

000 001 002 003 004 005 PHYSICS-INFORMED INDUCTIVE BIASES FOR VOLT- 006 AGE PREDICTION IN DISTRIBUTION GRIDS 007 008 009

010 **Anonymous authors**
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Paper under double-blind review

ABSTRACT

Voltage prediction in distribution grids is a critical yet difficult task for maintaining power system stability. Machine learning approaches, particularly Graph Neural Networks (GNNs), offer significant speedups but suffer from poor generalization when trained on limited or incomplete data. In this work, we systematically investigate the role of inductive biases in improving a model’s ability to reliably learn power flow. Specifically, we evaluate three physics-informed strategies: (i) power-flow-constrained loss functions, (ii) complex-valued neural networks, and (iii) residual-based task reformulation. Using the ENGAGE dataset, which spans multiple low- and medium-voltage grid configurations, we conduct controlled experiments to isolate the effect of each inductive bias and assess both standard predictive performance and out-of-distribution generalization. Our study provides practical insights into which model assumptions most effectively guide learning for reliable and efficient voltage prediction in modern distribution networks.

1 INTRODUCTION

Distribution networks are shifting from passive delivery systems to actively managed infrastructures shaped by high DER penetration, electrification, and frequent reconfigurations. These conditions create volatile conditions and tight real-time decision windows. Voltage prediction is a central task in this setting because maintaining voltages within operational limits is essential for efficiency, equipment safety, and system stability. For an n -bus distribution system, typically containing only a slack bus and load buses, the AC power-flow problem determines bus voltage magnitudes and phase angles from specified injections based on a coupled system of $2(n - 1)$ nonlinear equations. Classical solvers can be accurate but scale poorly and may fail to converge under realistic operating conditions. Simplified linear methods are computationally efficient but unreliable for distribution grids, where higher resistance-to-reactance (R/X) ratios cause more voltage drops, which can lead to greater active power losses and impact voltage stability. These limitations have motivated increasing attention to machine learning approaches, which approximate the mapping from loads and network parameters to voltages without repeated numerical iterations. Recent studies, particularly those using Graph Neural Networks (GNNs), demonstrate that ML-based solvers can achieve orders-of-magnitude speedups while retaining strong accuracy and flexibility (Donon et al., 2020; Judd & Shafeezadeh, 2021). Unlike tabular models that must be retrained for each topology, GNNs naturally adapt to varying grid sizes and configurations with little structural modification. This adaptability makes them well-suited for distribution systems, which are characterized by heterogeneity and frequent reconfigurations. However, purely data-driven models suffer from poor generalization, especially under unseen configurations or operating conditions, a key barrier for deployment in real grids. This motivates a systematic investigation into how inductive biases can guide ML models toward more accurate, generalizable, and reliable predictions.

Inductive biases are assumptions embedded in a model’s architecture, training process, or data representation that guide learning toward specific solutions. For voltage prediction, relevant inductive biases include the integration of graph-based models, physical laws, or operational constraints. These biases help models better capture the underlying structure of the problem, leading to improved performance and robustness. Among inductive biases, physics-informed approaches have received particular attention as they embed prior knowledge of the system’s governing equations to enforce physical consistency in a supervised or unsupervised training regime. Nevertheless, most prior research has focused narrowly on equation-constrained losses, without investigating alternative ways

of embedding physical knowledge. Moreover, little is known about the empirical impact of these inductive biases on generalization performance, which is crucial for deployment in real-world grids where unseen configurations are the norm.

In this work, we investigate the role of inductive biases in learning voltage prediction for distribution grids. Specifically, we analyze three classes of physics-informed inductive biases:

1. **Power-flow-constrained loss functions**, which incorporate the physical equations directly into the optimization objective.
2. **Complex-valued neural networks**, which align model representations with the natural complex-valued structure of electrical quantities.
3. **Task reframing as residual prediction**, where the model learns to approximate deviations from a baseline solver rather than absolute voltages.

For each inductive bias, controlled experiments are conducted across a dataset of common distribution grid topologies, evaluating standard predictive accuracy as well as generalization performance under unseen network configurations ¹. Due to their inherent generalization advantage, we focus on Graph Neural Network architectures in this study. By isolating and comparing the presented inductive biases, we provide a systematic assessment of their effectiveness in guiding learning toward physically meaningful and generalizable solutions, highlighting new pathways for learning voltage prediction. Ultimately, our findings provide concrete guidance for the design of ML models that are not only fast and accurate but also reliable for safety-critical, real-world deployment in modern distribution grids. In this light, we make the following contributions:

- We provide a systematic assessment of standard accuracy and out-of-distribution generalization of physics-informed inductive biases for voltage prediction across heterogeneous distribution networks.
- We contribute the first complex-valued neural network architecture for distribution grid voltage prediction and demonstrate its generalization advantage.
- We derive actionable design guidelines, identifying which methods most effectively enhance real-world reliability and where more research is required.

2 LITERATURE REVIEW

2.1 ROLE OF INDUCTIVE BIASES IN MACHINE LEARNING

Inductive biases are the foundational assumptions embedded in a machine learning model or algorithm. They encode prior knowledge, constraints, or assumptions to guide how a model generalizes from training data to unseen examples. Thus, the design and selection of inductive biases allow models to perform well in varied settings, boosting generalization and interpretability, while also imposing tradeoffs between efficiency and flexibility. These inductive biases are essential when learning from finite data, as they help constrain the hypothesis space and enable effective learning. Without assumptions, there are infinitely many functions that can fit the training data equally well, so machine learning models need a way to prioritize certain hypotheses over others.

Inductive biases have been systematically applied via algorithmic design (i.e., neural network architecture), training strategies (e.g., regularization), priors in Bayesian inference, and even feature selection. For example, one of the simplest inductive biases often followed in machine learning is Occam’s razor (Blumer et al., 1987), which suggests the preference for simpler functions over more complex ones. Occam’s razor is often implemented via regularization techniques that penalize model complexity, such as L1 or L2 regularization, and is one of the first principles taught in machine learning to overcome overfitting. However, inductive biases can take many other forms, such as the smoothness bias in kernel methods (Schölkopf & Smola, 2002), sparsity bias in Lasso regression (Tibshirani, 1996), maximum margin in SVMs (Cortes & Vapnik, 1995), and locality assumptions in nearest neighbors algorithms (Cover & Hart, 1967). In deep learning, architectural choices such as convolution or recurrent layers impose structural priors, often enabling remarkable

¹All experiment models and code available at: [Under review]

108 generalization without explicit specification of inductive biases. When the assumptions align with
 109 the structure of the domain, certain biases can accelerate model training or make algorithms more
 110 sample-efficient; without them, a model may simply memorize the training data (overfit) or fail to
 111 learn altogether. However, inappropriate bias can lead to poor performance if the assumptions do
 112 not match the underlying data distribution. This highlights the importance of carefully selecting and
 113 designing inductive biases to suit the specific problem and data at hand.

114

115 2.2 PHYSICS-INFORMED MACHINE LEARNING IN POWER SYSTEMS

116

117 Physics-informed (PI) machine learning integrates physical laws and domain knowledge into
 118 machine learning models to enhance their performance, interpretability, and reliability (Karniadakis
 119 et al., 2021). This approach is particularly relevant in engineering domains like power systems,
 120 where physical principles govern system behavior. By embedding these principles into the learning
 121 process, this technique aims to provide more trustworthy models that can generalize better to
 122 unseen scenarios. In power systems, physics-informed neural networks (PINN) have been applied
 123 to various tasks, including state estimation, dynamics analysis, and optimal power flow (Huang &
 124 Wang, 2023). Although these approaches claim to improve model generalization, there have been no
 125 dedicated generalization studies of these methods for power systems, thus motivating our systematic
 126 assessment. In the following, we review three strategies of physics-informed machine learning that
 127 are particularly relevant to our study of voltage prediction in distribution grids.

128

129 2.2.1 POWER-FLOW-CONSTRAINED LOSS FUNCTION

130

131 Constraining loss functions is one of the most common approaches to physics-informed machine
 132 learning in power systems and was highlighted as a core PINN paradigm by a recent review paper
 133 (Huang & Wang, 2023). This is typically achieved by assigning physical meanings to the variables in
 134 the output neural networks (NNs) and embedding the governing equations of these physical variables
 135 as an additional loss term. The loss function can thus be formally written as:

136

$$137 \mathcal{L} = L_{\text{pred}}(\hat{\mathbf{y}}, \mathbf{y}) + \lambda L_{\text{reg}}(\mathbf{W}) + \gamma L_{\text{phys}}(\mathbf{X}, \hat{\mathbf{y}})$$

138

139 where L_{pred} is a typical loss function (such as mean-squared error) which measures the difference
 140 between the predicted and target output ($\hat{\mathbf{y}}$ and \mathbf{y} respectively); L_{reg} is a regularization term (such as
 141 L1 or L2 norm) imposed on the weights \mathbf{W} of the neural network; and L_{phys} is a physical regularization
 142 term that quantifies the degree to which the model's predictions violate the governing physical
 143 equations, with \mathbf{X} representing the input features. λ and γ are thus hyperparameters that balance
 144 the contributions of the different loss components.

145

146 For power flow estimation, L_{phys} is generally composed of the power balance equations of the AC
 147 power flow formulation, or a linearized version of this. More specifically, using P as the active
 148 power, Q as the reactive power, V as the voltage magnitude, and θ as the voltage angle, we can
 149 express the AC power flow loss term as follows:

150

$$151 L_{P_i} = P_i - \sum_{k=1}^N |V_i||V_k| (G_{ik} \cos(\theta_i - \theta_k) + B_{ik} \sin(\theta_i - \theta_k))$$

152

$$153 L_{Q_i} = Q_i - \sum_{k=1}^N |V_i||V_k| (G_{ik} \sin(\theta_i - \theta_k) - B_{ik} \cos(\theta_i - \theta_k))$$

154

$$155 L_{\text{phys}} = \sum_{i=1}^N (L_{P_i}^2 + L_{Q_i}^2)$$

156

157 where i is a particular bus in an N -bus network, and G_{ik} and B_{ik} are the real and imaginary parts
 158 of the admittance between buses i and k , respectively.

159

160 Since this method applies to the training process itself, it is model-agnostic and can be adapted for
 161 arbitrary neural network architectures. Due to the ubiquity of this approach, we only highlight the

most relevant studies here. GraphNeuralSolver (Donon et al., 2020) was one of the first works to apply this technique for power flow estimation, using their own custom GNN architecture and serving as a benchmark for many future works in this direction. (Jeddi & Shafeezadeh, 2021) integrates this method into a Graph Attention Network (GAT) model in order to learn the importance of neighbouring nodes, while (Böttcher et al., 2023) adopts a randomized, recurrent GNN architecture, so that its predictor learns how to solve the power flow problem from many different starting points. All three works solve the problem in a strictly unsupervised manner, completely skipping the need for labeled training data and the L_{pred} term. Other notable works include (Zamzam & Sidiropoulos, 2020) and (Habib et al., 2024) who successfully apply this technique to distribution grid state estimation using non-GNN architectures. However, many of these works focus their analysis on the transmission system context, and none of them evaluate the generalization performance across a structured suite of distribution grid configurations.

2.2.2 COMPLEX-VALUED NEURAL NETWORKS

Complex-Valued Neural Networks (CVNNs) extend traditional real-valued neural networks by allowing weights, biases, and activations to be complex numbers. This enables the model to capture phase relationships and interactions between real and imaginary components more naturally, potentially leading to improved performance in tasks involving complex-valued data. CVNNs have been shown to be effective in various domains, including computer vision, speech and signal processing, medical image reconstruction, and control systems (Lee et al., 2022).

A typical layer computes

$$z' = Wz + b, \quad W \in \mathbb{C}^{m \times n}, \quad z \in \mathbb{C}^n,$$

which in real–imaginary form expands as

$$z' = (W_r x - W_i y) + i(W_r y + W_i x), \quad (z = x + iy).$$

Nonlinearities are either applied directly component-wise, $\sigma(z) = \sigma(x) + i\sigma(y)$, or in polar form, $\sigma(z) = f(|z|)e^{ig(\angle z)}$, where f and g are nonlinear functions applied to the magnitude and phase, respectively. Training employs *Wirtinger derivatives*, which calculates partial derivatives based on the complex weights and their complex conjugates, allowing standard gradient-based optimization in \mathbb{C} . Normalization and loss functions are defined analogously to the real case, often by acting on real and imaginary parts separately or jointly via $|z|$. For more details on CVNNs, the reader is referred to (Lee et al., 2022). In power systems, CVNNs naturally accommodate phasor quantities such as complex voltages and power flows, preserving their inherent algebraic structure.

To date, there are relatively few works that explore complex-valued neural networks for power system applications, despite the fact that electrical quantities such as voltages and currents are inherently complex-valued. For distribution grid voltage prediction, this allows voltage magnitudes and angles to be modeled jointly, rather than separately as in real-valued models. Though not directly a neural network model, the recently-proposed Physics-Informed Symbolic Regression (PISR) method leverages complex-valued representations to learn analytical approximations of the power flow equations (Eichhorn et al., 2025). The model embeds complex information directly into the symbolic regression process, drastically elevating the performance and allowing the model to learn more reliably with less data samples compared to the MLP baseline. This study is limited to two small-scale systems, but the results are indicative of the promise of complex-valued representations for power system tasks. A much earlier work made a first attempt at a CVNN for load flow prediction and noted improved reliability compared to a real valued neural network baseline (Ceylan et al., 2005). However, both models were very small MLPs, consisting of one hidden layer of maximum 8 neurons, and evaluation was performed on a toy 6-bus network. Thus, the results seem hardly tractable for a real-world setting. Lastly, a more comprehensive study is presented in (Wu et al., 2023), which introduces a complex-valued spatio-temporal graph convolutional network (Cplx-STGCN) for the task of power system state forecasting (PSSE) and highlights the advantages of this model against several baselines. However, their performance increase cannot be attributed to the complex valued network, as their CplxFNN model performs poorly and they do not evaluate real-valued counterpart of Cplx-STGCN. Similarly, their evaluation is limited to a single IEEE. Additionally, the evaluation examines a single IEEE 118-bus transmission system. Furthermore, the PSSE task is fundamentally different from our setting as it aims to predict unknown voltages in a network using historical voltages and a set of available measurements, while our voltage prediction

216 task aims to estimate complex nodal voltages given only complex power measurements, effectively
 217 learning the power balance equations. To our knowledge, this study contributes the first evaluation
 218 of complex valued neural networks for voltage prediction in a realistic distribution grid setting and
 219 illustrates their efficacy in robust voltage estimation for out-of-distribution use cases.
 220

221 2.2.3 RESIDUAL PREDICTION

223 Residual prediction reframes the learning task from predicting absolute values to predicting deviations
 224 from a known baseline or approximate solution. This can simplify the learning problem, as
 225 the model only needs to learn the residuals, which are often smaller in magnitude and may exhibit
 226 simpler patterns than the original target variable. The approach has been popularized in models
 227 such as ResNet (He et al., 2016) and XGBoost (Chen & Guestrin, 2016), which have had significant
 228 impacts in domains like computer vision and time-series forecasting.
 229

230 Due to the complex physics of power systems, machine learning training can be unstable and heavily
 231 reliant on initializations and hyperparameters. Currently, state of the art power-flow methods
 232 typically predict the absolute voltage targets directly. However, voltage magnitudes and angles are
 233 generally close to a constant baseline set by the slack bus, thus motivating the use of residuals. By
 234 focusing on capturing deviations, the redundant learning of the trivial baseline is eliminated, thereby
 235 reducing complexity. Residual learning was employed in (Chen & Zhang, 2023) for probabilistic
 236 power flow and simulated on standard transmission system test cases. Beyond voltage prediction,
 237 (Eddin Za’ter et al., 2025) use residual learning to learn the nonlinear residual between a given DC-
 238 OPF solution and the corresponding AC-OPF solution. When compared against models that directly
 239 learn the AC-OPF solution, the residual-learning framework achieved a 35–45% reduction in volt-
 age, power, and feasibility errors, demonstrating its effectiveness for OPF prediction. The success
 240 of this approach suggests that residual learning may also be advantageous for voltage prediction.

241 3 METHODOLOGY

242 3.1 EXPERIMENT SETUP

243 The experimental overview is presented in Figure 1. We evaluate a baseline model and physics-
 244 informed variants in the tasks of in-distribution and out-of-distribution voltage prediction. For con-
 245 trolled comparison of the three inductive biases, we conduct a series of experiments using a consis-
 246 tent dataset, model architecture, and evaluation metrics. The ENGAGE dataset is a collection of low
 247 and medium voltage grids based on the SimBench networks. This test suite was introduced by Okoy-
 248 omon & Goebel (2025) to evaluate generalization capabilities of power flow models across several
 249 distribution grid configurations and promote robust grid planning and operation. With 3000 sample
 250 networks derived from 10 base distribution grids, the dataset contains test cases with varying sizes,
 251 topologies, and electrical characteristics, making it ideal for evaluating generalization performance.
 252 A summary of the experiment data and task formulation can be found in Appendix C.
 253

254 We first establish a baseline to identify how well each model performs under known network con-
 255 figurations and learned data distributions. We randomly shuffle the data with all grids and adopt a
 256 75/15/10 train/validation/test split for model training. To evaluate generalization performance, we
 257 conduct an out-of-distribution (OOD) experiment. We use a leave-one-out approach where we train
 258 on all but one of the base grid configurations and test on the held-out configuration. We thus ap-
 259 ply the same train/validation/test split, with 300 samples (10%) in the held-out configuration. This
 260 approach allows us to assess how well each model can generalize to unseen grid topologies and
 261 operating conditions, which is critical for real-world deployment. Though a one-to-one grid evalua-
 262 tion is possible, previous studies indicate that current ML solvers are not mature enough for this use
 263 case (Böttcher et al., 2023; Hansen et al., 2022; Judd & Shafeezadeh, 2021; Okoyomon & Goebel,
 264 2025). As such, we focus on the OOD setting for our generalization study.

265 To evaluate model performance, we employ the standard metric of Root Mean Squared Error
 266 (RMSE) between the predicted and true voltage magnitudes and angles across all buses in the net-
 267 work. Additionally, we report the training time, inference time, and model capacity to assess com-
 268 putational efficiency. To evaluate generalization performance, the RMSE of each held-out configu-
 269 ration is compared against the RMSE on the baseline test set. A tighter and lower RMSE distribution
 on the held-out configuration indicates better generalization.

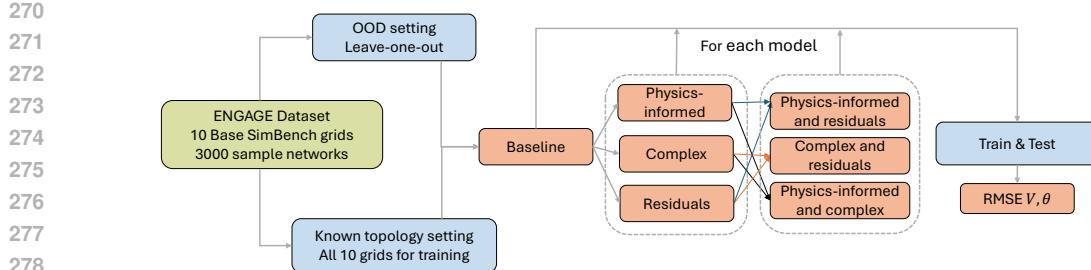


Figure 1: Experiment methodology for in-distribution and out-of-distribution model evaluation

3.2 MODEL DESIGN

We provide a baseline GNN architecture to serve as a control model for our experiments. We employ a GraphConv-based message-passing architecture with batch normalization, following the standard GNN framework established by Morris et al. (2019). This provides strong representational capacity while maintaining theoretical grounding in GNN expressivity research. As input, the model accepts the active and reactive power injections and topological distance to slack bus as node features, and the line resistances and reactances as edge features. Additionally, every graph has access to the slack bus information (slack voltage magnitude, angle, resistance, and reactance) as global features. The model’s task is then to predict the voltage magnitude and angle at every bus.

The model utilizes two-stage preprocessing and postprocessing layers, implemented using fully connected networks with ReLU activations and batch normalization. The core processing consists of 7 128-dimensional message-passing layers using the GraphConv update scheme. To attribute generalization performance to inductive bias rather than the specific GNN backbone, we validate results through additional experimentation on a GAT backbone (Brody et al., 2021) in Appendix B.2.

For all models, we keep the architecture as similar as possible to the baseline, only changing the components necessary to implement each inductive bias. This allows us to isolate the effects of each inductive bias while minimizing confounding factors. As an additional analysis, we present results of combined inductive bias models in Appendix B.1. For all models, we apply uniform training procedures to ensure a fair comparison, using MSE as the supervised loss function, 3000 epochs, batch sizes of 128, and an Adam optimizer with an adaptive learning rate starting from 10^{-3} until 10^{-5} . Using a hyperparameter tuning, we determine the optimal model configuration and ensure strong performance on standard accuracy metrics before proceeding with the experiment variants.

3.3 POWER-FLOW-CONSTRAINED LOSS MODEL

We implement a loss function that combines the standard supervised loss with a physics-based regularization that penalizes violations of the AC power flow equations. More specifically, we train the baseline GNN as usual, and then fine-tune the model using the physics informed loss for 20 epochs. This limit was deliberately chosen to ensure this phase acts solely as a structural refinement, preventing it from becoming a deep re-optimization of the landscape. We observed no significant gain in OOD performance when extending this phase up to 30 epochs. This scheme proved to be much more reliable than training completely unsupervised or with a weighted physics loss, since these methods are highly reliant on hyperparameters. Furthermore, since the data is derived using pandapower (Thurner et al., 2018), we replicate their AC power balance equations and model assumptions to implement our loss function. We ensure that the physics informed loss function provides near-zero values for the ground truth voltage targets before using it for model training.

3.4 COMPLEX-VALUED MODEL

We implement a GNN architecture that operates on complex-valued inputs and outputs, using complex-valued layers and activation functions. This approach allows the model to naturally capture the relationships between voltage magnitudes and angles, which are inherently complex-valued quantities in power systems. Where applicable, we use the complexPyTorch library (Popoff, 2021)

324
325
326 Table 1: Model Performance Comparison: OOD Experiments Statistical Summary
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Model	RMSE VM (p.u.)				RMSE VA (deg)			
	Min	Max	Mean	Std	Min	Max	Mean	Std
Base	0.0087	0.0287	0.0179	0.0062	0.6049	2.7343	1.3271	0.6458
Res	0.0094	0.0389	0.0183	0.0083	0.6101	4.2366	1.3419	1.0598
Cplx	0.0102	0.5842	0.0715	0.1802	0.0093	0.0651	0.0212	0.0179
PFLoss	0.0070	0.0266	0.0166	0.0060	0.6013	2.3928	1.2628	0.5595

and implement custom complex-valued GNN layers such as complex batch normalization and complex GraphConv to ensure compatibility with the base GNN framework.

3.5 RESIDUALS MODEL

We implement a GNN architecture that predicts the residuals as deviations from the slack bus voltage. This simplifies the learning task, as the model only needs to learn the differences from a known baseline (the slack bus voltage), which are often smaller in magnitude and may exhibit simpler patterns than the original target variable. We implement the residuals model by enforcing a single skip connection that connects the neural network’s output to the slack bus reference value (Donti et al., 2017). This way, the model learns to output residuals, which are added to the slack bus reference values to produce the final voltage predictions. This allows us to keep the input data format consistent across all models, simplifying data handling and preprocessing.

4 RESULTS

We evaluate three inductive-biases for voltage prediction in distribution grids compared to a purely data-driven baseline model. We report performance for prediction on grids with familiar structures and on unseen (i.e. OOD) grids. In this section, we present general model performance results using predictive performance and model efficiency metrics. For a complete view of individual benchmarking results and additional experimentation, we refer the reader to Appendices A and B.

Table 1 provides a statistical summary of the generalization experiments, while Figure 2 displays overall performance metrics. Voltage magnitude RMSE is presented using p.u. values, meaning that results are normalized with respect to the reference voltage of the network, allowing for interpretation as relative errors (e.g., 0.01 p.u. is equivalent to 1% of the nominal voltage).

In terms of voltage magnitude, the supervised physics-informed variant achieves the highest reliability across the simulated topologies, indicating greater robustness as a magnitude predictor. The complex-valued model attains the best angle accuracy, with an improvement of two orders of magnitude across all experiments, at the cost of extra computational burden. Although the residual learning model performs the best in certain cases, it does not provide any significant advantages.

4.1 BASELINE MODEL

When predicting voltage magnitude on known grid configurations, the baseline GNN attains an average RMSE of **0.0067** p.u. for voltage magnitude, and **0.1573**° for voltage angle. For the OOD experiments, the baseline yields a mean performance of $\overline{\text{RMSE}}(|V|) = 0.0179$ p.u. and $\overline{\text{RMSE}}(\angle V) = 1.3271$ °. Notably, this model proves to be quite stable in its OOD prediction of voltage magnitude. The model contains 302.7K parameters and its training and inference times are approximately **1200s** and **2ms** for all experiments.

4.2 COMPLEX-VALUED LEARNING

The complex-valued model excels on both magnitude and angle prediction across test cases. It achieves **0.00239**° angle RMSE and **0.00555** p.u. magnitude RMSE when predicting on known grid configurations, proving to be the best among all methods. Across the generalization experiments, we observe a very tight distribution for both voltage magnitude and angle. One bad per-

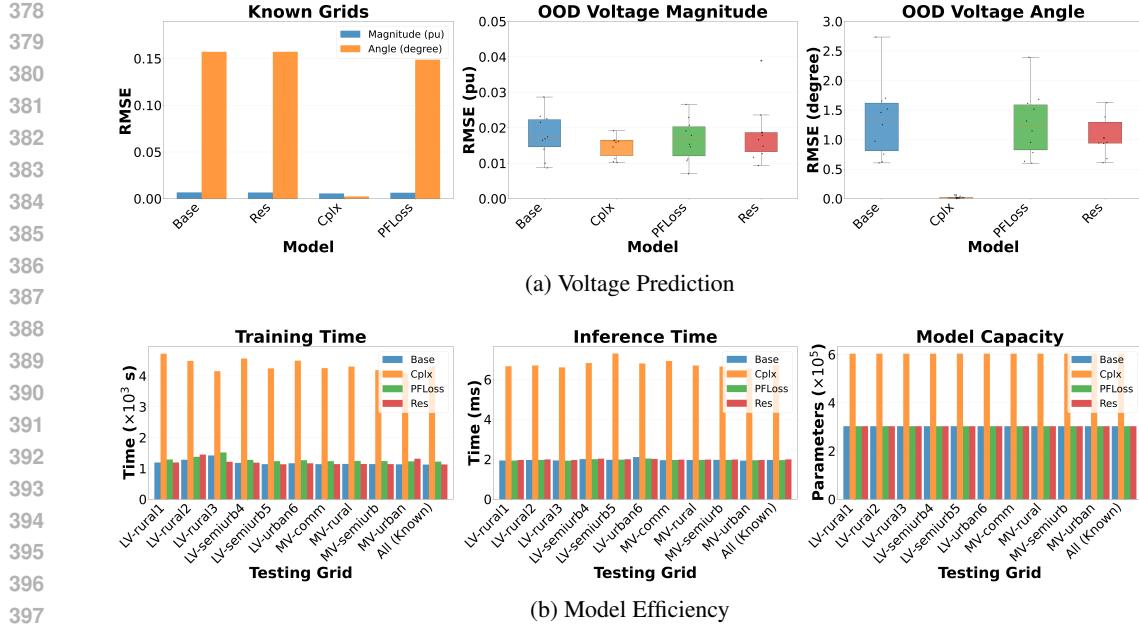


Figure 2: Summary of physics-informed model benchmarking metrics across all experiments

formance outlier drives the $\overline{\text{RMSE}}(|V|)$ up to **0.0715** p.u., while $\overline{\text{RMSE}}(\angle V)$ remains stable at **0.0212** $^\circ$. These results underscore the remarkable angle predictive performance of this model for both familiar and unseen networks. This performance gain comes with the highest computational burden, producing an average of approximately 4x training time, 3x inference time, and 2x model capacity compared to the other variants.

4.3 PHYSICS-INFORMED LEARNING

The supervised physics-informed variant exhibits an increase in performance compared to the baseline model for almost all experiments, illustrating the impact of this PI fine-tuning mechanism. For the known grids setting, it reaches $\text{RMSE}(|V|) = 0.00638$ p.u. and $\text{RMSE}(\angle V) = 0.1488$ $^\circ$. Across OOD benchmarks, the method exhibits the most accurate and stable performance for voltage magnitude prediction, with $\overline{\text{RMSE}}(|V|) = 0.0166$ p.u., and the smallest standard deviation. When considering voltage angle, its mean performance ($\overline{\text{RMSE}}(\angle V) = 1.263$ $^\circ$) is only outperformed by the complex-valued model. Model efficiency metrics are very similar to the baseline model, with a slight increase in training time ($\approx 100s$) due to the physics-informed fine-tuning step.

4.4 RESIDUAL LEARNING

The residual approach provides performance comparable to the baseline model. When predicting on familiar grids, it attains $\text{RMSE}(|V|) = 0.00662$ p.u. and $\text{RMSE}(\angle V) = 0.1573$ $^\circ$, showing nearly identical performance to the baseline. Across generalization experiments, accuracy and stability are also similar to the baseline, with $\overline{\text{RMSE}}(|V|) = 0.01828$ p.u. and $\overline{\text{RMSE}}(\angle V) = 1.342$ $^\circ$. However, it is worth noting that, unlike the baseline, the residuals model proved to be the best performing model in certain situations, as made evident in the LV-semiurb5 and LV-urban6 OOD experiments. Model efficiencies are comparable to the baseline.

5 DISCUSSION

5.1 INDUCTIVE BIASES FOR VOLTAGE PREDICTION

When estimating voltage magnitude and angle for networks similar to those seen in training, our new complex-valued model provides the most accurate predictions. Voltage angle is particularly

impressive, significantly outperforming the other variants by approximately two orders of magnitude. Generally, all physics-informed inductive biases seem to improve the results of the already-performant baseline model for the known grids experiment case. This demonstrates that all three inductive biases can be used to assist in data-driven learning of power grid characteristics.

When looking at the results of the generalization experiments, the presence of unseen grid topologies clearly influences model accuracy, with average performance dropping by one order of magnitude on average. In this setting, the physics-informed variant attains the best performance on average for voltage magnitude and the lowest variability across individual OOD grids, though the improvements are minor. The complex-valued model continues to thrive in voltage angle prediction. In fact, the complex-valued model’s results on the OOD tests greatly surpass even the predictions of other models under known grid configurations, highlighting its fidelity for voltage angle prediction.

In light of these results, we propose that machine learning models leverage complex-valued neural networks to truly capture the interdependence between the real and imaginary components of the voltage phasors. *Fine-tuning* using physics-informed losses can also be a worthwhile add-on to enhance model accuracy, so long as one has accurate physical equations and relatively accurate initial predictive performance.

5.2 REAL-WORLD APPLICATION

The complex-valued variant demonstrates noteworthy performance overall, achieving both high accuracy and stability across most tasks. This model surpasses the ML-based power-flow implementations of previous comparable studies, particularly in voltage angle prediction (Lin et al., 2024; Suri & Mangal, 2025; Okhuegbe et al., 2024; Hu et al., 2020). Contrary to prevalent data-driven approaches, the complex-valued variant naturally captures the inherent coupling between voltage magnitude and angle, treating them as interdependent variables. This precision helps satisfy a critical requirement in distribution system voltage prediction, where real power flows depend on angle differences and incorrectly estimated angles can lead to instability, congestion, or cascading failures.

The proposed physics-informed variant demonstrates particularly robust performance in predicting voltage magnitudes across diverse grid topologies. The incorporation of the AC power flow equations as a regularization term leads the learning process to remain consistent with Kirchhoff’s laws, thereby reducing the likelihood of systematic deviations that might exist otherwise when extrapolating to unseen grid configurations.

Over known topologies, all models achieve a voltage magnitude RMSE of roughly 0.5%, matching the accuracy of iMSys household meters (EFR GmbH, 2022) and aligning with the practical noise floor of commercially deployed measurement hardware. Voltage angle errors are also well below the 1° metering standard, reaching RMSE values up to three orders of magnitude below this threshold. These findings support the use of such models for distribution grid operation in familiar networks, as they can safely be deployed with limited uncertainty. However, under the OOD testing, voltage angle errors increase by one order of magnitude and only the complex-valued model reliably stays under this 1° threshold over all cases. A similar observation can be made for voltage magnitude prediction, as even the best performing model produces errors that are higher than the 0.5% measurement standard by one order of magnitude. This highlights the significance of comprehensive generalization studies for robust assessment of machine learning in distribution grids and represents a key finding for establishing practically viable solutions for real-world deployment. Unlike previous works that primarily assess performance on seen or similarly sized topologies, we systematically show that state of the art GNN architectures do not attain the necessary level of accuracy in OOD scenarios. While physics-informed inductive biases may improve the generalization capability, only for the complex valued model did performance stay below the desired threshold for voltage angle, while all other variants exceed acceptable error margins. This indicates the need for a shift in focus in machine learning methodology from standard predictive accuracy to generalization performance assessment in order to take meaningful steps towards real-world application.

As an additional interpretation, we compare the best performing models for voltage prediction to a commonly used simplification of the full AC Power Flow solution: DC Power Flow. The DC power flow approximation linearizes the full AC method such that a non-iterative, convergent solution can be found. However, this simplification ignores reactive power and assumes small angle differences and a fixed voltage magnitude of 1.0 p.u. for all buses, and thus often leads to inaccurate predictions

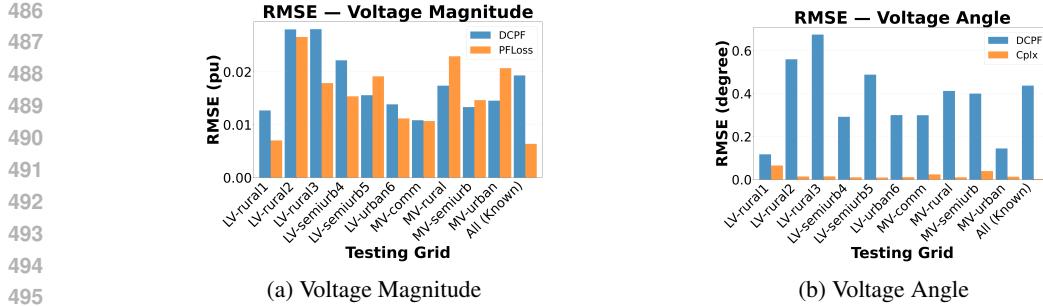


Figure 3: Comparison of Best-Performing models to DC PF

in situations with larger voltage drops. We present this baseline not due to its sophistication but rather due to its relevance as an empirically observed baseline for generalization failure, as established in prior benchmarking studies (Hansen et al., 2022; Yaniv et al., 2023; Okoyomon & Goebel, 2025). These works commonly observe the limitation that GNN-based power flow methods perform well on known-configurations but are ineffective in predicting PF from unseen grids during training, and are usually outperformed by simplified models such as DC PF. Looking at Figure 3, we see that our PFLoss GNN solver is able to significantly outperform DCPF for known networks and match its performance for unseen grids. Additionally, by using complex-valued neural networks, we are able to outperform DC PF by one order of magnitude in voltage angle prediction across all test cases. These results emphasize the promise of physics-informed models as a robust replacement for existing analytical models. For a secondary analytical baseline, we compare performance results to the well-established LinDistFlow method (Baran & Wu, 1989) in Appendix D.2.

5.3 CONCLUSION AND FUTURE WORK

This study evaluates three inductive-bias strategies for voltage prediction in distribution grids. Using a dataset of heterogeneous low- and medium-voltage networks, we assess performance across familiar topologies and out-of-distribution cases. Our findings highlight complementary strengths. Our novel complex-valued model achieves state-of-the-art angle prediction for both known and unknown grids, surpassing all other approximations, though at higher computational cost. The physics-informed variant consistently improves magnitude prediction and exhibits the lowest variability across unseen topologies, demonstrating robustness rooted in physical consistency, but this is only a slight improvement above the strong baseline. In contrast, the residual learning approach provided limited overall gains, though it excelled in select cases and seems to be able to be synergistic with other methods. Collectively, these results show that carefully chosen inductive biases substantially enhance the reliability of machine learning models for power system analysis.

Future research should extend these insights along three directions. Firstly, a deeper examination of physics-constrained training regimes is needed, including theoretical analysis and open benchmarking, to clarify when physics-informed losses improve generalization. For our particular study, this variant was the most sensitive to hyperparameters and required significant knowledge of the pandapower modeling library to produce an effective solution. Even then, the physics-informed loss could not be used competitively in a purely unsupervised manor, with performance results two orders of magnitude worse than the other variants at best. This finding comes at no surprise when considering the non-linear, non-convex nature of the AC power balance equations, but is nonetheless in conflict with several other works that tout its success. Secondly, evaluation on non-European grid datasets (e.g. Smart-DS) would test the applicability of these methods in unbalanced, three-phase networks with different structural characteristics. Finally, exploring hybrid models that combine multiple inductive biases could yield situation-dependent predictors, though early results suggest that such benefits are non-additive and grid-specific (Appendix B.1).

By systematically studying inductive biases, this work contributes to the development of machine learning models that are not only accurate but also robust enough for deployment in real-world power system operations. Ultimately, our results indicate that physics-informed and complex-valued approaches can move ML-based solvers beyond academic benchmarks toward practical tools for reliable voltage prediction in distribution grids.

540 REFERENCES
541

542 M.E. Baran and F.F. Wu. Network reconfiguration in distribution systems for loss reduction and load
543 balancing. *IEEE Transactions on Power Delivery*, 4(2):1401–1407, 1989. doi: 10.1109/61.25627.

544 Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth. Occam’s razor.
545 *Information Processing Letters*, 24(6):377–380, April 1987. ISSN 0020-0190. doi: 10.1016/
546 0020-0190(87)90114-1.

547 Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? *arXiv
548 preprint arXiv:2105.14491*, 2021.

549 Luis Böttcher, Hinrikus Wolf, Bastian Jung, Philipp Lutat, Marc Trageser, Oliver Pohl, An-
550 dreas Ulbig, and Martin Grohe. Solving AC Power Flow with Graph Neural Networks un-
551 der Realistic Constraints. In *2023 IEEE Belgrade PowerTech*, pp. 1–7, June 2023. doi:
552 10.1109/PowerTech55446.2023.10202246. URL <http://arxiv.org/abs/2204.07000>.
553 arXiv:2204.07000 [cs].

554 Murat Ceylan, Nurettin Çetinkaya, Rahime Ceylan, and Yüksel Özbay. Comparison of complex-
555 valued neural network and fuzzy clustering complex-valued neural network for load-flow analysis.
556 In *Turkish Symposium on Artificial Intelligence and Neural Networks*, pp. 92–99. Springer, 2005.

557 Kejun Chen and Yu Zhang. Physics-guided residual learning for probabilistic power flow analysis.
558 *IEEE Access*, 11:90309–90321, 2023.

559 Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In *Proceedings of the
560 22nd ACM SIGKDD international conference on knowledge discovery and data mining*, pp. 785–794,
561 2016.

562 Corinna Cortes and Vladimir Vapnik. Support-vector networks. *Machine learning*, 20(3):273–297,
563 1995.

564 Thomas Cover and Peter Hart. Nearest neighbor pattern classification. *IEEE transactions on infor-
565 mation theory*, 13(1):21–27, 1967.

566 Balthazar Donon, Rémy Clément, Benjamin Donnot, Antoine Marot, Isabelle Guyon, and
567 Marc Schoenauer. Neural networks for power flow: Graph neural solver. *Electric Power
568 Systems Research*, 189:106547, December 2020. ISSN 0378-7796. doi: 10.1016/j.epsr.
569 2020.106547. URL <https://www.sciencedirect.com/science/article/pii/S0378779620303515>.

570 Donon, Balthazar. Powerdata-gen. <https://github.com/bdonon/powerdata-gen>,
571 2022. GitHub repository, last accessed: 2024-12-16.

572 Priya Donti, Brandon Amos, and J Zico Kolter. Task-based end-to-end model learning in stochastic
573 optimization. *Advances in neural information processing systems*, 30, 2017.

574 Muhy Eddin Za’ter, Bri-Mathias Hodge, and Kyri Baker. Residual correction models for ac optimal
575 power flow using dc optimal power flow solutions. *arXiv e-prints*, pp. arXiv–2510, 2025.

576 EFR GmbH. Smart Grid Vierleiter – Zähler FNN-Basiszähler für iMSys SGM-D4. https://www.efr.de/wp-content/uploads/2022/06/Produktinformation_EFR_SGM-D4_DE_WEB.pdf, 2022. Accessed: 2025-01-01.

577 Sebastian Eichhorn, Anurag Mohapatra, and Christoph Goebel. Pisr: Physics-informed symbolic
578 regression for predicting power system voltage. In *Proceedings of the 16th ACM International
579 Conference on Future and Sustainable Energy Systems*, pp. 92–107, 2025.

580 Masoud Farivar and Steven H Low. Branch flow model: Relaxations and convexification—part i.
581 *IEEE Transactions on Power Systems*, 28(3):2554–2564, 2013.

582 Benjamin Habib, Elvin Isufi, Ward van Breda, Arjen Jongepier, and Jochen L. Cremer. Deep statis-
583 tical solver for distribution system state estimation. *IEEE Transactions on Power Systems*, 39(2):
584 4039–4050, March 2024. ISSN 1558-0679. doi: 10.1109/TPWRS.2023.3290358.

594 Jonas Berg Hansen, Stian Normann Anfinsen, and Filippo Maria Bianchi. Power flow balancing
 595 with decentralized graph neural networks. *IEEE Transactions on Power Systems*, 38(3):2423–
 596 2433, 2022.

597 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recogni-
 598 tion. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
 599 770–778, 2016.

600 Xinyue Hu, Haoji Hu, Saurabh Verma, and Zhi-Li Zhang. Physics-guided deep neural networks for
 601 power flow analysis. *IEEE Transactions on Power Systems*, 36(3):2082–2092, 2020.

602 Bin Huang and Jianhui Wang. Applications of Physics-Informed Neural Networks in Power Sys-
 603 tems - A Review. *IEEE Transactions on Power Systems*, 38(1):572–588, January 2023. ISSN
 604 1558-0679. doi: 10.1109/TPWRS.2022.3162473. URL <https://ieeexplore.ieee.org/document/9743327>. Conference Name: IEEE Transactions on Power Systems.

605 Ashkan B. Jreddi and Abdollah Shafeezadeh. A Physics-Informed Graph Attention-based Approach
 606 for Power Flow Analysis. In *2021 20th IEEE International Conference on Machine Learning
 607 and Applications (ICMLA)*, pp. 1634–1640, December 2021. doi: 10.1109/ICMLA52953.2021.
 608 00261. URL <https://ieeexplore.ieee.org/document/9680165>.

609 George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
 610 Physics-informed machine learning. *Nature Reviews Physics*, 3(6):422–440, 2021.

611 ChiYan Lee, Hideyuki Hasegawa, and Shangce Gao. Complex-valued neural networks: A com-
 612 pre-
 613 hensive survey. *IEEE/CAA Journal of Automatica Sinica*, 9(8):1406–1426, 2022.

614 Nan Lin, Stavros Orfanoudakis, Nathan Ordonez Cardenas, Juan S. Giraldo, and Pedro P. Vergara.
 615 Powerflownet: Power flow approximation using message passing graph neural networks. *Inter-
 616 national Journal of Electrical Power & Energy Systems*, 160:110112, September 2024. ISSN
 617 0142-0615. doi: 10.1016/j.ijepes.2024.110112.

618 Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
 619 Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
 620 In *Proceedings of the AAAI conference on artificial intelligence*, volume 33, pp. 4602–4609, 2019.

621 Samuel N Okhuegbe, Adedasola A Ademola, and Yilu Liu. A machine learning initializer for
 622 newton-raphson ac power flow convergence. In *2024 IEEE Texas Power and Energy Conference
 623 (TPEC)*, pp. 1–6. IEEE, 2024.

624 Ehimare Okoyomon. Engage dataset: Evaluating network generalization for ac grid estimation, May
 625 2025. URL <https://doi.org/10.5281/zenodo.15464235>.

626 Ehimare Okoyomon and Christoph Goebel. A framework for assessing the generalizability of gnn-
 627 based ac power flow models. In *Proceedings of the 16th ACM International Conference on Future
 628 and Sustainable Energy Systems*, pp. 476–488, 2025.

629 Sébastien M. Popoff. complexPyTorch: A high-level toolbox for complex-valued neural network
 630 modules in pytorch, 2021. URL <https://pypi.org/project/complexPyTorch/>.
 631 PyPI release; MIT License; supports complex-valued operations like ComplexLinear, Conv2d,
 632 BatchNorm, CRelu, etc.

633 Bernhard Schölkopf and Alexander J Smola. *Learning with kernels: support vector machines,
 634 regularization, optimization, and beyond*. MIT press, 2002.

635 Dhruv Suri and Mohak Mangal. Powerggn: A topology-aware graph neural network for electricity
 636 grids. *arXiv preprint arXiv:2503.22721*, 2025.

637 Leon Thurner, Alexander Scheidler, Florian Schäfer, Jan-Hendrik Menke, Julian Dollichon,
 638 Friederike Meier, Steffen Meinecke, and Martin Braun. pandapower—an open-source python
 639 tool for convenient modeling, analysis, and optimization of electric power systems. *IEEE Trans-
 640 actions on Power Systems*, 33(6):6510–6521, 2018.

648 Robert Tibshirani. Regression shrinkage and selection via the lasso. *Journal of the Royal Statistical*
649 *Society Series B: Statistical Methodology*, 58(1):267–288, 1996.
650

651 Tong Wu, Anna Scaglione, and Daniel Arnold. Complex-value spatiotemporal graph convolutional
652 neural networks and its applications to electric power systems ai. *IEEE Transactions on Smart*
653 *Grid*, 15(3):3193–3207, 2023.

654 Arbel Yanniv, Parteek Kumar, and Yuval Beck. Towards adoption of GNNs for power flow applica-
655 tions in distribution systems. *Electric Power Systems Research*, 216:109005, March 2023. ISSN
656 0378-7796. doi: 10.1016/j.epsr.2022.109005. URL <https://www.sciencedirect.com/science/article/pii/S0378779622010549>.

657

658 Ahmed Samir Zamzam and Nicholas D. Sidiropoulos. Physics-aware neural networks for distribu-
659 tion system state estimation. *IEEE Transactions on Power Systems*, 35(6):4347–4356, November
660 2020. ISSN 1558-0679. doi: 10.1109/TPWRS.2020.2988352.

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A COMPLETE BENCHMARKING RESULTS 703

704 We present the full benchmarking results in Table 2, which provides the raw performance metrics
705 for all inductive bias models across all testing grids, using RMSE, training time, inference time, and
706 model capacity as evaluation criteria.
707

708 Table 2: Raw Model Performance Results by Testing Grid
709

710 Testing Grid	711 Model	712 RMSE VM	713 RMSE VA	714 Train (s)	715 Inference (ms)	716 Capacity
717 LV-rural1	718 Base	719 0.00868	720 2.73428	721 1191.9	722 1.93844	723 302.7K
724 LV-rural1	725 Cplx	726 0.58421	727 0.06514	728 4722.3	729 6.66419	730 603.4K
731 LV-rural1	732 PFLoss	733 0.00703	734 2.39278	735 1287.7	736 1.93717	737 302.7K
738 LV-rural1	739 Res	740 0.03893	741 4.23657	742 1192.3	743 1.96439	744 302.7K
745 LV-rural2	746 Base	747 0.02866	748 1.70101	749 1280.7	750 1.96457	751 302.7K
752 LV-rural2	753 Cplx	754 0.01459	755 0.01416	756 4486.7	757 6.70308	758 603.4K
759 LV-rural2	760 PFLoss	761 0.02658	762 1.68133	763 1376.7	764 1.96591	765 302.7K
767 LV-rural2	768 Res	769 0.01786	770 1.38314	771 1447.8	772 1.99109	773 302.7K
775 LV-rural3	776 Base	777 0.01650	778 0.97081	779 1419.6	780 1.94195	781 302.7K
783 LV-rural3	784 Cplx	785 0.01612	786 0.01459	787 4153.4	788 6.60584	789 603.4K
791 LV-rural3	792 PFLoss	793 0.01787	794 0.95436	795 1517.4	796 1.93280	797 302.7K
799 LV-rural3	800 Res	801 0.01662	802 0.93536	803 1213.8	804 1.96289	805 302.7K
807 LV-semiurb4	808 Base	809 0.01690	810 0.75439	811 1179.3	812 2.01071	813 302.7K
815 LV-semiurb4	816 Cplx	817 0.01657	818 0.01053	819 4564.2	820 6.82323	821 603.4K
824 LV-semiurb4	825 PFLoss	826 0.01536	827 0.78076	828 1275.9	829 2.00547	830 302.7K
833 LV-semiurb4	834 Res	835 0.01854	836 0.95156	837 1186.3	838 2.03135	839 302.7K
841 LV-semiurb5	842 Base	843 0.02154	844 0.60486	845 1137.9	846 1.97208	847 302.7K
849 LV-semiurb5	850 Cplx	851 0.01590	852 0.00933	853 4244.1	854 7.29975	855 603.4K
857 LV-semiurb5	858 PFLoss	859 0.01914	860 0.60126	861 1233.5	862 1.98107	863 302.7K
865 LV-semiurb5	866 Res	867 0.01481	868 0.61009	869 1134.1	870 2.00147	871 302.7K
877 LV-urban6	878 Base	879 0.01000	880 0.62547	881 1165.8	882 2.11327	883 302.7K
885 LV-urban6	886 Cplx	887 0.01129	888 0.01110	889 4493.8	890 6.80414	891 603.4K
894 LV-urban6	895 PFLoss	896 0.01118	897 0.63158	898 1265.2	899 2.03692	900 302.7K
903 LV-urban6	904 Res	905 0.00937	906 0.67909	907 1164.8	908 2.01710	909 302.7K
911 MV-comm	912 Base	913 0.01396	914 1.25189	915 1138.5	916 1.95523	917 302.7K
919 MV-comm	920 Cplx	921 0.01045	922 0.02395	923 4253.3	924 6.92224	925 603.4K
927 MV-comm	928 PFLoss	929 0.01068	930 1.14607	931 1234.6	932 1.96308	933 302.7K
935 MV-comm	936 Res	937 0.01269	938 1.02931	939 1138.9	940 1.98173	941 302.7K
943 MV-rural	944 Base	945 0.02256	946 1.45830	947 1145.9	948 1.96252	949 302.7K
951 MV-rural	952 Cplx	953 0.01637	954 0.01055	955 4303.7	956 6.70011	957 603.4K
959 MV-rural	960 PFLoss	961 0.02293	962 1.31355	963 1242.5	964 1.96917	965 302.7K
967 MV-rural	968 Res	969 0.02361	970 0.94275	971 1143.2	972 1.98348	973 302.7K
975 MV-semiurb	976 Base	977 0.01742	978 1.65200	979 1138.9	980 1.97044	981 302.7K
983 MV-semiurb	984 Cplx	985 0.01917	986 0.03934	987 4189.4	988 6.64684	989 603.4K
991 MV-semiurb	992 PFLoss	993 0.01465	994 1.61223	995 1235.0	996 1.96650	997 302.7K
999 MV-semiurb	1000 Res	1001 0.01872	1002 1.62399	1003 1139.8	1004 1.98686	1005 302.7K
1007 MV-urban	1008 Base	1009 0.02322	1010 1.51757	1011 1131.7	1012 1.93205	1013 302.7K
1015 MV-urban	1016 Cplx	1017 0.01017	1018 0.01314	1019 4083.5	1020 6.55564	1021 603.4K
1024 MV-urban	1025 PFLoss	1026 0.02069	1027 1.51453	1028 1227.6	1029 1.95075	1030 302.7K
1031 MV-urban	1032 Res	1033 0.01166	1034 1.02719	1035 1313.9	1036 1.96254	1037 302.7K
1038 All (Known)	1039 Base	1040 0.00674	1041 0.15726	1042 1125.2	1043 1.96604	1044 302.7K
1046 All (Known)	1047 Cplx	1048 0.00555	1049 0.00239	1050 4311.9	1051 6.71587	1052 603.4K
1054 All (Known)	1055 PFLoss	1056 0.00638	1057 0.14876	1058 1221.8	1059 1.95872	1060 302.7K
1062 All (Known)	1063 Res	1064 0.00662	1065 0.15726	1066 1128.9	1067 1.99554	1068 302.7K

756 **B ADDITIONAL EXPERIMENTS**
757758 **B.1 HYBRID MODELS**
759

760 The previously-introduced physics-informed models only consider one variant per inductive bias,
761 which naturally leaves the question of whether combining them may result in improved performance.
762 As a result, we implement and evaluate all pairwise combinations of our physics-informed variants
763 to create physics-informed hybrid models. Namely, we present three novel hybrids: *Cplx + PFLoss*,
764 *Cplx + Res*, and *PFLoss + Res*. To our knowledge, no previous study has introduced such models
765 for the task of distribution grid voltage prediction.

766 Table 3: OOD Performance of Hybrid vs Non-Hybrid Inductive Bias Models
767

Model	RMSE VM (p.u.)				RMSE VA (deg)			
	Min	Max	Mean	Std	Min	Max	Mean	Std
Base	0.0087	0.0287	0.0174	0.0063	0.6049	2.7343	1.3059	0.6813
Res	0.0094	0.0389	0.0190	0.0085	0.6101	4.2366	1.3769	1.1180
Cplx	0.0104	0.5842	0.0783	0.1897	0.0093	<u>0.0651</u>	<u>0.0221</u>	<u>0.0188</u>
PFLoss	0.0070	<u>0.0266</u>	<u>0.0166</u>	<u>0.0060</u>	0.6013	2.3928	1.2628	0.5595
Cplx + PFLoss	0.0095	0.1450	0.0342	0.0414	<u>0.0098</u>	0.2996	0.0465	0.0894
Cplx + Res	<u>0.0083</u>	0.0414	0.0201	0.0110	0.0103	0.0298	0.0188	0.0059
PFLoss + Res	0.0093	0.0244	0.0163	0.0049	0.6363	2.5982	1.1516	0.6145

778 In Table 3 we compare the original single-inductive bias models (in the top section) to the new hybrid
779 models (in the bottom). The best result in each column is highlighted in **bold** while the second-best
780 is underlined. We observe from the table that augmenting the complex and physics models with the
781 residual-learning technique enhances the performance of each of these models, resulting in the best
782 performance for their respective subtasks (voltage magnitude prediction for Phys-Loss + Residuals
783 and voltage angle prediction for Complex + Residuals). However, combining the previously-best-
784 performing Phys-Loss and Complex models does not yield any added benefit, and results in a model
785 that generally weakens the advantage of each original bias. Ultimately, the Phys-Loss + Residuals
786 and the Complex + Residuals model are the most stable for generalization for voltage magnitude
787 and angle, respectively, but they present no significant advantage over the single-inductive bias
788 models. These results further emphasize the consistent improvement in voltage angle prediction
789 due to complex-valued networks, as all complex-valued model errors are magnitudes lower than the
790 real-valued counterparts.

791 The full raw results for each hybrid model experiment are presented in Table 9.
792

793 **B.2 CROSS-ARCHITECTURE VALIDATION**
794

795 As the backbone of our main inductive bias models, we use a GraphConv architecture for message
796 passing between nodes. The node update scheme of the GraphConv message passing mechanism is
797 as follows:

$$799 \quad x'_i = W_1 x_i + W_2 \sum_{j \in N(i)} e_{ij} x_j$$

800 Where:

- 801 • x'_i is the **output feature vector** for target node i after the GraphConv layer
- 802 • x_i is the **input feature vector** for target node i
- 803 • $N(i) \cup \{i\}$ is the set of node i 's **neighbors** (including i itself)
- 804 • e_{ij} is the **pre-determined edge weighting** of source node j 's message to target node i
- 805 • W_1 is the learnable **target weight matrix** applied to the target node's features, x_i
- 806 • W_2 is the learnable **source weight matrix** applied to the aggregated source node features

As cross-architecture ablation study, we re-run the baseline and all single inductive bias models on a GAT backbone, since GAT represents a different class of GNNs (when compared to GraphConv) that uses input-dependent weighting rather than fixed/learned shared weights for all neighbours. The node update scheme of the GAT message passing mechanism is as follows:

$$\mathbf{x}'_i = \sum_{j \in \mathcal{N}(i) \cup \{i\}} \alpha_{ij} \mathbf{W}_s \mathbf{x}_j$$

$$\alpha_{ij} = \frac{\exp(\mathbf{a}^\top \text{LeakyReLU}(\mathbf{W}_t \mathbf{x}_i + \mathbf{W}_s \mathbf{x}_j))}{\sum_{k \in \mathcal{N}(i) \cup \{i\}} \exp(\mathbf{a}^\top \text{LeakyReLU}(\mathbf{W}_t \mathbf{x}_i + \mathbf{W}_s \mathbf{x}_k))}$$

Where:

- \mathbf{x}'_i is the **output feature vector** for target node i after the GATv2 layer
- \mathbf{x}_i is the **input feature vector** for target node i
- $\mathcal{N}(i) \cup \{i\}$ is the set of node i 's **neighbors** (including i itself)
- α_{ij} is the **normalized attention coefficient** (weight) of source node j 's message to target node i
- \mathbf{W}_t is the **target linear weight matrix** (learnable parameter) applied to the target node's features, \mathbf{x}_i
- \mathbf{W}_s is the **source linear weight matrix** (learnable parameter) applied to the source node's features, \mathbf{x}_j
- \mathbf{a} is the **attention weight vector** (learnable parameter) used to compute the attention score

The results in Table 4 confirm the efficacy of these inductive biases. Most notably, the complex-valued GAT similarly outperforms the other variants by one to two orders of magnitude in the task of voltage angle prediction. Although we can observe the same fine-tuning effect of the physics-informed loss, its benefits are comparatively mild in this benchmark, with the residuals model providing the largest benefit for voltage magnitude prediction. As in the original GraphConv benchmark, the physics-informed loss model improves against all non-complex-valued models in the task of voltage angle prediction. Furthermore, the baseline GNN is always outperformed by at least one inductive bias model, with the most significant improvement coming from the complex-valued model. The results confirm that we can observe non-architecturally specific trends, validating that the generalization benefits stem from the biases themselves, not the specific GNN backbone.

Table 4: OOD Performance of GAT-backbone Models

Model	RMSE VM (p.u.)				RMSE VA (deg)			
	Min	Max	Mean	Std	Min	Max	Mean	Std
GAT	0.0121	0.1630	0.0341	0.0457	0.4316	3.5972	1.3452	1.0874
GAT-Cplx	0.0104	22.4246	2.2593	7.0854	0.0097	0.6084	0.0781	0.1866
GAT-PFLoss	0.0092	0.1417	0.0368	0.0420	0.4773	3.2362	1.2649	0.9726
GAT-Res	0.0098	0.0656	0.0248	0.0193	0.7012	8.2566	2.3707	2.4294

The full raw results for each GAT model experiment are presented in Table 10.

B.3 MODEL CAPACITY

Due to the representation of complex values as pairs of real numbers in computing systems, training and deploying complex-valued neural networks comes at an extra computational cost (Section 4.2). Particularly, experiment results show that the number of parameters in such models is roughly double of their real-valued counterparts. To ensure that the observed performance benefits of the complex-valued model is not attributed to its increased model capacity, we present extra experiment results comparing the original baseline and complex valued models with a larger baseline model. The dimension of the baseline model message passing layers was increased by 50%, from 128 to 192,

Table 5: Model Capacity Performance Comparison

Model	Capacity	RMSE VM (p.u.)				RMSE VA (deg)			
		Min	Max	Mean	Std	Min	Max	Mean	Std
Base	302.7K	0.0087	0.0287	0.0179	0.0062	0.6049	2.7343	1.3271	0.6458
Base-L	624.2K	0.0112	0.1208	0.0281	0.0336	0.5568	18.7405	2.6622	5.6551
Cplx	603.4K	0.0102	0.5842	0.0715	0.1802	0.0093	0.0651	0.0212	0.0179

resulting in a model capacity of 624.2K and making it more comparable to the 603.4K complex model. The results in Table 5 confirm that the improved predictive accuracy is unlikely due to an increase in model capacity.

C EXPERIMENT SETTING

C.1 DATASET

Table 6: ENGAGE Dataset Statistics

Grid	Type	Buses	Lines	Voltage (kV)	R/X Ratio	Line Loading		
						Min (%)	Max (%)	Avg (%)
LV1	Rural	15	14	0.4	2.41	0.15	65.28	16.70
LV2	Rural	97	96	0.4	2.55	0.07	57.69	9.93
LV3	Rural	129	128	0.4	2.55	0.06	92.09	17.42
LV4	Semi-urban	44	43	0.4	2.52	0.73	99.99	29.98
LV5	Semi-urban	111	110	0.4	1.58	0.01	91.10	19.56
LV6	Urban	59	58	0.4	1.56	0.25	99.83	22.15
MV1	Rural	97	102	20.0	2.62	0.08	48.46	10.21
MV2	Semi-urban	120	127	20.0	2.78	0.01	88.82	18.53
MV3	Urban	136	148	10.0	1.13	0.05	99.99	15.60
MV4	Commercial	106	113	20.0	1.92	0.01	99.30	13.84

As depicted in Table 6, the ENGAGE dataset is a heterogenous distribution grid dataset, with 10 unique base distribution grids varying in size and type (Okoyomon, 2025). All grids are generated by applying Powerdata-gen (Donon, Balthazar, 2022) to the low- and medium-voltage distribution networks from SimBench’s scenario 1 (future grid with normal increase of distributed energy resources). Each grid type has 300 test cases with varying network loading conditions. Thus, our “leave-one-out” protocol tests scale generalization, as models trained on pools of smaller grids are tested on larger grids and vice versa. These distribution networks have fundamentally different characteristics than transmission networks, as distribution grids have much lower voltage levels, tend to be more radial in structure, and have much higher R/X ratios (approx. 0.1-0.3 is typical for transmission grids while distribution grids can have 1.0-5.0 or more, leading to large voltage drops).

Each graph in the ENGAGE dataset is represented as a PyTorch Geometric Data object. Since we are dealing with voltage prediction in distribution grids, there are only PQ buses and the slack bus. Additionally, we store the slack information globally and add the minimum hops to the slack bus for every bus as an additional feature. The model task is to use the bus information (*data.x*), network connectivity (*data.edge_index*), line information (*data.edge_attr*), and global information (*data.slack_info*) to predict the output voltages at every bus (*data.y*). To assist the physics-informed loss formulation, we additionally include the underlying PYPOWER case file information (*data.ppc*) that were used to model the networks in pandapower. This allows us to correctly formulate our PyTorch power balance equation implementation, since different modeling frameworks make different network assumptions.

Table 7: PyTorch Geometric Data Object Attributes

Attribute	Dimension	Description / Features
x	(N , 3)	Node features. N is the number of nodes/buses. Features: [p_mw, q_mvar, hops_to_slack]
edge_index	(2, $2E$)	Graph connectivity in COO format. E is the number of lines. Edges are directed.
edge_attr	($2E$, 4)	Edge features. E is the number of lines. Features: [r_pu, x_pu]
slack_info	(4)	Static network-wide parameters. Parameters: [slack_vm_pu, slack_va_degree, slack_r_pu, slack_x_pu]
y	(N , 2)	Target values for each node. N is the number of nodes/buses. Labels: [vm_pu, va_degree]
ppci	N/A	Internal pypower casfile used by pandapower ² for power flow (net ["_ppc"] ["internal"]).

Table 8: Bus types and their attributed in AC Power Flow

Bus type	P	Q	V	θ
Slack (ref)	Unknown	Unknown	Given	Given
PV (gen)	Given	Unknown	Given	Unknown
PQ (load)	Given	Given	Unknown	Unknown

C.2 VOLTAGE PREDICTION TASK FORMULATION

The objective of AC power flow analysis is to determine the active power, reactive power, voltage magnitude, and voltage angle of every bus in a power network. For every bus, there is a set of known and unknown parameters, differing based on bus type (see Table 8) and the task is to estimate the unknowns. This can be modeled as a node regression task, using buses as nodes and lines as edges. Given a set of buses in a network, \mathcal{N} , and lines connecting them, \mathcal{E} , Equations 1–4 must be satisfied.

$$p_{\text{net},i} = |v_i| \sum_{j=1}^n |v_j| (G_{ij} \cos \theta_{ij} + B_{ij} \sin \theta_{ij}), \quad i \in \mathcal{N}. \quad (1)$$

$$q_{\text{net},i} = |v_i| \sum_{j=1}^n |v_j| (G_{ij} \sin \theta_{ij} - B_{ij} \cos \theta_{ij}), \quad i \in \mathcal{N}. \quad (2)$$

$$p_{ij} = |v_i| |v_j| (G_{ij} \cos \theta_{ij} + \sin \theta_{ij}) - G_{ij} |v_i|^2, \quad (i, j) \in \mathcal{E}. \quad (3)$$

$$q_{ij} = |v_i| |v_j| (G_{ij} \sin \theta_{ij} - B_{ij} \cos \theta_{ij}) + |v_i|^2 (B_{ij} - b_{s,ij}), \quad (i, j) \in \mathcal{E} \quad (4)$$

Where:

²See <https://pandapower.readthedocs.io/en/v2.0.0/powerflow/ac.html>

- $p_{\text{net},i}$ is the net active power injections at bus i
- $q_{\text{net},i}$ is the net reactive power injections at bus i
- p_{ij} is the active power flows on line (i, j)
- q_{ij} is the reactive power flows on line (i, j)
- $|v_i|$ is voltage magnitude at bus i
- θ_i is the voltage phase angle at bus i
- θ_{ij} is the voltage angle difference between buses i and j
- G_{ij} is the real part of the admittance between buses i and j
- B_{ij} is the imaginary part of the admittance between buses i and j
- $b_{s,ij}$ is the line shunt susceptance between buses i and j

D ANALYTICAL MODELS

D.1 DC POWER FLOW FORMULATION

As an analytical baseline, we employ the DC Power Flow (DCPF) model, a widely used linearization of the AC power flow equations typically applied in transmission system analysis. We utilize the implementation provided by the *pandapower* library (Thurner et al., 2018).

The DCPF model is derived from the full AC power flow equations (Equations 1–4) by applying three simplifying assumptions:

1. **Lossless Lines:** The line resistance is negligible ($r_{ij} \approx 0$), implying $G_{ij} \approx 0$.
2. **Flat Voltage Profile:** Voltage magnitudes are fixed at $|v_i| \approx 1.0$ p.u. for all buses.
3. **Small Voltage Angles:** The phase angle differences are small, such that $\sin(\theta_i - \theta_j) \approx \theta_i - \theta_j$ and $\cos(\theta_i - \theta_j) \approx 1$.

Under these assumptions, the reactive power flows (Q) and voltage magnitude variations are decoupled and ignored. The system reduces to a set of linear equations relating active power injection P_i to voltage angles θ :

$$p_{\text{net},i} = \sum_{j \in \mathcal{N}_i} B_{ij}(\theta_i - \theta_j) = \sum_{j \in \mathcal{N}_i} \frac{\theta_i - \theta_j}{x_{ij}} \quad (5)$$

D.2 LINDISTFLOW FORMULATION

To benchmark the performance of the proposed neural network models, we implement the Linearized Distribution Flow (LinDistFlow) approximation as an analytical baseline. This formulation is derived from the standard DistFlow equations originally introduced by Baran & Wu (1989) for radial distribution networks. LinDistFlow linearizes the non-linear AC power flow equations by neglecting second-order loss terms, providing a convex approximation suitable for voltage estimation in distribution grids.

D.2.1 VOLTAGE MAGNITUDE ESTIMATION

Consider a radial distribution network represented by a directed graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$, where \mathcal{N} is the set of buses and \mathcal{E} is the set of lines. For each line $(i, j) \in \mathcal{E}$ connecting bus i to bus j , let $z_{ij} = r_{ij} + \mathbf{j}x_{ij}$ denote the complex impedance. Let V_i be the complex voltage magnitude at bus i , and let $S_{ij} = P_{ij} + \mathbf{j}Q_{ij}$ be the complex power flowing from bus i to bus j .

1026 The original non-linear DistFlow equations describing the voltage drop and power balance are:
 1027

$$1028 \quad V_j^2 = V_i^2 - 2(r_{ij}P_{ij} + x_{ij}Q_{ij}) + (r_{ij}^2 + x_{ij}^2) \frac{P_{ij}^2 + Q_{ij}^2}{V_i^2} \quad (6)$$

$$1029 \quad P_{ij} = P_j^L + \sum_{k:(j,k) \in \mathcal{E}} \left(P_{jk} + r_{jk} \frac{P_{jk}^2 + Q_{jk}^2}{V_j^2} \right) \quad (7)$$

$$1030 \quad Q_{ij} = Q_j^L + \sum_{k:(j,k) \in \mathcal{E}} \left(Q_{jk} + x_{jk} \frac{P_{jk}^2 + Q_{jk}^2}{V_j^2} \right) \quad (8)$$

1031 where P_j^L and Q_j^L represent the active and reactive load consumption at node j .

1032 The LinDistFlow model introduces the assumption of negligible line losses. Particularly, since
 1033 branch flows in p.u. are typically small, their squares are even smaller compared to the linear voltage
 1034 drop components. Multiplying this by impedance squared ($r^2 + x^2$), which is also small, makes the
 1035 value negligible. As a result, the quadratic terms containing ($P^2 + Q^2$) in Equations 6- 8 are ignored.
 1036 Applying these simplifications yields the linear update rule for the squared voltage magnitudes:

$$1044 \quad V_j^2 \approx V_i^2 - 2(r_{ij}P_{ij} + x_{ij}Q_{ij}) \quad (9)$$

1045 **Implementation:** We calculate the baseline voltages using a two-step iterative traversal of the radial
 1046 tree, equivalent to a non-iterative Forward-Backward Pass:

1047 1. **Backward Pass (Power Accumulation):** Traversing from the leaf nodes up to the root
 1048 (slack bus), we aggregate the loads to determine the branch flows. For a node j fed by node
 1049 i :

$$1050 \quad P_{ij} = P_j^L + \sum_{k:(j,k) \in \mathcal{E}} P_{jk}, \quad Q_{ij} = Q_j^L + \sum_{k:(j,k) \in \mathcal{E}} Q_{jk} \quad (10)$$

1051 2. **Forward Pass (Voltage Calculation):** Starting from the slack bus (where V_{slack} is fixed),
 1052 we traverse downstream to the leaves. We update the voltage of each child node j using the
 1053 voltage of its parent i and the branch flows calculated in the previous step, via Equation 9.

1054 D.2.2 VOLTAGE ANGLE RECOVERY

1055 While the original Baran and Wu formulation focused on voltage magnitudes and losses, the voltage
 1056 angles can be recovered using a complementary linearization often utilized in convex relaxations of
 1057 Optimal Power Flow, as detailed by Farivar & Low (2013), and a similar set of common assumptions.

1058 Starting from the voltage drop equation $V_j = V_i - (r_{ij} + jx_{ij})I_{ij}$ and applying the small-angle
 1059 approximation ($\sin(\theta_{ij}) \approx \theta_i - \theta_j$ and $\cos(\theta_{ij}) \approx 1$), the voltage angle difference is decoupled
 1060 from the voltage magnitude. The resulting linear relationship is:

$$1061 \quad \theta_j \approx \theta_i - \frac{x_{ij}P_{ij} - r_{ij}Q_{ij}}{V_{nom}^2} \quad (11)$$

1062 where θ is the voltage angle in radians and V_{nom} is the nominal voltage (typically approximated as
 1063 the slack bus voltage magnitude).

1064 **Implementation:** Using the same branch flows P_{ij} and Q_{ij} computed during the Backward Pass,
 1065 we perform a Forward Pass to update the angles. Note that unlike the magnitude update which
 1066 depends on $rP + xQ$, the angle update is driven by the cross-coupling term $xP - rQ$.

1067 D.2.3 PREDICTIVE PERFORMANCE

1068 We present the LinDistFlow-derived voltage prediction results alongside those of our best performing
 1069 models and the DC Power Flow analytical baseline. Figure 4 illustrates that utilizing this analytical
 1070 baseline for voltage magnitude and angle prediction is not competitive when compared to our
 1071 physics-informed GNN solvers. One explanation for the significant errors could be due to the fact
 1072 that heavily loaded lines violate the “negligible loss” assumption of standard LinDistFlow, as they

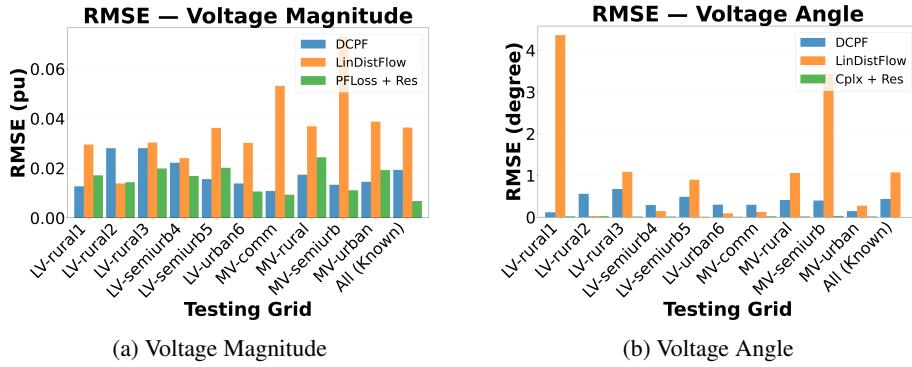


Figure 4: Comparison of Best-Performing models to DC PF and LinDistFlow.

cause the quadratic loss term to be a more significant driver of voltage drops. As seen in Table 6, some lines in the dataset networks have higher line loadings which would lead to large errors on the most stressed lines, which would then propagate this miscalculated voltage down the network. The superior performance of the flat-voltage baseline (DCPF) over the analytical LinDistFlow baseline highlights the difficulty of applying simplified physical models to resistive, low-voltage grids with distributed generation. Here, the model that predicts "no change" (i.e., a flat voltage profile) beats a physics-based model that relies on imperfect linearizations. This motivates the need for data-driven approaches such as our physics-informed GNN solvers that can learn the non-linear relationship between injection and voltage without relying on ideal-grid assumptions.

1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Table 9: Raw Hybrid Model Performance Results by Testing Grid

Testing Grid	Model	RMSE VM	RMSE VA	Train (s)	Inference (ms)	Capacity
LV-rural1	Cplx + PFLoss	0.05899	0.03190	5326.4	6.66906	603.4K
LV-rural1	Cplx + Res	0.04141	0.02177	5114.9	6.70865	603.4K
LV-rural1	PFLoss + Res	0.01713	2.59823	1296.0	1.97338	302.7K
LV-rural2	Cplx + PFLoss	0.02692	0.02712	4993.6	6.71781	603.4K
LV-rural2	Cplx + Res	0.01266	0.02517	4711.0	6.74455	603.4K
LV-rural2	PFLoss + Res	0.01431	1.53923	1321.8	1.98800	302.7K
LV-rural3	Cplx + PFLoss	0.01572	0.01615	4655.2	6.60150	603.4K
LV-rural3	Cplx + Res	0.01567	0.01559	4562.5	6.61441	603.4K
LV-rural3	PFLoss + Res	0.01984	0.95270	1398.8	1.95619	302.7K
LV-semiurb4	Cplx + PFLoss	0.01762	0.01314	5040.8	6.86442	603.4K
LV-semiurb4	Cplx + Res	0.01642	0.01643	4952.4	6.84558	603.4K
LV-semiurb4	PFLoss + Res	0.01685	0.74623	1269.5	2.02061	302.7K
LV-semiurb5	Cplx + PFLoss	0.02258	0.01119	4751.3	6.69333	603.4K
LV-semiurb5	Cplx + Res	0.02161	0.01033	4603.7	6.93617	603.4K
LV-semiurb5	PFLoss + Res	0.02015	0.63628	1319.5	2.08807	302.7K
LV-urban6	Cplx + PFLoss	0.00952	0.01069	4990.5	7.24550	603.4K
LV-urban6	Cplx + Res	0.00923	0.01137	4885.8	7.17983	603.4K
LV-urban6	PFLoss + Res	0.01061	0.73603	1280.6	2.12642	302.7K
MV-comm	Cplx + PFLoss	0.14504	0.29959	4735.3	6.94522	603.4K
MV-comm	Cplx + Res	0.00828	0.02088	4632.4	6.76833	603.4K
MV-comm	PFLoss + Res	0.00929	0.90102	1339.4	1.98995	302.7K
MV-rural	Cplx + PFLoss	0.01440	0.00984	4776.8	6.74322	603.4K
MV-rural	Cplx + Res	0.03721	0.01876	4687.5	6.73881	603.4K
MV-rural	PFLoss + Res	0.02438	0.67677	1273.8	1.99153	302.7K
MV-semiurb	Cplx + PFLoss	0.01444	0.03327	4669.2	6.67193	603.4K
MV-semiurb	Cplx + Res	0.01941	0.02981	4583.0	6.69604	603.4K
MV-semiurb	PFLoss + Res	0.01108	1.62419	1286.6	1.97380	302.7K
MV-urban	Cplx + PFLoss	0.01680	0.01259	4598.4	6.56538	603.4K
MV-urban	Cplx + Res	0.01866	0.01821	4484.1	6.54877	603.4K
MV-urban	PFLoss + Res	0.01923	1.10563	1335.9	1.95899	302.7K
All (Known)	Cplx + PFLoss	0.00585	0.00251	5147.2	6.76416	603.4K
All (Known)	Cplx + Res	0.00580	0.00254	4759.2	6.76174	603.4K
All (Known)	PFLoss + Res	0.00677	0.16124	1554.3	2.00352	302.7K

1188

1189

1190

1191

Table 10: Raw GAT-based Model Performance Results by Testing Grid

1192

Testing Grid	Model	RMSE VM	RMSE VA	Train (s)	Inference (ms)	Capacity
LV-rural1	GAT	0.02692	0.72323	2023.3	4.23116	304.5K
LV-rural1	GAT-Cplx	22.42461	0.60843	6391.2	9.99332	605.2K
LV-rural1	GAT-PFLoss	0.07893	0.49025	2122.9	4.21070	304.5K
LV-rural1	GAT-Res	0.05316	8.25658	1847.7	4.23108	304.5K
LV-rural2	GAT	0.16296	2.84787	1986.7	4.30918	304.5K
LV-rural2	GAT-Cplx	0.02327	0.02832	5911.2	10.28349	605.2K
LV-rural2	GAT-PFLoss	0.14166	2.61067	2082.3	4.29760	304.5K
LV-rural2	GAT-Res	0.06558	4.88404	1914.1	4.32212	304.5K
LV-rural3	GAT	0.01785	0.43163	2503.7	4.25854	304.5K
LV-rural3	GAT-Cplx	0.01781	0.01423	5729.4	10.19612	605.2K
LV-rural3	GAT-PFLoss	0.03165	0.63153	2602.0	4.25799	304.5K
LV-rural3	GAT-Res	0.01658	0.70123	1892.8	4.28400	304.5K
LV-semiurb4	GAT	0.01657	0.86837	1925.5	4.33177	304.5K
LV-semiurb4	GAT-Cplx	0.02481	0.01070	5128.1	10.36799	605.2K
LV-semiurb4	GAT-PFLoss	0.01557	0.95384	2024.9	4.30347	304.5K
LV-semiurb4	GAT-Res	0.01433	1.23636	1833.2	4.34664	304.5K
LV-semiurb5	GAT	0.02038	0.55621	2133.0	4.50983	304.5K
LV-semiurb5	GAT-Cplx	0.01794	0.00968	5829.4	10.74776	605.2K
LV-semiurb5	GAT-PFLoss	0.01440	0.47729	2231.9	4.32165	304.5K
LV-semiurb5	GAT-Res	0.01574	0.77447	2057.1	4.64251	304.5K
LV-urban6	GAT	0.01228	0.70808	1786.1	4.31373	304.5K
LV-urban6	GAT-Cplx	0.01043	0.01152	6139.9	10.78284	605.2K
LV-urban6	GAT-PFLoss	0.01277	0.67939	1885.3	4.45540	304.5K
LV-urban6	GAT-Res	0.01003	0.70414	1781.5	4.54937	304.5K
MV-comm	GAT	0.01703	1.94529	2108.3	4.29743	304.5K
MV-comm	GAT-Cplx	0.03439	0.04264	5854.8	10.23937	605.2K
MV-comm	GAT-PFLoss	0.00921	1.86529	2205.3	4.27714	304.5K
MV-comm	GAT-Res	0.01192	2.75916	1473.5	4.31093	304.5K
MV-rural	GAT	0.02162	0.72117	2358.1	4.30109	304.5K
MV-rural	GAT-Cplx	0.01797	0.01438	5903.9	10.32823	605.2K
MV-rural	GAT-PFLoss	0.01910	0.68771	2454.5	4.29609	304.5K
MV-rural	GAT-Res	0.02196	1.16897	1314.6	4.31832	304.5K
MV-semiurb	GAT	0.03349	3.59725	1944.9	4.29249	304.5K
MV-semiurb	GAT-Cplx	0.01091	0.02834	5747.4	10.40490	605.2K
MV-semiurb	GAT-PFLoss	0.02644	3.23623	2040.5	4.28757	304.5K
MV-semiurb	GAT-Res	0.00984	1.68319	1548.8	4.30757	304.5K
MV-urban	GAT	0.01215	1.05314	1896.6	4.24654	304.5K
MV-urban	GAT-Cplx	0.01087	0.01309	5664.7	10.70423	605.2K
MV-urban	GAT-PFLoss	0.01851	1.01688	1994.8	4.31551	304.5K
MV-urban	GAT-Res	0.02866	1.53854	2114.5	4.49710	304.5K
All (Known)	GAT	0.00981	0.15869	2062.0	4.30639	304.5K
All (Known)	GAT-Cplx	0.00484	0.00236	5950.3	10.21571	605.2K
All (Known)	GAT-PFLoss	0.00822	0.15646	2162.0	4.29806	304.5K
All (Known)	GAT-Res	0.01402	0.16708	2188.4	4.31734	304.5K

1239

1240

1241