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Abstract

Invisible Image Watermarking is crucial for ensuring content provenance and ac-
countability in generative AI. While Gen-AI providers are increasingly integrating
invisible watermarking systems, the robustness of these schemes against forgery at-
tacks remains poorly characterized. This is critical, as forging traceable watermarks
onto illicit content leads to false attribution, potentially harming the reputation and
legal standing of Gen-AI service providers who are not responsible for the content.
In this work, we propose WMCopier, an effective watermark forgery attack that
operates without requiring any prior knowledge of or access to the target water-
marking algorithm. Our approach first models the target watermark distribution
using an unconditional diffusion model, and then seamlessly embeds the target
watermark into a non-watermarked image via a shallow inversion process. We also
incorporate an iterative optimization procedure that refines the reconstructed image
to further trade off the fidelity and forgery efficiency. Experimental results demon-
strate that WMCopier effectively deceives both open-source and closed-source
watermark systems (e.g., Amazon’s system), achieving a significantly higher suc-
cess rate than existing methods2. Additionally, we evaluate the robustness of forged
samples and discuss the potential defenses against our attack. Code is available at:
https://github.com/holdrain/WMCopier.

1 Introduction

As generative models raise concerns about the potential misuse of such technologies for generating
misleading or fictitious imagery [1], watermarking techniques have become a key solution for embed-
ding traceable information into generated content, ensuring its provenance [2]. Driven by government
initiatives [3], AI companies, including Google and Amazon, are increasingly adopting invisible
watermarking techniques for their generated content [4, 5], owing to the benefits of imperceptibility
and robustness [6, 7].

However, existing invisible watermark systems are vulnerable to diverse attacks, including detec-
tion evasion [8, 9] and forgery [10, 11]. Although the former has received considerable research
attention, forgery attacks remain poorly explored. Forgery attacks, where non-watermarked content
is falsely detected as watermarked, pose a significant challenge to the reliability of watermarking
systems. These attacks maliciously attribute harmful watermarked content to innocent parties, such
as Generative AI (Gen-AI) service providers, damaging the reputation of providers [12, 13].

∗means corresponding author.
2We have reported this to Amazon AGI’s Responsible AI team and collaborated on developing potential

defense strategies. For the official statement from Amazon, see Appendix H.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).
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Existing watermark forgery attacks are broadly categorized into two scenarios: the black-box setting
and the no-box setting. In the black-box setting, the attacker has partial access to the watermarking
system: such as knowledge of the specific watermarking algorithm [14], the ability to obtain paired
data (clean images and their watermark versions) via the embedding interface [15, 16], or query
access to the watermark detector [14]. However, such black-box access is unrealistic in practice, as
the watermark embedding process is typically integrated into the generative service itself, rendering
it inaccessible to end users, thus disabling paired data acquisition. Moreover, service providers rarely
disclose the specific watermarking algorithms they employ [5]. Therefore, our focus is primarily
on the no-box setting, where the attacker has neither knowledge of the watermarking algorithm nor
access to its implementation, and only a collection of generated images with unknown watermarking
schemes is available. Under this setting, Yang et al. [10] attempt to extract the watermark pattern by
computing the mean residual between watermarked images and natural images from ImageNet [17],
and then directly adding the estimated pattern to forged images at the pixel level. However, this
achieves limited performance because it assumes that the watermark signal remains constant across
all images. Moreover, its estimation is further hindered by the domain gap between ImageNet images
and the unknown clean counterparts of the watermarked samples.

Inspired by recent work [18–21], demonstrating that diffusion models serve as powerful priors capable
of capturing complex data distributions, we ask a more exploratory question:

Can diffusion models act as copiers for invisible watermarks?

To be more precise, can we leverage them to copy the underlying watermark signals embedded in
watermarked images?

Building on this insight, we propose WMCopier, a no-box watermark forgery attack framework
tailored for practical adversarial scenarios. In this setting, the attacker has no prior knowledge of the
watermarking scheme used by the provider and only has access to watermarked content generated
by the Gen-AI service. Specifically, we first train an unconditional diffusion model on watermarked
images to capture their underlying distribution. Then, we perform a shallow inversion to map clean
images to their latent representations, followed by a denoising process that injects the watermark
signal utilizing the trained diffusion model. To further mitigate artifacts introduced during inversion,
we propose a refinement procedure that jointly optimizes image quality and alignment with the target
watermark distribution.

To evaluate the effectiveness of WMCopier, we perform comprehensive experiments across a range
of watermarking schemes, including a closed-source one (Amazon’s system). Experimental results
demonstrate that our attack achieves a high forgery success rate while preserving excellent visual
fidelity. Furthermore, we conduct a comparative robustness analysis between genuine and forged
watermarks. Finally, we explore a multi-message defense strategy that provides practical guidance
for improving future watermark design and deployment.

Our key contributions are summarized as follows:

• We propose WMCopier, the first no-box watermark forgery attack based on diffusion
models, which forges watermark signals directly from watermarked images without requiring
any knowledge of the watermarking scheme.

• We introduce a shallow inversion strategy and a refinement procedure, which injects the
target watermark signal into arbitrary clean images while jointly optimizing image quality
and conformity to the watermark distribution.

• Through extensive experiments, we demonstrate that WMCopier effectively forges a wide
range of watermark schemes, achieving superior forgery success rates and visual fidelity,
including on Amazon’s deployed watermarking system.

• We explore a potential defense strategy that provides insights to improve future watermarking
systems.

2 Preliminary

2.1 DDIM and DDIM Inversion

DDIM. Diffusion models generate data by progressively adding noise in the forward process and
then denoising from pure Gaussian noise during the reverse process. The forward diffusion process is
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modeled as a Markov chain, where Gaussian noise is gradually added to the data x0 over time. At
each time step t, the noised sample xt can be obtained in closed form as:

xt =
√
αtx0 +

√
1− αt ϵ, ϵ ∼ N (0, I) (1)

where αt is the noise schedule, and ϵ is standard Gaussian noise.

DDIM [22] is a deterministic sampling approach for diffusion models, enabling faster sampling and
inversion through deterministic trajectory tracing. In DDIM sampling, the denoising process starts
from Gaussian noise xT ∼ N (0, I) and proceeds according to:

xt−1 =
√
αt−1 ·

(
xt −

√
1− αt · ϵθ(xt, t)√

αt

)
+

√
1− αt−1 · ϵθ(xt, t) (2)

for t = T, T −1, . . . , 1, eventually yielding the generated sample x0. Here, ϵθ(xt, t) denotes a neural
network, which is trained to predict the noise added to x0 at step t during the forward process, by
minimizing the following objective:

Ex0∼pdata, t∼U(1,T ), ϵ∼N (0,I)

[
∥ϵθ(xt, t)− ϵ∥22

]
. (3)

DDIM Inversion. DDIM inversion [23, 22] allows an image x0 to be approximately mapped back
to its corresponding latent representation xt at step t by reversing the sampling trajectory. DDIM
inversion has found widespread applications in computer vision, such as image editing [23, 24] and
watermarking [25, 26]. We denote this inversion procedure from x0 to xt as:

xt = Inversion(x0, t). (4)

2.2 Invisible Image Watermarking

Invisible image watermarking helps regulators and the public identify AI-generated content and trace
harmful outputs (such as NSFW or misleading material) back to the responsible service provider,
thus enabling accountability attribution. Specifically, the watermark message inserted by the service
provider typically serves as a model identifier [27]. For example, Stability AI embeds the identifier
StableDiffusionV1 by converting it into a bit string and encoding it as a watermark [28]. A list of
currently deployed real-world watermarking systems is provided in Table 6 in Appendix B.

Invisible image watermarking typically involves three stages: embedding, extraction, and verification.
Given a clean (non-watermarked) image x ∈ RH×W×3 and a binary watermark message m ∈
{0, 1}K , the embedding process uses an encoder E to produce a watermarked image:

xw = E(x,m).

During the extraction stage, a detector D attempts to recover the embedded message from xw:

m′ = D(xw).

During the verification stage, the extracted message m′ is evaluated against the original message m
using a verification function V , which measures their similarity in terms of bit accuracy. An image
is considered watermarked if its bit accuracy exceeds a predefined threshold ρ, where ρ is typically
selected to achieve a desired false positive rate (FPR). For instance, to achieve a FPR below 0.05 for
a 40-bit message, ρ should be set to 26

40 , based on a Bernoulli distribution assumption [29]. Formally,
the verification function is defined as:

V (m,m′, ρ) =

{
Watermarked, if Bit-Accuracy(m,m′) ≥ ρ;

Non-Watermarked, otherwise.
(5)

3 Threat Model

In a watermark forgery attack, the attacker forges the watermark of a service provider onto clean
images, including malicious or illegal content. As a result, these forged images may be incorrectly
attributed to the service provider, leading to reputation harm and legal ramifications.

Attacker’s Goal. The attacker aims to produce a forged watermarked image xf that visually
resembles a given clean image x, yet is detected by detector D as containing a target watermark
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Figure 1: The pipeline of WMCopier. The WMCopier consists of three stages. In the first stage,
an unconditional diffusion model is trained to estimate the watermark distribution. In the second
stage, the estimated watermark is injected into a non-watermarked image using shallow inversion and
denoising. Finally, a refinement procedure is applied to mitigate artifacts and ensure conformity to
the target watermark distribution pw(x).

message m. Specifically, visual consistency is required to retain the original (possibly harmful)
semantic content and to avoid visible artifacts that may reveal the attack.

Attacker’s Capability. We consider a threat model under the no-box setting:

• The attacker does not know the target watermarking scheme and its internal parameters. They have
no access to embed watermarks into their own images and the corresponding detection pipeline.

• The attacker can collect a subset of watermarked images from AI-generated content platforms (e.g.,
PromptBase [30], PromptHero [31]) or directly use the target Gen-AI service.

• The attacker assumes a static watermarking scheme, i.e., the service provider does not alter the
watermarking scheme during the attack period.

4 WMCopier

In this section, we introduce WMCopier, a watermark forgery attack pipeline consisting of three
stages: (1) Watermark Estimation, (2) Watermark Injection, and (3) Refinement. An overview
of the proposed framework is illustrated in Figure 1.

4.1 Watermark Estimation

Diffusion models are used to fit a plausible data manifold [22, 32, 33] by optimizing Equation 3. The
noise predictor ϵθ(xt, t) approximates the conditional expectation of the noise:

ϵθ(xt, t) ≈ E[ϵ | xt] := ϵ̂(xt), (6)

which effectively turns ϵθ into a regressor for the conditional noise distribution.

Now consider a clean image x and its watermarked version xw = x+ w(w), where w denotes the
embedded watermark signal, which can also be interpreted as the perturbation introduced by the
embedding process. During the forward diffusion process, we have:

xw
t =
√
αt(x+ w) +

√
1− αtϵ = xt +

√
αtw, (7)

where xt is the noisy version of the clean image at step t. The presence of the additive term
√
αtw

implies that the input to the noise predictor carries a watermark-dependent shift. As a result, the
predicted noise satisfies:

ϵθ(x
w
t , t) = ϵ̂(xw

t ) = ϵ̂(xt +
√
αtw) ≈ ϵ̂(xt) + δt(w), (8)

4



Figure 2: Watermark detectability of four open-source watermarking schemes throughout the diffusion
and denoising processes (T = 1000). As a reference, the bit accuracy of non-watermarked images
remains around 0.5.

where δt(w) denotes the systematic prediction bias introduced by the watermark signal. These biases
accumulate subtly at each denoising step, gradually steering the model’s output distribution toward
the watermarked distribution pw(x).

To exploit this behavior, we construct an auxiliary dataset Daux = {xw|xw ∼ pw(x)}, where each
image contains an embedded watermark message m. We then train an unconditional diffusion model
Mθ on Daux.

Our goal is to obtain forged images xf with watermark signals while preserving the semantic content
of a clean image x. Therefore, given the pretrained modelMθ and a clean image x, we first apply
DDIM inversion to obtain a latent representation xT :

xT = Inversion(x, T ). (9)

The latent representation retains semantic information about the clean image. Starting from xT , we
apply the denoising process described in Equation 2 to obtain the forged image xf , where the bias in
Equation 8 naturally guides the denoising process toward the distribution of watermarked images.

4.2 Watermark Injection

We observe that the reconstructed images with full-step inversion suffer from severe quality degra-
dation, as illustrated in the top row of Figure 3. This phenomenon is attributed to the fact that the
inversion of images tends to accumulate reconstruction errors when the input clean images are out of
the training data distribution, especially as the inversion depth increases [23, 34, 22]. To mitigate
this, we investigate the watermark detectability in watermarked images with four open-source wa-
termarking methods throughout the diffusion and denoising processes. As illustrated in Figure 2,
the watermark signal tends to be destroyed gradually during the shallow steps (e.g., t ≤ 400 for
T = 1000), Consequently, the watermark signal is restored during these denoising steps.

Therefore, we propose a shallow inversion strategy that performs the inversion process up to an
early timestep TS < T . By skipping deeper diffusion steps that contribute minimally to watermark
injection yet substantially distort image semantics, our method effectively preserves the visual fidelity
of reconstructed images while ensuring reliable watermark injection.

4.3 Refinement

Although shallow inversion effectively reduces reconstruction errors, forged images may still exhibit
minor artifacts (as shown in Figure 3) that cause the forged images to be visually distinguishable,
thus exposing the forgery. To address this, we propose a refinement procedure to adjust the forged
image xf , defined as:

xf(i+1) = xf(i) + η∇xf(i)

[
log pw(x

f(i))− λ∥xf(i) − x∥2
]
, i ∈ {0, 1, ..., L} (10)

where η is the step size, λ balances semantic fidelity and watermark injection and L is the optimization
iterations. The log-likelihood log pw(x

f ) constrains the samples to lie in regions of high probability
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Figure 3: Forged samples generated using full-step inversion, shallow inversion, and shallow
inversion with refinement. The first row shows results from full-step inversion (TS = T = 100),
where the semantic content of the original clean image is heavily disrupted. The second row
corresponds to shallow inversion (TS = 40, T = 100), which introduces only slight artifacts. The
third row demonstrates shallow inversion with refinement, where these artifacts are further reduced.

under the watermarked image distribution pw(x), while the mean squared error (MSE) term ∥xf(i) −
x∥2 ensures that the refined image remains similar to the clean image x. Since the distribution pw(x)
and the conditional noise distribution ptw(xt) are nearly identical at a low noise step tl, the score
function ∇ log pw(x) can be approximated by ∇ log ptw(xt). This score can be estimated using a
pre-trained diffusion modelMθ [35, 36], as defined in Equation 11, where xf

t =
√
αtx

f +
√
1− αtϵ.

∇xf log pw(x
f ) ≈ ∇xf

tl

log ptlw(x
f
tl
) ≈ − 1√

1− αtl

ϵθ(x
f
tl
, tl). (11)

By performing this refinement for L iterations, we obtain the forged watermarked image x̂f after the
refinement process. This refinement improves both watermark detectability and the image quality of
the forged images, as demonstrated in Figure 3 and Table 11. A complete overview of our WMCopier
procedure is summarized in Algorithm 1.

5 Evaluation

Datasets. To simulate real-world watermark forgery scenarios, we train our diffusion model on
AI-generated images and apply watermark forgeries to both AI-generated and real photographs. For
AI-generated images, we use DiffusionDB [37] that contains a diverse collection of images generated
by Stable Diffusion [38]. For real photographs, we adopt three widely-used datasets in computer
vision: MS-COCO [39], ImageNet [17], and CelebA-HQ [40].

Watermarking Schemes. We evaluate four watermarking schemes: three post-processing
methods—DWT-DCT [41], HiDDeN [42], and RivaGAN [43]—an in-processing method, Stable
Signature [27], and a close-source watermark system, Amazon [4]. Each watermarking scheme is
evaluated using its official default configuration. A comprehensive description of these methods is
included in the Appendix C.

Attack Parameters and Baselines. For the diffusion model, we adopt DDIM sampling DDIM
sampling with a total step T = 100 and perform inversion up to step TS = 40. Further details
regarding the training of the diffusion model are provided in the Appendix F. For the refinement
procedure, we set the trade-off coefficient λ as 100, the number of refinement iterations L as 100, a
low-noise step tl in the refinement as 1 and the step size η as 1×10−4 by default. To balance the attack
performance and the potential cost of acquiring generated images (e.g., fees from GenAI services),
we set the size of the auxiliary dataset Daux to 5,000 in our main experiments. For comparison, we
consider the method by Yang et al. [10] that operates under the same no-box setting as ours, and Wang
et al. [16] that assumes a black-box setting with access to paired watermarked and clean images.
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Black Box No-Box No-Box
Attacks Wang et al. [16] Yang et al. [10] Ours

Watermark scheme Dataset PSNR↑ Forged Bit-acc↑ FPR@10−6↑ PSNR↑ Forged Bit-acc.↑ FPR@10−6↑ PSNR↑ Forged Bit-acc.↑ FPR@10−6↑

DWT-DCT

MS-COCO 31.33 74.32% 57.20% 32.87 53.08% 0.50% 33.69 89.19% 60.20%
CelebAHQ 32.19 81.29% 50.70% 32.90 53.68% 0.10% 35.29 89.46% 53.20%
ImageNet 30.16 79.64% 55.10% 32.92 51.96% 0.20% 33.75 88.25% 55.80%

Diffusiondb 31.87 78.22% 50.80% 32.90 51.59% 0.40% 33.84 85.17% 54.30%

HiddeN

MS-COCO 31.02 80.56% 77.60% 29.68 63.12% 0.00% 31.74 99.34% 95.90%
CelebAHQ 31.57 82.28% 80.20% 29.79 61.52% 0.00% 33.12 98.08% 92.50%
ImageNet 31.24 78.61% 83.90% 29.78 62.66% 0.00% 31.76 98.99% 94.30%

Diffusiondb 30.74 79.99% 79.20% 29.68 63.36% 0.00% 31.46 98.83% 94.60%

RivaGAN

MS-COCO 32.94 93.26% 88.80% 29.12 50.80% 0.00% 34.07 95.74% 90.90%
CelebAHQ 32.64 93.67% 93.80% 29.23 52.29% 0.00% 35.28 98.61% 96.00%
ImageNet 33.11 90.94% 71.40% 29.22 50.92% 0.00% 33.87 93.83% 77.10%

Diffusiondb 33.31 89.69% 80.60% 29.12 48.70% 0.00% 34.50 90.43% 84.80%

Stable Signature

MS-COCO 28.87 91.68% 88.90% 30.77 52.67% 0.00% 31.29 98.04% 94.60%
CelebAHQ 32.33 79.90% 90.10% 30.51 51.73% 0.00% 30.54 96.04% 100.00%
ImageNet 29.59 85.77% 85.90% 30.75 51.59% 0.00% 31.33 97.03% 98.60%

Diffusiondb 31.11 89.24% 92.10% 30.65 52.69% 0.00% 31.59 96.24% 96.60%

Average 31.50 84.32% 76.64% 30.62 54.52% 0.08% 32.94 94.58% 83.71%

Table 1: Comparison of our WMCopier with two baselines on four open-source watermarking
methods. The cells highlighted in indicate the highest values in each row for the corresponding
metrics. Arrows indicate the desired direction of each metric (↑ for higher values being better).

Metrics. We evaluate the visual quality of forged images using Peak Signal-to-Noise Ratio (PSNR),
defined as PSNR(x, x̂f ) = −10 · log10

(
MSE(x, x̂f )

)
, where x is the clean image and x̂f is the

forged image after the refinement process. A higher PSNR indicates better visual fidelity, i.e., the
forged image is more similar to the original. We evaluate the attack effectiveness in terms of bit
accuracy and false positive rate (FPR). Bit accuracy measures the proportion of watermark bits in the
extracted message that match the target. FPR refers to the rate at which forged samples are incorrectly
identified as valid watermarked images. A higher FPR thus indicates a more successful attack. We
report FPR at a threshold calibrated to yield a 10−6 false positive rate on clean images.

5.1 Attacks on Open-Source Watermarking Schemes

As shown in Table 5, our WMCopier achieves the highest forged bit accuracy and FPR across all
watermarking schemes, even surpassing the baseline in the black-box setting. In terms of visual
fidelity, all forged images exhibit a PSNR above 30dB, demonstrating that our WMCopier effectively
achieves high image quality. For the frequency-domain watermarking DWT-DCT, the bit accuracy is
slightly lower compared to other schemes. We attribute this to the inherent limitations of DWT-DCT,
which originally exhibits low bit accuracy on certain images. A detailed analysis is presented in
Appendix D.1.

Watermark Scheme Attack Yang et al. [10] Ours

Amazon WM

Dataset PSNR↑ SR↑/Con.↑ PSNR↑ SR↑/Con.↑

Diffusiondb 23.42 29.0%/2 32.57 100.0%/2.94
MS-COCO 24.18 32.0%/2 32.93 100.0%/2.97
CelebA-HQ 24.10 42.0%/2 31.84 100.0%/2.98
ImageNet 23.95 28.0%/2 32.88 99.0%/2.89

Table 2: Performance comparison of baseline and
WMCopier on Amazon Watermark. Figure 4: Comparison of forged bit accuracy

distribution: Yang’s method. vs. Ours.

5.2 Attacks on Closed-Source Watermarking Systems

In this subsection, we evaluate the effectiveness of our attack and Yang’s method in attacking the
Amazon watermarking scheme. The results are shown in Table 2. The success rate (SR), which
represents the proportion of images detected as watermarked, and the confidence levels (Con.)
returned by the API, are used to evaluate the effectiveness of the attacks on deployed watermarking
systems. Compared with Yang’s method, our attack achieves superior performance in terms of
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Figure 5: Effect of refinement iterations L (left) and trade off coefficient λ (right) on PSNR and
Bit-Accuracy under our forgery attacks, with fixed η = 10−4.

both visual fidelity and forgery effectiveness. Specifically, our method achieves an average PSNR
exceeding 30dB and a success rate(SR) close to 100%, whereas Yang’s method typically results in
PSNR values below 25dB and SR ranging from 28% to 42%.

Furthermore, our forged images generally receive a confidence level of 3—the highest rating defined
by Amazon’s watermark detection API—while Yang’s results consistently remain at level 2. Since
Amazon does not disclose the exact computation of the confidence score, we guess that it may
correlate with bit accuracy, based on common assumptions [29]. To further investigate this, we
analyzed the distribution of forged bit accuracy of both our method and Yang’s on a open-source
watermarking scheme. As shown in Figure 4, our method achieves over 80% bit accuracy on RivaGan,
significantly outperforming Yang’s method, which remains below 70%.

5.3 Ablation Study

To evaluate the impact of parameter choices on image quality and forgery effectiveness, we conduct
two sets of ablation studies by varying (i) the number of refinement optimization steps L and (ii) the
trade-off coefficient λ. As shown in Figure 5, increasing L initially improves both PSNR and forged
bit accuracy, with performance saturating beyond L = 100. In contrast, larger λ values continuously
enhance PSNR but lead to a slight degradation in bit accuracy, likely due to over-regularization.
While higher PSNR values generally indicate better visual fidelity, we note that visible artefacts
may still occur even at elevated PSNR levels. Nevertheless, since an attacker may prioritize forgery
success over perceptual quality, we adopt λ = 100 in our main experiments. The results presented in
Table 11 in Appendix E further validate the effectiveness of the refinement process.

5.4 Robustness

To investigate the robustness of the forged images, we evaluated its forged bit accuracy of genuine
and forged watermarked images under common image distortions, including Gaussian noise, JPEG
compression, Gaussian blur, and brightness adjustment. Since the Stable Signature does not support
watermark embedding into arbitrary images, we instead report results on generated images. As
shown in Table 3, the forged watermark generally exhibits slightly lower robustness compared to the
genuine watermark. While some cases show over 20% degradation (highlighted in red), relying on
bit accuracy under distortion for separation is inadequate, as it would substantially compromise the
true positive rate (TPR), as discussed in Appendix D.3.

6 Related Work

6.1 Image Watermarking

Image watermarking techniques can generally be categorized into post-processing and in-processing
methods, depending on when the watermark is embedded.

Post-processing methods embed watermark messages into images after generation. Non-learning-
based methods (e.g., LSB [44], DWT-DCT [41, 45]) suffer from poor robustness under common
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Watermark scheme Distortion JPEG Blur Gaussian Noise Brightness
Dataset Genuine Forged Genuine Forged Genuine Forged Genuine Forged

DWT-DCT
MS-COCO 56.44% 53.00% 59.84% 56.56% 67.86% 66.90% 54.66% 58.36%
CelebAHQ 55.42% 53.14% 63.12% 58.26% 64.84% 66.49% 53.89% 57.73%
ImageNet 56.08% 52.31% 59.37% 54.39% 68.27% 67.60% 54.08% 57.37%

Diffusiondb 58.16% 53.23% 62.12% 55.74% 66.90% 64.43% 54.73% 56.83%

HiddeN
MS-COCO 58.68% 58.06% 78.50% 71.95% 54.13% 49.55% 82.40% 78.99%
CelebAHQ 57.05% 55.07% 79.83% 69.07% 48.94% 46.02% 83.63% 73.21%
ImageNet 58.86% 57.83% 78.20% 71.34% 54.10% 49.57% 80.95% 77.40%

Diffusiondb 58.57% 57.61% 79.69% 72.89% 54.41% 50.19% 81.53% 77.66%

RivaGAN
MS-COCO 99.44% 93.32% 99.60% 94.99% 85.71% 75.00% 84.51% 78.81%
CelebAHQ 99.92% 97.22% 99.97% 98.23% 85.93% 74.83% 84.60% 79.53%
ImageNet 98.95% 92.00% 99.28% 93.89% 84.95% 74.74% 82.77% 77.25%

Diffusiondb 96.56% 84.85% 97.27% 86.96% 77.33% 66.27% 79.14% 71.65%

StableSignature
MS-COCO

93.99%
89.48%

86.91%
68.34%

73.78%
67.14%

92.30%
88.63%

CelebAHQ 86.73% 65.42% 65.33% 86.86%
ImageNet 87.73% 64.88% 61.79% 91.41%

Diffusiondb 85.69% 65.45% 61.60% 87.45%

Table 3: Bit Accuracy of the genuine watermark and the forged watermark under various image
distortions. The distortion parameters are: Gaussian Noise (σ = 0.05), JPEG (quality=90), Blur
(radius=1), and Brightness (factor=6). Cells with background indicate a degradation gap between
10% and 20%, and cells with background indicate a degradation gap greater than 20%.

distortions such as compression and noise. Neural network-based approaches mitigate these issues
by combining encoder-decoder architectures and adversarial training [42, 46–48]. However, these
methods often rely on heavy training and may generalize poorly to unknown attacks.

In-processing methods embed watermarks during image generation, either by modifying train-
ing data or model weights [19, 49, 29], or by adjusting specific components such as diffusion
decoders [27]. Recent trends explore semantic watermarking, which binds messages to generative
semantics (e.g., Tree-Ring [50]; Gaussian shading [51]). However, semantic watermarking has
not seen real-world deployment [14]. We discuss the effectiveness of our attack on the semantic
watermarking in the Appendix D.2.

6.2 Watermark Forgery

Kutter et al. [52] first introduced the concept, also known as the watermark copy attack, under the
assumption that the watermark signal was a fixed constant. While this assumption was reasonable
for early handcrafted watermarking methods, it no longer holds for modern neural network-based
schemes. Subsequent studies [53, 16, 54, 14] have investigated watermark forgery under either
white-box or black-box settings, where the attacker either has full access to the watermarking model
or can embed watermarks into their own images. However, these approaches still rely on strong
assumptions that may not hold in realistic deployment scenarios.

In contrast, the no-box setting assumes that only watermarked images are available to the attacker,
without access to the model or embedding process. Yang et al. [10] proposed a heuristic method under
this setting by estimating the watermark signal through averaging the residuals between watermarked
and clean images, and subsequently re-embedding the estimated pattern at the pixel level. This is the
scenario we focus on in this work, as it more accurately reflects practical constraints.

7 Defense Analysis

To enhance the deployed watermarking system, we suggest modifying the existing watermark
system by disrupting the ability of diffusion models to model the watermark distribution effectively.
Specifically, we propose a multi-message strategy as a simple yet effective countermeasure. Instead of
embedding a fixed watermark message, the system randomly selects one from a predefined message
pool m1,m2,m3, . . . ,mK for each image. During detection, the detector verifies the presence of any
valid message in the pool. This strategy introduces uncertainty into the watermark signal, increasing
the entropy of possible watermark patterns and making it substantially more difficult for generative
models to learn consistent features necessary for forgery. We implement this defense using different
message pool sizes (K = 10, 50, 100) and test on 100 images for simplicity.
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As shown in the Table 4, increasing the value of K leads to the FPR drops to 0% at K = 50 and
K = 100. We further strengthen our attack by collecting more watermarked images. Specifically,
we collect 5,000, 20,000, and 50,000 watermarked samples to evaluate the effect of data volume
on this defense. As shown in Table 12, the FPR remained consistently at 0% even as the size
of Daux increased. Therefore, embedding multiple messages proves to be a simple yet effective
countermeasure against our attack.

Table 4: Performance comparison across different K values.

K=10 K=50 K=100

Dataset PSNR↑ Forged Bit-acc.↑ FPR@10−6↑ PSNR↑ Forged Bit-acc.↑ FPR@10−6↑ PSNR↑ Forged Bit-acc.↑ FPR@10−6↑

MS-COCO 34.73 81.63% 34.00% 34.62 69.78% 0.00% 34.86 71.56% 0.00%
CelebAHQ 36.13 83.41% 44.00% 35.89 71.00% 0.00% 35.87 72.91% 0.00%
ImageNet 34.55 79.25% 25.00% 34.35 70.09% 0.00% 34.58 71.44% 0.00%

Diffusiondb 35.14 76.28% 17.00% 35.10 70.66% 0.00% 35.40 72.28% 0.00%

Table 5: Performance comparison across datasets with a larger size of Daux for K = 100.

Dataset 5000 20000 50000

PSNR↑ Forged Bit-acc.↑ FPR@10−6↑ PSNR↑ Forged Bit-acc.↑ FPR@10−6↑ PSNR↑ Forged Bit-acc.↑ FPR@10−6↑

MS-COCO 34.86 71.56% 0.00% 34.78 71.91% 0.00% 30.77 71.94% 0.00%
CelebA-HQ 35.87 72.91% 0.00% 34.15 72.97% 1.00% 27.99 72.72% 1.00%
ImageNet 34.58 71.44% 0.00% 34.57 72.56% 0.00% 30.47 72.19% 0.00%

DiffusionDB 35.40 72.28% 0.00% 34.99 72.34% 0.00% 31.15 72.06% 0.00%

8 Conclusion

We propose WMCopier, a diffusion model-based watermark forgery attack designed for the no-box
setting, which leverages the diffusion model to estimate the target watermark distribution and performs
shallow inversion to forge watermarks on a specific image. We also introduce a refinement procedure
that improves both image quality and forgery effectiveness. Extensive experiments demonstrate that
WMCopier achieves state-of-the-art performance on both open-source watermarking and real-world
deployed systems. We explore potential defense strategies, a multi-message strategy, offering valuable
insights for the future development of AIGC watermarking techniques.
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paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please see Section G.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.
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will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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a complete (and correct) proof?
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Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The code will be available at the URL mentioned in the abstract.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The code will be available at the URL mentioned in the abstract. We use an
open-source diffusion model and data, which are cited correctly in the main paper and the
appendix.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines ( https://nips.cc/pu
blic/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines (
https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Please see Appendix F and Section 5.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Error bars are not presented because it would be too computationally expensive.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please see Appendix F.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Please see Appendix H.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: Please see Section 7.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets,codes and models we used are public and cited properly.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The code and data will be available at the URL mentioned in the abstract.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The LLM is used only for writing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy ( https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Algorithm

Algorithm 1 WMCopier
Require: Clean image x; Noise predictor ϵθ of pretrained diffusion modelMθ; Inversion steps TS ;

Refinement iterations L; Low noise step tl for refinement; Step size η; Trade off coefficient λ.
Ensure: Forged watermarked image x̂f

xTS
← Inversion(x, TS)# Obtain noisy latent at step TS via DDIM inversion

x′
TS
← xTS

# Initial the start point of sampling
for t = TS , TS − 1, . . . , 1 do # DDIM sampling

ϵt ← ϵθ(x
′
t, t)

x′
t−1 ←

√
αt−1 ·

(
x′
t−

√
1−αt·ϵt√
αt

)
+
√
1− αt−1 · ϵt

end for
xf ← x′

0
for i = 1 to L do # Refinement

Sample z ∼ N (0, I)

x
f(i)
tl
← √αtl · xf(i) +

√
1− αtl · z # Add noise to a low noise step tl

xf(i+1) ← xf(i) + η · ∇xf(i)

(
− 1√

1−αtl

· ϵθ(xf(i)
tl

, tl))− λ · ∥xf(i) − x∥2
)

end for
return x̂f ← xf(L)

B Real-World Deployment

In line with commitments made to the White House, leading U.S. AI companies that provide
generative AI services are implementing watermarking systems to embed watermark information
into model-generated content before it is delivered to users [3].

Google introduced SynthID [5], which adds invisible watermarks to both Imagen 3 and Imagen 2 [55].
Amazon has deployed invisible watermarks on its Titan image generator [4].

Meanwhile, OpenAI and Microsoft are transitioning from metadata-based watermarking to invisible
methods. OpenAI points out that invisible watermarking techniques are superior to the visible genre
and metadata methods previously used in DALL-E 2 and DALL-E 3 [6], due to their imperceptibility
and robustness to common image manipulations, such as screenshots, compression, and cropping.
Microsoft has announced plans to incorporate invisible watermarks into AI-generated images in Bing
[7]. Table 6 summarizes watermarking systems deployed in text-to-image models.

Table 6: Watermarking deployment across major Gen-AI service providers.

Service Provider Watermark Generative Model Deployed Detector

OpenAI Invisible DALL·E 2 & DALL·E 3 In Progress Unknown
Google (SynthID) Invisible Imagen 2 & Imagen 3 Deployed Not Public

Microsoft Invisible DALL·E 3 (Bing) In Progress Unknown
Amazon Invisible Titan Deployed Public

C Watermark Schemes

C.1 Open-source Watermarking Schemes

DWT-DCT. DWT-DCT [41] is a classical watermarking technique that embeds watermark bits
into the frequency domain of the image. It first applies the discrete wavelet transform (DWT) to
decompose the image into sub-bands and then performs the discrete cosine transform (DCT) on
selected sub-bands.

HiDDeN. HiDDeN [42] is a neural network-based watermarking framework using an encoder-decoder
architecture. A watermark message is embedded into an image via a convolutional encoder, and a
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decoder is trained to recover the message. Additionally, a noise simulation layer is inserted between
the encoder and decoder to encourage robustness.

RivaGAN. RivaGAN embeds watermark messages into video or image frames using a GAN-based
architecture. A generator network embeds the watermark into the input image, while a discriminator
ensures visual quality.

Stable Signature. As an in-processing watermarking technique, Stable Signature [27] couples the
watermark message with the parameters of the stable diffusion model. It is an invisible watermarking
method proposed by Meta AI, which embeds a unique binary signature into images generated by
latent diffusion models (LDMs) through fine-tuning the model’s decoder.

Setup. In our experiments, all schemes are evaluated under their default configurations, including
the default image resolutions (128×128 for HiDDeN, 256×256 for RivaGAN, and 512×512 for both
Stable Signature and Amazon), as well as their default watermark lengths (32 bits for DWT-DCT and
RivaGAN, 30 bits for HiDDeN, and 48 bits for Stable Signature). With regard to PSNR, we report
both the original PSNR of these schemes and the PSNR of our forged samples in Table 7.

Table 7: PSNR of watermarking schemes and our forged samples

Scheme DWT-DCT HiddeN RivaGAN Stable Signature
PSNR (Original) 38.50 31.88 38.61 31.83
PSNR (Ours) 33.69 31.74 34.07 31.29

C.2 Closed-Source Watermarking System

Among the available options, Google does not open its watermark detection mechanisms to users,
making it impossible to evaluate the success of our attack. In contrast, Amazon provides access to its
watermark detection for the Titan model [56], allowing us to directly measure the performance of
our attack. Therefore, we chose Amazon’s watermarking scheme for our experiments. Amazon’s
watermarking scheme, referred to as Amazon WM, ensures that AI-generated content can be traced
back to its source. The watermark detection API detect whether an image is generated by the Titan
model and provides a confidence level for the detection3 This confidence level reflects the likelihood
that the image contains a valid watermark, as illustrated in Figure 6.

In our experiments, we generated 5,000 images from the Titan model using Amazon Bedrock [57].
Specifically, we used ten different prompts to generate images with the Titan model, which were then
employed to carry out our attack. The examples of prompts we used are listed in Figure 7. In this
attack, we embedded Amazon’s watermark onto four datasets, each containing 100 images. Finally,
we submitted the forged images to Amazon’s watermark detection API. Additionally, we forged
Amazon’s watermark on images from non-public datasets, including human-captured photos and
web-sourced images, all of which were flagged as Titan-generated.

Figure 6: Result from Amazon’s watermark detection API.

3Both the Titan model API and the watermark detection service API are accessible via Amazon Bedrock [57].
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Figure 7: Example prompts used for image generation with the Titan model.

D External Experiment Results

D.1 Further Analysis of DWT-DCT Attack Results

We observed that DWT-DCT suffers from low bit-accuracy on certain images, which leads to
unreliable watermark detection and verification. To reflect a more practical scenario, we assume
that the service provider only returns images with high bit accuracy to users to ensure traceability.
Specifically, we select 5,000 images with 100% bit accuracy to construct our auxiliary dataset Daux.
We then apply both the original DWTDCT scheme and our attack to add watermarks to clean images
from four datasets. As shown in Table 8, our method achieves even higher bit-accuracy than the
original watermarking process itself.

Table 8: Comparison of bit accuracy between original DWT-DCT and DWT-DCT (Ours).

Dataset DWTDCT-Original DWTDCT-WMCopier

Bit-acc.↑ FPR@10−6↑ Bit-acc.↑ FPR@10−6↑
MS-COCO 82.15% 56.60% 89.19% 60.20%
CelebA-HQ 84.70% 54.70% 89.46% 53.20%
ImageNet 85.37% 55.30% 88.25% 55.80%

DiffusionDB 82.42% 52.90% 85.17% 54.30%

D.2 Semantic Watermark

Semantic watermarking [50, 51] embeds watermark information that is intrinsically tied to the
semantic content of the image. To further investigate the effectiveness of our attack on semantic
watermarking, we compare it with the forgery attack proposed by Müller et al. [14], which is specifi-
cally designed for semantic watermark schemes. We adopt Treering [50] as the target watermark.
As shown in Table 9, both our method and Müller’s achieve a 100% false positive rate (FPR) under
Treering’s default threshold of 0.01. However, our method produces significantly higher forgery
quality, with an average PSNR over 30 dB, compared to around 26 dB for Müller’s.
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We also evaluate Müller’s method on a non-semantic watermark, Stable Signature. As summarized in
Table 10, Müller’s approach fails to attack this type of watermark, while our method maintains a high
success rate.

Table 9: Comparison with Müller et al. [14] and our attack on Treering.

Dataset Müller et al. [14] Ours
PSNR↑ FPR@0.01↑ PSNR↑ FPR@0.01↑

MS-COCO 26.14 100.00% 32.72 100.00%
CelebA-HQ 25.22 100.00% 31.52 100.00%
ImageNet 26.82 100.00% 32.99 100.00%

DiffusionDB 25.19 100.00% 32.78 100.00%

Table 10: Comparison with Müller et al. [14] and our attack on Stable Signature.

Dataset Müller et al. [14] Ours

PSNR↑ Forged Bit-Acc.↑ FPR@10−6↑ PSNR↑ Forged Bit-Acc.↑ FPR@10−6↑

MS-COCO 25.66 45.70% 0.00% 31.29 98.04% 94.60%
CelebA-HQ 24.73 51.23% 0.00% 30.54 96.04% 100.00%
ImageNet 25.91 47.71% 0.00% 31.33 97.03% 98.60%

DiffusionDB 26.12 48.45% 0.00% 31.59 96.24% 96.60%

D.3 Discrimination of Forged Watermarks by Robustness Gap

While the robustness gap between genuine and forged watermarks offers a promising direction for
detecting forged samples, we find it is insufficient for reliable discrimination. This limitation becomes
particularly evident when genuine samples have already been subjected to mild distortions.

In discrimination, samples are classified as forgeries if their bit accuracy falls below a predefined
threshold κ after applying a single perturbation. Specifically, we apply perturbation A to both genuine
and forged watermark images and then distinguish them based on their bit accuracy. However,
considering the inherent robustness of the watermarking scheme itself, when genuine watermarked
images have already undergone slight perturbation B, the bit accuracy values of genuine and forged
samples become indistinguishable. For distortion A, we use Gaussian noise with σ = 0.05, while
for distortion B, Gaussian noise with σ = 0.02 is applied. The ROC curve and the bit-accuracy
distribution for this case are shown in Figure 8.

Figure 8: ROC curve and bit accuracy distribution (KDE) for genuine and forged watermark samples
under Gaussian noise.
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E Additional Ablation Studies

Table 11 shows that the proposed refinement step substantially improves visual fidelity, as measured
by PSNR, while simultaneously enhancing forgery performance (forged-bit accuracy).

We also explore the impact of varying the size of Daux. Specifically, we use 1,000, 5,000, and 10,000
collected RivaGAN watermarked images. As shown in Table 12, larger Daux generally yields higher
forged-bit accuracy and higher FPR across datasets. However, the improvement becomes marginal
once the size of Daux reaches around 5,000, indicating that the attack performance saturates beyond
this point.

Table 11: Impact of refinement on forgery performance.

Watermark Scheme PSNR ↑ Forged Bit-acc. ↑ FPR@10−6 ↑
W/o Ref. W/ Ref. W/o Ref. W/ Ref. W/o Ref. W/ Ref.

DWT-DCT 32.40 33.77 63.03% 89.62% 16.00% 57.00%
HiddeN 29.81 32.79 80.60% 99.40% 89.00% 94.00%

RivaGAN 31.89 34.03 89.90% 95.90% 84.00% 96.00%
StableSignature 25.60 31.27 97.58% 98.19% 91.00% 98.00%

Table 12: Performance comparison across datasets with different sizes of Daux

Dataset 1000 5000 10000

PSNR↑ Forged Bit-acc.↑ FPR@10−6↑ PSNR↑ Forged Bit-acc.↑ FPR@10−6↑ PSNR↑ Forged Bit-acc.↑ FPR@10−6↑

MS-COCO 34.16 81.82% 80.70% 34.07 95.74% 96.40% 34.47 97.81% 96.30%
CelebA-HQ 35.74 89.10% 89.50% 35.28 98.61% 99.10% 35.25 98.63% 98.50%
ImageNet 34.10 81.25% 71.50% 33.87 93.83% 94.90% 34.29 93.53% 95.80%

DiffusionDB 34.77 74.76% 64.10% 34.50 90.43% 91.20% 34.96 91.70% 93.60%

F Training Details of the Diffusion Model

We adopt a standard DDIM framework for training, following the official Hugging Face tutorial4.
The model is trained for 20,000 iterations with a batch size of 256 and a learning rate of 1× 10−4.
The entire training process takes roughly 40 A100 GPU hours. To support different watermarking
schemes, we only adjust the input resolution of the model to match the input dimensions for each
watermark. Other training settings and model configurations remain unchanged. Although the current
training setup suffices for watermark forgery, enhancing the model’s ability to better capture the
watermark signal is left for future work. For our primary experiments, we train an unconditional
diffusion model from scratch using 5,000 watermarked images. Due to the limited amount of training
data, the diffusion model demonstrates memorization [18], resulting in reduced sample diversity, as
illustrated in Figure 9. All of the experiments are conducted on an NVIDIA A100 GPU.

G Limitation

In this section, we discuss the limitations of our attack. While our current training paradigm
already achieves effective watermark forgery, we have not yet systematically explored how to guide
diffusion models better to capture the underlying watermark distribution. In this work, we employ a
standard diffusion architecture without any specialized training strategies. We leave the exploration
of alternative architectures and training schemes to future work. Moreover, understanding why
different watermark types exhibit varying forgery and learning behaviors remains an open problem.
Additionally, our method requires a substantial amount of data and incurs training costs.

H Broader Impact

Invisible watermarking plays a critical role in detecting and holding accountable AI-generated
content, making it a solution of significant societal importance. Our research introduces a novel

4HuggingFace Tutorial: https://huggingface.co/docs/diffusers/en/tutorials/basic_tra
ining
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watermark forgery attack, revealing the vulnerabilities of current watermarking schemes to such
attacks. Although our work involves the watermarking system deployed by Amazon, as responsible
researchers, we have worked closely with Amazon’s Responsible AI team to develop a solution,
which has now been deployed. The Amazon Responsible AI team has issued the following statement:

’On March 28, 2025, we released an update that improves the watermark detection robustness of
our image generation foundation models (Titan Image Generator and Amazon Nova Canvas). With
this change, we have maintained our existing watermark detection accuracy. No customer action
is required. We appreciate the researchers from the State Key Laboratory of Blockchain and Data
Security at Zhejiang University for reporting this issue and collaborating with us.’

While our study highlights the potential risks of existing watermarking systems, we believe it plays a
positive role in the early stages of their deployment. By providing valuable insights for improving
current technologies, our work contributes to enhancing the security and robustness of watermarking
systems, ultimately fostering more reliable solutions with a positive societal impact.

Figure 9: Generated images from diffusion models trained on 5,000 watermarked images
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I Forged Samples

Figure 10: Examples of forged Amazon watermark samples on the DiffusionDB
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Figure 11: Examples of forged Amazon watermark samples on the MS-COCO
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Figure 12: Examples of forged Amazon watermark samples on the CelebA-HQ
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Figure 13: Examples of forged Amazon watermark samples on the ImageNet
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