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Abstract

While numerous Video Violence Detection (VVD) methods have focused on rep-
resentation learning in Euclidean space, they struggle to learn sufficiently dis-
criminative features, leading to weaknesses in recognizing normal events that are
visually similar to violent events (i.e., ambiguous violence). In contrast, hyperbolic
representation learning, renowned for its ability to model hierarchical and complex
relationships between events, has the potential to amplify the discrimination be-
tween visually similar events. Inspired by these, we develop a novel Dual-Space
Representation Learning (DSRL) method for weakly supervised VVD to utilize
the strength of both Euclidean and hyperbolic geometries, capturing the visual fea-
tures of events while also exploring the intrinsic relations between events, thereby
enhancing the discriminative capacity of the features. DSRL employs a novel
information aggregation strategy to progressively learn event context in hyperbolic
spaces, which selects aggregation nodes through layer-sensitive hyperbolic asso-
ciation degrees constrained by hyperbolic Dirichlet energy. Furthermore, DSRL
attempts to break the cyber-balkanization of different spaces, utilizing cross-space
attention to facilitate information interactions between Euclidean and hyperbolic
space to capture better discriminative features for final violence detection. Com-
prehensive experiments demonstrate the effectiveness of our proposed DSRL.

1 Introduction

Compared with manually checking out violent events in surveillance videos which is time-consuming
and laborious, Video Violence Detection (VVD), which focuses on identifying violent events in
videos and provides automatic and instantaneous responses, has gained significant research attention
due to its potential applications. However, it is expensive to annotate each frame in a video so that
we can train a VVD model with supervised learning. To address this, current methods often utilize
weakly supervised settings to formulate the problem as a multiple-instance learning (MIL)[19] task.
These methods treat a video as a bag of instances (i.e., snippets or segments), and predict their labels
based on the video-level annotations.

According to the modality type of the input data, existing weakly supervised VVD methods can be
roughly divided into two categories, unimodal with only vision input and multimodal with vision and
audio input. The unimodal methods [29, 36, 8, 10, 20] learn the different distributions of normal and
violent events through video-level labels, focus on finding valuable visual cues that are distinct from
non-violent events and use them to detect violent events, i.e., fighting. However, relying on visual cues
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Figure 1: (a) Hierarchical diagram in Video Violence Detection (VVD). (b) Our DSRL enhances the
detection of ambiguous violence by combining Euclidean and Hyperbolic spaces to balance visual
feature expression and hierarchical event relations.

to identify violent events is sometimes unreliable, especially when facing visually ambiguous events,
like normal physical collisions and fighting behavior in hockey games. To alleviate this problem,
Wu et al [34] released a large multimodal violence dataset, named XD-Violence, and accelerated
a series of multimodal VVD methods [34, 35, 22, 37, 23]. Multimodal VVD methods incorporate
not only visual cues but also complementary audio information for improving the discrimination
of violent events. Previous methods have employed Euclidean space representation learning and
achieved good results in many other computer vision tasks[27, 28, 15, 32]. Despite advancements in
audio-visual violent video detection (VVD) methods, their performance remains unsatisfactory in
recognizing normal events that are visually similar to violent events (i.e., ambiguous violence) due to
the limitations of Euclidean space. While visual features are fully extracted in Euclidean space, these
methods fail to adequately capture and utilize the intrinsic relations between events.

To fully understand an event, on the one hand, we need to explore the hierarchy of event categories,
on the other hand, we need to sort through the events, including the trend before the event, the action
during the event and the behaviour after the event, which reflects the hierarchy of event development,
shown in Figure 1(a). An ambiguous violent event is confusing at the current category level or
happening moment, but may easily be detected if we can grasp the hierarchical relations. Fortunately,
hyperbolic representation learning, characterized by exponentially increasing the metric distances
and naturally reflects the hierarchical structure of data, has gained attention and shown promising
performance in computer vision tasks, like semantic segmentation [1], medical image recognition
[38], action recognition [24, 17], anomaly recognition [12]. At present, only one method, HyperVD
[25], makes a preliminary attempt on the VVD task via hyperbolic representation learning. HyperVD
introduces the Hyperbolic Graph Convolutional Networks (HGCN) [3], an extended version of
Euclidean graph convolution for representation learning in hyperbolic space, to learn discriminative
representations. However, HGCN employs a hard node selection strategy during the message passing,
where the nodes whose correlation is higher than the threshold (a manual parameter) are selected
for message aggregation and otherwise discarded, which leads to insufficient hierarchical relation
learning. In addition, existing VVD methods deploy feature embedding either in Euclidean or
hyperbolic spaces. Representation learning in a single space is like picking the sesame and losing the
watermelon, where the feature embedding is insufficient to guarantee the performance of VVD. On
the one hand, hyperbolic representation learning strengthens the hierarchical relation of events but
weakens the expression of visual features, on the other hand, Euclidean representations emphasize
visual features but ignore relations between events. Therefore, leveraging the advantages of both
spaces is essential for improving the performance of VVD methods, shown in Figure 1(b).

In this paper, we propose a novel Dual-Space Representation Learning (DSRL) method for weakly
supervised VVD under the multimodal input setting. Specifically, we designed two customized
modules, the Hyperbolic Energy-constrained Graph Convolutional Network module (HE-GCN) and
the Dual-Space Interaction module (DSI). Instead of adopting the hard node selection strategy in
HGCN, HE-GCN selects nodes for message aggregation by our introduced layer-sensitive hyperbolic
association degrees, which are dynamic thresholds determined by the message aggregation degree at
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each layer. To better align with the characteristics of hyperbolic spaces, we introduce the hyperbolic
Dirichlet energy to quantify the extent of message aggregation. Benefiting from the dynamic
threshold, the layer-by-layer focused message passing strategy adopted by HE-GCN not only ensures
the efficiency of information excavation but also improves the model’s comprehensive understanding
of the events, thus enhancing the model’s ability to discriminate ambiguous violent events. Although
hyperbolic representation learning enhances the understanding of hierarchical relations of events,
the role of visual representations in violence detection cannot be discarded. However, fusing
representation in different spaces remains a challenge, to break the information cocoon, DSI utilises
cross-space attention to facilitate information interactions between Euclidean and hyperbolic space
to capture better discriminative features, where Euclidean representations have effectiveness on the
significant motion and shape changes in the video, while hyperbolic representations accelerate the
comprehension of hierarchical relations between events, working together to improve the performance
of violence detection in videos.

Contributions: (1) To the best of our knowledge, our DSRL is the first method to integrate Euclidean
and hyperbolic geometries for VVD, significantly improving discrimination of ambiguous violence
and achieving state-of-the-art performance on the XD-Violence dataset in both unimodal and mul-
timodal settings. (2) To better capture the hierarchical context of events, we design the HE-GCN
module with a novel message aggregation strategy, where the node selection threshold is dynamic not
fixed and determined by layer-sensitive hyperbolic association degrees based on hyperbolic Dirichlet
energy. (3) To break the information cocoon for better dual-space cooperation, visual discrimination
from Euclidean and event hierarchical discrimination from hyperbolic, we propose the DSI module,
which utilizes cross-space attention to facilitate information interactions.

2 Related Work

Weakly Supervised Video Violence Detection. Weakly supervised VVD requires identifying
violent snippets under video-level labels, where the MIL [19] framework is widely used for denoising
irrelevant information. Recently, progress has been made in weakly supervised VVD, with approaches
categorized into two main categories: vision-based and audio-visual-based methods. Employing
exclusively visual cues, vision-based VVD endeavours to discern the occurrence of violent events
within videos. Most existing works [7, 26, 30, 33] consider VVD as solely a visual task, and CNN-
based networks are utilized to encode visual features. However, these approaches overlook the
interaction between different modalities and the relevant audio information, which could negatively
impact the accuracy of violence detection. To alleviate this problem, Wu et al [34] released a large
multimodal violence dataset, named XD-Violence, and accelerated a series of multimodal VVD
methods [34, 35, 22, 37, 23, 18, 25]. In contrast to unimodal methods, they incorporate not only
visual cues but also complementary audio information for improving the discrimination of ambiguous
violent events. Subsequently, many studies [22, 23] have focused on the integration of visual and
audio information. There is also work[37] focused on solving the modality asynchrony problem.
Despite the progress of weakly supervised multimodal VVD methods, all the above methods carry
out representation learning in Euclidean Spaces, making it difficult to effectively handle ambiguous
violence.

Hyperbolic Representation Learning. Hyperbolic representation learning, characterized by ex-
ponentially increasing the metric distances and naturally reflects the hierarchical structure of data,
has gained attention and shown promising performance in computer vision tasks, like semantic seg-
mentation [1], visual representation learning [9], medical image recognition [38], action recognition
[24, 17], anomaly recognition [12]. More Recently, HyperVD [25] has made an initial attempt at
the VVD task using hyperbolic representation learning. HyperVD incorporates Hyperbolic Graph
Convolutional Networks (HGCN) [3] to acquire discriminative representations. However, while
hyperbolic representation learning enhances the hierarchical relationships of events, it diminishes
the representation of visual features. Therefore, we propose a novel Dual-Space Representation
Learning to joint the strengths of Euclidean and hyperbolic space. Meanwhile, we design HE-GCN
to gradually shift its focus from capturing global contextual information to concentrating on crucial
detailed features, progressively capturing the hierarchical context of events.

3



3 Preliminaries

Problem Definition. Given an video sequence S = {St}Tt=1 with T non-overlapping segments. For
a video segment, the weakly supervised VVD requires distinguishing whether it contains violent
events via an events relevance label yt ∈ {0, 1}, where yt = 1 means in the current segment includes
violent cues.
Hyperbolic Geometry. A Riemannian manifold (M, g) of dimension n is a real and smooth manifold
equipped with an inner product on tangent space gx: TxM × TxM → R at each point x ∈ M,
where the tangent space TxM is a n-dimensional vector space and can be seen as a first-order
local approximation of M around point x. In particular, hyperbolic space (Dn

c , g
c), a constant

negative curvature Riemannian manifold, is defined by the manifold Dn
c = {x ∈ Rn : c ∥x∥ < 1}

equipped with the following Riemannian metric:gcx = λ2
xg

E , where λx := 2
1−c∥x∥2 and gE = In

is the Euclidean metric tensor. Considering the numerical stability and calculation simplicity of its
exponential and logarithmic maps and distance functions, we select the Lorentz model [21] as the
framework cornerstone.
Lorentz Model. Formally, an n-dimensional Lorentz model is the Riemannian manifold Ln

K =(
Ln, gKx

)
. K is the constant negative curvature. gKx = diag (−1, 1, · · ·, 1) is the Riemannian metric

tensor. We denote Ln as the n-dimensional hyperboloid manifold with constant negative curvature
K:

Ln :=

{
x ∈ Rn+1 : ⟨x, x⟩L =

1

K
,x0 > 0

}
. (1)

Let x, y ∈ Rn+1, then the Lorentzian scalar product is defined as:

⟨x, y⟩L := −x0y0 +

n∑
i=1

xiyi, (2)

where Ln is the upper sheet of hyperboloid in an (n+1)-dimensional Minkowski space with the origin(√
−1/K, 0, · · ·, 0

)
. For simplicity, we denote point x in the Lorentz model as x ∈ Ln

K .
Tangent Space. Given the tangent space at x is defined as an n-dimensional vector space approximat-
ing Ln

K around x,
TxLn

K :=
{
y ∈ Rn+1 | ⟨y,x⟩L = 0

}
. (3)

Note that TxLn
K is a Euclidean subspace of Rn+1. Particularly, we denote the tangent space at the

origin as T0Ln
K .

Logarithmic and Exponential Maps. The mapping between hyperbolic spaces and tangent spaces
can be done by exponential map and logarithmic map. The exponential map is a map from a subset
of a tangent space of Ln

K(i.e., TxLn
K) to Ln

K itself. The logarithmic map is the reverse map that
maps back to the tangent space. For points x, y ∈ Ln

K , v ∈ TxLn
K , such that v ̸= 0 and x ̸= y, the

exponential map expKx (·) and logarithmic map logKx (·) are given as follows:

expKx (v) = cosh(
√
−K ∥v∥L)x+ sinh(

√
−K ∥v∥L)

v√
−K ∥v∥L

(4)

logKx (y) = dKL (x, y)
y −K ⟨x, y⟩L
∥y −K ⟨x, y⟩L∥L

, (5)

where∥v∥L =
√

⟨v, v⟩L denotes Lorentzian norm of v and dKL (·, ·) denotes the Lorentzian intrinsic
distance function between two points x, y ∈ Ln

K , which is given as:

dKL (x, y) = arcosh (K ⟨x, y⟩L) . (6)

4 Methodology

In this paper, we propose the Dual-Space Representation Learning (DSRL) method to improve
the discrimination of ambiguous violence. Within DSRL, we first design the Hyperbolic Energy-
constrained Graph Convolutional Network Module (HE-GCN) to better capture the hierarchical
context of events (Sec. 4.1 ). Then, the Dual-Space Interaction Module (DSI) is introduced to break
the information cocoon for better dual-space cooperation (Sec. 4.2 ). An illustration of the main
components of DSRL is provided in Figure 2.
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Figure 2: A conceptual diagram of our DSRL.

4.1 Hyperbolic Energy-constrained Graph Convolutional Network Module (HE-GCN)

HE-GCN primarily involves mapping features from Euclidean space to hyperbolic space, then
transforming the features, constructing the message graph by calculating hyperbolic Dirichlet energy
and Layer-Sensitive Hyperbolic Association Degree, and finally aggregating messages to obtain the
new feature graph.
Mapping from Euclidean to hyperbolic spaces. Let

{
xE
i

}
i∈V be input Euclidean node features, and

o := [1, 0, · · ·, 0] denote the origin on the manifold L of the Lorenzt model. There is
〈
o,
[
0, xE

i

]〉
L =

0, where ⟨·, ·⟩L denotes the Lorentz inner product defined in Eq. 2. We can reasonably regard
[
0, xE

i

]
as a node on the tangent space at the origin o. HE-GCN uses the exponential map defined in Eq. 4 to
generate hyperbolic node representations on the Lorentz model:

xL
i = expo

([
0, xE

i

])
=

[
cosh

(∥∥xE
i

∥∥
2

)
, sinh

(∥∥xE
i

∥∥
2

) xE
i∥∥xE
i

∥∥
2

]
. (7)

Hyperbolic Feature Transformation. According to [5], we reformalize the lorentz linear layer to

learn a matrix M =

[
v⊤
W

]
, v ∈ Rn+1, W ∈ Rm×(n+1) satisfying ∀x ∈ Ln, fx(M)x ∈ Lm, where

fx : R(m+1)×(n+1) → R(m+1)×(n+1) should be a function that maps any matrix to a suitable one for
the hyperbolic linear layer. Specifically, ∀x ∈ Ln

K , M ∈ R(m+1)×(n+1), fx(M) is given as

fx(M) = fx

([
v⊤
W

])
=

[√
∥W x∥2−1/K

v⊤x v⊤
W.

]
(8)

Theorem 1 ∀x ∈ Ln, M ∈ R(m+1)×(n+1), we have fx(M)x ∈ Lm
K .

For simplicity, we use a morel general formula ∗ of hyperbolic linear layer for feature transformation

based on fx

([
v⊤

W

])
x with activation, dropout, bias and normalization,

y = HL (x) =

[√
∥ϕ (Wx, v)∥2 − 1/K

ϕ (Wx, v) ,

]
(9)

where x ∈ Ln
K , W ∈ Rm×(n+1), v ∈ Rn+1 denotes a velocity (ratio to the speed of light) in the

Lorentz transformations, and ϕ is an operation function: for the dropout, the function is ϕ (Wx, v) =

Wdropout (x); for the activation and normalization ϕ (Wx, v) = λσ(v⊤x+b′)
∥Wh(x)+b∥ (Wh (x) + b), where

σ is the sigmoid function, b and b′ are bias terms, λ > 0 controls the scaling range, h is the activation
function. And then, we need to construct the message graph.
Hyperbolic Dirichlet Energy. Given the hyperbolic embedings x =

{
xi ∈ Ld

K

}|V|
i=1

, the hyperbolic
Dirichlet energy (HDE) EK

H (x) is defined as

EK
H (x) =

1

2

N∑
i,j=1

dKL

(
expKo

logKo (xi)√
1 + di

, expKo
logKo (xj)√

1 + dj

)2

, (10)
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where di/j denotes the node degree of node i/j. The distance dKL (x, y) between two points x, y ∈ L
is the geodesic. Given that each node is connected to every other node in videos, resulting in a node
degree di of n− 1 (where n is the total number of nodes), the formula for hyperbolic Dirichlet energy
can be simplified.

EK
H (x) =

1

2

N∑
i,j=1

dKL (xi, xj)
2
. (11)

HDE is used to measure the similarity between node features in order to gauge the degree of
information aggregation among features. It is evident that as hyperbolic message aggregation
progresses, the similarity between features gradually decreases. Hyperbolic message aggregation
reduces HDE. It can be expressed as: EK

H

(
x(l+1)

)
≤ EK

H

(
x(l)
)
, where l is the layer number.

Layer-Sensitive Hyperbolic Association Degree. Based on HDE, we design Layer-Sensitive
Hyperbolic Association Degree (LSHAD) to guide the node selection strategy for our construction of
graphs for message aggregation. It is defined as

LSHADk = f
(
EK

H (x), k
)
= sigmoid(βk − γ +

1

EK
H (x) + 1

), (12)

where f (·) is a function related to k and EK
H (x), k is the current layer number. β and γ are

hyperparameters.
Lorentzian similarity. Based on the Lorentzian distance, the Lorentzian similarity to measure the
feature semantic similarity between nodes is given by

Ls (xi, xj) = exp(−dKL (xi, xj)), (13)

where dKL (·, ·) is the Lorentzian intrinsic distance function. We define the initial adjacent matrix
AL ∈ RT×T via lorentz similarity:

AL
i,j = softmax(Ls(xi, xj)). (14)

LSHAD Construct rules. With LSHAD, we propose message graph construction rules, called LSHAD
construct rules. It is defined as{

A′
i,j = Ai,j , if Ai,j ≥ LSHADk

A′
i,j = 0, if Ai,j < LSHADk,

(15)

where Ai,j means the lorentz similarity between nodes i and j in the graph G. Formally, it enforces
the elements of the adjacency matrix A that are less than LSHAD to be zeros. Finally, we can
dynamically construct message graphs at each layer via LSHAD construct rules to obtain better
contextual information. Following LSHAD construction rules, we can dynamically construct message
graphs G′, which we then use to perform message aggregation operations to obtain better contextual
information.
Hyperbolic Message Aggregation. We use graph G′ to perform message aggregation, and the
message aggregation can be defined as:

MA (yi) =
∑m

j=1Aijyj√
−K

∣∣∥∑m
k=1Aikyk∥L

∣∣ , (16)

where m is the number of nodes. yi is the node features.

4.2 Dual-Space Interaction Module

Although hyperbolic representation learning enhances understanding of event hierarchies, visual
representations remain crucial in violence detection. Fusing representations from different spaces is
challenging; thus, DSI employs cross-space attention to facilitate interactions between Euclidean and
hyperbolic spaces.
Cross-Space Attention Mechanism. Cross-Space Attention Mechanism utilizes the Lorentzian
metric to calculate attention scores between nodes from different spaces, accurately measuring
semantic similarity and better preserving their true relationships by computing the nonlinear distance
between them. We denote the features in Euclidean space as VE and the features in hyperbolic
space as VH . CSAE→H models the between-graph interaction and guides the transfer of inter-graph
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message from VE to VH . First, we use linear layer to transform VH to the key graph Vk and the value
graph Vv ,and VE to the query graph Vq . Then, we use lorentzian metric to calculate the attention map
AE→H as follows:

AE→H = softmax(Ls(Vq, Vk)), Ls(xi, xj) =

{
Ls(xi, xj), if Ls(xi, xj) > λ

0, if Ls(xi, xj) ≤ λ,
(17)

where Ls(·) is Lorentzian similarity defined in Eq. 13 and λ is the threshold value to eliminate weak
relations and strengthen correlations of more similar pairs. The representation from E to H can be
formulated as follows:

V ′
H = CSAE→H(VH , VE) = softmax(

AE→H × Vk√
d

)Vv. (18)

The interaction process in DSI can be represented as follows:

V ′
E = α× CSAE→H(VE , VH) + VE

V ′
H = α× CSAH→E(VH , V ′

E) + VH

VF = MaxPool([V ′
E ⊕ V ′

H ]),

(19)

where V ′
E represents the features obtained by enhancing Euclidean space features using hyperbolic

space features, and α controls the contribution of the enhanced features and VE . MaxPool is the
max pooling operation and ⊕ represents the concatenation operation.
Learning Objective. We use binary cross-entropy as our classification loss. Its calculation formula
is:

Loss = − 1

N

N∑
i=1

(yi log(ŷi) + (1− yi)log(1− ŷi)) , (20)

where yi is true label, ŷi is the predicted label, N is the batch size.

5 Experiments

5.1 Experiments Setup

Datasets. Under the multimodal input setting, we follow [34, 37, 25] to conduct experiments on
XD-Violence, which is the only and extremely challenging VVD dataset with multimodal information.
Under the unimodal input setting, both the XD-Violence[34] and UCF-Crime[30] datasets are used
to evaluate our method. More details of the two dataset settings are provided in the Appendix.
Evaluation Metrics. To quantitatively evaluate the performance, we follow standard pratice [34, 37,
18, 6]. For XD-Violence, we utilize the frame-level average precision (AP) as the evaluation metric.
For UCF-Crime, we adopt the area under the curve of the frame-level receiver operating characteristic
(AUC) to evaluate performance.

5.2 Comparisons with State-of-the-art Methods

In Table 1, with multimodal input, our DSRL demonstrates superior performance on XD-Violence,
surpassing the best method that uses Euclidean space representation by 4.21% and that uses only
hyperbolic space representation by 1.94%. These results highlight the effectiveness of DSRL in
learning discriminative features and prove that our dual-space representation learning integrates the
benefits of Euclidean and hyperbolic space well. From Table 1, it also can be found that DSRL
achieves SOTA performance under unimodal input settings on XD-Violence, outperforming existing
state-of-the-art methods. Furthermore, to analyse the generalization of our method, we also report the
performance on the UCF-Crime dataset, achieving an accuracy of 86.38%, comparable to current
state-of-the-art methods.

5.3 Ablation Studies

We conduct ablation studies on various design choices of our DSRL to demonstrate their contributions
to the final results in Table 2.
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Table 1: Comparisons of frame-level AP performance on XD-Violence and AUC performance on
UCF-Crime datasets under different input settings. UCF-Crime only has visual modality input.

Methods Input Setting Feature Space UCF-Crime XD-Violence
Sultani et al. [30] Unimodal Euclidean 76.21 73.20

Wu et al. [33] Unimodal Euclidean 82.44 75.90
RTFM [31] Unimodal Euclidean 84.30 77.81
MSL [16] Unimodal Euclidean 85.30 78.28
MGFN [6] Unimodal Euclidean 86.98(1st) 79.19(3rd)
UMIL [18] Unimodal Euclidean 86.75(2nd) 81.66(2nd)

CU-Net [39] Unimodal Euclidean 86.22 78.74
Ours Unimodal Euclidean and Hyperbolic 86.38(3rd) 82.01(1st)

HL-Net [34] Multimodal Euclidean - 78.64
Wu et al. [35] Multimodal Euclidean - 78.64

Pang et al. [23] Multimodal Euclidean - 79.37
UMIL [18] Multimodal Euclidean - 81.77

Zhang et al. [39] Multimodal Euclidean - 81.43
MACIL-SD [37] Multimodal Euclidean - 83.40(3rd)
HyperVD [25] Multimodal Hyperbolic - 85.67(2nd)

Ours Multimodal Euclidean and Hyperbolic - 87.61(1st)

Table 2: Ablations on XD-Violence dataset.
Euclidean Hyperbolic DSI XD-Violence

GCN HE-GCN HGCN Concat Cosine Metric Lorentzian Metric Multimodal(%) Unimodal(%)

✓ 84.04 77.95
✓ ✓ ✓ 85.01 77.93
✓ ✓ ✓ 86.46 79.70
✓ ✓ ✓ 86.91 80.72
✓ ✓ ✓ 87.61 82.01

1) Component-wise ablations. To study the impact of each component in the DSRL, including
HE-GCN and DSI, we start with a baseline model that only applies GCN and progressively adds each
component. Table 2 shows that the baseline yields inferior performance due to learning representations
only in Euclidean space (1st row). Then, HE-GCN is employed and the representations from different
spaces are simply concat at this stage, benefit from the hierarchical context of events, resulting in an
improvement of 2.42% on multimodal setting and 1.75% on unimodal setting respectively (3rd row).
Then DSI is introduced to facilitate information interactions, which further enhances the performance
on multimodal input setting by 1.15% and unimodal input setting by 2.31% (5th row). 2) Effect
of LSHAD. LSHAD is a crucial element of our HE-GCN for constructing the message graph. In
Table 2(2nd and 3rd rows), we present experiments comparing HGCN used in HyperVD [25], which
employs a hard node selection strategy (nodes selected by a fixed threshold), with HE-GCN, which
uses our introduced layer-sensitive hyperbolic association degrees for node selection in message
aggregation. The performance of AP improved by 1.45% in the multimodal setting and by 1.77%
on the unimodal setting. These results demonstrate that our LSHAD is a better strategy and helps to
capture the hierarchical context of events. 3) Lorentzian metric in DSI. As shown in Table 2(4th and
5th rows), we also explore the effect of cosine similarity and Lorentzian metric in our DSI, and the
results show that using cosine similarity to calculate the attention between nodes resulted in a 0.7%
lower performance compared with using the Lorentzian metric. This indicates that the Lorentzian
metric is more effective in measuring feature similarity across different spaces.

5.4 Qualitative Results

1) Feature Discrimination Visualization. We present t-SNE visualizations of feature distributions
on the XD-Violence test set. As shown in Figure 3, red dots represent violent features, while purple
dots represent normal features. The clear clustering of violent and non-violent features demonstrates
the effectiveness of DSRL.
2) Qualitative Visualizations. We illustrate the qualitative visualizations of VVD for the test video
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Vanilla features DSRL features

Normal
Violent

Normal
Violent

Figure 3: t-SNE visualization of vanilla and DSRL features for the test video on XD-Violence.

（a）Video IDs:Bad.Boys.1995__#01-11-55_01-12-40 （b）Video IDs:Casino.Royale.2006__#00-18-30_00-19-20

DSRL Baseline Ground Truth Key frame of normality Key frame of violence

（c）Video IDs:Ip.Man.2008__#00-46-51_00-47-30

Figure 4: Frame-level scores and violence localization examples for the test video from XD-Violence
dataset.

from the XD-Violence dataset. Figure 4 shows that DSRL can accurately detect violent events and
has a better detection performance than the baseline.

3) Qualitative Visualizations of DSRL in the Context of Ambiguous Violence. We put up qualita-
tive visualizations of DSRL when handling ambiguous violence. Figure 5 demonstrates that DSRL
effectively resolves ambiguous violence, which single-space representation learning struggles with.
In Figure 5(a), the first frame shows smoke caused by fire. Euclidean space representation, relying
on visual features, misidentifies the smoke as violence. Hyperbolic space representation, consider-
ing contextual information, also misidentifies it due to preceding violent frames. DSRL, however,
combines both perspectives: Euclidean space flags the smoke as a potential violence indicator, while
hyperbolic space recognizes the fire context. This integration allows DSRL to accurately classify the
smoke as non-violent. This supports our motivation: hyperbolic representation enhances hierarchical
event relations but weakens visual feature expression, while Euclidean representation emphasizes
visual features but overlooks event relationships. DSRL effectively addresses ambiguous violence,
which is challenging for either space alone. More performance visualizations are included in the
Appendix.

（b）Video IDs:v=osjdmjNJUdg

③ ④

③ ④

Time

DSRLEuclidean Ground Truth Ambiguous FramesHyperbolic

（a）Video IDs:Taken.3.2014__#01-09-26_01-09-54
Time

① ②

① ②

Time
（c）Video IDs:v=pMtu7fOHdII

⑤ ⑥

⑤ ⑥

正文--模糊暴力

Figure 5: Some visual results of DSRL in the context of ambiguous violence. "Euclidean" represents
the results of GCN only. "Hyperbolic" refers to the results of HyperVD.
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5.5 Comparisons of Computing Resources and Training Time

Our designs, HE-GCN and DSI, are specifically crafted to effectively capture hierarchical contextual
information of events and to integrate two distinct spaces of information, respectively. To evaluate
the benefits of these designs, we conducted experiments on the XD-Violence dataset, training
three models for 30 epochs each on a single NVIDIA RTX A6000 GPU: the Baseline (GCN),
Baseline+HE-GCN, and Baseline+HE-GCN+DSI (referred to as DSRL). As shown in Table 3,
our DSRL model demonstrated a 3.57% improvement in Average Precision (AP) compared to the
Baseline. Additionally, the training time per epoch increased by only 41 seconds, and memory usage
rose by just 4.1 GB. Both increases are within a reasonable range, making the performance gains
achieved by DSRL well worth the additional resource consumption.

Table 3: Comparison of computing resources and training time.

Methods Params Training time per epoch Training time Video memory usage AP (%)
Baseline(GCN) 0.7734M 2min 60min 4.24GB 84.04

Baseline+HE-GCN 0.8975M 2min19s 69min39s 7.03GB 86.46
Baseline+HE-GCN+DSI(DSRL) 0.9966M 2min41s 80min19s 8.34GB 87.61

5.6 Analysis of Model Computational Complexity and Speed

The computational efficiency of the DSRL model is crucial, especially for real-time applications. Our
analysis confirms that the model meets the requirements for real-time processing, as demonstrated
by the following results. Our experiments were conducted on a single NVIDIA RTX A6000 GPU.
For video input, the model processes at a rate of 83.87 FPS, handling only video data. The model’s
parameters are relatively lightweight, totaling 13.4 MB, with I3D parameters at 12.49 MB and DSRL
parameters at 0.91 MB. This compact size ensures quick response times. When processing video
and audio inputs, the model maintains a high processing speed of 56.86 FPS, despite the added
computational load from audio processing. The total parameter size for this configuration is 85.54 MB,
comprising I3D parameters at 12.49 MB, VGGish parameters at 72.14 MB, and DSRL parameters at
0.91 MB. These results illustrate that our model exhibits excellent real-time performance, even with
multimodal inputs, making it suitable for latency-sensitive real-world applications.

6 Conclusions

In this paper, we propose a comprehensive geometric representation learning method, Dual-Space
Representation Learning (DSRL) which integrates the benefits of Euclidean and hyperbolic geome-
tries to improve the discrimination of ambiguous violence. Hyperbolic Energy-constrained Graph
Convolutional Network (HE-GCN) is designed to better capture the hierarchical context of events.
Additionally, Dual-Space Interaction (DSI) is designed to facilitate information interactions. Our
method achieves SOTA performance on the XD-Violence dataset in both unimodal and multimodal
settings, especially excelling in resolving ambiguous violence.

Limitions. Our DSRL is effective for VVD in a multimodal input setting. However, DSRL only
utilizes basic audio information, potentially overlooking the more detailed semantic content present
in the audio. How to further narrow this limitation is our future research focus. Due to the bias issues
in the XD-Violence and UCF-Crime datasets, which fail to adequately represent diverse backgrounds,
the fairness and generalization of the model may be affected. In the future, we hope to use more
diverse datasets and conduct bias analysis to prevent the model from producing unfair outcomes due
to false associations with gender or race.
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Appendix

Here we provide the proof of Theorem 1 in Sec. A. The Technical details of the DSRL are introduced
in Sec. B. Moreover, the datasets settings and implementation details are shown in Sec. C. We
conduct additional experiments in Sec. D, and more qualitative results in Sec. E. Broader impacts are
listed in Sec.F.

A Proof of Theorem. 1

Theorem 1. ∀x ∈ Ln, M ∈ R(m+1)×(n+1), we have fx(M)x ∈ Lm
K .

Proof 1.

y = fx(M)x =

[√
∥W x∥2−1/K

v⊤x v⊤x
Wx

]
=

[√
∥Wx∥2 − 1/K

Wx

]

⟨y, y⟩L = −(∥Wx∥2 − 1/K) + (Wx)⊤Wx

=
1

K
− ∥Wx∥2 + ∥Wx∥2

=
1

K

Thus, fx(M)x lies on the manifold L of the Lorentz model.

B Technical details of the DSRL

As depicted in Figure 2, the entire process can be divided into feature preprocessing to integrate the
features of the two modalities; representation learning in hyperbolic space to learn the hierarchical
context of events; representation learning in Euclidean space to learn the visual features of events;
interaction between the two spaces to promote cross-space enhancement; and finally, feeding the
features into a hyperbolic classifier for classification.

Feature Preprocessing. Following the previous works[34, 23], the visual and audio segments are
processed by the I3D [2] network pretrained on the Kinetics-400 dataset and the VGGish[11] network
pretrained on a large YouTube dataset, respectively. After that, we perform further feature extraction
using simple convolution and pooling operations. A simple cross-modal attention mechanism is then
employed to enhance the audio features, which are subsequently concatenated with the visual features
to form the fused features.

Hyperbolic Representation Learning. In this part, we first use HE-GCN to learn the hierarchical
context of events. Meanwhile, the temporal relation is also crucial for numerous video-based tasks.
Therefore, we construct a temporal relation graph directly based on the temporal structure of a video
and learn the temporal relation among snippets in hyperbolic space via HGCN. Its adjacency matrix
AT ∈ RT×T is only dependent on temporal positions of the i-th and j-th snippets, which can be
defined as:

AT
ij = exp(−|i− j|

σ
) (21)

where σ controls the range of influence of distance relation. Finally, we use HE-GCN for semantic
message aggregation and HGCN for temporal message aggregation, then concatenate them to obtain
a hyperbolic space representation.

Euclidean Representation learning. The process of representation learning in Euclidean space is
similar to that in hyperbolic space and follows a dual-branch structure, considering both semantic
and temporal relationships. We use cosine similarity to compute the semantic similarity in Euclidean
space and use Eq. 21 to compute temporal relationships. Finally, we employ GCN for message
aggregation and concatenate them to obtain the final representation in Euclidean space.

Dual-Space Interaction. In this part, we primarily use cross-space attention to enhance the interaction
between the features of the two spaces. The detailed process is described in Sec. 4.2.
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Hyperbolic Classifier. As shown in Figure.2, we input the enhanced embeddings from DSI into
hyperbolic classifier utilizing Lorentzian metric, which can be formalized as:

S = σ(ϵ+ ϵ ⟨F,W ⟩L + b) (22)

where σ is sigmoid function and W is weight matrices. b and ϵ denotes bias term and hyper-parameter,
respectively. Lastly, we supervise the training of the violence scores obtained by the model with the
real labels using the binary cross-entropy loss.

C Experimental Details

Dataset. We conducted experiments on XD-Violence with both multi-modal input settings and single-
modal input settings. Additionally, we performed experiments on UCF-Crime with single-modal
input settings to demonstrate the generalization capability of DSRL.
1) XD-Violence dataset is by far the only available large-scale audio-visual dataset for violence
detection, which is also the largest dataset compared with other unimodal datasets. XD-Violence
consists of 4,757 untrimmed videos (217 hours) and six types of violent events, which are curated
from real-life movies and in-the-wild scenes on YouTube. For XD-Violence dataset, only video-level
annotations are provided.
2) UCF-Crime dataset is a large-scale dataset comprised of real-world videos captured by surveillance
cameras. It consists of 1,610 training videos annotated with video-level labels and 290 test videos
annotated at the frame level to facilitate performance evaluation. The videos are collected from
different scenes and encompass 13 distinct categories of anomalies.
Implementation Details. The visual sample rate is set to 24 fps, and visual features are extracted by
a sliding window with a size of 16 frames. For the audio data, we first divide each audio into 960-ms
overlapped segments and compute the log-mel spectrogram with 96 × 64 bins. Our proposed method
is trained for 30 epochs in total, and the batch size is 256. The initial learning rate is 0.001, which
is dynamically adjusted by a cosine annealing scheduler [13]. We use Adam [14] as the optimizer
without weight decay. For hyper-parameters, we set β as 0.8, γ as 1.2, α as 0.3, and dropout rate as
0.6. Following [25], σ is empirically set to e. For the MIL, we set the value k of k-max activation as⌊

T
16 + 1

⌋
, where T denotes the length of the input feature.

Experiments Compute Resources. We use an Intel(R) Xeon(R) Platinum 8260 CPU @ 2.40GHz, a
NVIDIA RTX A6000 GPU to conduct experiments. We use CUDA 12.2, Python 3.9.16, and Pytorch
1.12.1.

D Additional Experiments

Reasons for the design choices in LSHAD with its multiple hyperparameters and threshold
criteria.
Inspired by the Global-first principle[4] that humans always have cognition on global first and then
focus on local, we propose a novel node selection strategy, which guarantees the model captures the
broader global context first with a relaxed threshold at the beginning of message aggregation and then
focuses on the local context with more strict thresholds. To achieve this, we introduce the LSHAD
construction rule, which calculates an LSHAD threshold based on the number of the current layer K
and hyperbolic Dirichlet energy of the current layer. As the K increases and the hyperbolic Dirichlet
energy decreases, the LSHAD threshold increases and is limited to 0 and 1 by the sigmoid function.
If there is no β and γ, the threshold in the first layer will be strict (> 0.5), causing the overlook
of some global context information. Therefore, to make our node selection threshold conform to
the Global-first principle, we introduced the two hyperparameters in LSHAD, where β controls the
influence of the number of current layer k and γ acts as a bias to fine-tune the threshold. Moreover,
we conducted an ablation study to determine the optimal value of the two hyperparameters (β,γ),
where β ranges from [0.2,0.4,0.6,0.8,1.0] and γ ranges from [1.0,1.2,1.4,1.6,1.8,2.0]. The results in
the table below reveal that when γ − β is 0.4, the performance is optimal, so we chose a pair (0.8,
1.2) from this set.
Ablation studies on some hyperparameters in DSI.

Moreover, we conduct ablation studies on some hyperparameters in DSI. Table 5 and 6 show the
experimental results.
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Table 4: Ablation studies on β and γ.

β
γ 1.0 1.2 1.4 1.6 1.8 2.0

0.2 85.22 87.12 86.32 86.60 86.31 86.86
0.4 87.52 85.22 87.12 86.32 86.60 86.31
0.6 87.61 87.52 85.22 87.12 86.32 86.60
0.8 87.29 87.61 87.52 85.22 87.12 86.32
1.0 86.29 87.29 87.61 87.52 85.22 87.12

Table 5: Ablation studies on λ of DSI.

λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
AV-AP 87.14 87.38 87.1 87.32 86.53 87.2 87.4 87.61 87.23

Table 6: Ablation studies on α of DSI.

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
AV-AP 87.18 87.16 87.61 87.21 87.26 86.91 87.42 86.59 87.51

E Visualization

Inference visualizations of the ablation modules.
In this section, we have supplemented inference visualization results for the ablation module, and
conducted corresponding visualisation experiments to explore the discriminative power of the model
w/ or w/o our core modules, HE-GCN and DSI. We conducted the analysis from two dimensions (the
feature-level and the frame-leve), and the results are shown in Figure 6 and Figure 7.
At the feature-level, the results are shown in Figure 6. Compared to GCN, HE-GCN can capture
the hierarchical context of events, effectively separating features. This results in a greater distance
between feature clusters compared to Figure 6(a) original features and Figure 6(b) using only
Euclidean representation learning. However, some challenging feature points remain difficult to
distinguish. The addition of the DSI module facilitates information interactions between Euclidean
and hyperbolic spaces, capturing more discriminative features to better differentiate these challenging
feature points. As shown in Figure 6(d), the DSI module further enhances feature differentiation by
effectively combining information from both spaces.

（a）Vanilla Features （b）w/o HE-GCN and w/o DSI （c）w/ HE-GCN  and w/o DSI （d）w/ HE-GCN  and w/ DSI

Figure 6: t-SNE visualization of the ablation module at feature-level.

Meanwhile, at the frame-level, experiments conducted on two test videos as shown in Figure 7
demonstrate that our method significantly improves the discriminative power for identifying violent
frames compared to the baseline, which uses only GCN. Compared with the model w/o our core
modules, both HE-GCN and DSI contribute to detecting violent frames.
Moreover, we provide more qualitative results, including the qualitative visualizations of VVD

(Figure 8) and the qualitative visualizations of DSRL in the context of ambiguous violence (Figure 9).

Qualitative visualizations.
Figure 8 illustrates that DSRL can accurately distinguish between violent and normal events, demon-
strating the effectiveness of DSRL. Additionally, compared with the baseline curves, our method
shows better performance, further validating the effectiveness of the modules we designed.
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（d）visualization of DSRL w/ or w/o DSI on Ip.Man.2008__#00-46-51_00-47-30 

Key frame of normality Key frame of violenceGround Truth

DSRL w/ DSI
DSRL w/o DSI

DSRL w/ HE-GCN
DSRL w/o HE-GCN

（b）visualization of DSRL w/ or w/o DSI on Casino.Royale.2006__#00-18-30_00-19-20 

DSRL w/ DSI
DSRL w/o DSI

DSRL w/ HE-GCN
DSRL w/o HE-GCN

（a）visualization of DSRL w/ or w/o HE-GCN on Casino.Royale.2006__#00-18-30_00-19-20 （c）visualization of DSRL w/ or w/o HE-GCN on Ip.Man.2008__#00-46-51_00-47-30 

Figure 7: Qualitative results of DSRL w/ or w/o our core modules (HE-GCN and DSI) for the test
video from XD-Violence dataset at frame-level.

（a）Video IDs:v=osjdmjNJUdg （b）Video IDs:v=1q5V6DKH3bw （c）Video IDs:Taken.3.2014__#01-09-26_01-09-54

（f）Video IDs:A.Beautiful.Mind.2001__#00-25-20_00-29-20

DSRL Baseline Ground Truth Key frame of normality Key frame of violence

（d）Video IDs:v=pMtu7fOHdII （e）Video IDs:v=8ewWXhYRUNs

Figure 8: Frame-level scores and violence localization examples for the test video from XD-Violence
dataset.

Qualitative Visualizations of DSRL in the context of ambiguous violence.
Figure9 shows that in the XD-Violence test set, DSRL accurately detects the correct categories of
ambiguous violence, while using only Euclidean space or only hyperbolic space fails to correctly
detect these instances.

F Broader impacts

Potential positive societal impacts.
Our work can be more effective in identifying incidents of violence, albeit it may be ambiguous. This
contributes to a higher level of safety in the community and the public’s sense of security.
Potential negative societal impacts.
If our algorithm were to be widely applied in monitoring and law enforcement domains, it could
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（a）Video IDs:Casino.Royale.2006__#00-18-30_00-19-20

① ②
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（b）Video IDs:Ip.Man.2008__#00-46-51_00-47-30
Time
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③

④

④

（c）Video IDs:Bad.Boys.1995__#01-11-55_01-12-40
Time
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DSRLEuclidean Ground Truth Ambiguous FrameHyperbolic

附录-模糊暴力

Figure 9: Qualitative Visualizations of DSRL in the context of ambiguous violence. The blue curves
show violence scores predicted using only Euclidean representation, the yellow curve shows scores
using only hyperbolic representation, the green curves show scores predicted by DSRL, and the pink
area represents the ground-truth violent temporal location.

exacerbate societal surveillance and control, triggering concerns among the public regarding
individual freedom and privacy rights.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the main claims and contributions
of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please see Sec.6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We provide the full proof of Theorem 1 in the Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes, the paper includes a detailed description of the experimental setup,
methodology, and parameters used, ensuring that the main experimental results can be
reproduced. Additionally, we provide comprehensive technical details in the appendix to
support reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We will open-source the code in the future.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide detailed information on the experimental setup in the implementa-
tion details section of the paper. See Sec. C in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Please see Sec. 5 and Sec. C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

21

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:[Yes]

Justification: Please see Sec. C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Please see Sec.F.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [No]

Justification: The used datasets are publicly available, and widely used in existing VVD
methods. Thus, we do not mention the license of the dataset.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We will open source the code after the paper is accepted.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [No]
Justification: The datasets used in this paper, XD-Violence and UCF-Crime, are publicly
available and widely used in research. These datasets were collected by their original
creators and made accessible for research purposes.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [No]
Justification: Since we are using datasets that are already publicly available and have been
extensively used in previous research, and given that the content does not involve sensitive
personal information, this study did not undergo an independent IRB review.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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