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ABSTRACT

Privacy in training data is crucial to protect sensitive personal information, prevent
data misuse, and ensure compliance with legal regulations, all while maintaining
trust and safeguarding individuals’ rights in the development of ML models. Un-
fortunately, state-of-the-art methods that train ML models on image datasets with
differential privacy constraints typically result in reduced accuracy due to noise.
Alternatively, using synthetic data avoids the direct use of private data, preserving
privacy, but suffers from domain discrepancies when compared to test data. This
paper proposes a new methodology that combines both approaches by generating
differentially private synthetic data closely aligned with the target domain, thereby
improving the utility-privacy trade-off.
Our approach begins with creating a synthetic base dataset using a class-
conditional generative model. To address the domain gap between the syn-
thetic dataset and the private dataset, we introduce the Privacy-Aware Synthetic
Dataset Alignment (PASDA), which leverages the feature statistics of the pri-
vate dataset to guide the domain alignment process. PASDA produces a synthetic
dataset that guarantees privacy while remaining highly functional for downstream
training tasks. Building on this, we achieve state-of-the-art performance, surpass-
ing the most competitive baseline by over 13% on CIFAR-10. Furthermore, our
(1, 10−5)-DP synthetic data achieves model performance on par with or surpass-
ing models trained on the original STL-10, ImageNette and CelebA dataset. With
zero-shot generation, our method does not require resource-intensive retraining,
offering a synthetic data generation solution that introduces privacy to a machine
learning pipeline with both high efficiency and efficacy.

1 INTRODUCTION

The rapid deployment and influence of AI brings the urgency of privacy and security. In traditional
machine learning pipelines, private datasets used for model training are susceptible to various pri-
vacy breaches if adequate protections are not implemented. As illustrated in Figure (1) (a), the
non-private pipeline exposes the trained classifier to reconstruction attacks and membership infer-
ence attacks, which can result in data leakage and the exposure of sensitive information. These
attacks exploit the model’s learned parameters to reconstruct private training data or determine the
inclusion of specific data points, highlighting the critical need for strong privacy-preserving mech-
anisms to mitigate such risks and protect sensitive training data. With growing concerns around
data privacy and security, the advancement of differential privacy (DP) (Dwork et al. (2014)) has
become increasingly important in machine learning. Differentially Private Stochastic Gradient De-
scent (DPSGD) (Abadi et al. (2016a)) is a widely used method which ensures that individual data
points remain confidential during model training. However, a significant drawback of DPSGD is the
decrease in model accuracy due to the noise added to gradients in the model parameters.

While generating synthetic data is a promising alternative for privacy preservation, it is not always a
fully effective solution. Synthetic data generation methods may struggle to capture the intricate
distributions and specific nuances of the private dataset, potentially limiting their effectiveness,
especially in scenarios requiring high fidelity (Fan et al. (2024); He et al. (2023)). Additionally,
generative models might fail to represent certain classes or rare data patterns present in the pri-
vate dataset, thereby compromising the utility of the synthetic data for downstream tasks. Recent
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Figure 1: Overview of PASDA for generating differentially private synthetic datasets. To (a) protect
privacy of private dataset during model training, we propose (b) PASDA which aligns substitute
synthetic training data via differentially private statistics of the private dataset. Our results (c) shows
that PASDA achieves superior performance compared to models trained on private datasets.

advances on this field includes training or finetuning generative models with differentially private
techniques (Ghalebikesabi et al. (2023); Cao et al. (2021); Torkzadehmahani et al. (2019); Ho et al.
(2021)), or use private dataset to provide guidance on generating process (Lin et al.). However,
these methods often require substantial computational resources for training large generative mod-
els or iteratively generating large volumes of data, limiting their applicability in resource-constrained
environments. Furthermore, most of these techniques have been primarily tested on low-resolution
datasets, such as CIFAR-10 (32x32) (Krizhevsky et al. (2009)) or CelebA (64x64) (Liu et al. (2015)),
restricting their use in more realistic applications.

In this work, we introduce privatePrivacy-Aware Synthetic Dataset Alignment (pasda), a simple
yet effective two-step paradigm, outlined in Figure (1) (b), to generate private and in-distribution
synthetic data. First, we generate a fully synthetic dataset without any access to the private
dataset, using pretrained class conditional generative models such as stable diffusion (Rombach
et al. (2022)). Second, we align the distribution of the synthetic dataset with that of the private
dataset while preserving privacy. This is achieved by extracting feature statistics from the private
dataset with Gaussian mechanism Dwork et al. (2006), ensuring differential privacy. These statistics
are then used to adjust the distribution of the synthetic dataset, producing high-quality synthetic im-
ages that closely match the target distribution. Finally, we can build downstream models upon this
in-distribution synthetic dataset, which is guaranteed to be differentially private.

In conclusion, PASDA offers the following advantages:

• Privacy: Our approach requires minimal access to the private dataset, utilizing only feature
statistics to guide the generation of synthetic data. This method performs well for image
classification tasks, even under strong privacy constraints.

• Efficiency: By leveraging pretrained models for dataset generation, PASDA generates syn-
thetic data in a zero-shot fashion, significantly reducing computational costs, even in case
of high resolution dataset.

• Effecacy: When training downstream models on our synthetic datasets with (1, 10−5)-DP
guarantees, we established new SOTA on CIFAR-10, and achieved performance that is on
par with or surpasses models trained on the private data across various datasets such as
STL-10 (Coates et al. (2011)), ImageNette (Howard), and CelebA (Liu et al. (2015)).
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Figure 2: Comparison with existing methods. (a) Directly training the classifier on private data
using DP techniques. (b) Training a DP generative model on private data to generate images for
downstream training. (c) Using private data to guide a pretrained generative model, and iteratively
using the generated dataset as the input to generate more training data. (d) Our method aligns
synthetic data with private data through one-time DP access to the private data.

2 RELATED WORKS

2.1 SYNTHETIC DATA FOR COMPUTER VISION

Recent research on harnessing synthetic data to enhance computer vision systems has shown notable
advancements, particularly in the realm of image recognition. Gowal et al. (2021) demonstrated that
even low-quality synthetic data could substantially bolster neural network robustness against adver-
sarial attacks. In parallel, Li et al. (2022) introduced an innovative approach using BigGAN and
VQGAN to create a synthetic, pixel-wise annotated ImageNet dataset, which significantly stream-
lines the training process for segmentation models. Azizi et al. (2023) further showed that fine-
tuning class-conditional generative diffusion models on ImageNet enhances classification accuracy
through the use of photorealistic synthetic samples. Complementing these findings, He et al. (2023)
confirmed that synthetic data could indeed enhance model robustness, while Sarıyıldız et al. (2023)
underscored the utility of synthetic ImageNet datasets under specific conditions, contributing to the
dialogue on the capabilities and constraints of synthetic data in image recognition. Further more,
significant work in areas like object detection and semantic segmentation has also been pursued. Lin
et al. (2023) highlighted that synthetic images could remarkably improve few-shot object detec-
tion, and Li et al. (2021) demonstrated the efficacy of a GAN-based network in boosting semantic
segmentation performance across various applications.

2.2 DIFFERENTIALLY PRIVACY AND SYNTHETIC DATA GENERATION

In the evolving field of differentially private synthetic data generation, several pioneering methods
have been developed, enhancing data privacy across various applications. Building on the foundation
of existing methods in the field, we categorize the approaches, including our work, into four distinct
types, each addressing differential privacy and data utility in different ways, as shown in Figure (2).

Direct DP Training The first category includes methods like DPSGD proposed by Abadi et al.
(2016b); De et al. (2022), which directly train classifiers on private data using differential privacy
techniques. While this ensures privacy, it often results in significant reduction of model performance
due to the added noise required by DP constraints, especially when the privacy budget is tight.

Data Generation via DP-Trained Generative Models The second category includes most of the
DP-guaranteed synthetic data generation approaches, which train generative models on private data
with DP to generate synthetic datasets for downstream training. The key challenge here is to adapt
these models to generate both domain-aligned and high-quality synthetic dataset with limited private
data. Ghalebikesabi et al. (2023), Dockhorn et al. (2023) and Lyu et al. proposed Diffusion models
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that integrate differential privacy into the generation of synthetic images. Li et al. (2024) employs
semantic-aware pretraining for diffusion models, allowing efficient generation of differentially pri-
vate synthetic images by leveraging public and private datasets. Wang et al. (2024a) leverage noise
addition in the initial forward process steps to save privacy budget during the training of diffusion
model. Most recently, Tsai et al. (2024) proposes a parameter-efficient fine-tuning strategy for diffu-
sion models under differential privacy constraints, achieving state-of-the-art results by reducing the
number of trainable parameters with LoRA modules while balancing the privacy-utility trade-off.

Iterative Data Refinement with Pretrained Models The third category encompasses image gener-
ation with pretrained model and iterative guidance, such DPSDA ( Lin et al.). These methods itera-
tively use the synthetic data to generate additional training data, gradually aligning the synthetic data
with the real data. While this improves data alignment and does not need training, it suffers from
significant computation cost and repeated access to the private dataset, increasing privacy risks.

Two-Step Data Synthesis with Pretrained Models Finally, PASDA introduces a new synthetic data
generation paradigm consisting of two steps: (1) generate a synthetic base dataset, and (2) align the
distribution of this base dataset with the private dataset. In contrast to previous methods, which often
require substantial computational resources for training large generative models or generate a large
volume of data, PASDA is designed to be more efficient and effective at the same time. By lever-
aging pretrained models for inference without retraining, PASDA minimizes the need for extensive
computational power, making it more suitable for resource-constrained environments. Addition-
ally, while many existing methods are primarily tested on low-resolution datasets such as CIFAR-10
(32x32) Krizhevsky et al. (2009) or CelebA (64x64) Liu et al. (2015), our approach can well handle
higher-resolution datasets. This allows PASDA to be applied in more demanding applications where
higher-quality synthetic data is required, without compromising on privacy or utility.

3 METHODOLOGIES

3.1 PRELIMINARIES

In recent years, there has been a significant focus on enhancing the privacy and utility of machine
learning models through various techniques. DP (Dwork et al. (2006)) has emerged as a key frame-
work for ensuring that the inclusion or exclusion of a single data point does not significantly affect
the outcome of any analysis, thus preserving the privacy of individuals in the dataset.
Differential Privacy A randomized mechanism M : D → R with domain D and range R satis-
fies (ϵ, δ)-differential privacy if, for any two adjacent datasets that differ on a single element D,D′ ∈
D and for any subset of outputs S ⊆ R, it holds that: Pr[M(D) ∈ S] ≤ eϵPr[M(D′) ∈ S] + δ,
where ϵ and δ are non-negative parameters controlling the privacy loss, and Pr refers to a proba-
bility measure. DP forms the foundation for various privacy-preserving mechanisms, including the
Gaussian Mechanism Dwork et al. (2006). Expanding on these principles, DP Stochastic Gradient
Descent (DPSGD) Abadi et al. (2016b) has been introduced as a privacy-preserving optimization
algorithm. It integrates noise into the gradient descent process, allowing the training of machine
learning models while ensuring data privacy. Complementing DPSGD, the Moments Accountant
technique has been proposed for better privacy loss tracking in the DPSGD algorithm Abadi et al.
(2016b). This method enhances the privacy analysis, offering more accurate privacy loss estimates
and effective privacy budget management. DPSGD has been incorporated into the optimization
process of many deep learning approaches to ensure privacy.
Rényi Differential Privacy Rényi Differential Privacy (RDP, Mironov (2017)) is an extension of
differential privacy that provides a more flexible framework for analyzing and tracking the privacy
loss over multiple computations.
Definition 1 (Rényi Differential Privacy). A randomized mechanism M satisfies (α, ϵ)-Rényi differ-
ential privacy if for all adjacent datasets D and D′ it holds that: Dα(M(D)∥M(D′)) ≤ ϵ, where
Dα is the Rényi divergence of order α between the distributions of M(D) and M(D′).

The Gaussian mechanism can also be analyzed under the RDP framework, providing a tighter bound
on the privacy loss.
Theorem 1 (RDP of the Gaussian Mechanism(Mironov (2017)). For the Gaussian mechanism with
noise N (0, σ2), the RDP parameter ϵ(α) is given by: ϵ(α) = αs2

2σ2 , where s is the ℓ2-sensitivity of
the query function.
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Figure 3: Framework of PASDA for generating differentially private synthetic datasets. In the
first step, we leverage a generative model to populate synthetic samples. In the second step, we
privately align the synthetic dataset with the private dataset by privately augmenting the embeddings
of synthetic data and decode the embeddings back to image space.

Here, the defition of the ℓ2-sensitivity is given by:
Definition 2 (L2 Sensitivity). The L2 sensitivity of a function f : Dn → Rk is the maximum change
in the function’s output, measured by the Euclidean distance, when a single entry in the input dataset
is modified. Formally, for two neighboring datasets D and D′ that differ by at most one element,
the L2 sensitivity is defined as: ∆2f = maxD,D′ ∥f(D)− f(D′)∥2, where ∥ · ∥2 represents the L2
norm (Euclidean distance) between the function’s outputs.

RDP provides a powerful tool for privacy analysis in iterative algorithms like DPSGD, allowing for
more accurate composition and tighter privacy guarantees. It has been widely adopted in privacy-
preserving machine learning to improve the utility of models trained under differential privacy con-
straints. RDP can be converted to standard DP easily with the following lemma:
Lemma 1 (RDP to DP Conversion. (Mironov (2017))). If a randomized mechanismM guarantees
(α, ϵ)-RDP (α > 1), then it also obeys (ϵ+ log(1/δ)/(α− 1), δ)-DP.

3.2 PRIVATEPRIVACY-AWARE SYNTHETIC DATASET ALIGNMENT

This paper addresses the challenge of training machine learning models on image datasets under dif-
ferential privacy constraints by leveraging a pretrained foundation model. Our methodology involves
several key steps: generating a synthetic dataset using class-conditional generative model, aligning
the synthetic dataset with the private dataset’s distribution using privatePrivacy-Aware Synthetic
Dataset Alignment (pasda), and generating the final synthetic dataset with the unCLIP model Rom-
bach et al. (2022). Below, we detail each step of our approach.
Base Dataset Generation We begin by generating a fully private synthetic dataset using class-
conditional generative model, e.g., stable diffusion (Rombach et al. (2022)) in our method, as
shown in Figure (3) Step 1. Stable diffusion is a powerful generative model capable of produc-
ing high-quality images from text. We use category-specific prompts in the format of ”a photo of
a {category}” to generate synthetic images. This process ensures that the generated data is entirely
synthetic and does not involve direct access to the private dataset, thus preserving privacy by design.

Domain Alignment with Gap Embedding The synthetic data generated using generative models
may have a different distribution compared to the private dataset, which can adversely affect model
performance. To address this, we use the domain gap vector in CLIP embedding space(Wang et al.
(2024b)) to describe the difference between the synthetic and private dataset, and use that to align
their distributions.

We illustrate our PASDA process by applying it to a single category, as shown in Figure (3). For
each category, we first utilize CLIP (Radford et al. (2021)) to obtain embeddings for both the private
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Algorithm 1 DP-guaranteed Domain Alignment for Synthetic and Private Dataset

1: Input: Synthetic dataset from class-conditional generative model D(syn),
2: Private dataset of real images D(priv),
3: Pretrained CLIP(·)(Radford et al. (2021) and unCLIP(·) (Ramesh et al.),
4: Maximum norm for clipping private embeddingsκ,
5: Number of clusters K,
6: Privacy budget (ϵ, δ).
7: Output: Synthetic dataset D(pasda).
8: Initialize D(pasda) ← ∅
9: for each category c do

10: V(priv)
c ← CLIP(D(priv)

c ),V(syn)
c ← CLIP(D(syn)

c ) // Extract CLIP embeddings
11: (S (syn),S(priv))← ClusterMatch(V(syn)

c ,V(priv)
c ,K) // Spectral clustering and Hungarian matching

12: for m = 1 to K do
13: ∆m ← DiffPrivMean(S(priv)

m , ϵ, δ, κ)−Mean(S (syn)
m ) // Privacy-aware Domain gap estimation ,

see Algorithm (2)
14: for v(syn) ∈ C(syn)

m do
15: D(pasda) ← D(pasda) ∪ unCLIP(v(syn) +∆m)} // Image generation from embeddings
16: end for
17: end for
18: end for
19: return Synthetic dataset D(pasda)

and synthetic datasets, capturing the semantic content of images in a high-dimensional latent space.
To account for the semantic diversity and intra-class variations, we avoid treating each class as a
single, isolated semantic entity. Instead, we partition each class into K clusters using a clustering
algorithm, such as spectral clustering. We then apply the Hungarian matching algorithm to pair
corresponding clusters from the synthetic and private datasets by minimizing the Euclidean distance
between cluster centroids, ensuring matched clusters share similar semantics. Next, we compute
the domain gap for each matched pair between the private and synthetic datasets. The domain gap
is the difference in the distributions of their CLIP embeddings. We calculate this gap using the
expected differences of all pairs between the source (private) and target (synthetic) datasets, which
is mathematically equivalent to the difference in the means of their embeddings. The domain gap
vector ∆v is given by E[v(priv)] − E[v(syn)] (Line (13) in Algorithm (1)), where v(priv) and v(syn)

are the CLIP embeddings of the private and synthetic datasets, respectively.

Differential Private domain gap with Gaussian Mechanism To ensure differential privacy, we
add Gaussian noise to the domain gap vector in Algorithm (2), shown in Figure (3) Step 2. This
step is crucial to maintain privacy while aligning the distributions. The differentially private domain
gap vector is computed as ∆̂v = ∆v + N (0, σ2) (Line (13) in Algorithm (1)), where N (0, σ2)
represents Gaussian noise with mean 0 and variance σ2. The noise addition follows the Gaussian
mechanism, which is defined to satisfy RDP. Specifically, the Gaussian mechanism adds noise cali-
brated to the sensitivity of the function and the desired privacy parameters. The noise scale σ is then
given as Table (1):

Corollary 1 (Noise multiplier calculation). Combining Theorem (1) and Lemma (1), the formula

for the noise multiplier with (ϵ, δ)-DP is given by: σ = s

√
min

α>1+
log(1/δ)

ϵ

(
α

2(ϵ− log(1/δ)
α−1 )

)
.

where ϵ and δ are the privacy parameters. This ensures that the privacy loss is controlled, and the
added noise is sufficient to protect individual data points’ privacy in the dataset.

We adjust the CLIP embeddings of the synthetic data by adding the differentially private domain
gap vector: vadjusted = vsynthetic + ∆̂v, This adjustment ensures that the synthetic data’s distribution
is more closely aligned with the private dataset’s distribution while preserving differential privacy.

Converting Embeddings to Images with unCLIP After adjusting the synthetic data embeddings,
we use the unCLIP model to generate the final synthetic dataset. To preserve category-specific
semantics and mitigate the impact of noise, we guide the unCLIP generation process with category
cues to ensure that the generated images are semantically consistent with their intended categories.

6
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Algorithm 2 DiffPrivMean: Differentially Private Mean Calculation

1: Input: Embedding set from private data V(priv),
2: Privacy budget in form of (ϵ, δ),
3: Maximum norm for clipping private embeddings κ.
4: Output: Differentially private mean estimation of the given dataset v̄(priv)

5: v
(priv)
sum ← 0

6: for v(priv) ∈ V(priv) do
7: v̂priv ← v(priv) ·min

(
1, κ

∥v(priv)∥2

)
// Norm clipping using predefined threshold κ

8: v
(priv)
sum ← v

(priv)
sum + v̂(priv)

9: end for
10: σ ← min

α>1+
log(1/δ)

ϵδ

(
αs2

2
(
ϵδ−

log(1/δ)
α−1

)
)

// Calculate the noise multiplier, see Corollary (1)

11: v̄(priv) ← (v
(priv)
sum +N (0, σ2κ2I))/∥V(priv)∥2 // Add noise to preserve differential privacy

12: return v̄(priv)

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets We used four datasets in our experiments: CIFAR-10 (Krizhevsky et al. (2009)) STL-10
(Coates et al. (2011)), ImageNette (Howard) and CelebA (Liu et al. (2015)). CIFAR-10, STL-10,
and ImageNette contain 10 classes, while CelebA is used for binary gender classification.

CIFAR-10 is a widely-used benchmark for visual classification and privacy research, given its low
resolution (32 × 32) and large dataset size (5, 000 images per class). However, real-world appli-
cations often present greater complexity. To extend our evaluation, we include ImageNette and
STL-10, which offer higher resolution images (160× 160 and 96× 96, respectively), with STL-10
being more challenging due to its smaller dataset size (500 images per class).

To further assess the effectiveness of our method across diverse data distribution, we also utilize
CelebA, a dataset for facial attribute classification, which introduces a more complex and varied set
of images. To reduce computational overhead, we randomly select a subset of 5,000 images from
CelebA for our evaluations, rather than using the full dataset.
Models We evaluated the approaches by the performance of downstream classification using two
popular neural network models commonly adopted in privacy literature: ConvNet (Krizhevsky et al.
(2012)) and ResNet-9 (He et al. (2016)), as well as two deeper models for higher resolution tasks
ResNet-50 (He et al. (2016)) and VGG-11 (Simonyan & Zisserman (2015)). ConvNet is a simple
convolutional network without a BatchNorm layer, allows for direct comparison with the baseline
DPSGD method. However, for ResNet-50 and VGG-11, which contain BatchNorm layers, DPSGD
cannot fully guarantee privacy due to potential leakage of data through BatchNorm statistics. There-
fore, we did not implement DPSGD on these two models.
Baselines We compared our methods with most recently proposed DP synthetic generation meth-
ods: DPDM (Dockhorn et al. (2023)), PrivImage (Li et al. (2024)) and DPSDA (Lin et al.), as well
as one baseline with direct class-conditional text-to-image generation with stable diffusion v2 (SD-
v2) (Rombach et al. (2022)). For comparison, we also implement DPSGD (Abadi et al. (2016b)) as
a baseline to demonstrate the performance of direct training on private dataset with a given privacy
budget.
Hyperparameters Our method involves five key hyperparameters: the privacy budget (ϵ, δ), the
maximum norm for CLIP embeddings κ, the number of clusters K, and the reduced dimensionality d
for the clustering algorithm. For all evaluations, we fix κ = 20. The selection of κ is informed by the
observation that the majority of images in the tested dataset have embedding norms approximately
around 20. Regarding the number of clusters, we set K = 1 for STL-10 and K = 10 for CIFAR-10,
CelebA, and ImageNette. This choice is motivated by the number of images per class: STL-10 has
fewer images per class (500), while CIFAR-10, ImageNette, and CelebA have significantly more
(5000 for CIFAR-10, ∼ 9470 for ImageNette, and 2500 for CelebA). Although more clusters can
help preserve diversity, they also reduce the number of images in each cluster, making the results
more susceptible to noise. We set d = 10 as the default for all evaluations. A detailed analysis of
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the hyperparameters can be found in section 4.3, and the hyperparameters for other baselines are
provided in Appendix B.

For the downstream task, we trained ConvNet, ResNet-50 and VGG-11 with a batch size of 128, a
learning rate of 10−2, weight decay of 5 × 10−4, and a momentum of 0.9 with the SGD optimizer.
For ResNet-9, we used a batch size of 64, a learning rate of 5× 10−2, weight decay of 10−3, and a
momentum of 0.9.

4.2 MAIN RESULTS

4.2.1 COMPARISON WITH
BASELINE METHODS

Dataset Method Architectures
ConvNet ResNet-9

STL-10

DP-LDM (Lyu et al.) - -
DPDM (Dockhorn et al. (2023)) 10.2 9.8
DPSDA (Lin et al.) 19.8 24.5
PrivImage (Li et al. (2024)) 11.3 10.4
SD-v2 (Rombach et al. (2022)) 54.8 59.8
PASDA (ours) 59.5 68.2

CIFAR-10

DP-LDM (Lyu et al.) - 51.3
DPDM (Dockhorn et al. (2023)) - 14.7
DPSDA (Lin et al.) 25.7 47.1
PrivImage (Li et al. (2024)) 33.2 31.7*
SD-v2 (Rombach et al. (2022)) 52.4 56.7
PASDA (ours) 62.0 70.3

Table 1: Performance Comparison on STL-10 and CIFAR-
10 Datasets. *The original paper reported a PrivImage per-
formance of 66.2 on CIFAR-10 using ResNet-9. The results
shown in the table were obtained using the published code
with its default configuration.

The comparison with other baseline
methods is shown in Table (1). For
each method, we generate 50, 000 of
synthetic images to train downstream
classifiers for fair comparison. We
show that PASDA achieves the best
performance across both datasets
and model architectures, marking the
new SOTA on these tasks. Moreover,
we find that STL-10 poses a signif-
icantly more challenging task for all
methods due to its higher resolution
and smaller dataset size compared
to CIFAR-10. Recently introduced
diffusion model retraining methods,
such as PrivImage (Li et al. (2024))
and DPDM (Dockhorn et al. (2023)), perform poorly on STL-10, likely due to the difficulties stem-
ming from its high resolution and limited sample size. Surprisingly, the pretrained text-to-image
model, SD-v2, outperforms all other baselines. We attribute this success to SD-v2’s strong genera-
tive capabilities and the similarity between its pretraining dataset and both STL-10 and CIFAR-10.
Consequently, SD-v2 performs consistently well across different resolutions on both datasets, while
other models struggle with generating high-resolution synthetic images with limited data.

4.2.2 COMPARISON WITH THE ORIGINAL DATASET

We further evaluate PASDA on STL-10, ImageNette, and CelebA using various network architec-
tures with synthetic datasets that are ten times the original datasets. Surprisingly, the performance
of models trained on datasets generated by PASDA is comparable to or better than those trained on
the original data, as shown in Table (2). Notably, the accuracy is improved by 2.2% and 10.6% on
STL-10 and ImageNette using ConvNet, respectively. For ResNet-50 and VGG11, the performance
of models trained using data generated by PASDA is slightly lower than that of models trained on
the original datasets, but still comparable. The results indicate that PASDA provides a practical
solution to replace private datasets with synthetic datasets, ensuring strong privacy protection while
maintaining or even surpassing the performance with the original data.

4.2.3 VISUALIZATION OF SYNTHETIC IMAGES

We visualize synthetic images generated by PrivImage, DPSDA, SD-v2, and our method under a
privacy budget of (1, 10−5) Figure (4). PrivImage struggles to produce semantically clear images
under this budget. DPSDA generates high-quality images, though some lack semantic consistency
(e.g., certain airplane and dog images). This inconsistency may result from the high noise intro-
duced during image selection. While SD-v2 produces high-quality images, its style diverges from
CIFAR-10, favoring a more photographic aesthetic. In contrast, PASDA generates semantically con-
sistent, high-quality images with a style closely aligned to CIFAR-10. Notably, in the ship category,
SD-v2 images exhibit a vintage tone, whereas PASDA produces more natural tones, likely guided
by the CIFAR-10 dataset. Overall, PASDA delivers in-distribution, semantically accurate images,
contributing to its strong downstream performance. See appendix C for more visualizations.
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                  CIFAR-10                                            PrivImage                                              DPSDA                                                  SD-v2                                            PASDA (ours)

Figure 4: Comparison of original CIFAR-10 images (leftmost column) with synthetic images gen-
erated by various approaches (the four columns to the right).

Dataset Method Architectures
ConvNet ResNet-50 VGG-11

STL-10
Private Data 57.3 64.8 64.0
DPSGD 29.0 – –
PASDA (ours) 59.5 63.0 59.5

ImageNette
Private Data 51.6 70.6 71.4
DPSGD 24.4 – –
PASDA (ours) 62.2 67.2 60.7

CelebA
Private Data 94.0 90.2 92.6
DPSGD 58.1 – –
PASDA (ours) 89.3 83.2 86.3

Table 2: Comparison of model accuracy trained on the pri-
vate dataset versus PASDA-generated datasets across dif-
ferent architectures on STL-10, CelebA, and ImageNette.
PASDA operates under a privacy constraint of (1, 10−5).
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Figure 5: Performance comparison
across different values of the privacy
budget (ϵ) for varying numbers of clus-
ters (K = 1, 5, 10).

4.3 ABLATION STUDIES

4.3.1 SAMPLE SIZE N

Figure (6) illustrates the classification accuracy of models trained on synthetic datasets generated by
PASDA and SD-v2 across three datasets: STL-10, ImageNette, and CelebA, with varying sample
size multipliers. As the sample size increases (from 1x to 10x), PASDA consistently outperforms
SD-v2. In particular, PASDA achieves performance comparable to models trained on private datasets
when the sample size is scaled to seven times the original size on STL-10, three times on ImageNette,
and ten times on CelebA. For the STL-10 dataset (Figure (6)(a)), PASDA exceeds the baseline at
higher sample multipliers, while in the ImageNette dataset (Figure (6)(b)), it even surpasses both
SD-v2 and the baseline at only three times the original size. Although PASDA does not quite reach
the baseline accuracy for CelebA, it approaches the baseline at 10x, demonstrating its capacity to
maintain high performance while ensuring strong privacy guarantees.

4.3.2 PRIVACY BUDGET (ϵ, δ) AND NUMBER OF CLUSTERS K

We evaluate the performance of our proposed method across varying privacy budgets by adjusting
the parameter ϵ, as shown in Figure (5). For each configuration, we generate 5,000 samples and
present the corresponding performance as a function of ϵ in the accompanying figure. When the
number of clusters is set to K = 10, we observe a gradual improvement in performance as ϵ in-
creases. In contrast, when K = 1, the performance remains relatively stable despite increases in
ϵ. This phenomenon can be attributed to the fact that, with K = 1, the method is restricted to ac-
cessing only the noisy mean vector for each category, thereby imposing a performance ceiling. To
understand this bottleneck, consider the extreme case where no noise is added; in this scenario, our
method relies solely on the mean vectors of each category. The performance remains constrained
because the mean vectors encode limited information, thereby restricting the richness of insights
that can be derived from the private dataset. When K = 5, the performance follows a trend that falls
between that of K = 1 and K = 10, demonstrating intermediate behavior as expected.
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Figure 6: Accuracy of ConvNet as the number of generated samples scales on STL-10.

Increasing the number of clusters, K, allows the method to exploit a more diverse set of cluster
centroids, providing richer insights into the private dataset. However, this enhancement comes at
the cost of increased noise. Specifically, smaller cluster sizes amplify the impact of noise on the
calculation of the mean vector, as the aggregate embedding sum decreases, thereby reducing the rel-
ative influence of the noise term (i.e., v̄(priv) ← (v

(priv)
sum +N (0, σ2κ2I))/∥V(priv)∥2, see Line (11)

in Algorithm (2)). Consequently, under conditions of high noise (i.e., lower ϵ), a smaller number
of clusters (K = 1) proves to be more effective than K = 10. Conversely, when the noise level
is reduced (i.e., higher ϵ), increasing the number of clusters leads to improved performance, as the
greater diversity of cluster centroids provides more information about the private dataset.

5 DISCUSSION AND LIMITATIONS

Privacy Concern on Pretraining Data In the context of PASDA, a key privacy concern revolves
around the pretraining data used by the foundation models, which PASDA relies on to generate
training images. While PASDA itself provides strong differential privacy guarantees for the datasets
it interacts with directly, it does not extend these protections to the pre-training data used in these
foundation models. This is because PASDA has no control or visibility into that pre-training process.
While this issue is beyond the scope of the PASDA approach, it cannot be ignored. The research
community at large recognizes that pretraining data privacy is a critical issue that affects the entire
lifecycle of the foundation models, not just the downstream tasks addressed by PASDA. Addressing
this issue will require better privacy protection and auditing methods for foundation models during
the pretraining phase to ensure the end-to-end privacy of the models involved.

When Pretraining Data Fails to Cover Target Domains PASDA is an innovative, training-free
method that solely relies on pretrained foundation models to generate synthetic images. A concern
arises when the target dataset’s distribution is not represented in the foundation model’s pretraining
data. For instance, many foundation models are trained on large-scale image-text pairs collected
from the Internet, but data from specialized fields may be underrepresented. This includes images
from areas such as X-rays, MRI, CT scans, and cosmic images from astronomy. In such cases,
PASDA may perform poorly because the generative model has not been exposed to the specific dis-
tribution it needs to generate on. Addressing the challenge of generating private, out-of-distribution
data remains an interesting issue, which we plan to explore in future work.

6 CONCLUSIONS

In this paper, we introduce PASDA, a method that tackles the privacy-utility tradeoff by generating
differentially private synthetic data tailored to the target domain. PASDA leverages pretrained class-
conditional generative models and feature statistics from private datasets to minimize the domain gap
while maintaining strong privacy guarantees. Our method excels in its privacy, efficiency, and effi-
cacy. PASDA relies solely on feature statistics to guide the synthetic data generation process, which
eliminates the need to train large models. This proposed paradigm greatly reducing computational
costs, even for high-resolution datasets. PASDA established a SOTA on CIFAR-10 benchmark as
compared to previous DP synthetic dataset generation approach. Moreover, our results across STL-
10, ImageNette, and CelebA, demonstrate that models trained on PASDA-generated synthetic data
perform on par with, and in some cases exceed, those trained on the original private data. In sum-
mary, PASDA marks a significant advance in privacy-preserving synthetic data generation, offering
a practical and scalable solution for high-utility private machine learning applications.
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A PROOF OF COROLLARY (1) (NOISE MULTIPLIER CALCULATION)

Proof. We begin by noting that, from Theorem (1), the Rényi Differential Privacy (RDP) parameter
ϵ(α) of the Gaussian mechanism with noise N (0, σ2) is given by the equation

ϵ(α) =
αs2

2σ2
,

where α > 1 is the order of the RDP, s is the ℓ2-sensitivity of the query function, and σ is the noise
multiplier (i.e., the standard deviation of the added noise).

Next, we employ Lemma (1), which states that if a mechanism satisfies (α, ϵ(α))-RDP, then it also
satisfies (ϵ′, δ)-Differential Privacy, where ϵ′ is given by

ϵ′ = ϵ(α) +
log(1/δ)

α− 1
,

for any δ > 0. Therefore, to satisfy (ϵ, δ)-DP, we require

ϵ = ϵ(α) +
log(1/δ)

α− 1
.

Substituting ϵ(α) = αs2

2σ2 from Theorem (1) into this expression, we obtain the equation

ϵ =
αs2

2σ2
+

log(1/δ)

α− 1
.

We now solve for σ2 in terms of ϵ, s, α, and δ. Rearranging the above equation, we get

αs2

2σ2
= ϵ− log(1/δ)

α− 1
,

which leads to

σ2 =
αs2

2
(
ϵ− log(1/δ)

α−1

) .
Thus, the noise variance σ2 is determined by α, ϵ, s, and δ.

To minimize the noise while ensuring (ϵ, δ)-DP, we seek to minimize σ2 over all α > 1. Specifically,
we minimize the expression

σ2 = s2
α

2
(
ϵ− log(1/δ)

α−1

) .
The optimal value of α must satisfy α > 1+ log(1/δ)

ϵ to ensure that the denominator remains positive,
as the term ϵ− log(1/δ)

α−1 must be strictly positive for σ2 to be well-defined.

Thus, the noise multiplier σ is given by

σ = s

√
min

α>1+
log(1/δ)

ϵ

α

2
(
ϵ− log(1/δ)

α−1

) .
This completes the proof of Corollary (1).
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B HYPERPARAMETERS FOR TRAINING BASELINE METHODS ON STL-10

In this work, we reproduce the results of DPSDA1 (Lin et al.), DPDM2 (Dockhorn et al. (2023)),
and PrivImage3 (Li et al. (2024)) for comparison. The models were trained on four NVIDIA A4500
GPUs.

B.1 STL-10 (COATES ET AL. (2011))

B.1.1 DPSDA (LIN ET AL.)

We generated images using class-conditioned DPSDA with a pretrained improved diffusion model
on ImageNet at a resolution of 64 × 64. The feature extractor was InceptionV3 (Szegedy et al.
(2016)), with a count threshold of 10 and a lookahead degree of 1. The noise multiplier was com-
puted as 15.83 under the privacy parameters ϵ = 1 and δ = 10−5. The process was carried out
over 20 iterations, generating 50,000 samples per iteration, with the degree of variation increasing
linearly from 0 to 40 over the iterations.

B.1.2 PRIVIMAGE (LI ET AL. (2024))

Semantic Query The semantic query classifier was trained using ResNet-50 (He et al. (2016))
with a batch size of 256, a learning rate of 10−2, and 60 epochs. The differential privacy parameters
were set to ϵ = 0.01 and δ = 10−5.

Pretraining The Noise Conditional Score Network (NCSN++)? was trained using the Elucidated
Diffusion Models (EDM) frameworkKarras et al. (2022) on the ImageNet dataset at a resolution of
96×96, with an exponential moving average (EMA) rate of 0.999. The model architecture included
attention at a resolution of 16 and channel multipliers of [1, 2, 4]. Optimization was performed using
the Adam optimizer with a learning rate of 1× 10−4 and no weight decay. The deterministic DDIM
sampler with 50 steps was used, with a time range from tmin = 0.002 to tmax = 80, ρ = 7, and no
guidance scaling. The training procedure used a seed of 0, batch size of 128, over 4000 epochs, with
the EDM loss function configured with pmean = −1.2, pstd = 1.2, one noise sample per iteration,
and a minimum sigma of 0.

Fine-tuning For fine-tuning on the STL-10 dataset, the learning rate was increased to 3 × 10−4,
while continuing with the Adam optimizer and no weight decay. The batch size was set to 19,384,
the number of epochs was reduced to 50, and the number of noise samples was increased to 8.
Differential privacy parameters included αnum = 100, αmin = 500, αmax = 1500, a maximum
gradient norm of 0.001, δ = 1 × 10−5, and ϵ = 0.99. The data was divided into 128 splits to
facilitate memory-efficient training.

B.1.3 DPDM (DOCKHORN ET AL. (2023))

The DPDM method involved training the pretrained NCSN++ model on the STL-10 dataset using
the Adam optimizer with a learning rate of 3× 10−4 and no weight decay. The batch size was set to
128, and the model was trained for 50 epochs. A deterministic DDIM sampler with 500 steps was
used, with a time range from tmin = 0.002 to tmax = 80, and ρ = 7. To optimize the privacy-utility
trade-off, the number of noise samples per iteration was set to 8. The differential privacy parameters
included αnum = 100, αmin = 500, αmax = 1500, a maximum gradient norm of 0.001, δ = 1×10−5,
and ϵ = 1.00. The dataset was split into 128 parts to optimize memory usage during training.

B.2 CIFAR-10 (COATES ET AL. (2011))

B.2.1 DPSDA (LIN ET AL.)

Images were generated using class-conditioned DPSDA with a pretrained improved diffusion model
on ImageNet at a resolution of 32× 32. InceptionV3 (Szegedy et al. (2016)) was used as the feature

1https://github.com/microsoft/DPSDA
2https://github.com/nv-tlabs/DPDM
3https://github.com/SunnierLee/DP-ImaGen
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Figure 7: Comparison of original STL-10 images (leftmost column) with synthetic images generated
by various approaches (the four columns to the right).

extractor, with a count threshold of 10 and a lookahead degree of 1. The noise multiplier was
calculated as 15.83 under the privacy parameters ϵ = 1 and δ = 10−5. The procedure involved
20 iterations, with 50,000 samples generated per iteration, and a linear increase in the degree of
variation from 0 to 40 over the iterations.

B.2.2 PRIVIMAGE (LI ET AL. (2024))

Semantic Query The semantic query model remained the same as used for STL-10 (sec-
tion B.1.2).

Pretraining Pretraining followed the same procedure as outlined for STL-10, but at a resolution of
32× 32. The NCSN++ model was trained using the EDM framework, with attention at a resolution
of 16, and channel multipliers of [1, 2, 4]. Training was conducted over 4000 epochs with a batch
size of 512.

Fine-tuning For fine-tuning on CIFAR-10, the optimizer’s learning rate was increased to 3×10−4,
with the Adam optimizer and no weight decay. The batch size was set to 19,384, and the number
of noise samples increased to 8. Differential privacy parameters included αnum = 100, αmin = 500,
αmax = 1500, a maximum gradient norm of 0.001, δ = 1 × 10−5, and ϵ = 0.99. The dataset was
partitioned into 128 splits to manage memory usage.

B.2.3 DPDM (DOCKHORN ET AL. (2023))

For DPDM on CIFAR-10, the pretrained NCSN++ model was trained with a batch size of 2048 and
a learning rate of 3×10−4, using the Adam optimizer without weight decay. The model was trained
for 50 epochs, with a deterministic DDIM sampler utilizing 500 steps and the same privacy settings
as described for STL-10. The dataset was similarly partitioned into 128 parts for memory efficiency.

C MORE SAMPLE IMAGES

We further provide visualizations of the synthetic datasets generated by various methods on STL-
10. Due to the increased challenge posed by STL-10, characterized by its high resolution and small
dataset size, PrivImage fails to produce semantically meaningful images, with most outputs resem-
bling random noise. While DPSDA generates visually coherent images, it struggles to accurately
match the generated images with the correct categories. In contrast, PASDA consistently produces
high-quality images with a distribution closely aligned with that of STL-10.
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