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ABSTRACT

Distributionally robust policy learning aims to find a policy that performs well
under the worst-case distributional shift, and yet most existing methods for robust
policy learning consider the worst-case joint distribution of the covariate and the
outcome. The joint-modeling strategy can be unnecessarily conservative when we
have more information on the source of distributional shifts. This paper studies
a more nuanced problem — robust policy learning under the concept drift, when
only the conditional relationship between the outcome and the covariate changes.
To this end, we first provide a doubly-robust estimator for evaluating the worst-case
average reward of a given policy under a set of perturbed conditional distributions.
We show that the policy value estimator enjoys asymptotic normality even if
the nuisance parameters are estimated with a slower-than-root-n rate. We then
propose a learning algorithm that outputs the policy maximizing the estimated
policy value within a given policy class II, and show that the sub-optimality gap of
the proposed algorithm is of the order x(IT)n~"/2, with x(II) is the entropy integral
of IT under the Hamming distance and n is the sample size. The proposed methods
are implemented and evaluated in numerical studies, demonstrating substantial
improvement compared with existing benchmarks.

1 INTRODUCTION

In a wide range of fields, the abundance of user-specific historical data provides opportunities
for learning efficient individualized policies. Examples include learning the optimal personalized
treatment from electronic health record data (Murphy, 2003; Kim et al., 2011; Chan et al., 2012),
or obtaining an individualized advertising strategy using past customer behavior data (Bottou et al.,
2013; Kallus & Udell, 2016). Driven by such a practical need, a line of works have been devoted
to developing efficient policy learning algorithms using historical data — a task often known as
offline policy learning (Dudik et al., 2011; Zhang et al., 2012; Swaminathan & Joachims, 2015a;b;c;
Kitagawa & Tetenov, 2018; Athey & Wager, 2021; Zhou et al., 2023; Zhan et al., 2023; Bibaut et al.,
2021; Jin et al., 2021; 2022a).

Most existing methods for offline policy learning deliver performance guarantees under the premise
that the target environment remains the same as that from which the historical data is collected. It
has been widely observed, however, that such a condition is hardly met in practice (see e.g., Recht
et al. (2019); Namkoong et al. (2023); Liu et al. (2023); Jin et al. (2023) and the references therein).
Under distribution shift, a policy learned in one environment often shows degraded performance
when deployed in another environment. To address this issue, there is an emerging body of research
on robust policy learning, which aims at finding a policy that still performs well when the target
distribution is perturbed. Pioneering works in this area consider the case where the joint distribution
of the covariates and the outcome is shifted from the training distribution, and propose algorithms that
output a policy achieving reliable worst-case performance under the aforementioned shifts Si et al.
(2023); Kallus et al. (2022). The joint modeling approach, however, ignores the fype of distributional
shifts, and the resulting worst-case value can be unnecessarily conservative in practice.

Indeed, distributional shifts can be categorized into two classes by their sources: (1) the shift in
the covariate X, and/or (2) the shift in the conditional relationship between the outcome Y and the
covariate X . The two types of distributional shifts have different implications in differnt applications,
and call for distinct treatment (Namkoong et al., 2023; Liu et al., 2023; Jin et al., 2023; Ai & Ren,
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2024). For example, when the distribution of covariates changes while that of Y | X remains invariant,
the distribution shift is identifiable/estimable since the covariates are often accessible in the target
in environment. Alternatively, when the Y | X distribution changes but the X distribution remains
invariant, the distribution shift is no longer identifiable, and we need to account for the worst-case
situation. This setting, known as concept drift, occurs when the distribution of the unobserved
confounder changes over time, or due to sudden external shocks (Widmer & Kubat, 1996; Lu et al.,
2018; Gama et al., 2014). For example, in advertising, the customer behavior can evolve over time as
the environment changes, while the population remains largely the same. In personalized medicine,
treatment may be affecting patients’ outcomes through some unmeasured confounders that have
different distributions in the training and target cohort, thereby inducing a concept drift.

Our work mainly focuses on robust policy learning under concept drift. Most existing methods for
robust policy learning (Si et al., 2023; Kallus et al., 2022) that model the distributional shift jointly
without distinguishing the sources, and the corresponding algorithms turn out to be suboptimal. The
reason behind their suboptimality is that the worst-case distributions under the two models — the
joint-shift model and the concept-drift model — can be substantially different, so it would be a “waste”
of our budget to consider adversarial distributions that are not feasible under concept drift. It is worth
mentioning that a recent paper by Mu et al. (2022) accounts for the sources of distributional shifts in
policy learning; their approach, however, applies only when the covariates take a finite number of
values, and therefore is limited in its applicability. When the covariate space is infinite, it remains
unclear how to efficiently learn a robust policy under concept drift. The current work aims to fill in
the gap by answering the following question:

How can we efficiently learn a policy with optimal worst-case average performance under concept
drift with minimal assumptions?

We provide a rigorous answer to the above question. Specifically, we assume the covariate distribution
remains the same in the training and target environments, while the Y | X distribution shift is bounded
in KL-divergence by a pre-specified constant §. Our goal is to find a policy that maximizes the
worst-case averaged outcome over all possible target distributions satisfying the previous condition.

1.1 OUR CONTRIBUTIONS

Towards robust policy learning under concept drift, we make the following contributions.

Policy evaluation. Given a policy, we present a doubly-robust estimator for the worst-case policy
value under concept drift. We prove that the estimator is asymptotic normal under mild conditions on
the estimation rate of the nuisance parameter. Our approach involves first formulating the worst-case
policy value under the concept drift model as the optimal objective value of a distributionally robust
optimization problem with KL-divergence constraints. The optimization problem is then solved in its
dual form. Finally, we plug in the empirical risk optimizer into the dual objective function and take a
debiased step to obtain the final estimator.

Policy learning. We propose a robust policy learning algorithm that outputs a policy maximizing
the estimated policy value over a policy class II. Compared with the oracle optimal policy, the policy
provided by our algorithm with high probability has a suboptimality gap of the order (IT) - n=1/2,
where £ (II) is a measure quantifying the policy class complexity (to be formalized shortly) and
n is the number of samples. Compared with Mu et al. (2022), our algorithm and theory apply to
general covariate spaces and potentially infinite policy classes, while their method is restricted to
finite covariate space and policy class. Furthermore, the sample dependence of our sub-optimality
gap is O(n~'/2), which is sharper that the (nlogn)~'/2 rate in Mu et al. (2022).

Implementation and empirics. We provide efficient implementation of our robust policy learning
algorithm, and compare its empirical performance with existing benchmarks in numerical studies.
Our proposed method exhibits substantial improvement.
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1.2 RELATED WORKS

Offline policy learning. There is a long list of works devoted to offline policy learning. Most of
them assume no distributional shifts (e.g., Dudik et al. (2011); Zhang et al. (2012); Swaminathan &
Joachims (2015a;b;c); Kitagawa & Tetenov (2018); Athey & Wager (2021); Zhou et al. (2023)). Zhan
et al. (2023); Jin et al. (2021; 2022a) allow the data to be adaptively collected, but the distribution over
the covariate and the (potential) outcomes remain invariant in the training and target environment.

As mentioned earlier, the work of Si et al. (2023); Kallus et al. (2022) study robust policy learning
when the joint distribution of (X,Y") ranges in the neighborhood of the training distribution; Mu
et al. (2022) consider the case when the covariate shift and Y | X shift are specified separately; their
method, however, is restricted to finite covariate space, and their sub-optimality gap is logarithmic
factors slower than parametric rates. The work of Kallus & Zhou (2021) concerns robust policy
learning when the distribution shift is caused by hidden confounders — this is in fact a special type
of concept drift — and the corresponding Y | X shift is assumed to be bounded uniformly, which
is quite different from our f-divergence bound. More recently, Guo et al. (2024) considers a pure
covariate shift with a focus on policy evaluation, where the setup and the goal are different from ours.

Distributionally robust optimization. More broadly, our work is also closely related to DRO,
where the goal is to learn a model that has good performance under the worst-case distribution
(e.g., Bertsimas & Sim (2004); Delage & Ye (2010); Hu & Hong (2013); Duchi et al. (2019); Dudik
et al. (2011); Zhang et al. (2023)). The major focus of the aforementioned works involves parameter
estimation and prediction in supervised settings; we however take a decision-making perspective and
aim at learning a individualized policy with optimal worst-case performance guarantees.

1.3 NOTATION

We use [n] to denote the discrete set {1,2,--- ,n} for any n € Z. We use argmin and argmax to
denote the minimizers and maximizers; if the minimzer or the maximizer cannot be attained, we
project it back to the feasible set. We denote the usual p-norm as || - ||,,. For any probability measure
P defined on the probability space (€2, o(Q2), P). For any function f, we denote the Lo (P)-norm of
f conventionally as || f||1,(py = (f | f(2)[*dP(2))"/? and || f|| .. = sup e |f(z)]. We use Pto
denote the empirical distribution of P. For any random variables X, Y, we use X 1l Y to denote that
X is independent of Y. For a random variable/vector X, we use Ex[] to indicate the expectation
taken over the distribution of X.

2 PROBLEM FORMULATION

Consider a set of M actions denoted by [M] and let X C R¢. Throughout the paper, we follow
the potential outcome framework (Imbens & Rubin, 2015), where Y (a) € YV, C R denotes the
potential outcome had action a been taken for any a € [M]. We posit the underlying data-generating
distribution P on the joint covariate-outcome random vector (X, Y (1),--- , Y (M)) € X x Héw:l Va-
Consider a data set D = {(Xj, A;, Y;) }ic[n) consisting of n i.i.d. draws of (X, A,Y’), where X; € X
is the observed contextual vector, A; € [M] the action, and Y; = Y (A;) the realized reward. The
actions are selected by the behavior policy 7y, where mo(a|x) := P(A; = a| X = z), for any
a € [M],x € X. We make the following assumptions for 7y and P.

Assumption 2.1. The behavior policy 7 and the joint distribution P satisfy the following.
(1) Unconfoundedness: (Y (1),---,Y(M)) 1 A| X.
(2) Overlap: for some € > 0, mo(a | z) > ¢, forall (a,z) € [M] x X.
(3) Bounded reward support: there exists § > 0, such that 0 < Y (a) < g for all a € [M].

The above assumptions are standard in the literature (see e.g., Athey & Wager, 2021; Zhou et al.,
2023; Si et al., 2023; Kallus et al., 2022). In particular, the unfoundedness assumption guarantees
identifiability, and the overlap assumption ensures sufficient exploration when collecting the training
dataset. The bounded reward support is assumed for the ease of exposition, and can be relaxed to the
sub-Gaussian reward straightforwardly.



Under review as a conference paper at ICLR 2025

2.1 THE KL-DISTRIBUTIONALLY ROBUST FORMULATION

Given the training set D = {(X;, A;, Y;) }ie[n) and a policy class IT, we aim to learn a policy 7 € IT
that achieves high expected reward in a target environment that may deviate from the data-collection
environment where D is collected. While distribution shift can take place in various forms, we focus
primarily on the concept drift, where only the conditional reward distribution Y (a) | X differs in
the training and target environment. The distance between distributions is quantified by the KL
divergence.

Definition 2.2 (KL divergence). The KL divergence between two distributions ¢ and P is defined as
Dx(Q]| P) = Eqllog %], where % is the Radon-Nikodym derivative of () with respect to P.

We define an uncertainty set of neighboring distributions around P, whose conditional outcome
distribution is bounded in KL divergence from P. Given a radius ¢ > 0, the uncertainty set of the
conditional distribution is defined as

P(Py|x,0) :={Qy|x : Dx(Qy | x || Py x) <0},

where Py | x and Qy | x refers to the distribution of (Y(1),...,Y(d))| X under P and () respec-
tively. The distributionally robust policy value for any policy 7 at level § is defined as

Vit = En [ nt Eay [Y(rx)]x]): n

The optimal policy in II is the one that maximizes Vs(7), i.e. 7} := argmaxzen Vs().!

Under this formulation, our goal is to learn a “robust” policy with a high value of V() using a
dataset drawn from P. The task here is two-fold: we need to (i) estimate the policy value Vs () for a
given policy 7, and (ii) find a near-optimal robust policy 7 € II whose policy value is close to the
optimal policy 7;. Here, the performance of a learned policy 7 is measured by the sub-optimality
gap (regret), defined as

Rs(T) = Vs(my) — Vs(T). 2)

In the following sections, we tackle each task sequentially.

2.2  STRONG DUALITY

In order to estimate Vs (7), we first rewrite the inner optimization problem in Equation (1) in its dual
form using standard results in convex optimization. The transformation is formalized in the following
lemma, with its proof provided in Appendix B.1.

Lemma 2.3 (Strong Duality). Given any m € Il and any x € X, the optimal value of inner
optimization problem in Equation (1) equals to
Y(#(X))+n

«

— min Ep[aexp<— —1)+n+a5‘X:x} 3)

a>0,neR

We note that the optimization problem in (3) depends on x and = — to manifest this dependence, we
use (aX(z), nk(x)) to denote its optimizer, i.e.,

Y (m(X

(o (z),nk(x)) € argmin Ep [a exp (,M - 1) +n+ad ’ X = :17]
a>0,mER «

With this notation and Lemma 2.3, the robust policy value becomes

Y(m(X)) + nz(X)
(X)

*
Qr

Vs(r) = —Ep {a;(X)exp(— —l) +n;(X)+a;(X)5} 4)

The above formulation has thus translated the original distributionally robust optimization problem
into an empirical risk minimization (ERM) problem. We note that, unlike the well-studied joint

'When the supremum cannot be attained, we can always construct a sequence of policies whose policy values
converge to the supremum, and all the arguments go through with a limiting argument.
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distributional shift formulation, the above representation admits an optimizer pair (o (x), 9k (z))
that is dependent on the context x (i.e. o, nx are functions of =) and the policy . As we shall see
shortly, our proposed policy value estimation procedure employs ERM tools to estimate (o, 7)), and
then compute an estimate of Vs(7) by plugging (o, %) into Equation (4). The remaining challenge
in this proposal is the slow estimation rate of the optimizers — if we naively plug in the optimizers,
the resulting policy value estimator typically has a convergence rate slower than root-n. To overcome
this, we incorporate a novel adjustment method to debias the estimator, which allows us to obtain a
doubly-robust estimator that achieves root-n rate of convergence even when then nuisance parameters
(e.g., (a,nk)) are converging slower than the root-n rate.

We end this section by discussing when « (2) > 0. Throughout, we shall make the following mild
assumption on the conditional outcome distribution.

Assumption 2.4. For a € [M] and z € X, define y(z;a) = sup{t : P(Y(a) <t | X =2,A =
a) = 0} and p(z;a) = P(Y(a) = y(z;a) | X = 2,A = a). Let f§ (z) = e*~'. It holds that
p(x;a) fyL(1/p(x;a)) + (1 = p(z;a)) fgL(0) > 6 for Pyja—g-almost all x.

The above assumption requires that Py|x, 4 does not posit a large point mass at its essential infimum,
which can be satisfied by many commonly used distributions, e.g., all the continuous distributions.

Next, the following result from Jin et al. (2022b, Proposition 4), shows that a* > 0 when Assump-
tion 2.4 holds, which ensures that the gradient of the risk function in ERM has a zero mean.

Proposition 2.5 (Jin et al. (2022b)). Under Assumption 2.4, the optimizer ™ of (3) satisfies a* > 0.

3 POLICY VALUE ESTIMATION UNDER CONCEPT DRIFT

3.1 THE ESTIMATION PROCEDURE

Fixing a policy 7, we aim to estimate the policy value Vs() using the training dataset D. We first
split D into K equally sized disjoint folds, D) for k € [K],” where we slightly abuse the notation
and D) to denote the data points or the corresponding indices interchangeably.

For each k € [K], we use data points in D(++1) to obtain the propensity score estimator %ék) and the

~(k) (k))

optimizers (Qx ', T Next, we define

N ~(k)
G (2,1 = a0 () - exp ( y+im (z) 1) + 70 () + a0 (z) - 5,
™ ™ agrk) (ﬁr) ™ ™
and its conditional expectation

9 (@) = Ep [OW (X, Y (r(X)) | X =],

We then use D*+2) to obtain g( ) as an estimator of g The policy value estimator ]7§k) () for the
k-th fold is constructed as

1 Hn(X;) = A} 4 - N
V(k)( ) = DE| Zk) W : (Gg'rk) (X;,Y;) — gt (X3)) + aM(Xy). )

The final policy value estimator is given by

1 (k)
~(k

_fE Vs
K k=1

The complete procedure is summarized in Algorithm 1. A few remarks are in order.

Remark 3.1. The estimation procedure involves three model-fitting steps corresponding to g,

(&, Mr), and g, respectively. The propensity score function 7o can be estimated with off-the-shelf

(k)

algorithms (e.g., logistic regression, random forest); the conditional mean g, ’ can be obtained by

%in practice, we only need a minimum of K = 3 folds.
3We use the convention that D*+7) = pk+imed K) for any 5 f.
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Algorithm 1 Policy estimation under concept drift

Input: Dataset D; policy 7; uncertainty set parameter ¢; propensity score estimation algorithm C;
ERM algorithm £ for obtaining (o, n); regression algorithm R for estimating gy.

Randomly split D into K non-overlapping equally-sized folds D¥), k € [K];
fork=1,--- /K do

on DD 7 ¢k, @P), 7)) « g(DED);

On D+2: i () = R({Xy, 4, GF (X3, Yi)si € DE2)Y);

On D¥): compute 17§k) () according to Equation (5);
end for

Return: Vs(m) < — 4 S5 V) ().

regressing G% (X;,Y;) onto X for the points such that A; = w(X;) with standard regression algo-
rithms, e.g., kernel regression (Nadaraya, 1964; Watson, 1964), local polynomial regression (Cleve-
land, 1979; Cleveland & Devlin, 1988), smoothing spline (Green & Silverman, 1993), regression
trees (Loh, 2011) and random forests (Ho et al., 1995). The ERM step is more complex, and will be
discussed in detail shortly.

Remark 3.2. The construction of the estimator Vs (7) employs two major techniques: cross-fitting and
de-biasing. The cross-fitting technique crucially provides the convenient property of independence
and the de-biasing technique overcomes the slow rate of estimating the nuisance parameter o, 7,
leading to the doubly-robust property of the proposed estimator.

The ERM step. For notational simplicity, we denote 8 = (v, 77) and write the loss function as

(z,y;0) = a(z) exp ( — y:;(z()ﬂ@) — 1) + n(z) + ax)d. (6)

By the notation, 0%(x) = (aZ(z),ni(x)) is the optimizer of Ep[l(x,Y (7(x));0%)| X = =z].
Throughout, we make the following assumption on 6.
Assumption 3.3. For any policy m, there exist constants «, &, 77 such that

0<a<ai(r) <a, |7]7*r(a:)| <7, forallze X.

The above assumption is quite mild. It can be achieved, for example, when 6% () is continuous in x
and when & is compact. We refer the readers to Jin et al. (2022b) for a more detailed discussion.

Under the unconfoundedness assumption, it can be seen that 6% is also a minimizer of
Ep[€(X,Y;0)1{A = 7(X)}]. We obtain an estimate of #7 by minimizing the empirical risk:

~ 1
(k) ind —— - ARG Y
6 € argmin { o] > I{A = w(X0)} (X, Y 9)}, )
i€ D(k+1)
where © C {(a,n) : a(z) > 0,n(x) € R, forany x € X'} is to be determined. In our imple-
mentation, we follow Yadlowsky et al. (2022); Jin et al. (2022b); Sahoo et al. (2022), and adopt
the method of sieves (Geman & Hwang, 1982) to solve (7). Specifically, we consider an increas-
ing sequence ©; C Oy C --- of spaces of smooth functions, and let © = ©,, in Equation (7).
For example, ©,, can be a class of polynomials, splines, or wavelets. It has been shown in Jin
et al. (2022b, Section 3.4) that under mild regularity conditions, @Tk) converges to 6 at a non-
parametric rate. For example, if X = H?Zl X; C R? for some compact intervals X; and that 0;;
belongs to the Holder class of p-smooth functions, with some other mild regularity conditions, then
k * logn\— k * log n\ —2p2 2

103 =02 Py i) = Op((252)/CPHD) and |53 —63 | 1, = Op((252) =20/ Cr "),
We refer the readers to Yadlowsky et al. (2018) and Jin et al. (2022b) for more details.

3.2 THEORETICAL GUARANTEES

We are now ready to present the theoretical guarantees for the policy value estimator 175 (7). To start,
we make the following assumption on the convergence rates of the nuisance parameter estimators.
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Assumption 3.4 (Asymptotic estimation rate). For any policy 7, assume that for each k € [K],

(a) The estimators %ék) and @(Tk) satisfy

~(k _ B —(k _
||7Té )~ 7r0||L2(PX\A:7r(x)) = OP(n ’Y”)? ||g7(rk) - g7(rk)||L2(Px\A:7r(x)) = OP(n ’Yg)v

for some vz, 7y > 0 and 7z + 74 > 3.
(b) The optimizer @(Tk) satisfies

|‘6£rk) - Q;HLQ(PX'A:W(X)) = Op(’ll_z)7 H97(rk) - 9;”[100 = OP(]')'

Assumption 3.4 (a) requires either the propensity score or the conditional mean of CAY'STk) (X,Y) is well
estimated, and is standard in the double machine learning literature (Chernozhukov et al., 2018; Athey
& Wager, 2021; Zhou et al., 2023; Kallus et al., 2019; 2022; Jin et al., 2022b) and can be achieved
by various commonly-used machine learning methods discussed in Section 3.1. Assumption 3.4 (b)

requires the optimizer é?rk) to be estimated at a rate faster than n~/#, and can be achieved by, for

example, the estimators discussed in Section 3.1 under mild conditions.

The following theorem states that our estimated policy value )75(77) is consistent for estimating Vs
and is asymptotically normal. Its proof is provided in Appendix B.2.

Theorem 3.5 (Asymptotic normality). Suppose Assumptions 2.1, 2.4, 3.3, and 3.4 hold. For any
policy w: X — A, we have

Vn - (175(77) - Vs(m)) 4 N(0,02),
where

s (A= TO0} . |
7t = var(HEZEE (G v) - g0) + 000 )

Gl ) = U, y;0%) and g (2) = E[G (X, Y (x(X))) | X = a].

4 POLICY LEARNING UNDER CONCEPT DRIFT

Building on the results and methodology in Section 3, we turn to the problem of policy learning under
concept drift.

Given a policy class II and an estimated policy value Vs (m) for each 7 € II, it is natural to consider
optimizing the estimated policy value over II to find the best policy. The biggest challenge here is

that the quantity 55!“) in defining 95(#) is not only a function of x € X, but also a function of 7 € II.
The above strategy requires carrying out the ERM step in Section 3.1, for all possible policies 7 € II,
posing major computational difficulties.

Instead of solving é\;k) for each w € II, we propose an alternative strategy that solves a similar ERM
problem for each action a € [M]. To see why this is sufficient, note that for any = € II,

M
E[(X,Y(n(X));0)| X =] = Z H{n(X) =a} -E[l(z,Y(a);0)| X = x]. 8)

a=1
Letting 6} (x) € argmin {E[{(x,Y (a);0) | X = z]}, we can see that 07 () (x) is a minimizer of (8).
0
Then, the policy learning problem reduces to finding 7 € II that maximizes
Y (m(X)) + 1% ) (X)
g x)(X)

The following section instantiates this idea and provides a detailed algorithm for policy learning
under concept drift.

-E [QZ(X)(X) - €Xp ( - - 1) + Nr ) (X) + azx) (X)d ]
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Algorithm 2 Policy learning under concept drift

Input: Dataset D; policy class II; uncertainty set parameter §; propensity score estimation
algorithm C; ERM algorithm £(-) for obtaining 07 ; regression algorithm R for estimating .

Randomly split D into K equal-sized folds;
fork=1,...,Kdo

A(k) - C( k+1))’
for a=1,---,Mdo
0L« 5(D<k+1>);
9 R(Xi, A0, G (X4, V)50 € D)),
end for
end for

Return: 7 N that maximizes T%N (7) as in Equation (9).

4.1 THE LEARNING ALGORITHM

The policy learning algorithm consists of two main steps: (1) solving for 6% for each a € [M] and
constructing the policy value estimator Vs(); (2) learning the optimal policy 7.
As before, we randomly split the original data set D into K folds. For each fold k € [K], we use
samples in the (k -+ 1)-th data fold D*+1) to obtain the propensity estimator %(()k) (a|-) (by regression)
and the optimizer 0" (+) (by ERM) for each a € [M]. Next, for each a € [M], define

Gal,y) = U(z,;0;), GP(2,y) = ((2,y;0), and g (z) = E[GI(X, Y (a)) | X = 2].
We then obtain an estimator g((1 ) for gék) by regressing e (X;,Y;) onto X; with i € D*+2),
Finally, we obtain the learned pohcy by maximizing the estimated policy value:

TLN = argmax V = Z ), where
well
SLN, (k) 1 ll{A :W( DI ~(k) )
Vs ™) = pm) z;) 09 (4, X) (G (X Yi) = G, (X0) + G, (XK)-
ieDk

©))
Above, the optimization problem can be solved by first-order optimization methods or policy tree
search as in Zhou et al. (2023); we shall elaborate on the implementation in Section 5. The complete

policy learning procedure is summarized in Algorithm 2, in which D = {(Xi,A4,Y;) € DX .
Ai = a}.

4.2 REGRET ANALYSIS

In this section, we present the regret analysis of 7y obtained by Algorithm 2 (recall that the
definition of regret is given in Equation (2)). Before we embark on the formal analysis, we introduce
the Hamming entropy integral (II), which measures the complexity of II.

Definition 4.1. Given a policy class IT and n data points {z1,...,z,} C X,

(1) The Hamming distance dg(m, ") between two policies w, 7’ € II is defined as

n

dg(m,7') = % > 1 {m(ws) # 7' ()}

i=1
(2) The e-covering number of {x1,...,z,}, denoted as C(e, IT; {1, ..., x,}), is the smallest
number L of policies {m1, ..., 7y} in IL, such that V 7 € II, 3 7} such that d g (7, m¢) < €.

(3) Denote Ny (e, 1) := sup,,>ysup,, . C(e1;{x1,...,2,}). The Hamming entropy

integral of T is defined as x(IT) := [ \/log Ny (€2, II) de.
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Now we present the main result.

Theorem 4.2. Suppose Assumptions 2.1, 3.3, 3.4 hold. For any 8 € (0, 1), there exists N € N, such

that when n > N, we have with probability at least 1 — 3 that

5VECo(a, a1, 6, )
Vn

where Co(a, a, 7, 6, €) := 6(a - exp(7]/a — 1) + 7 + ad) /e.

Rs(Tin) < - (22 + 4k(IT) + /210g(K/B)),

The proof of Theorem 4.2 is deferred to Appendix B. The main idea is to start with the following
regret decomposition:

Rs(@in) = Vs(1*) = Vs(Fin) < Vs(r*) = VIN(r*) + VEN (%) = VN (Fin) + VN Fiw) — Vs(Fuw)
< 2sup |9(15‘N(7T) — Vs(m)|-
mell

We bound the above quantity by establishing uniform convergence results for the policy value
estimators.

Remark 4.3. The theorem shows that the dependence of R(7x) on n is of the order O(n~ =), which
outmatches the O(n’% logn) dependence for that of Mu et al. (2022) by a logarithmic factor.

5 NUMERICAL RESULTS

We evaluated our learning algorithm in a simulated setting against the benchmark algorithm SNLN in
Si et al. (2023). Our data generating process follows that of the linear boundary example in Si et al.
(2023). We let the context set X = {x € R® : ||z||2 < 1} to be the closed unit ball of R® and let the
action set to be A = {1, 2, 3}. We assume the rewards Y (j)’s are mutually independent conditioned
on X with conditional distribution that follows a Gaussian law. We prepared a training dataset Dy,
(used for policy learning tasks) and a testing dataset Dy (used to empirically derive the underlying
true policy value of the learnt policies, as the performance metric). The empirical policy value V()
of any policy 7 € Il is calculated as the sample average

Yi(m(X3)) + nx(X5)
ar(Xy)

Vs(n) = — L

3 [aﬂ(xi) exp (-

Dees| 557

where the nuisance parameters o (X;), 7, (X;) are found via optimization:

argmin ( ! S (a exp (—W 1) +n+a5) 1{X; = Xi}>.

a>0eR \ [{J € Deest : X;j = Xi}| €D

The testing dataset Dy realized i.i.d. draws of data tuple (X, Y(1),--- , Y (M)) so that the empirical
policy value V() could be computed for all 7.

To perform our proposed learning Algorithm 2 combined with the policytree R package (Athey &
Wager, 2021), we first split the dataset into K = 3 folds. Then we use Random Forest Regressor from
scikit—learn Python library to find both 7y and g; cubic spline is implemented to approximate
0* with threshold at 0.001 to guarantee Proposition 2.5. We employ the Nelder-Mead optimization
method in SciPy Python library (Virtanen et al., 2020) to optimize the coefficients in the spline
approximation. For each data point (X;, A;,Y;), using the estimated parameters 7, g, (Qa, Tu )ac A
outputted by Algorithm 2, the outcomes Y;(a) under any action a € A for i € [n] are estimated and
stored in an outcome matrix. Then policytree finds 77y with the outcome matrix.

The benchmark algorithm SNLN is adapted from Si et al. (2023, Algorithm 2). Since Si et al. (2023,
Algorithm 2) is designed for joint distribution shift formulation, we revised the original algorithm to
fit our concept drift setting. It is well-known that the chain rule of KL-divergence (Cover, 1999) gives

DxL(@x,y || Px,y) = Dx(Qx || Px) + Dxr(Qy | x || Py | x)- (10)

Therefore, given any uncertainty set radius § and known covariate shift (in this experiment, we
assume no covariate shift), Si et al. (2023, Algorithm 2) can be used to implement policy learning
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under concept drift. Note that SNLN admits known propensity scores. As we only consider the
case where the propensity scores are unknown, we complement Si et al. (2023, Algorithm 2) with
estimated propensity scores from Random Forest Regressor in scikit-learn, same as in the
implementation of Algorithm 2. The additional setup details are in Appendix A.

Both algorithms are fitted with K = 3 folds. We conduct the experiments under three uncertainty
set radii 6 = 0.05,0.1, 0.2 and repeat each experiment over 50 random seeds. Table 1 reports the
estimated average distribuionally robust values (with 95% confidence intervals) of the learnt policies
LN and TsniN, by Algorithm 2 and Si et al. (2023, Algorithm 2) respectively.

With a higher ¢, the distribuionally robust values of 7 N, TsnLn are smaller, due to a bigger uncertainty
set. Table 1 shows that 77 5 outperforms the benchmark sy n consistently across all tested setups,
with higher policy values and smaller 95% confidence intervals. Intuitively, Algorithm 2 admits
a subset of the uncertainty set that the benchmark algorithm SNLN considers, as explained in
Equation (10). Consequently, Vs(7snin) is a lower bound of Vs(7y) in theory, and by the results
in Table 1, in practice. This shows that when only concept drift occurs, Algorithm 2 enjoys a better
worst-case performance comparing to the joint distributional shift policy learning benchmark, as the
latter is more conservative in this scenario.

In Appendix A, we also provide simulation results of Algorithm 1 for a fixed target policy, which show
that Algorithm | can estimate the distributionally robust policy value under concept drift efficiently.

SAMPLE SIZE Vo.05(TLN) Vo.05 (TsnLN)

7500 0.2272+2.2e —3 0.0554+5.9e¢ — 3
13500 0.2299+1.8¢ —3 0.0589+4.5¢ — 3
16500 0.2303+1.7e —3 0.0617+4.2¢ — 3
19500 0.2310+£1.8 —3 0.0664+3.9¢ — 3
Vo.1 (TLN) Vo.1 (TsNLN)
7500 0.1579+£7.0e —3 0.0548+4.7e — 3
13500 0.1662+2.0e —3 0.0580+4.2¢ — 3
16500 0.1663+1.8e —3 0.0583+3.5¢ —3
19500 0.1678+t1.8 —3 0.0616+t4.3e — 3
\70.2(7?LN) 1}042(%SNLN)
7500 0.0781+£2.6e —3 0.0182+3.0e — 3
13500 0.0802+2.0e —3 0.0183+3.0e — 3
16500 0.0804+2.1e —3 0.0200+3.2¢ — 3
19500 0.0831+£2.3e—3 0.0219+3.8¢ — 3

Table 1: Distributionally robust values of policies LN, TsnLN found by Algorithm 2 and SNLN
respectively. The performance metric is Vs(+) estimated from the test data. We report the results
under cases 6 = 0.05, 0.1, 0.2, sequentially in the table below.
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A EXPERIMENT DETAILS

We adopt the data generating process similar to the linear boundary example in Si et al. (2023). We
consider the context set X = {x € R® : ||z||2 < 1} is the closed unit ball of R®, and the action
set A = {1,2,3}. We assume the rewards Y (j)’s are mutually independent conditioned on X with
conditional distribution Y (5) | X ~ N(B;' X, O'JQ»), for j = 1,2,3 and vectors {31, B2, 33} € R®

and {0?,03,03} € R,. We choose 3’s and o’s to be
B =(1,0,0,0,0), Bo=(—1/2,/3/2,0,0,0), fB3=(—1/2,—3/2,0,0,0); &= (0.2,0.5,0.8).
The underlying policy 7y chooses actions with context x according to the following rules:

(0.5,0.25,0.25), if argmax{Bz} =1,
i=1,2,3

(mo(1] ), mo(2| z), mo (3| z)) = (0.25,0.5,0.25), if argmax{B,' v} = 2,

i=1,2,3
(0.25,0.25,0.5), if argmax{B;z} = 3.
i=1,2,3

We generate Dy,;, according to the procedure described above as training dataset. We also generate
10,000 samples as our testing dataset Dy = {4 € [10,000] : (X;, Y;(1),Y;(2),Yi(3))}, which we
use to estimate the true policy value.

We present the result of the policy estimation experiments in Figure 1, using Algorithm | with inputs
of the training datasets and the target policy 7

1, if el € 0,1/3],
m(x) =142, ifl|z|2€[1/3,2/3],
3, ifllef € [2/3,1].
The underlying true policy value is obtained by the testing dataset Dig. Similar to the learning

experiment, we repeat the estimation experiment over 50 seeds. Figure 1 shows that as the sample
sizes increases, the estimated policy value by Algorithm 1 is more accurate and stable.

13
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\

140 140
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Figure 1: The Mean Square Error (MSE) of the estimated policy value by Algorithm 1. The x-axis is
the number of samples used by Algorithm 1, and the y-axis is the mean squared error (MSE) of the
policy value estimator.

Implementation details. The experiments were run on the following cloud servers: (i) an Intel
Xeon Platinum 8160 @ 2.1 GHz with 766GB RAM and 96 CPU x 2.1 GHz; (ii) an Intel Xeon
Platinum 8160 @ 2.1 GHz with 1.5TB RAM and 96 CPU x 2.1 GHz; (iii) an Intel Xeon Gold 6132
@ 2.59 GHz with 768GB RAM and 56 CPU x 2.59 GHz and (iv) an Intel Xeon GPU E5-2697A v4
@ 2.59 GHz with 384GB RAM and 64 CPU x 2.59 GHz.

B DEFERRED PROOFS OF THE MAIN RESULTS

B.1 PROOF OF LEMMA 2.3

dQy | x=«

Fixm € Iland x € X. Letting L = Py xos

as

, we can rewrite the inner minimization in Equation (1)

inf Ep, [Y(r(z))L|X = 1]
L measurable

st.Ep, ([L|X =2] =1, (11)
EPY|X[fKL(L)‘X :.13] <4,

where the function fxi(z) = zlogx represents the KL divergence function. In (11), the first
constraint reflects that L is an likelihood ratio, and the second constraint corresponds to the KL
divergence bound.

For notational simplicity, let E, be the shorthand of Ep,. | , [- | X = z]. By Theorem 8.6.1 of Luen-
berger (1997), the Slater’s condition is satisfied and strong duality holds:

]Ez[lg]le, E,[Y(r(2))L] = aé%%;xem o(a,n, ), (12)
Eq[fx(L)]<6
where
playn,x) = mf Lo, L, z),
L(o,n, L,x) =B, [Y (w(2))L] + 1 - (Eo[L] — 1) + o+ (Eo[fxr(L)] — 6)
=E, [Y(r(2))L +n(L — 1) + a(fer(L) = 9)].
We can explicitly work out the minimum of £(«, ), L, ), and we have
. Y(m(x)) +
90(0[77771.) = E17|:_ afKL<_ ((a))n> -n- 0[(5:|,

where f§; (y) = exp(y — 1) is the conjugate function of fx; . Using Equation (12), we arrive at

. : Y(r(z)) +n

f  E,[Y I =— E, AT 5.
Lt E[Yr@)I]=- min [a exp ( - +n+a

Eq [fke(L)]<6

The proof is thus completed.

14
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B.2 PROOF OF THEOREM 3.5

For notional simplicity, we drop the dependence on P in [Ep when the context is clear. The proof
of Theorem 3.5 makes use of the following lemma, which establishes some useful properties of the
optimizer 6. The proof of Lemma B.1 can be found in Appendix C.1.

Lemma B.1. For any policy m, assume that Assumption 3.3 holds. We have the following properties
of the optimizer 07

(1) E[Vgl(z,Y (m(2));0)| X =] = 0at = 0% (x) for any z € X.

(2) There exists a constant £ > 0 such that for any 0 satisfying |0 — 0%||r.. <&
|, 0(x)) — 0,3 05 (x)) — Vol (,y; 03(2)) T (0(x) — 03(x))| < Uz y) - [|0(x) — O5(2)||5,
for some function {(x,y) such that sup,¢ v E[l(z,Y (7(x))) | X = 2] < L for some L > 0.

(3) There exists a constant & > 0 such that for any 6 satisfying |0 — 07|, Py aemixy) S &1
60X, Y (1(X));0) — £(X, ¥ (x(X)); 6

||L2(Px Y (x(X)) | A= (X)) — < Collf - ||L2(PX\A (X))’

for some constant Cy > 0.

We proceed to show the asymptotic normality of @r. For each k € [K], we first define the following
oracle quantity:

V*(k)( )= |'D1k)| e%;’ﬂ W ) (Gw(Xz',Yi) - g‘n'(Xi)) + gx(X5).

In the sequel, we shall show that 9§k)(7r) = Vg(k) (m) + op(n*% ). We begin by decomposing the
difference between %k) (m) and V; (k)

V() = v; P ()

1 ]17TX1 :Az s ~ ]l’]TXZ :A,L
~D®)| ie;k) [E(k()(A)JXz)} : <G£rk) (X, ;) =g (Xi)) - {7T(J((Az’))(i)} : (G‘fr(XiaYi) - gw(Xi))]

+|’#%k’)| Z (/g\grk)(Xi) *gw(Xi))

i€Dk)
Ai =T Xz -~
B |D%k)| > l{wo(Ai |§(z))} H(GP(X1,Yi) = Ga(X, V7))
ieD®)
@
o WA = 7(X0)} T = 7DD\ ey s
'D““’Me;m( Py w60 )
1)
1 HA =X}  HA=n(Xi)}) A _
+|7><’€>Ii;<:m( o) e ) (@0 - ax)

(11

A =7(X; ~
o |’D%k)| Z ]I{WO(Ai ‘ ‘g()f))} ’ (ggrk)(X) gﬂ'(Xz)) + ! ) Z (g‘;(r )(X) gﬂ'(Xl)) .

ieDk)

av)

Bounding term (I). Recall that (o (), n%(2)) is the minimizer of

E[E(m, Y (m(x)); (a,m)) | X = x}
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By the first-order condition established in part (1) of Lemma B.1, we have
E[Vant(a,Y (r(@)); (05,m7) | X =] =0, (13)
where we abuse the notation a bit and V, ,,¢(z, y; (o, 7)) to denote the gradient of £(z, y; (v, 1))

with respect to (c, 1) evaluated at (o (z),n}(x)). For any i € D), by the unconfoundedness
condition in Assumption 2.1, we have

[1{A = =(X)} (A
E R (Ggrk)(Xi,Yi) _ Gw(XhY;))
A =w(x)} (4
=F — AT (Ggrk)(Xh}/i(’]T(Xi))) — Gn(Xi,Y;(w(Xi))))]

=BG (X, Yi(n(X1))) = G (X, Yilw(X2)))

=E|0(X;, Yi(r(X:)); @F), 7)) — £(X3, Yi(m(X0)); ey ) = Vil (Xi, Y (7(X0)); (043?,7732))},

where the last step is due to Equation (13). By Assumption 3.4, ||§7(rk) — 0%||L.. = op(1). Therefore,

for n sufficiently large, o) (x) — 0%(x)||2 < &forall x € X. Then by part (2) of Lemma B.1 and
Jensen’s inequality, we have

E{W : (é;k) (X:,Y;) — Gﬂ(Xi,yi)ﬂ ’

SE[V(XMWX»); (@, 7)) = 6(X3, Ya(m(X0))s 0, m7) = Vo (Xi, Y (7(X0)s (o7, 17)) H
<E[AX;,Y;) - 18(X:) - 03(X) 3] < LE[IB (X;) — 05 (X)IE] = LAY = 03113, oy -
By Chebyshev’s inequality, we have for any ¢ > 0 that

1 H{A =7(X)}  Am
P(’D“”'-e;m (A Xy (G (Xin X)) = Ga(Xs Vo))

_E[W . (é;k)(x, Y) - Ga(X, Y))} ‘ > t)

1 1{A=7n(X ~
= |D(k)|t2var< {WO(A|§())} WY - Ga(x, Y)D

A(k) 2
< HG” o G”HL2(PX,Y\A:7r(x))
= 2| DR [£2
7(k) |2
< CZ(HG"T _9W||L2(PX\A='N(X))>

= 22D ’
where the last step is due to the stability property in Lemma B.1. Therefore, we have that

]]. Az =T X,’ ~
\D%’f)\ > W'(@“(&%)-GW(&,E))

ieD(k)
AR @ )|
_ OP(n—l/Q).

Combining the above results, we have that

term (1) < op(n” /%) + LI — 023, (py) < 0p(n~'/?) 0 — 027, (py) = 0p(n™ /%),

L
+ NG [
€
where the second step is due to the overlap and unconfoundedness assumption and the last step is due
to Assumption 3.4.
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Bounding term (II). Applying the Cauchy-Schwarz inequality to term (II), we have

3 (Mg=rtili “ii(AiTg)})-(a&’“><xi>—g§’“><xi>)|

k ~(k
DM S0 \ 7874 X))

Ly (n{Az:n(Xi)}_ﬂ{AFw(X;)})Q

S -
D] iepty N T M4 X;) mo(A; | Xi

" \/ID%’“)I > 1A =w(X)}- (37 (0) - g (X))

ieD)
or <€_2H§T\é FOHLZ(PX\A (X)) HA(k) ggfk)HLa(Pwa(x))> = OP(n_1/2)7

where the next-to-last inequality is due to the lower bound on 7y and 7(¥); the last equality is due to
the given convergence rate of the product estimation error in Assumption 3.4.

Bounding term (III). By Assumption 3.4, for any 5 € (0, 1), there exists N € N such that for
n>N,

P(|0%) = 67|l1... <min(a,7)/2) 21~ 5.

On the event |\§,(,’“) —0*||r.. < min(a,)/2, we can find a constant L, such that |¢(z, y, )| <L,
for any x € X and y € ), which implies that Var(Ggrk) (X:,Y7) |XZ,D( M) < L2. Smce B is
arbitrary, we have that Var(égrk)(Xi, V)| X;, D) = 0(1).

( ) is the conditional expectation of éﬁf), for any i € D*),

E (“Ai = (X)) A = F(X)i)}) (G (X6, Y - (X)) ‘ D("”]

Next, since g

78 (4; | X;) mo(Ai | X;
_E E[ﬂ{éi)zﬂ(Xi)}_]l{A =7(X }‘X“D( k)}
7o (Ai | X3) (4; 1 X3)

E[GW (X, Y (r(X0)) - 9 (Xi) | X3, D] ‘D("“)] =0.

By Chebyshev’s inequality, for any ¢t > 0,

L HA =7(X)}  HA=7(XD}\ [ Aw v vy o) v o
P(‘ID(k)|i§m< (4, X)) ol X0) > (GP(Xi,Y3) — g7 (Xl))’Zt‘D )

1 KA, =n(X;)} LA =n(Xy)}] 5 _ -
< e w([ x| %) } (CW(X;,Y7) — gt (X)) ‘p( k))
D(—k)]

]IAZ':T('Xi ]lAi:TFXi 2 -~ _ 2
E { i(;g) SO A gf )}} H(GP(X5,77) — g (X))
(A; | X)) mo(A; | Xs)
where the last step is because of the overlap condition and that Var(ésfk) (X:,Y3) | X, D(—’“)) =
O(1). The above inequality implies that term (IIT) = Op(||5r\ék) — 7ol Ly (Py | A:w(x))/,/|D(k)|), By
~(k)

1
- |D<k>|t2

~(k) 2
|D(k)|t2 (H T(-OHLZ(PX\T:W(X)))’

the consistency of 77, ’ assumed in Assumption 3.4, term (III) is of rate o p(n=1/2).

17
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Bounding term (IV). We first show that term (IV) is of zero-mean:

E[ 5 > W-@;’cnxagmw;@ )3 @;’C)(Xz)%(xi))'@”)]

ieDK) ieD)

1{A; = m(Xi)} (3

=—-FE To(A; | X;) 9N(X;) — gx(X))) ’p(—k)

+E[5(X,) — g(X;) | DP] =0

By Chebyshev’s inequality, for any ¢ > 0,

P(‘m%wiz I 2o G (00 = 00 (360) - ey 2 (g;WXi)—gw(Xi))]Zt‘w—“)

eDk) ieD(k)

<

- |D(k)|t2 7T0(Ai ‘Xz)

1 (1= mo(m(Xa) | Xi))* ) 2 ‘ (—k)
- E : X)) — g. (X)) [ DR
As aresult, term (IV) = Op(H’g}(rk) — grllL2(Px)/v/n). Note that

_gﬂ'HL2(PX = HA(k)

1 Var<1l{Ai =m(Xi)} GF) (X)) — 9-(X1)) — (P (X3) — g (X)) ‘D(’“)>

||g(k) - 97r||L2(Px|A:7r<X>))

< O(||§7(r ) — g‘frHL2(Px\A:7r(x)) + Hggrk) - gTr||L2(PX|A:,\-(X))>a

where the first inequality follows from the overlap condition. By Assumption 3.4, || g(k)
§ﬂ||L2(pX‘A:ﬂ(X)) = op(1). Meanwhile,

199 = gul oy ooy = E[@C0) = 9(X))? | A = m(X)]
= B (B[ACE. Y (rC0) ) — (.Y (r(3)):03) | X]) | 4 = m00)|

XY (r(X))09) = 0 Y (r(X)): 7)) | A = m(0)

Above, we slightly abuse the notation, taking the expectation conditional on D(—*) without explicitly
writing so; step (i) follows from Jensen’s inequality and step (ii) from Lemma B.1. Combining
everything, we have that term (IV) is of rate op(n~1/2).

Putting everything together. So far we have shown that for each fold k € [K], there is
Vi () = V; M @) = op(n=1?).
Averaging over all k£ folds, we have

f Z {W—(Gmﬁm—gﬁ(x ) + gl ,>} Vs(m) + or(1),

By the central limit theorem and Slutsky’s theorem.

Vi (Vs(m) = Vs(m) 5 N(0,0%),
where

2 _ e HA=7(X)} B
o2 =V ( o A1) (G(X,Y) g(X))—i—g(X)).

18
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B.3 PROOF OF THEOREM 4.2

The regret bound of Algorithm 2 builds on the following regret decomposition:
Rs(mn) = Vs(7*) — Vs(TLn)
=Vs(r") = Vi) + VN () = Vi Fn) + V5N (Fin) = Vs(Rix)
<Vs(a*) = V5N(*) + Vi (Fix) — Vs(Fin)
<2sup [N () — Vs(7)], (14)

where the second-to-last step is by the choice of 7 N. For any 7 € II and any fold k& € [K], we define
an intermediate quantity

~ (k) 1 H{A; = 7(Xi)}
Vo= —— = (G (xH (X, Y; - + gr
5 D] ie%;k) oA X)) (Grixi( ) = Gr(x) (X)) + gr(xs) (Xo).-
Letting Vs = & S5 V¥, we have

K
[VEN () — V()| = ’;{ SN ® () — vs(n)
k=1

K
1 LN, (k) -
< ’K;% () = V()

iiﬁm,(m 77i~
K~ 0 K

Taking the supremum over all m € II, we have that

< sup + sup

mwell

Z P (7 ()]

sup ’V — Vs(m)| < sup
mell mell

Vs(m) — Vs ()

-+ sup
well

K
Zv ;ng@m‘.
k=1

We proceed to bound the above two terms separately. The following lemma is essential for establishing
the uniform convergence results.

Lemma B.2. Suppose h is a function of (x, a,y, w(x)) such that
(1) |h| < C}, for some constant Cj, > 0;
(2) E[h(X, A, Y, 7(X))] = 0.

Then for any 3 > 0, with probability 1 — [3, we have that

sup | Zh Xi, A, Yi, m(X5)) <\C/%(20+4H(H)+ 2log(1/5)).

We now focus on the first term. Denote Z; = (X;, A;,Y;) and take

h(zi,wuci))Wmﬂmxi,mgﬂ<xi><x>)+gﬂ<x>< ) = Va(m).

Under the unconfoundedness assumption in Assumption 2.1, E[h(Z;, 7(X;))] = 0. By Assump-
tion 3.3, we have

Ih(Z;,w(X,))] < 9 (- exp (g —1) +77+a6) = Co(aa,7,5,2).

Meanwhile, we have write

(JREL
= 2 VP () = Vi(m)| =
k=1

sup
mell
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Applying Lemma B.2, for any 5 € (0, 1), we have with probability at least 1 — 3,

' 00(0_57Q7 7_75 57 5)
su V m —V )< —
71‘6113[| 5( ) 5( )| = \/ﬁ

We now proceed to the second term. For any m € II and any k € [K], consider the following
decomposition:

Vi) = v ()

1 1{A;, = n(X; ~(k ~(k ~(k
s MA=TED G v - g (60) + 5%, (X0

(20 + 4k (II) + \/21og(1/)). (15)

|D(k)| oD %0(147 |X1) m(X;)
1 14, = 7(X.)}
" D) ) ol A X) (Grix)(Xi, Vi) = g () (X4)) = Gy (X0)
ieD®) 0 | A
1 ]]‘{Ai = TI'(XZ-)} ]]‘{AZ = W(Xz)} ~(k) _(k)
- - Xlaifz - . Xi
[D®)| 2 ( 7o(Ai | X,) oA ) (Crie) (XiYi) = 03, (X))
icD®)
i DX 2 ( Fo(Ai| X)) mo(Ai] X)) (920 (X0) = Gy (K1)
ieD k)
1 A = n(Xi)} A0
- D) Z mo(4; | Xi) (G”(Xi)(X"’K) - G”(Xi)<Xivn))
€Dk
_ |D(k)| Z WO(Ai ‘Xl) ( W(XL)(X’L) - g?T(Xi)(Xi)) + 7|,D(k)| Z (gﬂ(Xi)(Xi) — gﬂ-(Xl)(XZ))
€D )

For notational simplicity, we denote

1 HA =n(Xy)} HAi=nX)}\ A0 vy (k) ,
) = Z( Fo(A 1 Xa) w04 Xo) ><Gw’?xi><Xsz> Gaix(X0)),

ieDk)

Ko(m) = R Z (Jl{Ai =7(X:)} 4= W(Xi)}> (g(k) (X;) — o (X)),

T (X, 9(x,
[DW] S\ Fo(Ai] Xi) o (A; | X;) (X3) (X:)
— 1 1{A; = 7(Xy)} ~N(k)
K3(7T) E |D(k)| Z WO(A'L’ |Xz) (Gﬂ(Xt)(XH)/?) - GTK'(XL)(XZ7}/7)))
ieD (k)
Ky(m) == — D) Z;k) 7oA X,) (T (Xi) = G (X0)) + RG] Zk) (gﬂ(Xi)(Xi) - gw(Xi)(Xi)),
iep i€D

We proceed to bound each term separately.

Bounding K (7). Here, we take

Ai =T i Ai =T i ~ _
m(zin(x) = (Ha g TEM - HAZTED @0, o) - o ().
_(k)

Since gq ’ (X) is the conditional expectation of G (X,Y(a)), we have

HA, =n(Xs)} MA=7X)}\ A0 v vy ~(B) e
< %O(Az |Xz) 7‘['0(Ai | Xi) ) ((;.»41 (XZ7 }/z) 94, (Xz)) ’ D ]

E[h(Z;,7(X;)) | DP] =E

=E

mo(m(Xs)) A(k) vy (R Vv p=o] | o=k
<7/T\'O(Ai|Xi) ! E[Gﬂ(xi)(X“Yl) gTr(Xi)(Xl)}X“D } b

=0.
By Assumption 3.4, there exists N; € N, such that when n > Ny, w. p. atleast 1 — 3,

max [0 — 07 .. < max(a, a,7)/2.
a€[M]
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On the event {max,c|a ||§,(Ik) — 0%, < max(a,a,)/2}, we have
|hi(Zi,m(X3))| < Col@, .7, 6,¢).

We now apply Lemma B.2 to hy(Z;,n(X;)) on the event {max,eq ||§((lk) — 0., <
max(a, o, 1) /2},

]P’( sup | K (m)| > Co(@ 2.7, 9,¢)

mwell \ |D(k)|

Taking a union bound, with probability at least 1 — 23, we have that
C o b ) _) 57
sup | K ()| < So@2.0,¢)

well 1/ |D(k)|

Bounding K>(mw). We first note that by Cauchy-Schwarz inequality,
1 {A; =n(X)} WA, =n(X)} =k Ak
] > ( = r)E ; (W9 (x) ~ 7 (X.)

(20 + 4k(I1) + /2log(1/5)) ’DW)) < 8.

(20 + 4r(1T) + \/21og(1/B)) (16)

|'D(’f)| ot 7o(A; | X;) mo(A; | X;
A(k) 2
| 2 () 10 — mr(X 2 () (X0 = By (1)
ieD®) i€D®
1 2 S 2
~(k _(k ~(k
SECENPS S FP 01X - mla X0 3D @0 - 68 ()"
ieD(*) a=1 i€D (k) a=1

Then for any ¢ > 0, let

M
_M ~(k) _ (k) G — G
2 mx {17 = e } s {8~ 28 e
Then
1 HA =n(Xy)} A =aX)}\ ~m (k) -
P _ X;) — X)N|>s|DER
(5{163‘1%‘ D] e%(%( Fo(A; | X;) To(A; | X;) (94 (X)) = gn) (X)) > s
1 (¢ 2 (65 (X) - 39 (x,))° (—k)
§P<|D<k>|gz S 3 301X - mlal X0 33 @) - i (x0) = 5|
ieDk) a=1 ieDk) a=1

IN

1 (709 VM (k) _ (k) (—k)
- — ) >
P<5 |D k)| Z Z (a| Xi) —mo(a |Xl)) = Vie ;2[2}\)4( {||7T 07a||L2(PX)} D

ieD(k) a=1

- G (x) — gD (x)? = YU ) _ 5(k) -
+ (6 [RL]] > Z —Ga (X)) > Ve anel%{llga Ja HLZ(pX)} D

ieD(k) a=1
<2t

where the last inequality is due to Chebyshev’s inequality. Marginalizing over the randomness of
D(=F) for any B € (0, 1), we have with probability at least 1 — 3 that
(k)

2M
mae [Ka(m)| < g mave {178~ mi o | e {1889 — o

Be? aclM €[M] HLQ(PX)}'

Bounding K3(7). We start by taking

11{A —77( i)}

|Gy (i Yilm(X0)) = Gy (X Vil (X)) |
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For any 7 € II,
E[K3(T) )| D ")

:E[W (G (X, Ya(m(Xy)) = Ga, (XZ,Y(W(XZ))))|D(—1€)]
(G0 (X0 Yilr (X)) — Gy (X Yilr(X2))) | D]

=B [0(X;, Vi(m(X0)); 04 1) = £0X0, Yis 02 x,)) = VX, Yilm(X0)s 05 )T (0 = O2x)) [ D)

where the last step follows from part (1) of Lemma B.1. By Assumption 3.4, for any 8 € (0, 1), there
exists N3 € N such that when n > N3,

(e 18~ 05l > min (6,0,0.7)/2) < 5
a€[M]
On the event { max,e( H@(lk) — 0:||r.. <min(¢, &, a,17)/2}, we have

’E Xiy Yis 000 ) = 00X, Vi 03 x) = VO Vi 02 0x) T (B8 = 02|

X“YZ Z H9 Xi)HQ’
a€[M)]
and
HA; =7(Xa)} Ak -
‘M~(Gk (X, Yi(m(X,)) = Ga, (X5, Yi(w(X5)))) — E[Ks(7) [ DUV < Co(a, a, 1,6, ¢).

As a result, on the event {max,e(a ||§§k> = 0:lo.. < min(¢, @, a,7)/2},

sup [E[Ks(m) [ DR < L Y [18a— 033 .
mell ac[M)]

‘We now take

HAZ T (G0 00 Vi (X00) — G (X0 Vil (X,))) — E[Ka() | D)

ha(Zi (X)) = =T

By the previous derivation we have E[h3(Z;,7(X;))|D"] = 0 and |h3(Z;,7(X;))| <

Co(@, . 17,6, ¢) on the event {max,e ] 165 — 02| < min(¢, @, a, 77)/2}. On the same event,
applying Lemma B.2, we have

* 00(64’@7777635) —k
max |Ks(m)| > L 0, — 07| + = (20 4 4k(IT) + v/21og(1/8)) | DR
< % | AN 2 |
— C 77i7 7757 —
<P<glgﬁ<\K3(w)—E[K3(w)lD< ’“)]’ > W(zowm(nw 210g(1/5)) ‘p< k>>
1 CO(@7Q777]767€) (_k))
=P( max|—— hs(Zi, m(X;))| > 2= ="L220 (90 + 4k(ID) + +/21og(1/8)) | D
(,,GHMD(k”iGED(jM o(Ziyw(X0))| (20 + (1D 8(1/3) |

<p.
Taking a union bound, with probability at least 1 — 23, we have

C’O(O_é7g7 ’r_]’ 57 6)

]2
0a||L2(PX) + J/ID®]

max [Ks(m)| < L Z 16a (20 + 4k(IT) + \/21og(1/)).

7)
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Bounding K4(7w). For K,(7), we take

1{A; = 7(X;)} (A(k)

ha(Zi,m(X0)) = === Gucn (X0) = gr e (X)) + (3505 (X0) = gn () (X0)).-

and therefore K4 () = ﬁ > ieptm ha(Zi, m(X;)). Again by the unconfoundedness assumption,
E[ha(Zi,7(X,)) [DEH] = 0.
As the case of bounding K3(7), when n > N3, with probability at least 1 — £,

meax 18 — 07| .. < max(¢, @, a,7)/2.

On the event {max,c|a ||0a — 0%, < max(&,a,a,7)/2}, we have
‘h4(Zza7T<Xz))‘ S 200(@7Q777]7678)'

Applying Lemma B.2 to hy(Z;, 7(X;)) and taking a union bound, we have with probability at least
1 — 24 that

maX|K4 )| < 200(@3Qaﬁ7675)

Tell - \/ |D(k)|

Combining (15)-(18) and taking a union bound over k € [K], when n > max(N;, N3) we have that
with probability at least 1 — 84,

- 5VEKCy(a, a,i,d,€)
sup |[VEN(1) — Vs(m)| < = 0
sup [P5¥(r) - )| < RO

(20 + 4r(1T) + /210g(1/B)). (18)

(20 + 45(IT) + /210g(K/B)) + L Y ||§a_0:||iz(PX)
a€[M)]

ma {I7® - "

B2 (k) _ 5(k) }
652 a€[M (PX)};?[%&(] {Hga Ya ||L2(Px) .

By Assumption 3.4, there exists N4 € N, such that when n > Ny,

1 Be
* |2 =~ k
]P’< nax 160 = 62117, by > TV aein {Ilﬂé WOaHLz(Px)} e {Ilg( ) — g HLz(PX)} 2 2M\F> <8

Taking a union bound, with probability at least 1 — 93, we have that

O 5\/KOQ(O_[ a,n 1) 6)
. VLN —V < y oy Iy Uy
:161§| () = V()| < T

We have thus completed the proof of Theorem 4.2.

(22 + 4x(IT) + \/21log(K/B)).

C PROOF OF TECHNICAL LEMMAS

C.1 PROOF OF LEMMA B.1

Recall that our loss function is
Uz,y;0) = - el 4 1+ ad.

By the strong duality, E[¢(X,Y (7(X));6) | X] is convex in 6; by Proposition 2.5, the first-order
condition of convex optimization implies

VoE[l(z,Y (m(x)); 0%)

X:x] =0.
Forany z € X and 0 € ©,

2€(:E,y;t9): (1+%) -exp(—m—l) +9,

Oda «
0 a1 _Yy+n
8—n£(m,y, 6) =1 — exp ( = 1) (19)
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For some a such that |a — a*| < a*/2, by the monotonicity of a%f(x, y; (a,m*)) in o, we have

)

‘aie(a:,y; (a,n*))’ < max{’aif(x,y; (3" /2,n")) %ﬁ(ﬂs,y; (a*/ln*))’}

where the right-hand side is integrable. By dominated convergence theorem,

E[;az(x, Y (n(2)); %) | X = x} - C%E[e(x, Y (n(2));07) | X = x} —0.

Similarly, since agé(x, y; (a*,n)) is non-decreasing in ), for |n — n*| < 1,
n

)

Ly (oz*m))‘ < max{
877

a * % a * %
876(:%% (a 1 +1)) gﬁ(x,y; (O‘ 1 = 1))‘},
n n

with the right-hand side being integrable. By dominated convergence theorem,

9 . 9 .
E{ané(x,Y(w(x));ﬂ )| X = x} = a—nE [E(x,Y(w(x));& )X = x] =0.
We have thus completed the proof of Lemma B.1.

Next, forany z € X and 6 € O,

0? (y +n)* y+n
gz (e:0) = 5o (= 1),
2

n a a

By the Taylor expansion,
1 .
0z, y30) = 0z, y;0") = Ve(z,5,07) T (0 = 07) + 5(0 = 0%) T V2U(w, 5 0)(0 - 07),
= [, y;0) — U(w,y;0%) — Vi(z,y;6") T (0 - 67)]
Le(y+n)? 1 y+n x)[2

< Z — _J T _

*2( ad +d)eXp< a 1)”9 7”1z,
where 6 = t0 + (1 — ¢)0* for some ¢ € [0, 1] and « and 7 implicitly depend on z. To emphasize the
dependence on x, we write o(x) and 7(x) in the following. Letting £ = min(a, |1/, [7]) /2, consider
0 = (&, 7) such that |&(z) — a(z)| < € and |7j(x) — n(z)| < &, for all z € X. Then,

S a(la:)) oxp (= L 1) ) - 0"l

2 a(x)3 a(x)

< (I L2 e (L) o) - 0B

We have thus completed the proof of (2).
We proceed to prove (3). Again by the Taylor expansion,

U, y;0) — L, ;0%) = VU(z,;0) T (0(x) — 0 (2)),

where 0 = t0+(1—t)0* for some t € [0, 1]. Plugging the expressions of the gradient in Equation (19),
we have

(6w, y;0) — (2, ;0%))° = [Ve(x,y,0)T (6(x) — 6% (2))]
— (0(x) — 6% () ' VL(z,y;0)VL(z,y;0) (0(x) — 6% (x))
y +n(z) y +n(z) ? y+ (@) ? 2
S{{<l+a($))exp(a(x)l) +5} + 16Xp(oz(x)1)] }||0(x)6 (z)H2
c

2

2
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where C(a, a, 7, 0) is a function of &, «, 77, §. Taking the expectation over X, we have

HE(m,Y;G) —l(z,Y;0%)

C(a,a,7,6) |0 — 0

’L2(PX,Y\A:7\'(X)) - L2(Px y | a=n(x))’

completing the proof of (3).

C.2 PROOF OF LEMMA B.2

For any ¢ € [n], let z; = (x4, a;,y;) and 2z = (%, a}, y}). Define

fa, 2 m) = % > h(ziw(@s).
=1

We can check that for any 7 € IT and any j € [n],

’f(zl7...,zj,...7zn;7r)‘—sup ‘f(zl,...,z;-,...,zn;w’)’
7' ell
<|f(z1,--0 2, zn;w)|—|f(z17...7z;-7...7zn;7r)‘
Ssup’le,..., 4, ..,zn;ﬂ)—f(zl,...,z;,...,zn;ﬂ)’
mell
= sup — |h zj;m) — h(2};m)| < 2Ch/n. (20)
rell N

Above, the first inequality is because of the definition of sup and the second is due to the triangle
inequality; the last step is due to the boundedness of /. Taking the supremum over all 7 € IT in (20),
we have that

sup ’f(Zl,...7Zj,...7Zn;7T)| - Sup‘f(zl,...,z;,...,zn;w)| < 2Cy/n.
well well

By the bounded difference inequality (Wainwright, 2019, Corollary 2.21), for any ¢t > 0,

P(sup “h(Ziy (X ‘— {sup - (Zl,w(X))H >t>

well mell

P(sup |7 ({Ziepi ™) | — E{sup |f({Zi}ie[n];w)|] > 1) <e
well well

Take t = Cy,/ 2 log (). Then with probability at least 1 — 3,

sup —h(Zl,W Z))’ <E{sup —h(Z;,w(X; ))” + Oy, zlog(
well well n
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It remains to bound the expectation term. Let Z],...,Z] be an i.i.d. copy of Z1,...,Z,, and
¢; "% Unif({#1}). Then

E| sup % 3 W(Zi,w(X0) fE{h(Zi,w(Xi))} H
L€ i€[n)

_E| sup % > h(Ziw(X;) — Bz [% > h(zg,w(xm] H

mell

i€[n] i€[n]

) 1 1 ,

<E| sup |— Z hZ;,m(X;)) — — Z hZ;,m(X;))
| m€l " i€[n] " 1€[n]

.. I 1

DE|sup |- Y &(h(Zi,7(X))) — h(Z;mr(Xi)))' ,
| w€l " i€[n]

<2El5up L Z Gih(Zi»W(Xi))H

mel | i€[n]
—92E l]EE |:Sup 1 > eih(zi,w(xi))m, (21)
mell |7 1€[n]

step (i) is by Jensen’s inequality and step (ii) is because of the symmetry of (Z;, Z!). Before
proceeding, we introduce the /5 distance on the policy space 11, as well as the corresponding covering
number.

Definition C.1. Given a function h and a set of realized data 21, ..., z,,

(1) the ¢5 distance between two policies 71, w2 € II with respect to {21, ..., 2, } is defined as

ly(my, w5 {21, ..y 2n}) = ﬁ % Z (h(zi, 77(371)) — h(z; 71"(371‘)))2-

=1

(2) Na(v,IL;{z,...,2,}) is the minimum number of policies needed to y-cover II under ¢,
with respect {21, ..., 2, }.

Under the /5 distance, we define a sequence of approximation operators A; : II — II for j € [J],
where J = [log, n]. Specifically, forany j = 0,1,...,.J, let S; be the set of policies that 277 -covers
I1 and satisfies |S;| = No(277,1;{Z1, ..., Z,}). Specially, So = {7}, with g is an arbitrary policy
in IT — this is a valid choice since for any 7 € II,

n

1 1 2

~ 20\ n Z (W Zi, 7(X3)) — h(Zi, 7(X3)))” < 1.

gg(’/T,ﬁ';{Zl,.. ,Zn})

The approximation operators are defined in a backward manner: for any 7 € II,

(1) define A;[r] = argmin by (7, 7';{Z1, ..., Zy});

w'eSy

) forj=J—1,...,0,define

Aj[r] = argmin by (Ajq 7], 75 {21, ..., Z,}).

' €S
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Using the sequential approximation operators, we decompose the inner expectation term in (21)
(Rademacher complexity) as

1
Ec| sup |— eh(Z;, m(X; ’
sup 5 22 etz ))]
<E. sug = Z & [h(Zi, m(X;)) h(ZZ,AJ[ﬂ'](Xl))]’
TE icln]
J
1
FE s | 372 S e [A(Z, Ay [r(X0) — h(Zi, Ay frl(X ))]H
mell J=1""ic[n]
+E¢| sup |~ h(Z;, Ao[r]( ))H
mell
1€[n]
=E1+ =5+ =3
For any 7 € II, by the Cauchy-Schwarz inequality,
1
2 el h(Zi (X)) = h(Ziy Ayl (X Z (Zi (X)) = h(Ziy Ay [)(X:))”
i€[n] i€[n]
= 20h . EQ(TF AJ( ) {Zl, ey Zn})
<20,277 < =0 2Oh
n

where the second-to-last step is because A j() is 277/ -close to 7 and the last step is by the choice of
J. As aresult the above derivation, 21 < 2CY}, /n.

Next, forany j = 1,...,J we use P; to denote the projection of 7 to S;, i.e., A;_1[m] = Pj_1[A;[r]].
For any s > 0,
1
P ((sup | 3 6l A 00D - (25 A X)) | 2 5
e i€[n]
1
<y P(\n 5 &z (60) - 0z Py 0] 2 )
w'eS; i€[n]
2ns>
< 2 -exp
Y ( ST Wz 7 (X)) - h<zi,Pj_1[w'1<xi>>12/n>
= Z 2-exp| — ns®
n'es, 20}2162(71'/, j_1(7T/);Z)2
2
s ns
<2Ny(277, 11 Z) - exp ( - W)
we Z is a shorthand for {Z;,...,Z,}. Forany j = 1,...,J and m € N, take
Ch 1 i -
Sjvm = 2]1/2\/n log (N2(2 j,H; Z) -2 +1).
For a fixed m, with a union bound over j = 1, ..., J we have that
(sug Z ZGZ (Z;, Ai[m)(X3)) — h(Ziy Ajqm ‘ ZSL )
TE
J I 1
<30 r(sup |1 5 (i Al (6) — W2 Ayl >>]\ > 55 ) <3 g < gt
j=1 & i€[n] Jj=1

To proceed, we shall use the following lemma, whose proof is deferred to Appendix C.3.
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Lemma C.2. For any realization z1, . . ., z, and y > 0, there is No(7y,11; 21, ..., z,) < Ng(v2,10).

By Lemma C.2, for any m € N,
J

SRS S R PR

J

<2 gy ViRV (2 ) + (m + 1) o2

(1) QCh ZQ j. (\/log NH 2—2j H))Jr\/i)

(“)4Ch
—\/ﬁ(()—"V )_uma

where step (i) uses vVa + b < y/a + Vb fora,b > 0; step (ii) uses the definition of x(IT). Then

zJ: Ly (123, A3171(X0)) = h(Zi, Aja[7](X0)] H

sup
mell

Z ZEZ{ (Zi, Aj[r](X ))_h(Zi,Aj1[7T](Xi))H>s>ds

< = 1€[n]
<y + i(uk+1 —uy) - 27
_C@ain) (1) + V2 + i(\/ﬁ ~VETD) 27 <
k=1

Finally, we consider =3. Recall that Sy = {7}, and therefore

< |r|(X S anznrx))’] < 2.
GX y]=%

i€[n]

EBZEe

% Z Eih(Zi, 7_'('(XZ)

i€[n]

~—

Putting everything together, we have with probability 1 — 3 that

sup th Zi,m(Xy))| < %(20—1—4&(1’[)4— 2log (;))

well

C.3 PROOF OF LEMMA C.2

Fix v > 0. If Ny (7?,1I) = oo, the lemma is trivially true. Otherwise, let Ng = Ny (7?;1I). For
any realization z1, .. ., 2,, define

(7} 1,75 ) = argmax{ |h(z;, w1 (2:)) — h(zi, w2 ()|}

L, T2

Implicitly, (7] ;, 7} 5) depends on 2;. For an arbitrary positive integer m and i € [n], we define
i = | gy (o mia (@) = b wia(e)}
We then construct a new set of data

{Z1,. . 2N} ={21,- -, 21,22, - -+, 22 oy Zny e ooy Zn by

where z; appears n; times and

N= Zm = Z [&{h(zhw;l(m)) — hz ma(@)) )] Sm+n.

=1
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By definition, there exists a policy set Sy to be a y2-cover of I the Hamming distance with respect to
Z:={&1,...,Zn} such that |So| = Ny. As aresult, for any 7 € II, there exists 7’ € Sy such that
H(m,7';Z) < ~2. On the other hand,

Hmows ) = %Z 1{n(%;) # 7'(%:))

(2 % n; L{nm(x;) # W/(xi)}
i=1

> ¥ 2 1czn (e ma (@) = e, mipw)} - (o) # 7' (a0}

01y mn / 2 ’
ZN £ @{h(zi,ﬂ(w)) — bz, (@)} Um(w) # 7 (22)}
(2) %Z 4%n{h(zlaﬁ(mz)) — h(ZiﬂTl(mi))}Q.

i=1

Above, step (i) and (ii) follow from the choice of Z and (77;1, 7r;‘72), respectively; step (iii) is because
when 7(x;) = 7' (x;), h(zi, 7(x;)) = h(z;, m(x})). By the definition of the /5 distance and that
N < m + n, we further have

v2 > H(m, 7' %) >

72777(‘"2.
(m+n)£( 732)

Since m is arbitrary, we take m to infinity and have ¢5 (7, ’; z) < ~. By definition, .Sy is a y-cover
of IT under ¢5 with respect to 21, . . ., z,, and therefore No(~y,II; 21, ..., z,) < Ng(v,II).
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