are able
to outperform DC PF by one order of magnitude in voltage angle prediction across all test cases.
These results emphasize the promise of physics-informed models as a robust replacement for exist-
ing analytical models. For a secondary analytical baseline, we compare performance results to the
well-established LinDistFlow method (Baran & Wu, 1989) in Appendix D.2.

5.3 CONCLUSION AND FUTURE WORK

This study evaluates three inductive-bias strategies for voltage prediction in distribution grids. Us-
ing a dataset of heterogeneous low- and medium-voltage networks, we assess performance across
familiar topologies and out-of-distribution cases. Our findings highlight complementary strengths.
Our novel complex-valued model achieves state-of-the-art angle prediction for both known and
unknown grids, surpassing all other approximations, though at higher computational cost. The
physics-informed variant consistently improves magnitude prediction and exhibits the lowest vari-
ability across unseen topologies, demonstrating robustness rooted in physical consistency, but this
is only a slight improvement above the strong baseline. In contrast, the residual learning approach
provided limited overall gains, though it excelled in select cases and seems to be able to be syn-
ergetic with other methods. Collectively, these results show that carefully chosen inductive biases
substantially enhance the reliability of machine learning models for power system analysis.

Future research should extend these insights along three directions. Firstly, a deeper examination
of physics-constrained training regimes is needed, including theoretical analysis and open bench-
marking, to clarify when physics-informed losses improve generalization. For our particular study,
this variant was the most sensitive to hyperparameters and required significant knowledge of the
pandapower modeling library to produce an effective solution. Even then, the physics-informed
loss could not be used competitively in a purely unsupervised manor, with performance results two
orders of magnitude worse than the other variants at best. This finding comes at no surprise when
considering the non-linear, non-convex nature of the AC power balance equations, but is nonetheless
in conflict with several other works that tout its success. Secondly, evaluation on non-European grid
datasets (e.g. Smart-DS) would test the applicability of these methods in unbalanced, three-phase
networks with different structural characteristics. Finally, exploring hybrid models that combine
multiple inductive biases could yield situation-dependent predictors, though early results suggest
that such benefits are non-additive and grid-specific (Appendix B.1).

By systematically studying inductive biases, this work contributes to the development of machine
learning models that are not only accurate but also robust enough for deployment in real-world
power system operations. Ultimately, our results indicate that physics-informed and complex-valued
approaches can move ML-based solvers beyond academic benchmarks toward practical tools for
reliable voltage prediction in distribution grids.
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A COMPLETE BENCHMARKING RESULTS

We present the full benchmarking results in Table 2, which provides the raw performance metrics
for all inductive bias models across all testing grids, using RMSE, training time, inference time, and
model capacity as evaluation criteria.

Table 2: Raw Model Performance Results by Testing Grid

Testing Grid Model RMSE VM RMSE VA Train (s) Inference (ms) Capacity
LV-rural1 Base 0.00868 2.73428 1191.9 1.93844 302.7K
LV-rural1 Cplx 0.58421 0.06514 4722.3 6.66419 603.4K
LV-rural1 PFLoss 0.00703 2.39278 1287.7 1.93717 302.7K
LV-rural1 Res 0.03893 4.23657 1192.3 1.96439 302.7K

LV-rural2 Base 0.02866 1.70101 1280.7 1.96457 302.7K
LV-rural2 Cplx 0.01459 0.01416 4486.7 6.70308 603.4K
LV-rural2 PFLoss 0.02658 1.68133 1376.7 1.96591 302.7K
LV-rural2 Res 0.01786 1.38314 1447.8 1.99109 302.7K

LV-rural3 Base 0.01650 0.97081 1419.6 1.94195 302.7K
LV-rural3 Cplx 0.01612 0.01459 4153.4 6.60584 603.4K
LV-rural3 PFLoss 0.01787 0.95436 1517.4 1.93280 302.7K
LV-rural3 Res 0.01662 0.93536 1213.8 1.96289 302.7K

LV-semiurb4 Base 0.01690 0.75439 1179.3 2.01071 302.7K
LV-semiurb4 Cplx 0.01657 0.01053 4564.2 6.82323 603.4K
LV-semiurb4 PFLoss 0.01536 0.78076 1275.9 2.00547 302.7K
LV-semiurb4 Res 0.01854 0.95156 1186.3 2.03135 302.7K

LV-semiurb5 Base 0.02154 0.60486 1137.9 1.97208 302.7K
LV-semiurb5 Cplx 0.01590 0.00933 4244.1 7.29975 603.4K
LV-semiurb5 PFLoss 0.01914 0.60126 1233.5 1.98107 302.7K
LV-semiurb5 Res 0.01481 0.61009 1134.1 2.00147 302.7K

LV-urban6 Base 0.01000 0.62547 1165.8 2.11327 302.7K
LV-urban6 Cplx 0.01129 0.01110 4493.8 6.80414 603.4K
LV-urban6 PFLoss 0.01118 0.63158 1265.2 2.03692 302.7K
LV-urban6 Res 0.00937 0.67909 1164.8 2.01710 302.7K

MV-comm Base 0.01396 1.25189 1138.5 1.95523 302.7K
MV-comm Cplx 0.01045 0.02395 4253.3 6.92224 603.4K
MV-comm PFLoss 0.01068 1.14607 1234.6 1.96308 302.7K
MV-comm Res 0.01269 1.02931 1138.9 1.98173 302.7K

MV-rural Base 0.02256 1.45830 1145.9 1.96252 302.7K
MV-rural Cplx 0.01637 0.01055 4303.7 6.70011 603.4K
MV-rural PFLoss 0.02293 1.31355 1242.5 1.96917 302.7K
MV-rural Res 0.02361 0.94275 1143.2 1.98348 302.7K

MV-semiurb Base 0.01742 1.65200 1138.9 1.97044 302.7K
MV-semiurb Cplx 0.01917 0.03934 4189.4 6.64684 603.4K
MV-semiurb PFLoss 0.01465 1.61223 1235.0 1.96650 302.7K
MV-semiurb Res 0.01872 1.62399 1139.8 1.98686 302.7K

MV-urban Base 0.02322 1.51757 1131.7 1.93205 302.7K
MV-urban Cplx 0.01017 0.01314 4083.5 6.55564 603.4K
MV-urban PFLoss 0.02069 1.51453 1227.6 1.95075 302.7K
MV-urban Res 0.01166 1.02719 1313.9 1.96254 302.7K

All (Known) Base 0.00674 0.15726 1125.2 1.96604 302.7K
All (Known) Cplx 0.00555 0.00239 4311.9 6.71587 603.4K
All (Known) PFLoss 0.00638 0.14876 1221.8 1.95872 302.7K
All (Known) Res 0.00662 0.15726 1128.9 1.99554 302.7K
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B ADDITIONAL EXPERIMENTS

B.1 HYBRID MODELS

The previously-introduced physics-informed models only consider one variant per inductive bias,
which naturally leaves the question of whether combining them may result in improved performance.
As a result, we implement and evaluate all pairwise combinations of our physics-informed variants
to create physics-informed hybrid models. Namely, we present three novel hybrids: Cplx + PFLoss,
Cplx + Res, and PFLoss + Res. To our knowledge, no previous study has introduced such models
for the task of distribution grid voltage prediction.

Table 3: OOD Performance of Hybrid vs Non-Hybrid Inductive Bias Models

Model RMSE VM (p.u.) RMSE VA (deg)
Min Max Mean Std Min Max Mean Std

Base 0.0087 0.0287 0.0174 0.0063 0.6049 2.7343 1.3059 0.6813
Res 0.0094 0.0389 0.0190 0.0085 0.6101 4.2366 1.3769 1.1180
Cplx 0.0104 0.5842 0.0783 0.1897 0.0093 0.0651 0.0221 0.0188
PFLoss 0.0070 0.0266 0.0166 0.0060 0.6013 2.3928 1.2628 0.5595

Cplx + PFLoss 0.0095 0.1450 0.0342 0.0414 0.0098 0.2996 0.0465 0.0894
Cplx + Res 0.0083 0.0414 0.0201 0.0110 0.0103 0.0298 0.0188 0.0059
PFLoss + Res 0.0093 0.0244 0.0163 0.0049 0.6363 2.5982 1.1516 0.6145

In Table 3 we compare the original single-inductive bias models (in the top section) to the new hybrid
models (in the bottom). The best result in each column is highlighted in bold while the second-best
is underlined. We observe from the table that augmenting the complex and physics models with the
residual-learning technique enhances the performance of each of these models, resulting in the best
performance for their respective subtasks (voltage magnitude prediction for Phys-Loss + Residuals
and voltage angle prediction for Complex + Residuals). However, combining the previously-best-
performing Phys-Loss and Complex models does not yield any added benefit, and results in a model
that generally weakens the advantage of each original bias. Ultimately, the Phys-Loss + Residuals
and the Complex + Residuals model are the most stable for generalization for voltage magnitude
and angle, respectively, but they present no significant advantage over the single-inductive bias
models. These results further emphasize the consistent improvement in voltage angle prediction
due to complex-valued networks, as all complex-valued model errors are magnitudes lower than the
real-valued counterparts.

The full raw results for each hybrid model experiment are presented in Table 9.

B.2 CROSS-ARCHITECTURE VALIDATION

As the backbone of our main inductive bias models, we use a GraphConv architecture for message
passing between nodes. The node update scheme of the GraphConv message passing mechanism is
as follows:

x′
i = W1xi +W2

∑
j∈N(i)

eijxj

Where:

• x′
i is the output feature vector for target node i after the GraphConv layer

• xi is the input feature vector for target node i

• N (i) ∪ {i} is the set of node i’s neighbors (including i itself)

• eij is the pre-determined edge weighting of source node j’s message to target node i

• W1 is the learnable target weight matrix applied to the target node’s features, xi

• W2 is the learnable source weight matrix applied to the aggregated source node features
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As cross-architecture ablation study, we re-run the baseline and all single inductive bias models on
a GAT backbone, since GAT represents a different class of GNNs (when compared to GraphConv)
that uses input-dependent weighting rather than fixed/learned shared weights for all neighbours. The
node update scheme of the GAT message passing mechanism is as follows:

x′
i =

∑
j∈N (i)∪{i}

αijWsxj

αij =
exp

(
a⊤LeakyReLU (Wtxi +Wsxj)

)∑
k∈N (i)∪{i} exp (a

⊤LeakyReLU (Wtxi +Wsxk))

Where:

• x′
i is the output feature vector for target node i after the GATv2 layer

• xi is the input feature vector for target node i

• N (i) ∪ {i} is the set of node i’s neighbors (including i itself)

• αij is the normalized attention coefficient (weight) of source node j’s message to target
node i

• Wt is the target linear weight matrix (learnable parameter) applied to the target node’s
features, xi

• Ws is the source linear weight matrix (learnable parameter) applied to the source node’s
features, xj

• a is the attention weight vector (learnable parameter) used to compute the attention score

The results in Table 4 confirm the efficacy of these inductive biases. Most notably, the complex-
valued GAT similarly outperforms the other variants by one to two orders of magnitude in the task
of voltage angle prediction. Although we can observe the same fine-tuning effect of the physics-
informed loss, its benefits are comparatively mild in this benchmark, with the residuals model pro-
viding the largest benefit for voltage magnitude prediction. As in the original GraphConv bench-
mark, the physics-informed loss model improves against all non-complex-valued models in the task
of voltage angle prediction. Furthermore, the baseline GNN is always outperformed by at least
one inductive bias model, with the most significant improvement coming from the complex-valued
model. The results confirm that we can observe non-architecturally specific trends, validating that
the generalization benefits stem from the biases themselves, not the specific GNN backbone.

Table 4: OOD Performance of GAT-backbone Models

Model RMSE VM (p.u.) RMSE VA (deg)
Min Max Mean Std Min Max Mean Std

GAT 0.0121 0.1630 0.0341 0.0457 0.4316 3.5972 1.3452 1.0874
GAT-Cplx 0.0104 22.4246 2.2593 7.0854 0.0097 0.6084 0.0781 0.1866
GAT-PFLoss 0.0092 0.1417 0.0368 0.0420 0.4773 3.2362 1.2649 0.9726
GAT-Res 0.0098 0.0656 0.0248 0.0193 0.7012 8.2566 2.3707 2.4294

The full raw results for each GAT model experiment are presented in Table 10.

B.3 MODEL CAPACITY

Due to the representation of complex values as pairs of real numbers in computing systems, training
and deploying complex-valued neural networks comes at an extra computational cost (Section 4.2).
Particularly, experiment results show that the number of parameters in such models is roughly double
of their real-valued counterparts. To ensure that the observed performance benefits of the complex-
valued model is not attributed to its increased model capacity, we present extra experiment results
comparing the original baseline and complex valued models with a larger baseline model. The
dimension of the baseline model message passing layers was increased by 50%, from 128 to 192,
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Table 5: Model Capacity Performance Comparison

Model Capacity RMSE VM (p.u.) RMSE VA (deg)
Min Max Mean Std Min Max Mean Std

Base 302.7K 0.0087 0.0287 0.0179 0.0062 0.6049 2.7343 1.3271 0.6458
Base-L 624.2K 0.0112 0.1208 0.0281 0.0336 0.5568 18.7405 2.6622 5.6551
Cplx 603.4K 0.0102 0.5842 0.0715 0.1802 0.0093 0.0651 0.0212 0.0179

resulting in a model capacity of 624.2K and making it more comparable to the 603.4K complex
model. The results in Table 5 confirm that the improved predictive accuracy is unlikely due to an
increase in model capacity.

C EXPERIMENT SETTING

C.1 DATASET

Table 6: ENGAGE Dataset Statistics

Grid Type Buses Lines Voltage R/X Line Loading
(kV) Ratio Min (%) Max (%) Avg (%)

LV1 Rural 15 14 0.4 2.41 0.15 65.28 16.70
LV2 Rural 97 96 0.4 2.55 0.07 57.69 9.93
LV3 Rural 129 128 0.4 2.55 0.06 92.09 17.42
LV4 Semi-urban 44 43 0.4 2.52 0.73 99.99 29.98
LV5 Semi-urban 111 110 0.4 1.58 0.01 91.10 19.56
LV6 Urban 59 58 0.4 1.56 0.25 99.83 22.15
MV1 Rural 97 102 20.0 2.62 0.08 48.46 10.21
MV2 Semi-urban 120 127 20.0 2.78 0.01 88.82 18.53
MV3 Urban 136 148 10.0 1.13 0.05 99.99 15.60
MV4 Commercial 106 113 20.0 1.92 0.01 99.30 13.84

As depicted in Table 6, the ENGAGE dataset is a heterogenous distribution grid dataset, with 10
unique base distribution grids varying in size and type (Okoyomon, 2025). All grids are generated
by applying Powerdata-gen (Donon, Balthazar, 2022) to the low- and medium-voltage distribution
networks from SimBench’s scenario 1 (future grid with normal increase of distributed energy re-
sources). Each grid type has 300 test cases with varying network loading conditions. Thus, our
”leave-one-out” protocol tests scale generalization, as models trained on pools of smaller grids are
tested on larger grids and vice versa. These distribution networks have fundamentally different char-
acteristics than transmission networks, as distribution grids have much lower voltage levels, tend to
be more radial in structure, and have much higher R/X ratios (approx. 0.1-0.3 is typical for trans-
mission grids while distribution grids can have 1.0-5.0 or more, leading to large voltage drops).

Each graph in the ENGAGE dataset is represented as a PyTorch Geometric Data object. Since we are
dealing with voltage prediction in distribution grids, there are only PQ buses and the slack bus. Addi-
tionally, we store the slack information globally and add the minimum hops to the slack bus for every
bus as an additional feature. The model task is to use the bus information (data.x), network connec-
tivity (data.edge index), line information (data.edge attr), and global information (data.slack info)
to predict the output voltages at every bus (data.y). To assist the physics-informed loss formulation,
we additionally include the underlying PYPOWER case file information (data.ppci) that were used
to model the networks in pandapower. This allows us to correctly formulate our PyTorch power
balance equation implementation, since different modeling frameworks make different network as-
sumptions.
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Table 7: PyTorch Geometric Data Object Attributes

Attribute Dimension Description / Features
x (N, 3) Node features.

N is the number of nodes/buses.
Features: [p mw, q mvar, hops to slack]

edge index (2, 2E) Graph connectivity in COO format.
E is the number of lines.
Edges are directed.

edge attr (2E, 4) Edge features.
E is the number of lines.
Features: [r pu, x pu]

slack info (4) Static network-wide parameters.
Parameters: [slack vm pu, slack va degree,

slack r pu, slack x pu]

y (N, 2) Target values for each node.
N is the number of nodes/buses.
Labels: [vm pu, va degree]

ppci N/A Internal pypower casefile used by pandapower2

for power flow (net[" ppc"]["internal"]).

Table 8: Bus types and their attributed in AC Power Flow

Bus type P Q V θ

Slack (ref) Unknown Unknown Given Given
PV (gen) Given Unknown Given Unknown
PQ (load) Given Given Unknown Unknown

C.2 VOLTAGE PREDICTION TASK FORMULATION

The objective of AC power flow analysis is to determine the active power, reactive power, voltage
magnitude, and voltage angle of every bus in a power network. For every bus, there is a set of known
and unknown parameters, differing based on bus type (see Table 8) and the task is to estimate the
unknowns. This can be modeled as a node regression task, using buses as nodes and lines as edges.
Given a set of buses in a network, N , and lines connecting them, E , Equations 1–4 must be satisfied.

pnet,i = |vi|
n∑

j=1

|vj |(Gij cos θij +Bij sin θij), i ∈ N . (1)

qnet,i = |vi|
n∑

j=1

|vj |(Gij sin θij −Bij cos θij), i ∈ N . (2)

pij = |vi||vj |(Gij cos θij + sin θij)−Gij |vi|2, (i, j) ∈ E . (3)

qij = |vi||vj |(Gij sin θij −Bij cos θij) + |vi|2(Bij − bs,ij), (i, j) ∈ E (4)

Where:

2See https://pandapower.readthedocs.io/en/v2.0.0/powerflow/ac.html
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• pnet,i is the net active power injections at bus i

• qnet,i is the net reactive power injections at bus i

• pij is the active power flows on line (i, j)

• qij is the reactive power flows on line (i, j)

• |vi| is voltage magnitude at bus i

• θi is the voltage phase angle at bus i

• θij is the voltage angle difference between buses i and j

• Gij is the real part of the admittance between buses i and j

• Bij is the imaginary part of the admittance between buses i and j

• bs,ij is the line shunt susceptance between buses i and j

D ANALYTICAL MODELS

D.1 DC POWER FLOW FORMULATION

As an analytical baseline, we employ the DC Power Flow (DCPF) model, a widely used linearization
of the AC power flow equations typically applied in transmission system analysis. We utilize the
implementation provided by the pandapower library (Thurner et al., 2018).

The DCPF model is derived from the full AC power flow equations (Equations 1–4) by applying
three simplifying assumptions:

1. Lossless Lines: The line resistance is negligible (rij ≈ 0), implying Gij ≈ 0.

2. Flat Voltage Profile: Voltage magnitudes are fixed at |vi| ≈ 1.0 p.u. for all buses.

3. Small Voltage Angles: The phase angle differences are small, such that sin(θi − θj) ≈
θi − θj and cos(θi − θj) ≈ 1.

Under these assumptions, the reactive power flows (Q) and voltage magnitude variations are decou-
pled and ignored. The system reduces to a set of linear equations relating active power injection Pi

to voltage angles θ:

pnet,i =
∑
j∈Ni

Bij(θi − θj) =
∑
j∈Ni

θi − θj
xij

(5)

D.2 LINDISTFLOW FORMULATION

To benchmark the performance of the proposed neural network models, we implement the Lin-
earized Distribution Flow (LinDistFlow) approximation as an analytical baseline. This formulation
is derived from the standard DistFlow equations originally introduced by Baran & Wu (1989) for
radial distribution networks. LinDistFlow linearizes the non-linear AC power flow equations by ne-
glecting second-order loss terms, providing a convex approximation suitable for voltage estimation
in distribution grids.

D.2.1 VOLTAGE MAGNITUDE ESTIMATION

Consider a radial distribution network represented by a directed graph G = (N , E), where N is
the set of buses and E is the set of lines. For each line (i, j) ∈ E connecting bus i to bus j, let
zij = rij + jxij denote the complex impedance. Let Vi be the complex voltage magnitude at bus i,
and let Sij = Pij + jQij be the complex power flowing from bus i to bus j.
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The original non-linear DistFlow equations describing the voltage drop and power balance are:

V 2
j = V 2

i − 2(rijPij + xijQij) + (r2ij + x2
ij)

P 2
ij +Q2

ij

V 2
i

(6)

Pij = PL
j +

∑
k:(j,k)∈E

(
Pjk + rjk

P 2
jk +Q2

jk

V 2
j

)
(7)

Qij = QL
j +

∑
k:(j,k)∈E

(
Qjk + xjk

P 2
jk +Q2

jk

V 2
j

)
(8)

where PL
j and QL

j represent the active and reactive load consumption at node j.

The LinDistFlow model introduces the assumption of negligible line losses. Particularly, since
branch flows in p.u. are typically small, their squares are even smaller compared to the linear voltage
drop components. Multiplying this by impedance squared (r2 + x2), which is also small, makes the
value negligible. As a result, the quadratic terms containing (P 2+Q2) in Equations 6- 8 are ignored.
Applying these simplifications yields the linear update rule for the squared voltage magnitudes:

V 2
j ≈ V 2

i − 2(rijPij + xijQij) (9)

Implementation: We calculate the baseline voltages using a two-step iterative traversal of the radial
tree, equivalent to a non-iterative Forward-Backward Pass:

1. Backward Pass (Power Accumulation): Traversing from the leaf nodes up to the root
(slack bus), we aggregate the loads to determine the branch flows. For a node j fed by node
i:

Pij = PL
j +

∑
k:(j,k)∈E

Pjk, Qij = QL
j +

∑
k:(j,k)∈E

Qjk (10)

2. Forward Pass (Voltage Calculation): Starting from the slack bus (where Vslack is fixed),
we traverse downstream to the leaves. We update the voltage of each child node j using the
voltage of its parent i and the branch flows calculated in the previous step, via Equation 9.

D.2.2 VOLTAGE ANGLE RECOVERY

While the original Baran and Wu formulation focused on voltage magnitudes and losses, the voltage
angles can be recovered using a complementary linearization often utilized in convex relaxations of
Optimal Power Flow, as detailed by Farivar & Low (2013), and a similar set of common assumptions.

Starting from the voltage drop equation Vj = Vi − (rij + jxij)Iij and applying the small-angle
approximation (sin(θij) ≈ θi − θj and cos(θij) ≈ 1), the voltage angle difference is decoupled
from the voltage magnitude. The resulting linear relationship is:

θj ≈ θi −
xijPij − rijQij

V 2
nom

(11)

where θ is the voltage angle in radians and Vnom is the nominal voltage (typically approximated as
the slack bus voltage magnitude).

Implementation: Using the same branch flows Pij and Qij computed during the Backward Pass,
we perform a Forward Pass to update the angles. Note that unlike the magnitude update which
depends on rP + xQ, the angle update is driven by the cross-coupling term xP − rQ.

D.2.3 PREDICTIVE PERFORMANCE

We present the LinDistFlow-derived voltage prediction results alongside those of our best perform-
ing models and the DC Power Flow analytical baseline. Figure 4 illustrates that utilizing this analyt-
ical baseline for voltage magnitude and angle prediction is not competitive when compared to our
physics-informed GNN solvers. One explanation for the significant errors could be due to the fact
that heavily loaded lines violate the ”negligible loss” assumption of standard LinDistFlow, as they
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(a) Voltage Magnitude (b) Voltage Angle

Figure 4: Comparison of Best-Performing models to DC PF and LinDistFlow.

cause the quadratic loss term to be a more significant driver of voltage drops. As seen in Table 6,
some lines in the dataset networks have higher line loadings which would lead to large errors on the
most stressed lines, which would then propagate this miscalculated voltage down the network. The
superior performance of the flat-voltage baseline (DCPF) over the analytical LinDistFlow baseline
highlights the difficulty of applying simplified physical models to resistive, low-voltage grids with
distributed generation. Here, the model that predicts ”no change” (i.e., a flat voltage profile) beats a
physics-based model that relies on imperfect linearizations. This motivates the need for data-driven
approaches such as our physics-informed GNN solvers that can learn the non-linear relationship
between injection and voltage without relying on ideal-grid assumptions.
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Table 9: Raw Hybrid Model Performance Results by Testing Grid

Testing Grid Model RMSE VM RMSE VA Train (s) Inference (ms) Capacity
LV-rural1 Cplx + PFLoss 0.05899 0.03190 5326.4 6.66906 603.4K
LV-rural1 Cplx + Res 0.04141 0.02177 5114.9 6.70865 603.4K
LV-rural1 PFLoss + Res 0.01713 2.59823 1296.0 1.97338 302.7K

LV-rural2 Cplx + PFLoss 0.02692 0.02712 4993.6 6.71781 603.4K
LV-rural2 Cplx + Res 0.01266 0.02517 4711.0 6.74455 603.4K
LV-rural2 PFLoss + Res 0.01431 1.53923 1321.8 1.98800 302.7K

LV-rural3 Cplx + PFLoss 0.01572 0.01615 4655.2 6.60150 603.4K
LV-rural3 Cplx + Res 0.01567 0.01559 4562.5 6.61441 603.4K
LV-rural3 PFLoss + Res 0.01984 0.95270 1398.8 1.95619 302.7K

LV-semiurb4 Cplx + PFLoss 0.01762 0.01314 5040.8 6.86442 603.4K
LV-semiurb4 Cplx + Res 0.01642 0.01643 4952.4 6.84558 603.4K
LV-semiurb4 PFLoss + Res 0.01685 0.74623 1269.5 2.02061 302.7K

LV-semiurb5 Cplx + PFLoss 0.02258 0.01119 4751.3 6.69333 603.4K
LV-semiurb5 Cplx + Res 0.02161 0.01033 4603.7 6.93617 603.4K
LV-semiurb5 PFLoss + Res 0.02015 0.63628 1319.5 2.08807 302.7K

LV-urban6 Cplx + PFLoss 0.00952 0.01069 4990.5 7.24550 603.4K
LV-urban6 Cplx + Res 0.00923 0.01137 4885.8 7.17983 603.4K
LV-urban6 PFLoss + Res 0.01061 0.73603 1280.6 2.12642 302.7K

MV-comm Cplx + PFLoss 0.14504 0.29959 4735.3 6.94522 603.4K
MV-comm Cplx + Res 0.00828 0.02088 4632.4 6.76833 603.4K
MV-comm PFLoss + Res 0.00929 0.90102 1339.4 1.98995 302.7K

MV-rural Cplx + PFLoss 0.01440 0.00984 4776.8 6.74322 603.4K
MV-rural Cplx + Res 0.03721 0.01876 4687.5 6.73881 603.4K
MV-rural PFLoss + Res 0.02438 0.67677 1273.8 1.99153 302.7K

MV-semiurb Cplx + PFLoss 0.01444 0.03327 4669.2 6.67193 603.4K
MV-semiurb Cplx + Res 0.01941 0.02981 4583.0 6.69604 603.4K
MV-semiurb PFLoss + Res 0.01108 1.62419 1286.6 1.97380 302.7K

MV-urban Cplx + PFLoss 0.01680 0.01259 4598.4 6.56538 603.4K
MV-urban Cplx + Res 0.01866 0.01821 4484.1 6.54877 603.4K
MV-urban PFLoss + Res 0.01923 1.10563 1335.9 1.95899 302.7K

All (Known) Cplx + PFLoss 0.00585 0.00251 5147.2 6.76416 603.4K
All (Known) Cplx + Res 0.00580 0.00254 4759.2 6.76174 603.4K
All (Known) PFLoss + Res 0.00677 0.16124 1554.3 2.00352 302.7K
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Table 10: Raw GAT-based Model Performance Results by Testing Grid

Testing Grid Model RMSE VM RMSE VA Train (s) Inference (ms) Capacity
LV-rural1 GAT 0.02692 0.72323 2023.3 4.23116 304.5K
LV-rural1 GAT-Cplx 22.42461 0.60843 6391.2 9.99332 605.2K
LV-rural1 GAT-PFLoss 0.07893 0.49025 2122.9 4.21070 304.5K
LV-rural1 GAT-Res 0.05316 8.25658 1847.7 4.23108 304.5K

LV-rural2 GAT 0.16296 2.84787 1986.7 4.30918 304.5K
LV-rural2 GAT-Cplx 0.02327 0.02832 5911.2 10.28349 605.2K
LV-rural2 GAT-PFLoss 0.14166 2.61067 2082.3 4.29760 304.5K
LV-rural2 GAT-Res 0.06558 4.88404 1914.1 4.32212 304.5K

LV-rural3 GAT 0.01785 0.43163 2503.7 4.25854 304.5K
LV-rural3 GAT-Cplx 0.01781 0.01423 5729.4 10.19612 605.2K
LV-rural3 GAT-PFLoss 0.03165 0.63153 2602.0 4.25799 304.5K
LV-rural3 GAT-Res 0.01658 0.70123 1892.8 4.28400 304.5K

LV-semiurb4 GAT 0.01657 0.86837 1925.5 4.33177 304.5K
LV-semiurb4 GAT-Cplx 0.02481 0.01070 5128.1 10.36799 605.2K
LV-semiurb4 GAT-PFLoss 0.01557 0.95384 2024.9 4.30347 304.5K
LV-semiurb4 GAT-Res 0.01433 1.23636 1833.2 4.34664 304.5K

LV-semiurb5 GAT 0.02038 0.55621 2133.0 4.50983 304.5K
LV-semiurb5 GAT-Cplx 0.01794 0.00968 5829.4 10.74776 605.2K
LV-semiurb5 GAT-PFLoss 0.01440 0.47729 2231.9 4.32165 304.5K
LV-semiurb5 GAT-Res 0.01574 0.77447 2057.1 4.64251 304.5K

LV-urban6 GAT 0.01228 0.70808 1786.1 4.31373 304.5K
LV-urban6 GAT-Cplx 0.01043 0.01152 6139.9 10.78284 605.2K
LV-urban6 GAT-PFLoss 0.01277 0.67939 1885.3 4.45540 304.5K
LV-urban6 GAT-Res 0.01003 0.70414 1781.5 4.54937 304.5K

MV-comm GAT 0.01703 1.94529 2108.3 4.29743 304.5K
MV-comm GAT-Cplx 0.03439 0.04264 5854.8 10.23937 605.2K
MV-comm GAT-PFLoss 0.00921 1.86529 2205.3 4.27714 304.5K
MV-comm GAT-Res 0.01192 2.75916 1473.5 4.31093 304.5K

MV-rural GAT 0.02162 0.72117 2358.1 4.30109 304.5K
MV-rural GAT-Cplx 0.01797 0.01438 5903.9 10.32823 605.2K
MV-rural GAT-PFLoss 0.01910 0.68771 2454.5 4.29609 304.5K
MV-rural GAT-Res 0.02196 1.16897 1314.6 4.31832 304.5K

MV-semiurb GAT 0.03349 3.59725 1944.9 4.29249 304.5K
MV-semiurb GAT-Cplx 0.01091 0.02834 5747.4 10.40490 605.2K
MV-semiurb GAT-PFLoss 0.02644 3.23623 2040.5 4.28757 304.5K
MV-semiurb GAT-Res 0.00984 1.68319 1548.8 4.30757 304.5K

MV-urban GAT 0.01215 1.05314 1896.6 4.24654 304.5K
MV-urban GAT-Cplx 0.01087 0.01309 5664.7 10.70423 605.2K
MV-urban GAT-PFLoss 0.01851 1.01688 1994.8 4.31551 304.5K
MV-urban GAT-Res 0.02866 1.53854 2114.5 4.49710 304.5K

All (Known) GAT 0.00981 0.15869 2062.0 4.30639 304.5K
All (Known) GAT-Cplx 0.00484 0.00236 5950.3 10.21571 605.2K
All (Known) GAT-PFLoss 0.00822 0.15646 2162.0 4.29806 304.5K
All (Known) GAT-Res 0.01402 0.16708 2188.4 4.31734 304.5K
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