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ABSTRACT

Distributionally robust policy learning aims to find a policy that performs well
under the worst-case distributional shift, and yet most existing methods for robust
policy learning consider the worst-case joint distribution of the covariate and the
outcome. The joint-modeling strategy can be unnecessarily conservative when we
have more information on the source of distributional shifts. This paper studies
a more nuanced problem — robust policy learning under the concept drift, when
only the conditional relationship between the outcome and the covariate changes.
To this end, we first provide a doubly-robust estimator for evaluating the worst-case
average reward of a given policy under a set of perturbed conditional distributions.
We show that the policy value estimator enjoys asymptotic normality even if
the nuisance parameters are estimated with a slower-than-root-n rate. We then
propose a learning algorithm that outputs the policy maximizing the estimated
policy value within a given policy class 11, and show that the sub-optimality gap
of the proposed algorithm is of the order £(II)n~'/2, with (II) is the entropy
integral of II under the Hamming distance and n is the sample size. A matching
lower bound is provided to show the optimality of the rate. The proposed methods
are implemented and evaluated in numerical studies, demonstrating substantial
improvement compared with existing benchmarks.

1 INTRODUCTION

In a wide range of fields, the abundance of user-specific historical data provides opportunities
for learning efficient individualized policies. Examples include learning the optimal personalized
treatment from electronic health record data (Murphy, 2003; Kim et al., 2011; Chan et al., 2012),
or obtaining an individualized advertising strategy using past customer behavior data (Bottou et al.,
2013; Kallus & Udell, 2016). Driven by such a practical need, a line of works have been devoted
to developing efficient policy learning algorithms using historical data — a task often known as
offline policy learning (Dudik et al., 2011; Zhang et al., 2012; Swaminathan & Joachims, 2015a;b;c;
Kitagawa & Tetenov, 2018; Athey & Wager, 2021; Zhou et al., 2023; Zhan et al., 2023; Bibaut et al.,
2021; Jin et al., 2021; 2022a).

Most existing methods for offline policy learning deliver performance guarantees under the premise
that the target environment remains the same as that from which the historical data is collected. It
has been widely observed, however, that such a condition is hardly met in practice (see e.g., Recht
et al. (2019); Namkoong et al. (2023); Liu et al. (2023); Jin et al. (2023) and the references therein).
Under distribution shift, a policy learned in one environment often shows degraded performance
when deployed in another environment. To address this issue, there is an emerging body of research
on robust policy learning, which aims at finding a policy that still performs well when the target
distribution is perturbed. Pioneering works in this area consider the case where the joint distribution
of the covariates and the outcome is shifted from the training distribution, and devise algorithms that
output a policy achieving reliable worst-case performance under the aforementioned shifts Si et al.
(2023); Kallus et al. (2022). The joint modeling approach, however, ignores the fype of distributional
shifts, and the resulting worst-case value can be unnecessarily conservative in practice.

Indeed, distributional shifts can be categorized into two classes by their sources: (1) the shift in
the covariate X, and/or (2) the shift in the conditional relationship between the outcome Y and the
covariate X. The two types of distributional shifts are different in nature, have different implications
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on the objectives, and call for distinct treatment (Namkoong et al., 2023; Liu et al., 2023; Jin et al.,
2023; Ai & Ren, 2024). To be concrete, imagine that the distribution of covariates changes while
that of Y | X remains invariant — in this case, the distribution shift is identifiable/estimable since
the covariates are often accessible in the target environment. As a result, it is often uncessary to
account for the worst-case covariate shift rather than directly correcting for it. Alternatively, when
the Y | X distribution changes but the X distribution remains invariant, the distribution shift is no
longer identifiable, and we need to account for the worst-case situation. This latter setting, known
as concept drift, occurs when the distribution of the unobserved confounder changes over time, or
due to sudden external shocks (Widmer & Kubat, 1996; Lu et al., 2018; Gama et al., 2014). For
example, in advertising, the customer behavior can evolve over time as the environment changes,
while the population remains largely the same. In personalized medicine, treatment may be affecting
patients’ outcomes through some unmeasured confounders that have different distributions in the
training and target cohort, thereby inducing a concept drift. In these applications — with the one
extra bit of information that the shift is only in the conditional reward distribution — can we obtain a
more efficient policy learning algorithm?

Motivated by the above situations, we study robust policy learning under concept drift in this work.
Most existing methods for robust policy learning (Si et al., 2023; Kallus et al., 2022) model the
distributional shift jointly without distinguishing the sources, and the corresponding algorithms turn
out to be suboptimal. The reason behind their suboptimality is that the worst-case distributions under
the two models — the joint-shift model and the concept-drift model — can be substantially different,
so it would be a “waste” of our budget to consider adversarial distributions that are not feasible under
concept drift. It is worth mentioning that a recent paper by Mu et al. (2022) accounts for the sources
of distributional shifts in policy learning; their approach, however, applies only when the covariates
take a finite number of values, and therefore is limited in its applicability. When the covariate space
is infinite, it remains unclear how to efficiently learn a robust policy under concept drift. The current
work aims to fill in the gap by answering the following question:

How can we efficiently learn a policy with optimal worst-case average performance under concept
drift with minimal assumptions?

We provide a rigorous answer to the above question. Specifically, we assume the covariate distribution
remains the same in the training and target environments, while the Y | X distribution shift is bounded
in KL-divergence by a pre-specified constant §. Our goal is to find a policy that maximizes the
worst-case averaged outcome over all possible target distributions satisfying the previous condition.

1.1 OUR CONTRIBUTIONS
Towards robust policy learning under concept drift, we make the following contributions.

1. Policy evaluation: Given a policy, we present a doubly-robust estimator for the worst-
case policy value under concept drift. We prove that the estimator is asymptotic normal
under mild conditions on the estimation rate of the nuisance parameter. Our approach
involves solving the dual form of a distributionally robust optimization problem and taking
a de-biased step to deal with the slow convergence of the optimizer, thereby obtaining an
estimator with root-n convergence rate.

2. Policy learning: We propose a robust policy learning algorithm that outputs a policy maxi-
mizing the estimated policy value over a policy class II. Compared with the oracle optimal
policy, the policy provided by our algorithm with high probability has a regret/suboptimality
gap of the order x(IT) //n, where «(II) is a measure quantifying the policy class complex-
ity (to be formalized shortly) and n is the number of samples. Compared with Mu et al.
(2022), our algorithm and theory apply to general covariate spaces and potentially infinite
policy classes, while their method is restricted to finite covariate space and policy class.
We complement the upper bound with a matching lower, thus establishing the minimax
optimality of our proposed algorithm. We summarize the comparison between our result
and prior work in Table 1 for better demonstration.

3. Implementation and empirics: We provide efficient implementation of our robust policy
learning algorithm, and compare its empirical performance with existing benchmarks in
numerical studies. Our proposed method exhibits substantial improvement.
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Distribution | Unknown | General Upper Lower

shift 0 X bound bound
Athey & Wager (2021) X v v — —
Zhou et al. (2023) X v v — —
Si et al. (2023) Joint X v — —
Kallus et al. (2022) Joint v v — —
Mu et al. (2022) Separate v x| Oy il IAL) x

This work Separate v v o( ”\(/%) ) Q(y/ Nd%(n))

Table 1: Comparison of results in the offline policy learning literature. “Unknown 7y refers to
whether an algorithm assumes knowledge of the behavior policy 7. “General X refers to whether
an algorithm allows for general types of covariates. Athey & Wager (2021); Zhou et al. (2023); Si
et al. (2023); Kallus et al. (2022) have the regret upper and lower bounds for the specific problems
they consider that are not directly comparable to ours, so we do not include them in the table. | X|
refers to the cardinality of the covariate support (if finite) and |.A| to that of the action set. x(II) and
Ndim(IT) are the entropy integral under Hamming distance and the Natarajan dimension of a policy
class II, with the relation x(IT) = O(log(d)Ndim(II)), where d is the covariate space dimension.

1.2 RELATED WORKS

Offline policy learning. There is a long list of works devoted to offline policy learning. Most of
them assume no distributional shifts (e.g., Dudik et al. (2011); Zhang et al. (2012); Swaminathan &
Joachims (2015a;b;c); Kitagawa & Tetenov (2018); Athey & Wager (2021); Zhou et al. (2023)). Zhan
et al. (2023); Jin et al. (2021; 2022a) allow the data to be adaptively collected, but the distribution over
the covariate and the (potential) outcomes remain invariant in the training and target environment.

As mentioned earlier, the work of Si et al. (2023); Kallus et al. (2022) study robust policy learning
when the joint distribution of (X,Y") ranges in the neighborhood of the training distribution; Mu
et al. (2022) consider the case when the covariate shift and Y | X shift are specified separately; their
method, however, is restricted to finite covariate space, and their sub-optimality gap is logarithmic
factors slower than parametric rates. The work of Kallus & Zhou (2021) concerns robust policy
learning when the distribution shift is caused by hidden confounders — this is in fact a special type
of concept drift — and the corresponding Y | X shift is assumed to be bounded uniformly, which
is quite different from our f-divergence bound. More recently, Guo et al. (2024) considers a pure
covariate shift with a focus on policy evaluation, where the setup and the goal are different from ours.

Distributionally robust optimization. More broadly, our work is also closely related to DRO,
where the goal is to learn a model that has good performance under the worst-case distribution
(e.g., Bertsimas & Sim (2004); Delage & Ye (2010); Hu & Hong (2013); Duchi et al. (2019); Dudik
et al. (2011); Zhang et al. (2023)). The major focus of the aforementioned works involves parameter
estimation and prediction in supervised settings; we however take a decision-making perspective and
aim at learning a individualized policy with optimal worst-case performance guarantees.

1.3 NOTATION

We use [n] to denote the discrete set {1,2,--- ,n} for any n € Z. We use argmin and argmax to
denote the minimizers and maximizers; if the minimzer or the maximizer cannot be attained, we
project it back to the feasible set. We denote the usual p-norm as || - ||,,. For any probability measure
P defined on the probability space (€2, o(£2), P). For any function f, we denote the Lo (P)-norm of
f conventionally as || f|| z,(py = ([ | f(2)|? dP(x))*/? and || f|| 1. = sup,cx |f(z)|. We use P to
denote the empirical distribution of P. For any random variables X, Y, we use X Il Y to denote that
X is independent of Y. For a random variable/vector X, we use Ex[] to indicate the expectation
taken over the distribution of X.

2 PRELIMINARIES

Consider a set of M actions denoted by [M] and let X C R9. Throughout the paper, we follow
the potential outcome framework (Imbens & Rubin, 2015), where Y (a) € Y, C R denotes the
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potential outcome had action a been taken for any a € [M]. We posit the underlying data-generating

distribution P on the joint covariate-outcome random vector (X, Y (1),--- ,Y(M)) € X x Hiwzl Va.
Consider a data set D = {(Xj, A;, Y;) }ic[n) consisting of n i.i.d. draws of (X, A,Y), where X; € X
is the observed contextual vector, A; € [M] the action, and Y; = Y (4;) the realized reward. The
actions are selected by the behavior policy my, where mo(a|z) = P(4; = a|X = z) is the
propensity score, for any a € [M],x € X. We make the following assumptions for g and P.

Assumption 2.1. The behavior policy 7 and the joint distribution P satisfy the following.

(1) Unconfoundedness: (Y (1),---,Y(M)) 1 A| X.
(2) Overlap: for some € > 0, mo(a | z) > &, for all (a,z) € [M] x X.
(3) Bounded reward support: there exists § > 0, such that 0 < Y (a) < g for all a € [M].

The above assumptions are standard in the literature (see e.g., Athey & Wager, 2021; Zhou et al.,
2023; Si et al., 2023; Kallus et al., 2022). In particular, the unconfoundedness assumption guarantees
identifiability, and the overlap assumption ensures sufficient exploration when collecting the training
dataset. The bounded reward support is assumed for the ease of exposition, and can be relaxed to the
sub-Gaussian reward straightforwardly.

2.1 THE KL-DISTRIBUTIONALLY ROBUST FORMULATION

Given the training set D = {(X;, A;,Y;) }ie[n) and a policy class I1, we aim to learn a policy 7 € IT
that achieves high expected reward in a target environment that may deviate from the data-collection
environment where D is collected. While distribution shift can take place in various forms, we focus
primarily on the concept drift, where only the conditional reward distribution Y (a) | X differs in the
training and target environment. The distribution shift is quantified by the KL divergence.

Definition 2.2 (KL divergence). The KL divergence between two distributions ¢ and P is defined as
Dx(Q]| P) = Egllog %], where % is the Radon-Nikodym derivative of () with respect to P.

We define an uncertainty set of neighboring distributions around P, whose conditional outcome
distribution is bounded in KL divergence from P. Given a radius § > 0, the uncertainty set of the
conditional distribution is defined as P(Py | x,0) := {Qy Ix  Dx(Qy x| Py x) < 5}, where
Py | x and Qy | x refers to the distribution of (Y(1),...,Y(d)) | X under P and () respectively. The
distributionally robust policy value for any policy 7 at level § is defined as

Vs(m) = Epy Qy‘xegl(ny‘x,é)EQY‘X {Y(F(X» ‘XH (0

The optimal policy in II is the one that maximizes V;(7), i.e. m} := argmaxzen Vs().!

Under this formulation, our goal is to learn a “robust” policy with a high value of Vs(7) using a
dataset drawn from P. The task here is two-fold: we need to (i) estimate the policy value Vs(7) for a
given policy 7, and (ii) find a near-optimal robust policy 7 € II whose policy value is close to the
optimal policy 7;. Here, the performance of a learned policy 7 is measured by the sub-optimality
gap (regret), defined as R;(7) := Vs(m}) — Vs (7).

In the following sections, we tackle each task sequentially.

2.2  STRONG DUALITY

In order to estimate Vs (7), we first rewrite the inner optimization problem in Equation (1) in its dual
form using standard results in convex optimization (see e.g., Luenberger (1997)). The transformation
is formalized in the following lemma, with its proof provided in Appendix B.1.

Lemma 2.3 (Strong Duality). Given any m € Il and any x € X, the optimal value of inner
optimization problem in Equation (1) equals to

. Y(r(X))+n _
agg};leREp{anp<al)JrT)Jroe(;‘Xx. 2)

'When the supremum cannot be attained, we can always construct a sequence of policies whose policy values
converge to the supremum, and all the arguments go through with a limiting argument.



Under review as a conference paper at ICLR 2025

We note that the optimization problem in (2) depends on x and = — to manifest this dependence, we
use (aX(z),nk(x)) to denote its optimizer, i.e., & and 1 are functions of 2 and

Y(x(X)) +n

” —1)—1—77—&-0[5‘)(:90].

(o (z),m(x)) € argmin Ep [a exp (—
a>0,n€R

With this notation and Lemma 2.3, the robust policy value becomes

Vs(r) = —Ep [a;(X) exp (- Y(”(); ) (;?W(X ) _ 1) (%) + a;‘r(X)é}. 3)
The above formulation has thus translated the original distributionally robust optimization problem
into an empirical risk minimization (ERM) problem. We note that, unlike the well-studied joint
distributional shift formulation, the above representation admits an optimizer pair (. (z), n:(z))
that is dependent on the context = (i.e. o, n are functions of ) and the policy 7. As we shall see
shortly, our proposed policy value estimation procedure employs ERM tools to estimate (o, nk),
and then compute an estimate of V() by plugging (o, 1) into Equation (3).

The remaining challenge in this proposal is the slow estimation rate of the optimizers — if we naively
plug in the optimizers, the resulting policy value estimator typically has a convergence rate slower
than root-n. To overcome this, we incorporate a novel adjustment method to debias the estimator,
which allows us to obtain a doubly-robust estimator that achieves root-n rate of convergence even
when then nuisance parameters (e.g., (o, n%)) are converging slower than the root-n rate.

We end this section by discussing when o (x) > 0. Throughout, we shall make the following mild
assumption on the conditional outcome distribution.

Assumption 2.4. For a € [M]and z € X, define y(z;a) = sup{t : P(Y(a) <t | X =2,A =
a) = 0} and p(z;a) = P(Y(a) = y(v;a) | X = 2, A = a). It holds that log(1/p(x; a)) > ¢ for
Px|a=q-almost all z.

The above assumption requires that Py-| x4 does not posit a large point mass at its essential infimum,
which can be satisfied by many commonly used distributions, e.g., all the continuous distributions.
The following result from Jin et al. (2022b, Proposition 4), shows that o* > 0 when Assumption 2.4
holds, which ensures that the gradient of the risk function in ERM has a zero mean.

Proposition 2.5 (Jin et al. (2022b)). Under Assumption 2.4, the optimizer ™ of (2) satisfies a* > 0.

3 POLICY VALUE ESTIMATION UNDER CONCEPT DRIFT

3.1 THE ESTIMATION PROCEDURE

Fixing a policy 7, we aim to estimate the policy value Vs(m) using the training dataset D. We
first split D into K equally sized disjoint folds, D*) for k € [K],” where we slightly abuse the
notation to use D¥) for denoting the data points or the corresponding indices interchangeably. For

each k € [K], we use data points in D*+1) to obtain the propensity score estimator %(()k) and the

optimizers (agr ), 7],(T )) Next, we define

~ (k)
GW®) (z,y) == &% (2) - exp ( yt+im (x) 1) + 730 (2) + &% (2) - 5,
T T a,(n.k) (x) T 7'r
and its conditional expectation gv (z) := Ep [@5,’“ (X,Y(m(X))) | X = z]. We then use D+2)

to obtain g£,’“) as an estimator of g,.. The policy value estimator ﬁék) () for the k-th fold is

k 1 ]].{W(X,L) = Az} o] ~ ~
V( )( )= D] Z ECIAE A (Ggrk) (X;,Y;) — gt (X3)) + IM(Xy). 4
ieDk) (Ai| X;)

The final policy value estimator is given by 175(7r) =—% k 1 V(k)( ). The complete procedure
is summarized in Algorithm 1. A few remarks are in order.

*We assume without loss of generality that n is divisible by K. In practice, we only need a minimum of
K = 3 folds.
3We use the convention that D*+7) = pk+imed K) for any 5 f.
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Algorithm 1 Policy estimation under concept drift

Input: Dataset D; policy 7; uncertainty set parameter ¢; propensity score estimation algorithm C;
ERM algorithm £ for obtaining (o, n7%); regression algorithm R for estimating g

Randomly split D into K non-overlapping equally-sized folds D¥), k € [K];
fork=1,--- /K do

on DD 7 ¢k, @, 5)  g(D*HV);

on D*+2): g R({X,, 4, GP (X, V)i € DRHDY);

On D¥): compute 17§k) () according to Equation (4);
end for

Return: Vs(m) < — 4 S5 V) ().

Remark 3.1. The estimation procedure involves three model-fitting steps corresponding to g,
(ak,n), and g, respectively. The propensity score function 7o can be estimated with off-the-shelf

algorithms (e.g., logistic regression, random forest); the conditional mean g&k) can be obtained by

regressing G (X;,Y;) onto X; for the points such that A; = 7(X;) with standard regression algo-
rithms, e.g., kernel regression (Nadaraya, 1964; Watson, 1964), local polynomial regression (Cleve-
land, 1979; Cleveland & Devlin, 1988), smoothing spline (Green & Silverman, 1993), regression
trees (Loh, 2011) and random forests (Ho et al., 1995). The ERM step is more complex, and will be
discussed in detail shortly.

Remark 3.2. The construction of the estimator 175(71') employs two major techniques: cross-fitting and
de-biasing. The cross-fitting technique crucially provides the convenient property of independence
and the de-biasing technique overcomes the slow rate of estimating the nuisance parameter o, 7,
leading to the doubly-robust property of the proposed estimator.

The ERM step. For notational simplicity, we denote 8§ = (v, 77) and write the loss function as
E(m,y;ﬁ):aexp(—m—1>—|—77—|—oz5. 5)
e}

By the notation, 8 (z) = (a(x),nk(x)) is the optimizer of Ep[¢(z, Y (7(x));0) | X = x] with
respect to 6. Throughout, we make the following assumption on 6.

Assumption 3.3. For any policy , there exist constants «, &, 77 such that 0 < o < a(x) < @, and
|ni(z)| <, forallz € X.

The above assumption is mild and can be achieved, for example, when 607 (x) is continuous in = and
when X is compact. We refer the readers to Jin et al. (2022b) for a more detailed discussion.

Under the unconfoundedness assumption, it can be seen that @) is also a minimizer of
Ep[€(X,Y;0(X))1{A = m(X)}]|. We can thus estimate 8;: by minimizing the empirical risk:

N 1
(k) T - AR Y- )
0,7 € arggerré)m { DD 'GD%HU 1{A; = n(X;)} - £(X;, Y3 0(X,)) }7 (6)

where © C {(a,n) | & : X — R>q, n : X — R} is to be determined. In our implementation,
we follow Yadlowsky et al. (2022); Jin et al. (2022b); Sahoo et al. (2022), and adopt the method
of sieves (Geman & Hwang, 1982) to solve (6). Specifically, we consider an increasing sequence
O C B4 C --- of spaces of smooth functions, and let ® = ©,, in Equation (6). For example,
O,, can be a class of polynomials, splines, or wavelets. It has been shown in Jin et al. (2022b,

Section 3.4) that under mild regularity conditions, éﬁf) converges to @7 at a reasonably fast rate.
For example, if X = H?Zl X; C R? for some compact intervals &; and that 8 belongs to the
Holder class of p-smooth functions — with some other mild regularity conditions — then ||§7(Tk) —
0;||L2(PX‘A=,(X)) - OP((IO%)—P/Q]H—OD) and ||§7(Tk) — 0. = OP((lo%)—%Q/(szrd)Q), We
refer the readers to Yadlowsky et al. (2018) and Jin et al. (2022b) for more details.
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3.2 THEORETICAL GUARANTEES

We are now ready to present the theoretical guarantees for the policy value estimator Vs (7). To start,
we assume the following for the convergence rates of the nuisance parameter estimators.

Assumption 3.4 (Asymptotic estimation rate). For any policy 7, assume that for each k € [K],

(k) ) 1.
0 3

—ggrk)HLQ(pX‘A:ﬂx)) = op(n~72);(2) the empirical

=op(n=1), 0% — 6z]|1.. = op(1).

(1) the estimators 7, and §7(Tk satisfy the following for some 71,72 > 0 and 71 + 72 >

~(k _ ~(k
HW(() )_7T0||L2(PX\A=w(X)) :Op(n ’Yl)v |g£f)
risk optimizer %) satisfies ||0£rk) = Ol Lo(Px | acnixy)

Assumption 3.4 (1) requires either the propensity score 7 or the conditional mean of @Srk) (X,Y)is
well estimated. This is a standard assumption in the double machine learning literature (Chernozhukov
et al., 2018; Athey & Wager, 2021; Zhou et al., 2023; Kallus et al., 2019; 2022; Jin et al., 2022b)
and can be achieved by various commonly-used machine learning methods discussed in Section 3.1.

Assumption 3.4 (2) requires the optimizer @k) to be estimated at a rate faster than n =/, and can be
achieved by, for example, the estimators discussed in Section 3.1 under mild conditions.

The following theorem states that our estimated policy value )75(7r) is consistent for estimating Vs
and is asymptotically normal. Its proof is provided in Appendix B.2.

Theorem 3.5 (Asymptotic normality). Suppose Assumptions 2.1, 2.4, 3.3, and 3.4 hold. For any
policy w : X — [M], we have \/n - (175(7r) — Vs(m)) RN N(0,02), where

2 _ Var H{A:W(X)}. _ .
72 =var( HEEEE (6, ) - 0)) +900) )

Gr(w,y) = Uz, y;07) and gr(2) := E[G(X,Y (7(X))) [ X = z].

4 POLICY LEARNING UNDER CONCEPT DRIFT

Building on the results and methodology in Section 3, we turn to the problem of policy learning

under concept drift. Given a policy class II and an estimated policy value ]75(7r) foreach m € I1, it is
natural to consider optimizing the estimated policy value over II to find the best policy. The biggest

challenge here is that the quantity 57(Tk) in defining ]75 (7) is not only a function of x € X, but also
a function of 7 € II. The above strategy requires carrying out the ERM step in Section 3.1, for all
possible policies 7w € II, posing major computational difficulties.

Instead of solving 55@ for each 7 € II, we propose a computational shortcut that solves a similar
ERM problem for each action a € [M]. To see why this is sufficient, note that for any 7 € II,

M
E[((X,Y(7(X));0) | X =a] =) 1{m(X) = a} - E[l(x,Y (a); 0) | X = a]. @)

a=1
Letting 0} (z) € argmin {E[{(z,Y (a);0) | X = x]}, we can see that 0 (@) is a minimizer of (7).
0
Then, the policy learning problem reduces to finding 7 € II that maximizes
Y(m(X)) 4 05 x) (X)
ar (X) (X)

The following section instantiates this idea and provides a detailed policy learning algorithm.

-E

o ) (X) - exp ( - - 1) o (X) + o (X3,

4.1 THE LEARNING ALGORITHM

The policy learning algorithm consists of two main steps: (1) solving for 87 for each a € [M] and
constructing the policy value estimator V;(7); (2) learning the optimal policy 7; by minimizing
Vs(m). As before, we randomly split the original data set D into K folds. For each fold k € [K],
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Algorithm 2 Policy learning under concept drift

Input: Dataset D; policy class II; uncertainty set parameter §; propensity score estimation
algorithm C; ERM algorithm £(-) for obtaining 67; regression algorithm R for estimating .

Randomly split D into K equal-sized folds;
fork=1,..., Kdo
) < c(DHH),
fora=1,---,M do
05 « e(DHH), 5 R(X;, Ai, G (X,,Y7);i € D)),
end for
end for

Return: 7 n that maximizes ]A}(%N(w) as in Equation (8).

we use samples in the (k + 1)-th data fold D*+1) to obtain the propensity estimator %(()k) (al-) (by

regression) and the optimizer 8 (by ERM) for each a € [M]. Next, for each a € [M], define
Galz,y) = Uz, y; 05(2)), GF)(x,y) = £(z,5;0(") (), and gV (z) = E[GP (X, Y (a)) | X = a].

We then obtain an estimator @\t(lk) for gflk) by regressing e (X;,Y;) onto X; withi € D*+2)_ Finally,
we obtain the learned policy by maximizing the estimated policy value: iy = argmax VEN(r),
mell

where 17(];N(7r) =—% Zszl ]76LN’(k)(7r), and
SLN, (k) 1 H{A; =7(Xi)} A0 ~(k) ~(k)
Vs () = D > =0 x| (Gorxoy (X Yi) = Grix oy (X2)) + G, (Xi)-
ep Mo (Ai] Xi)

(®)
The above optimization problem can be solved efficiently by first-order optimization methods or
policy tree search as in Zhou et al. (2023); we shall elaborate on the implementation in Section 5.
The complete policy learning procedure is summarized in Algorithm 2.

4.2 REGRET UPPER BOUND

In this section, we present the regret analysis of 71y obtained by Algorithm 2 (recall the definition of
regret) Before we embark on the formal analysis, we introduce the Hamming entropy integral «(I1T),
which measures the complexity of II.

Definition 4.1. Given a policy class II and n data points {z1,...,z,} C X, the Hamming
distance between w7’ € Ilis dy(m, ') = 23" 1{r(x;) # n'(x;)}. The e-covering
number of {x1,...,x,}, denoted as C(¢,IT; {x1,...,2,}), is the smallest number L of policies

{m,...,mr} in II, such that V = € II, 3 m} such that dy(m,m) < e. Denote Ny (e, II) :=
Sup,, > 8up,, .. Cle,I{z1,...,x,}). The Hamming entropy integral of II is defined as

k() := fol \/log N (e2,11) de.
The following theorem provides a regret upper bound for the policy learned by Algorithm 2.

Theorem 4.2. Suppose Assumptions 2.1, 2.4, 3.3, 3.4 hold. For any 3 € (0,1), there exists N € N
such that when n > N, we have with probability at least 1 — 3 that

CO(daQ7ﬁ757 5)
vn
where Co(a, a, 7,6, €) := 6(a - exp(7]/a — 1) + 7+ ad) /e.

Rs(min) < (65 + 8x(I) + \/log(1/B)),

The proof of Theorem 4.2 is deferred to Appendix B.3. At a high level, we decompose the regret
and upper bound it with the supremum of the estimation error of policy values. which can be upper
bounded by establishing uniform convergence results for the policy value estimators. Through a
careful chaining argument, we show that the dependence of R (7L ) on n is of the order O(n™2),
which is sharper than the O(n_% log n) dependence for that of Mu et al. (2022) by a logarithmic
factor. We also note that both regrets are asymptotic in n and hold for sufficiently large n.
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4.3 REGRET LOWER BOUND

In this section, we complement the regret upper bound in Theorem 4.2 with a minimax lower bound
that characterizes the fundamental difficulty of policy learning under concept drift. Our lower bound
is stated in terms of the Natarajan dimension (Natarajan, 1989), defined as follows.

Definition 4.3 (Natarajan dimension). Given an M -action policy class II, we say a set of m points
{z1,..., 2} is shattered by IT if there exist two functions f_1, f1 : {x1,...,Zm } — [M] such that
(@) f-1(z;) # fi(x;) forall j € [m]; (ii) for any o € {1}, there exists a policy 7 € II such that
forany j € [m], (2;) = fo,(z;). The Natarajan dimension of II, denoted by Ndim(II), is defined
to be the size of the largest set shattered by II.

Remark 4.4 (Connection to other complexity measures). The Natarajan dimension generalizes the

Vapnik-Chervonenkis (VC) dimension (Vapnik & Chervonenkis, 2015) to the multi-class classification
setting. The Natarajan dimension is also closely related to the Hamming entropy integral <(IT) in our

upper bound, as x(II) = O(y/log(d)Ndim(II)) (Cai et al., 2020).
Theorem 4.5. Let P denote the set of all distributions of (X, A, Y (1),...,Y(M)) that satisfy
Assumption 2.1, 2.4, 3.3, and 3.4.* Suppose that § < 0.2, n > Ndim(I1)?, and Ndim(IT) > 4/(9¢).

For any policy leaning algorithm that outputs T as a function of {(X;, A;, Y;)},, there is
~ 1 /Ndim(IT)
Epn[R > ———2,
sup Bpn [R(T) 2 355\ — 2

The proof of Theorem 4.5 is provided in Appendix B.4. Theorem 4.5 implies that for any learning
algorithm, there exists a problem instance such that the regret scales as €2(1/Ndim(II) /n). Recalling
the relationship between the Natarajan dimension and the Hamming entropy integral in the remark
above, we see that our proposed algorithm achieves the minimax rate in the sample size and the
policy class complexity up to logarithmic factors.

5 NUMERICAL RESULTS

We evaluated Algorithm 2 in a simulated setting against the benchmark SNLN in Si et al. (2023).

Data generating process. Our data generating process follows that of the linear boundary example in
Si et al. (2023). We let the context set X = {z € R? : ||x||2 < 1} to be the closed unit ball of R and
let the action set to be A = {1, 2, 3}; the rewards Y (a)’s are mutually independent conditioned on
X with Y(a) | X ~ N(B] X,02), for a € [3]. The training dataset Dyain = {(X;, Yi(mo(X:))) Iy
are generated with a given behavior policy 7y (unknown to policy learning algorithms). The testing
datasets Dy are i.i.d. draws of data tuple {(X;,Y;(1),Y:(2),Y:(3))} ;. The specific values of
{B1, B2, B33} € R® and {0%, 03,03} € R as well as the behavior policy 7 are given in Appendix A.

Implementation. In our implementation, the number of splits is taken to be K = 3. We use
the Random Forest regressor from the scikit-learn Python library to estimate 7y and g. For
estimating 8, we adopt the cubic spline method and employ the Nelder-Mead optimization method in
SciPy Python library (Virtanen et al., 2020) to optimize the coefficients in the spline approximation,
where the obtained estimator has threshold at 0.001 to guarantee Proposition 2.5. Finally, we optimize
and find 7y with policytree (Athey & Wager, 2021).

The benchmark algorithm SNLN is adapted from Si et al. (2023, Algorithm 2). Since Si et al. (2023,
Algorithm 2) is designed for joint distribution shift formulation, we revised the original algorithm to
fit our concept drift setting. It is well-known that the chain rule of KL-divergence (Cover, 1999) gives

Dxi(@x,y || Px,y) = Dxr(Qx || Px) + Dxu(Qy | x | Py | x)- )

Therefore, given any uncertainty set radius § and known covariate shift (in this experiment, we
assume no covariate shift), Si et al. (2023, Algorithm 2) can be used to implement policy learning
under concept drift. Note that SNLN admits known propensity scores. As we only consider the
case where the propensity scores are unknown, we complement Si et al. (2023, Algorithm 2) with

*When we say a distribution P satisfies Assumption 3.4, we mean that under P there exist 5, o, and g that
satisfy the convergence rates in Assumption 3.4.
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estimated propensity scores from Random Forest Regressor in scikit—1learn, the same way as in
the implementation of Algorithm 2. The additional setup details are in Appendix A.

Evaluation. For a learnt policy 7, we evaluate its performance by the following two performance met-
rics. (i) Using the testing dataset according to 7: Dieg 7 = {(X;,Y;(7(X;)))}, we estimate the policy
value V§ () by the empirical policy value V5(7) where the nuisance parameters oz (X;), 7z (X;) are
found via the cubic spline and Nelder-Mead optimization method. (ii) For 100 testing dataset each
containing 10000 data points { {(X @Dy (1), 79 (2), v (3))}L000 };iol, we randomly sample

. N o = (5 = (j 100
a new testing dataset {{(X,i(j) , Yi(j) (1), Yim (2), Yi(]) (3))}10900 }j=1

v:9(1), v (2), ") (3)) with radius 6. Then we evaluate 7 using

on the KL-sphere centered at

1 10000 ) )
ymin oy L . E N_j -~ _j
Vet () = 1<7<100 { 10000 V(X ))}

This simulates a more realistic scenario by mimicking real-world concept drifts.

Results. Table 2 and 3 report the values Vs, Vg“i“ (with 95% confidence intervals) of the learnt
policies 7y and TsnN, by Algorithm 2 and Si et al. (2023, Algorithm 2) respectively. Table 2 shows
that 7 outperforms the benchmark gy n consistently, with higher policy values and similar 95%
confidence intervals. With a higher ¢, the policy values of Ty, TsnLn are smaller, due to a bigger
uncertainty set. Table 3 shows that 7 5 achieves higher worst-case rewards than 7Ty N does, in a
more realistic setting with concept drift testing datasets. Together, we see that 7 5 succeeds in finding
a better policy under concept drift; while the performance of TsnLn is comprised by its conservative
policy learning process, in which it considers joint distributional shifts even though it is given the
information that no covariate shifts took place.

The results align with the intuition that Algorithm 2 admits a subset of the uncertainty set that the
benchmark algorithm SNLN considers, as explained in Equation (9). Consequently, Vs(7sniN) is @
lower bound of V(7 ) in theory, and by the results in Table 2, in practice. In real-world applications,
knowing the source of the distribution shift effectively shrinks the uncertainty set, thereby yielding
less conservative results. Since it is fairly easy to identify covariate shifts (comparing to detecting
concept drift), when the decision maker observes none or little covariate shifts and would like to
hedge against the risk of concept drift, it is suitable to apply our method which outperforms existing
method designed for learning under the joint distributional shift.

In Appendix A, we also provide simulation results of Algorithm 1 for a fixed target policy, which show
that Algorithm 1 can estimate the distributionally robust policy value under concept drift efficiently.

n =7500 n =13500 n =16500 n =19500

Vo.os A%LN 0.227240.002  0.2299£0.001  0.2303+0.001  0.231040.001
msnen - 0.055440.005  0.0589+0.004 0.061740.004 0.0664+0.003

Voa A%LN 0.1579£0.007 0.1662+0.002 0.1663£0.002 0.1678+0.002
msnen 0.0548+0.004  0.0580+0.004  0.0583+0.003  0.061640.004

Voos A%LN 0.0781£0.003 0.0802£0.002 0.0804+0.002 0.083140.002
: msnen - 0.018240.003  0.0183+0.003  0.0200£0.003  0.0219+0.003

Table 2: Empirical robust policy value Vs of policies 7N, TsnLn learned by Algorithm 2 and SNLN
respectively, under § = 0.05,0.1, 0.2, each with 50 trials.

n =7500 n =13500 n =16500 n =19500
~ min TLN 0.20754£0.015 0.2139+0.005 0.2149£0.007 0.216740.003
01 Zenen  0.1884£0.007  0.2009£0.008  0.2017+£0.006  0.2020+0.004

Table 3: Empirical worst case policy reward on the KL-sphere f}g“in of policies 7, TsnLn learned
by Algorithm 2 and SNLN respectively, under § = 0.1, each with 20 trials.

10
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A EXPERIMENT DETAILS

In the data generating process, we choose ’s and ¢”’s to be
B =(1,0,0,0,0), Bo=(—1/2,/3/2,0,0,0), B3=(—1/2,—/3/2,0,0,0); o = (0.2,0.5,0.8).
The underlying policy 7y chooses actions with context x according to the following rules:

(0.5,0.25,0.25), if argmax{g;, x} =1,
i=1,2,3

(mo(1] ), mo(2| z), mo (3| z)) = (0.25,0.5,0.25), if argmax{B,' v} = 2,

1=1,2,

(0.25,0.25,0.5), if argmax{B;z} = 3.
i=1,2,3

We generate Dy, according to the procedure described above as the training dataset. We also
generate 10,000 samples as our testing dataset Dese = {i € [10,000] : (X;,Y;(1),Y:(2),Yi(3)},
which we use to estimate the true policy value.

We present the result of the policy estimation experiments in Figure 1, using Algorithm 1 with inputs
of the training datasets and the target policy 7

1, if|z|l2 €[0,1/3],
m(x) =142, ifl|z|2€[1/3,2/3],
3, ifflzfl2 € [2/3,1].
The underlying true policy value is obtained by the testing dataset Di.g. Similar to the learning

experiment, we repeat the estimation experiment over 50 seeds. Figure 1 shows that as the sample
size increases, the estimated policy value by Algorithm 1 is more accurate and stable.

8000 10000 12000 14000 16000 18000 20000 8000 10000 12000 14000 16000 18000 20000
sample size sample size

Figure 1: The Mean Square Error (MSE) of the estimated policy value by Algorithm 1. The x-axis is
the number of samples used by Algorithm 1, and the y-axis is the mean squared error (MSE) of the
policy value estimator.

Computation details. The experiments were run on the following cloud servers: (i) an Intel Xeon
Platinum 8160 @ 2.1 GHz with 766GB RAM and 96 CPU x 2.1 GHz; (ii) an Intel Xeon Platinum
8160 @ 2.1 GHz with 1.5TB RAM and 96 CPU x 2.1 GHz; (iii) an Intel Xeon Gold 6132 @ 2.59
GHz with 768GB RAM and 56 CPU x 2.59 GHz and (iv) an Intel Xeon GPU E5-2697A v4 @ 2.59
GHz with 384GB RAM and 64 CPU x 2.59 GHz.

B DEFERRED PROOFS OF THE MAIN RESULTS

B.1 PROOF OF LEMMA 2.3

dQy | x =z

FixmeIlandx € X. Letting L = TPy | x—s

as

, we can rewrite the inner minimization in Equation (1)

inf Ep, [Y(7(z))L|X = 2]
L measurable

st.Epy L] X =2] =1, (10)
EPY|X[fKL(L)‘X :x] S&

14
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where the function fx;(z) = xlogx represents the KL divergence function. In (10), the first
constraint reflects that L is an likelihood ratio, and the second constraint corresponds to the KL
divergence bound.

For notational simplicity, let E, be the shorthand of Ep,. | , [- | X = z]. By Theorem 8.6.1 of Luen-
berger (1997), the Slater’s condition is satisfied and strong duality holds:

Em[l?]le, E,[Y(r(2))L] = ué%%lxekcp(a,n,x), (11)
Eq [fr(L)]<6

where
= inf L
p(a,n, ) inf L(a,n, L, x),

'C(%’?:Lax) :Ex[Y(ﬂ'(I))L} +n- (Ew[[’] - 1) ta- (Ew[fKL(L)] - 6)
=E,[Y(n(z))L +n(L 1)+ a(fer(L) — 9)].

We can explicitly work out the minimum of £(«, n, L, x), and we have

p(a,n,z) =1Ez{—afEL<— W) —n—aé},

e
where f¥; (y) = exp(y — 1) is the conjugate function of fx;.. Using Equation (11), we arrive at

Y(r(z)+n

it B (Y(@)E) =~ min B faesp (- T

E.[L]=1, a>0,neR

1) +n+ ad} .
Eo[fuu (1)) <6

The proof is thus completed.

B.2 PROOF OF THEOREM 3.5
For notational simplicity, we drop the dependence on P in Ep when the context is clear. The proof

of Theorem 3.5 makes use of the following lemma, which establishes some useful properties of the
optimizer 8. The proof of Lemma B.1 can be found in Appendix C.1.

Lemma B.1. For any policy w, assume that Assumption 3.3 holds. We have the following properties
of the optimizer 6.

(1) E[Vgl(z,Y (m(2));0)| X = 2] =0ar0 = 0%(z) forany x € X.
(2) There exists a constant £ > 0 such that for any x and 0 satisfying |0 — 0% (x)|2 < &,
* * * 7 * 2

for some function {(z,y) such that sup,¢ » E[0(z,Y (7(2))) | X = x| < L for some L > 0.

(3) There exists a constant & > 0 such that for any 0 satisfying |0 — 0| 1. < &1.
X, ¥ (r(X)); 00X)) — 60X ¥ (5(X)): 05D iy oo 1oy SO0 = O aioy )
for some constant Cy > 0.

We proceed to show the asymptotic normality of Vs(w). For each k € [K], we first define the
following oracle quantity:

*(k m(X;) = A
V5(k)(77) = |D1k’)| ’%}«) l{m)((Ai)Xi)} : (Gw(Xz',Yi) - g‘n'(Xi)) + g (X5).
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In the sequel, we shall show that ﬁék)(ﬂ) = V;(k) (m) + op(n_% ). We begin by decomposing the
difference between 17(§k) (7) and V;(k):

V& (1) — vy ¥ ()

1 Hr(X:) = A} /A Ak Hr(Xi) = Ai}
i &[S (@0 e s ) - MR 6.0 - ir)

" F%k” Z (/g\grk)(Xi) *gw(Xi))

ieDk)
1 HA =7(Xs)} Ay v v
0], 2, md Ky (O ) S G X)
€D (k)
®
1 HA; =7(Xy)} {4 = W(Xi)}> (k) (k)
— - \9x Xl — 09 X7«
[D®)] ie;k‘)( %(()k)(AHXz‘) mo(Ai | Xi) ( (X ( ))
a
1 (I{Ai =n(X;)} {4 = W(Xz)}> ~(k) _(k
NR L — A(GW(X, ) — g™ (X))
|D()| ie;k) W((]k)(Ai | X;) mo(Ai | X;)
()
1 ]]-{Az = W(XZ)} ~(k) 1 ~(k)
PO 2 i) 000 9 (0) + gy 30 00 ~a(X0).
av)

Bounding term (I). Recall that 6 (z) is the minimizer of
]E[é(z,Y(w(z)); 0)| X = x}
By the first-order condition established in part (1) of Lemma B.1, we have
E[ng(x, Y(r(x)):0(x)) | X = 9:} = 0. (12)
For any i € D®), by the unconfoundedness condition in Assumption 2.1, we have

[1{A4; = 7(X;)}

E
mo(Ai | X5)

[1{4; = 7(X;)}
mo(A; | X5)

. (égrk)(Xin) - G7r<Xi,Yé)) ‘D(_k)]

=F : (a;m (X, Yi(r(X,))) — G,r(XZ-,YZ-(w(Xi)))) ‘p(zc)]

=E[G) (X, Yi(m(X1)) — G (X3, Yilr(X2)) | D]

=B |£(X,. Yi(r(X0)): 00 (X0)) — €(X, Yilw(X,)); 03(X0)) = Vol (X0, Y (v(X0)):03(X.)) [ D],

where the last step is due to Equation (12). By Assumption 3.4, o — 0:||.. = op(1). Therefore,
for any 8 € (0, 1), there exists V € N such that forn > N, ||§7(Tk) — 0%, < min(&, & ). On the

event that |\§£!“) () — 0% (z)||r., < min(&, &) by part (2) of Lemma B.1 and Jensen’s inequality, we
have

E[W (6% (x.v) - o, (Xi,yi))} 'DM

SEUaXi,mw(Xi)); 6 (X1)) — €(X,. Yi(m(X,)); 02(X,) = Vol (X, Y (x(X0)): 03(X)| \D“ﬂ

s

<E[0(X0,Y0) - [0 (X) - 0:(X0)|[5] < LE[[|61(X:) - 05(X0) [ | DM | = LIOD — 6113, 5.
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By Chebyshev’s inequality, we have for any ¢ > 0 that

1 WA =7(Xi)} A
P (GM(X,,Y;) - G(X,, Y;
<‘|D<k>|i§m mA X (O Y G W)

- ]EP{A:”(X)} : (@Sﬁ (X,Y) - GW(X,Y)) ‘ 13(—’“)] ‘ > ¢t ‘ D("“)>

mo(A[X)
1 HA=7(X)} [Am _
< |D(k)|t2Var< A1 X) [GW (X,Y) Gﬂ(X7Y)}
A(k)
||C¥7T 7G7T||L2(PX,Y\A:‘N(X))
= €2|D(k |t2
< CZ(HH 9* L2(Px|A w(x)))

- g2|Dk) |¢2 ’
where the last step is due to part (3) of Lemma B.1. Combining the above results, we have that
term (I) = Op (n™ /2 [0%) — 02 ||, (px) + 10 = 03113 ,(py)) = 0p(n"1/?)

where the last step is due to Assumption 3.4.

)

Bounding term (II). Applying the Cauchy-Schwarz inequality to term (II), we have

1 WA =n(X)} A =7X)}\ (=0 vy =)y
D<k>i§k>< o (A | Xy) mo(A; | Xi) ) () —at (X’))‘

1 1 1 2
<\ & M= a6 (= - )
D] ie%k) A (A1 X)) mo(Ai] Xi)
~(k) _(k) 2
\/|D<k)| > HAi=a(X)}- (= (X0) —gr (X))
icDK)
= —2||7(F) ~(k) _ (k) B _1/2
OP<E ||7TO 71-OHL?(PX\A =(x)) g 2 =g HLz (Px | a= «(x))> = op(n'?),

where the next-to-last inequality is due to the lower bound on 7y and 7(*); the last equality is due to
the given convergence rate of the product estimation error in Assumption 3.4.

Bounding term (III). By Assumption 3.4, for any 3 € (0, 1), there exists N7 € N such that for
n > Ny,

P([6%) — 6*|,.. <min(a,7)/2) > 1 5.
On the event ||§7(Tk) — 0%, < min(a,7)/2,
|é£rk)(x,y)| = |€(z,y;§£rk))| < aexp (? - 1) +n+ad=:L,.
Next, for any i € D),

B <“Ai = (X)) A= ”<X;>}) (G0 (x5, Y) - (X)) ‘ D““)]

7 (4; | X3) mo(Ai | X;
E E[ﬂ{f}:—w(m} LA = }‘Xﬂj m}
(4 X)) mo(4i [ Xi)

17
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where the first step is by the unconfoundedness assumption and the second step is due to the fact that

g; ) is the conditional expectation of G G,

On the event {||07(r )_9 < min(a, 77) }. By Chebyshev’s inequality, for any ¢ > 0,

wllzo

P( |D%k)| ie%;k) <1£ﬁ)(Aﬂ|(X'))} - 1{;i(AiT§()f;)}> A(GW(X,,Yy) — g (X ))’ > t‘D( k))
< e Va([lf??); |())c(>) AT e e o) ‘D(_k)>
<o | [ ] @ g o)
< o) = Pl

The above inequality along with a union bound implies that

term (1) = Op (7" = oll (s acec/V IPW]) = 0p(n7H2),

where the last step is by the consistency of %ék) assumed in Assumption 3.4.

Bounding term (IV). We first show that term (IV) is of zero-mean:

E[_ D%k)| 2 W'(ﬁﬁm(&)—gw(&)) +@ > (@\Srk)(Xl)—gw(Xi)))’D(—k)]

ieDk) ieDKk)

A, =n(X)} )
—E — e Ax) GH) (X)) — 9o (X)) ’D( k)

By Chebyshev’s inequality, for any ¢t > 0,

s X1 :A1 ~ —~ _
(\W' 5o MIEIZA @00 — 0,00 — i (@00 - .0x0) | 2 | 2 k>>

D) ieD()

+E[g(X;) - g2(X,) | DCH] =0,

S|D<i>|t2var<l{i@ﬂ%)}'@Wﬁ—gﬂ(&)) (@ (X)) - gﬂom)\b(k))

1 1—mo(m(X;) | Xs) /- -
|D<k>|t2E[ m(fr(()é)))b )'(gffk)<Xi)*9w(Xi>)2\D< ‘”}

As aresult, term (IV) = OP(HA(}C) = grllLa(Px)/v/1). Note that
gt O([lg"

_gﬂ'HLQ(PX _g77||L2(PX|A:7r(X)))
< O(”g(k) - g‘fl'HLz(PX\A:W(X)) + Hggrk) - gTr||L2(PX|A:,\-(X))>a

where the first inequality follows from the overlap condition. By Assumption 3.4, ||§§rk) — Gallne, =
op(1). Meanwhile,

ng(rk) - gﬂ—H%Q(PX | A=m(X))
—E[(3(X) - g(X))?| A = 7(X),D*]
_E [(E[K(X, Y ((X)): 04 (X)) — £(X, ¥ (x(X)):03(X)) | X]) | 4 = w<X>’D("‘)}

~,

S| (400 Y (r(X)):0%) — 10X Y (r(X)):03)) [ 4 = 7). DI

() *
i <||0<k> 0W||§2(PX‘A:7T(X))) = op(1).

Above, step (i) follows from Jensen’s inequality and step (ii) from part (3) of Lemma B.1. Combining
everything, we have that term (IV) is of rate op(n~/2).
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Putting everything together. So far we have shown that for each fold k € [K], there is
(k) *(k _
Vi () = v;© () = op(n71/2).

Averaging over all k£ folds, we have

Vi (Vs(m) = Vs(r))
= A, =n
\/> Z{ {7T0A|§())} . (Gﬂ(XuYi) - gTr(Xi)) —g:(X;) — Vé(ﬂ')} +op(1),

By the central limit theorem and Slutsky’s theorem.

Vi - (Vs(m) = Vs(m)) 5 N(0,02),

where

sy MA= (X))
, _v( A= (G - gW<X>)+gW<X>>-

B.3 PROOF OF THEOREM 4.2

By Assumption 3.3, taking 7(z) = a for any a € [M], there exist constants &g, «,, 7, such that
0<a, <ai(x) < ag, |77a(x)| <N, VzeX.
Letting a = minge(pr) @, & = MaXge(nr] Qas 1] = MaXqe (0] Tas it follows that
O<a<ali(x)<a, |n ()|<777 Vo € X,Va € [M]. (13)
For any a € [M], if we take 7(x) = a, then by (1) of Lemma B.1,
E[Vol(z,Y (a);0;(x)) | X =z] =0.
By (2) of Lemma B.1, for any a € [M], there exists a constant £, > 0 such that for any ||§ —
6;(z)]l2 < &
|6z, y:0) — Uz, y;0;(x)) — Vol(w,y;0;(2)) " (0 — 05 ()| < Lalz, )]0 — 6;(2)]13,
for some function lo(x,y) < L, for some constant L,. Similarly, we shall take £ = minge(ar) as
l(z,y) = max, {y(x,y), and L = ZGE[M] L,.
}03y||(3) of Igemma B.1, for any a € [M], there exists a constant &; , > 0 such that for any ||@ —
New < &i,as

HE(X,Y(CL),B(X)) - f(X,Y(CL);B* < GHH 0, ||L2 (Px | A=a)*

Taking &; = mingeas §1,4 and Cp = Zae[ M] (Y., the above inequality holds for any a € [M] and
any |6 — 07| <&

HLz(Px Y(a)| A=a) —

B.3.1 REGRET DECOMPOSITION

The regret bound of Algorithm 2 builds on the following regret decomposition:
Rs(mn) = Vs(7*) — Vs(TLN)
=Vs(n*) = V(") + Vit () = VPN Fn) + V5N (Fuw) — Vs(Fiw)
<Vs(n7) = Vi) + Vi (Fx) = Va(Fiw)
<2sup [V(m) = Va(m),

(14)

where the second-to-last step is by the choice of 7 N. For any 7 € II and any fold k € [K, we define
an intermediate quantity

0 1 HA=r(X) |
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Letting Vs = -+ k 1 V(; we have
DN () — V()| = ’ 1 ZvLN ) (1) _ ()
1 o
< |5 ST ) = Vi) + [Ba(m) - i)
k=1
L ¢ ( (k)
LN, (k o (k
<sup =37 D ()~ B + sup | - Vi) — V()
k=1
Taking the supremum over all 7 € II, we have that
K
- 1 ~ -
sup ’V V(s(ﬂ')‘ < sup | — Vs(m) — Vs(m)| + sup % Z V(IS‘N,(IC)(’]T) — V(gk) (7)].
mell well well

k=1

We shall show that the first term above is Op(n~'/?) and the second term is op(n~'/2). In the
following, we refer to the two terms as the effective term and the negligible term, respectively. The
following lemma is essential for establishing the uniform convergence results.

Lemma B.2. Suppose h is a function of (z,a,y,7(x)). Given a set of data {z; = (z;,a;,y:) }1 4,
suppose that |h(z;, 7(2;))| < ¢;(2;). Then the Rademacher complexity

E. {sup 1ieih(xi7ai7yi,w(xi))” < —W - (32 + 4k(1D)),

n n
mellT i

iid oo . .. . .
where ¢; "= Unif{+1} are i.i.d. Rademacher random variables and E. means the expectation over
€.

B.3.2 THE EFFECTIVE TERM

Denote Z; = (X;, A;,Y;) and take
1{4; = n(X;)}
mo(A; | X;)

Under the unconfoundedness assumption in Assumption 2.1, E[h(Z;, 7(X;))] = 0. By Equation (13),
we have

hZ;,m(X;)) = — N(Grix) (X0, Y5) = gr(x) (X)) = Gr(x) (X5) — V(7).

h(Zs, 7(X0))] < g (a-exp (g 1) +7+a8) = Col@,a,7,6,2).

Meanwhile, we have write

K n
k 1
sup z VP (7) = Va(r)| = sup [ & 60| = sup [1 5 (s 70x0)|
well mell e 1 zED(k) mell i—1
Next, we define
1 n
fz1,. o znm) = = ) h(z,m(x)).
n
i=1
Consider two arbitrary data sets {z; }7_; and {z]}"_,. We can check that for any = € II and any
j € [n],
’f(zl,...7zj,...7zn, ‘— sup ‘f 21y e, ; ...,Zn;ﬂ'/)’
n’ €11
g’fzh..., ; Zn;ﬂ)‘—’fZl,...72’3~,...72n;7()‘
< sup’f 21y 2 j,...,zn;ﬂ)—f(zl,...,zl;-,...,zn;w)’
mell
= sug ’h Zj5 T h(z;;w)‘ < Co(@, o, 1,0,¢)/n. (15)
LS
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Above, the first inequality is because of the definition of sup and the second is due to the triangle
inequality; the last step is due to the boundedness of /. Taking the supremum over all 7 € IT in (15),
we have that

sup |f(zl,...,zj,...,zn;7r)| — sup |f(zl,...,z;-,...,zn;7r)‘ < Co(a, o, 1,0,¢)/n.
mell well

By the bounded difference inequality (Wainwright, 2019, Corollary 2.21), for any ¢ > 0,

P(sup “(Ziyw(X ’— [Sup - (Zl,w(X))H >t>

mell mell

2nt?

:P<sup \f({Zi}icpyim)| — ]E{sup |f({Zi}icmpi ™) |1 > t) <e Go@amnia?,
mell mell

Take t = C(&,a,7,1n)4/ 5 log (%) Then with probability at least 1 — 3,

1 1 1 1
sup |—h(Z;, m(X; ‘<E[sup —h(Z;, m(X; H—FCOz,a,, —log (=).
sup | (Zi, m(X3)) sup | - (Zi, m(X3)) (@, 7m)y 5 g(ﬁ)
It remains to bound the expectation term. Let Z7,..., Z/ be an i.i.d. copy of Z1,..., Z,, and let

¢; "% Unif({£1}). Then

E|sup |~ S h(Z,m(X:)) —E[h(Z:, 7(X,)] H

n
| m€l i€[n]

:E_Sup %Zh(zi,n( EZ,[ Zh m

_TrEH icn]
o [
<E sup—ZhZZ,w - —th H
_WEH i€[n] i€[n]
D | sup | 37 e (h(Z0 m(X)) — W(ZL (X)) |
_TrEH nze[n]
1
<28 sup| - 3" ih(Zim(X0)
well nie[n]
1
:2E|}E{sup - eih(Zi,ﬂ(Xi))’H, (16)
mell M o

step (i) is by Jensen’s inequality and step (ii) is because of the symmetry of (Z;, Z}).
Applying Lemma B.2,

1
E€|:Sup —
T€ell [T

eih(ZiJr(Xi))H <

i€[n]

Combining the above, for any 8 € (0, 1), we have with probability at least 1 — 3,

sup [Vs(m) — Vs(m)| < CW(M + 8k(II) + /log(1/8)). (17)
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B.3.3 BOUNDING THE NEGLIGIBLE TERM

We now proceed to the negligible term. For any 7 € II and any k € [K], consider the following
decomposition:

Vi m) = v ()

o 1 H{Az = F(Xz)} (k
| DW)] _Z To(A; | Xi) (G
i€Dk)

~(k ~(k
(Xi,Yi) — Er())g)(Xi)) gr(r&()( i)

~ D] > {WO(Ai;i))}(Gﬂ(xi)(Xi,Yi)—gﬂ(xi)(Xi)) = Gn(x,)(Xi)

ieDk)
1 A, =n(X;)}  L{A; =n(Xi)} Ak ®
_ — XY X
|D(k)| Z ( /ﬂ\—O(AZ|X’L) T‘—O(Ai ‘Xz) (GTI'(X )( ) 7r(X )( ))
ieDK)
1 {A; =n(X;)} I{A =7(Xi)}, o) ~(k)
+ 7|D(k)| Z ( %O(Ai|Xi) — 7TO(Ai|Xi) (gw(Xi)(Xi) _gﬂ(xi)(Xi))
ieD(F)
1 1H{A; = (X))} A0
B 2 m@ X)) (Ot (Xir i) = Gry (X Y0)
1€Dk)
 [D®)| 2 o (A | Xi) (T (X0) = gmx (X)) + [D®)] 2 (gﬂxz-)(Xi) - 9”<Xi>(Xi))'
iep® ieD®

For notational simplicity, we denote

K (m) = 1 3 (Mjli =7r(X:)} M4 = W(X)i)}> (égr()X (X3, i) - &) (X)),

|D(k)| e 7T0(A,L' | Xl) ﬂ-O(Ai ‘X,L ‘n'(Xi
1 {A; =n(X:)}  1{A; =7(X,)} _(k) (k)
K = — X.) — X.
2(m) |D(k)| %;k) ( mo(A; | X5) mo(A4; | X5) (g”(Xi)( i) gﬂ'(X'i)( 1))7
1 WA =7(Xi)} A
Ka(m) = X3, Yi) = G (X0, V),
= ] 2 TR (Crtn (K ¥) = Grxo (X ¥0)

1 1{A; = m(Xo)} ) 1 ()
Ky(m) = — D®)| -e;m To(A; | X;) (gﬂ—(xi)(Xi) - gTr(X,i)(Xi)) + W E;k) (9 (X; )(X ) = 9x(x,) (Xi ))

We proceed to bound each term separately. To ease the presentation, we shall write E; and Py, as the

expectation and probability conditioned on D(~*), respectively.

Bounding K; (7). Here, we take

A, =7n(X; A =7m(X; ~ =
hi(Zi;w(Xi)) == (1{%0(Ai|§(i))} a 1{71'0(141'|§(i))}) (fok()Xi)(Xi’Yi) WIE)X ) (Xi ))-

Since g( )( X) is the conditional expectation of G (X,Y(a)), we have

= zer ) 5| (GEEEY - R @ - [+
- (Rt~ (A om0 -, |

=0.
By Assumption 3.4, there exists N; € N, such that when n > Ny, w. p. atleast 1 — 3,
max [0 — ;|1 < max(a,a,n)/2.
a€[M]
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On the event {max,c|a ||§flk) — 0L, < max(a,a,)/2}, we have for any a € [M]

2y +4n

[4(x,y,;6 ( )| < 2aex p( —1)4—277—%—2075.

Letting Cy (&, o, 7, 6, €) = 4 exp (W - 1) + 4] + 4ad) /2, We can then check that

|h1(Zi;m(X0)| < 2C1(@, @7, 6,€) - [To(m(Xi) | Xi) — mo(m(X:) | Xy)]

<2Ci (@, a,1,0,¢) - Hel[é}\); |7r0 | X;) — mo(al XZ)| =:¢1(Xy).

The upper bound is a constant conditional on X;’s and D(~*). We now apply the bounded difference
inequality conditional on X = {X;};c[n:

Pk<sup‘|p( ) Z hi(Z;, m(X; ’ {buphp(k)' Z hi(Z;,m i))HX}Zt‘X)

mell eDk) mell

2|D<k)|2t2
< ex —_—— .
=P Y iept €1(Xi)?

Taking t = \/Ziep(m c1(Xi)?log(1/5)/]
1

sup ‘7, hl(Zi,w(Xi))‘ < Fx [sup ‘ hl(ZiﬂT(Xi))‘ ‘X]

went | [DR)] ie%"') |D(k)| Z

|D<k>|

B.

For each i € D), we take Al and Y/ as i.i.d. copies of A; and Y; conditional on X, respectively.
By a similar symmetrization argument as in the proof for the effective term, we have

[ 1
Ey | sup | —— hy (Zi, (X, ‘X
sty e
B | iy 25 1K A Yo m(60) ~ B [y 32 A AL ”)WX]
L ieD(k) ieDk)
[ 1 1 .
<Eg sup WZ hl(XivAz'aYivﬂ'(Xi»*W‘Z h(Xi, A3, Y7, m( i))HX]
L ieDK) ieDk)
| 1 )
S| sup | o 3 (X6, 46 Yim(X0) = MG, 40, Y m(X0) )| | X
well .
L ieD (k)

<2]Ek[sup ’ Z Eihl(Xi»AinaW(Xi))‘ ‘X]
"D ieD(k)

Applying Lemma B.2 with ¢; = ¢;(X;), we have that

> ahi(Xi A Y m(X0)| | X] < 2V 2ieptr 1A g9 | gy,

E. [ sup D]
eDk)

mell ‘ |D(k) |

Combining the above, on the event {max,¢[ar ||§¢(lk) —0%||L.., < max(a,a,7)/2},

Do D) c1(X;)?
P K > S
(s lRam] = Y=gy

(64 + 8k(IT) + /1og(1/5)) ‘X) <B.
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Since |7o(a| X) — mo(a| X)|?
( @ max (%o(a|X)—7r0(a\X))2— Z E[(%O(Q\X)—wo(a|X))2] >t
|D zE’D(") a€[M] ac[M]
(|D(k S Y (RolalX) —mo(a] X))* = D" E[(Fola] X) - mola] X))2] >t
1617(@ a€[M] a€[M]
<y Pk( 0] 3" (Fola| X) — mo(al X))* —E[(Fola] X) — mo(a| X))?] zt)
a€[M] ieDk)

<Mexp (- Q\D(k)\t2).
Taking a union bound, with probability at least 1 — 33, we have that

201(@,@,7_],6, 5)
21613 ’Kl(w)| < W (20 + 4k(I1) + 210g(1/ﬁ))

x (32 1o~ mollzaces s ar + (57 g(11/3)) ).

a€[M]

Since 3_ e ar 170 — Moll Lo (Py | aa) = 0P(1), there exists Ni > Ny such that when n > Ny, with
probability at least 1 — 8/(4K),

Cla, a,m,1m)
3 K < — =\ 18
:lelg| 1(m)] < NG (18)

Bounding K>(m). We first note that by Cauchy-Schwarz inequality,

H{A; = m(X;)}  I{A; =7(Xi)}\ o) (k)
|D<k>| 2 ( RAIX) | (A% >(9Ak1 (X0 -9, <Xi)>’

cD(k)
A k 2 _(k ~(k 2
|D<k 2 > (@ (X1 X0) = mo(w(Xa) [ X0)" [ D0 (30, (X0) = sy (X))
ieD k) ieD(k)
(k ~(k 2
|D(k)|52 > Z (7" (a] X:) = mo(a] X2))"\| D Z ) - a0 (x)”
ieDk) a=1 ieDk) a=1
Then for any ¢ > 0, let
M
5= 7z max {Hw(k) — 7, )||L2(px)} max {Ilg <k>\|L2<PX)}
Then
1 WA =n(Xo)} A =7(X)} - ()
P - X;) — X3))| =
k<21€aﬁ( D) -e%;m( 7o (Ai | Xi) mo(Aqi | Xi) (9 (X)) = 9.4 (X)) 2 5

S[P)’“<|Z)(11)|52\J Z S GEP () X:) — mola J > Z @ (x) - g (x0)* > 5>

ieD(k) a=1

M
1 1 70 VM ~(k) _ (k)
<P <€J RG] > z::( Y(a] Xi) = mo(a] X:))" > e ;Q%{HM *Wo,aHLz(Px)}

. G ) 2 VM .
p(! i) — g (X)) > YL max {llgé —gé’“)HLz(Px)}
€ zED(k)a 1 Ve aclM)
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where the last inequality is due to Chebyshev’s inequality. Marginalizing over the randomness of
D(=F) for any B € (0, 1), we have with probability at least 1 — 3 that

2M ~ k
maoe [ Ka(m)| < g max {7 — 70 acen) } mane {1887~ 50 e }-

By Assumption 3.4, there exists NJ € N, such that when n > NJ, with probability at least

1 —B/(4K),

Cla,a,n,n)
sup [ Kp()| < CB21)

mell o 4\/ﬁ

Bounding K3(7). We start by taking

19)

hs(Zi, m(X3)) = W [GU?X (X3, Yi(m(X0))) — Gﬂ(Xi)(Xi,Yi(ﬂ(Xi)))}.

For any 7 € II,
Ey [hs(Zi, 7(X;)) | X

—, [HATE L (G006 Vi 060) - G (e V() X
=B [ G0 (X Yi(m(X) = G (X Yilm(X0)) | X
= k[z X“Y; )e(lzx)( ))_E(Xu i5 rr(X)(Xl))

—vaxi,m(X)),eﬂm( DT O (X))~ 03, (X)) | X1

X

where the last step follows from part (1) of Lemma B.1. By Assumption 3.4, for any 5 € (0, 1), there
exists N3 € N such that when n > N3,

p( ma 1809 — 031, > min (€.6,0.7)/2) < 5.
(s 18 621z > min (6, 0m)/2) <

On the event { max,e(ar 16 — 67|, < min(¢, &, a, 77)/2}, we have

\e (X, v 0%, .)<X->) UX2, Y53 03, (X)) — V(X Vi3 03, (X)) (B, — 3,
UX,Ya) - D [16a(X0) - 05X,
a€[M]

As a result,

sup ’]Ek[Kg(ﬂ') | X]| < sup
mell ‘ ‘

Z Ey hg(Zuﬂ—( z))lXZ]

ieDK)

ST [18a(x0) - 0:(X0)]f5-

16D<k> a€[M]

|D<k
On the same event,

Ihs(Zi, m(X,)| = ’W‘:W(X)}

ATl e V()i (X0) — X is 20, (X
< 2|V Vilr(X0)): B0 (X0) (0% (X0) — 83, (X0)]
< LIV Vim0 By (50) 8%, (X0 — 020, (X
< Co(@, a,7,8,¢) max [|8)(X;) — 6:(X.

a1 @ ( ||2’
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where Ca(a, @, 7,0,¢) = (1 + (7 + ﬁ)/a) (+n)/a=1 4 § 4 1is a constant. Let h3(Z;, m(X;)) =
h3(Z;, m(X5)) ; ) and we have that

|hs(Z;, m(X5))| < 205 (@, a, 77, 6, €) max HH(k) i) — 0%(

(X)),
a€[M] 2

Next, we apply the bounded difference theorem conditional on X;’s:

Py (sup D] Z hs(Z;, ,»))HX} Zt’X>

ieDKk)
< |D(k)|2t2 )
<exp| — )
2Cs(a, @, 71,6,€)% Y s poo maxaeqnr) [[05° (X:) — 05(X0)|

for any ¢ > 0. Taking t = Cg(d,g,ﬁ7(5,5)\/2 > iep MaXe 1] Hé\ék)(Xl) - 92(Xi)H2/|D(k)|,
we have with probability at least 1 — S that
B L a(Zer }
i€D k)

|D(k)| Z h3 iy T )‘ <Ek;|:bup
Ca(a, a,1,6,¢) . - 5
AN D DRI 2 CORLHC Ol i

i€D(k)
i€eD®) ac[M)]

> hg(Zi,ﬂ(Xi))‘ - Es |:bup

1
D(k)|
icDF)

sup
mell

For the expectation term,the same symmetrization argument as in the proof for K () leads to

|D(k)| Z hg(Zi,w(Xi))“X} <2E[sup|D B Z
ieD(k)

ieD() well

E, {Sup ciha(Zi, W(Xi))‘ ‘X]

Then by Lemma B.2, we have

1
Eﬁ[sup ‘T)(k)l Z

met ieD®)

203 (@, a, 1,0, €) k 0+
<=y G2 A) [ >0 3 187X — 03(X)B.

ieDk) ae[M]

€¢h3(Zi>7T(Xz‘))H

By Hoeffding’s inequality, we have that

1 . T T
Py o 109050 — 6018 — 1687 6l > 167 - 613y 50w (5) ) <

D] Nt

Taking a union bound, with probability at least 1 — 33, we have that

sup |Ks(m)|

rell

C’z(oz a,7,8,¢)(130 + 4k (11 _ ) M1
] DS 188~ Ol + v/ 1) (o (5)) )

a€[M)]

Y M||§a — 04|/ \/log(M/B)
+L( Z ||9((l’f) _Ba”%Q(pX) + D] )

a€[M)]

By Assumption 3.4, |\§(§’“) — 04|, (Py) = op(n~Y/*) and Hgék) —0,||L.. = op(1), so there exists
N} > N3 such that when n > N3, with probability at least 1 — 3/(4K),

Ol o
sup | Ky (m)] < (%Qﬂ%ﬂ).

20
well o 4\/ﬁ ( )
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Bounding K4(7w). For K,(7), we take

halZm(X,)) = ~ T GO () a0y (X0) + (055 () = 9mcx) (X0)-

and therefore K (m) = ﬁ > et ha(Zi, m(X;)). Again by the unconfoundedness assumption,
]Ek [h4(ZZ, W(Xi))] = 0

Due to the overlap condition, we further have that

2 (k 2
ha(Zis X)) 2[5, (X) = gm0 (X0)] < 2 mane [09(X0) — ga (X)),

As before, we apply the bounded difference theorem conditional on X;’s and the symmetrization
argument to obtain

P<sup|K4(7r\ 2Ek[sup’ 5 3 eih4(Zi,7r(Xi))HX} >t‘X)
mell | ieD()

<P (sup\m \—Ek[supym |]X}>t|X)

&2 |D(k) |2t2
< exp =) 5 |
2 Z1€’D(k) maxae[kl]( (Xz) ga(Xi))
We now apply Lemma B.2:

E. Sup Z eiha( ’>7T(Xi))‘ ‘X] < \/Ziepm maxge(n] (Ga(Xi) — ga (X)) (64 + 8(IT)).

[D®e

By Assumption 3.4, there exists Ny € N, such that when n > Ny, with probability at least 1 — 3,

ieD(k)

max [0 — 671 < max(€, &, a,7)/2.
a€[M]

On the event {max,¢|a ||§((lk) — 0|, <max(&,a,a,7)/2}, we have for any a € [M] that
|6z, y;04(2))| < 2C1(a,0,7,6,¢).

On the same event, by Hoeffding’s inequality, we have that

1 -~ 2 ~(k 2
Pk(ID““)I > (Ga(Xi) = 9a(X:))* = 15 = gallZ, (px) = t) < exp(* oA

ieD(k)

t2|DW)]|
@, o, 1, 0, 5)2)'

Taking a union bound, we have with probability at least 1 — 23 that

1
<___-
mae [ Ka(rm)| <~ |D(k)‘(128+16ﬁ(ﬂ)+ 210g(1/5))
% (32 1% = gl acrs) +2MV/Cr(@, 0,7,0,2) (10g(M/8) /) ).
a€[M]

By Assumption 3.4, 3~ 5 ||§a — gallLa(Px) = op(1), so there exists Nj > Ny such that when
n > N}, with probability at least 1 — 8/(4K),
C(a, a1, n)
sup | K4( —_—.
71'61:1')1‘ 4 ‘ - 4\/7E

Combining (17)-(21) and taking a union bound over k € [K|, when n > max(Ny, N2, N3, Ny) we
have that with probability at least 1 — 3,

2y

- Cla,a,n,n)
Ry < 220
:161%‘ (m) = Vs(m)| < vn

We have thus completed the proof of Theorem 4.2.
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B.4 PROOF OF THEOREM 4.5

We first state somes results from Si et al. (2023) that will be used in the proof. For any p, ¢ € [0, 1],
define

P 1—p .
D =plo (7) 4+ (1—-p)lo (7>, and = inf ,
(pllq) = plog . (1 —p)log - 95(q) o o <s?
Lemma B.3 (Adapted from Lemma A17 of Si et al. (2023)). For ¢ < 0.2, g5(q) is differentiable and
g5(q) > 1/2 for g € [0.4,0.6].

Note that our definition of gs(q) is slightly different from that in Si et al. (2023), so we include the
proof of Lemma B.3 in Appendix C.4 for completeness.

For notational simplicity, we use d to denote the Natarajan dimension of the policy class II. By the
definition of Natarajan dimension, there exists a set of d data points {z1,...,z4} C X shattered
by II: there exist two functions f_1, f1 : {x1,...,2q} = [M] such that f_;(x;) # fi(z;) for any
j € [d] and for any o € {—1.1}%, there exists m € II, such that 7(z;) = f,, (z;) forall j € [d].

Next, we construct a class of distributions indexed by o € {41} that are “hard instances” for the
learning problem. Fix any o € {£1}%, we construct distribution P, as follows. First, the covariate
are drawn uniformly from {z1,..., 24}, ie.,

X, X Unif({a1,. .., wa}).

Given X, the action A; is chosen according to the behavior policy 7o, where for any j € [d],

€ 1—-¢
mo(fu(z)25) = mo(f-r(w;) [ 25) = 5, and mo(a|a;) = = forall a # fi(;), f-1(z;)-
The potential outcomes are generated as follows:

Vil ()| X = 2~ 7 Bern(FETRY) () | X = 2 ~ 7 Bem (1252,
and Y;(a) = g - Bern(1/4) forall @ # f1(x;), f-1(x;),

where A € (0,0.1) is some constant to be determined later. Note that the distribution of (X, 4;) does
not depend on o. By construction, it is clear that the data-generating process satisfies Assumption 2.1.
Forany p € {(1+ A)/2,(1 — A)/2,1/4}, log(1/(1 — p)) > 6. Therefore, the data-generating
process also satisfies Assumption 2.4. As for Assumption 3.3, it suffices to check the Bernoulli
distributions with parameters (1 + A)/2, (1 — A)/2,1/4, and can be verified. Since n > d?, we
can obtain 6, g, and 7o that converges at rate Op(n~'/%) (by stratifying on X), thereby satisfying
Assumption 3.4.

We now proceed to establish the lower bound. For any policy learning algorithm that returns 7, the
worst-case regret is lower bounded by the average regret over the class of hard instances we have
constructed above:
~ 1 ~
sup Bpn [R(7)] 2 5 > Epp[Rs(7)].
PeP
ce{xt1}

We now focus on the right-hand side above. Fix o € {£1}%. Recall that Rs(7) = Vs(7*) — Vs(7).
For the optimal policy value, there is

Vi) = By [t oy [V(RCO) X]|
o Teaﬁ(rg,a;;( Ep, [ — a(X)exp ( — Y(ﬁ();)()A;; n(X) — 1) -n(X) - a(X)(S}
= maxmax Ep, [ — a(X)exp ( — Y(W();)()X—; n(X) 1) -—n(X) - a(X)(s} , (22)
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where the step (i) follows from the duality result in Proposition 2.3. We now take a closer look at the
expectation above: by the construction of P,,

Er. [~ aye (- DL ) g
— ;;ER’ {— a(r;)exp ( _ Y(W(I;)()x; n(@;) _ 1) —n(zj) — az;)d ‘ X = T/J}
- Clljzi:l_a(xj)exp ( — Z((ij)) — 1) -Ep {exp ( — Y((:(Sjj)))) ‘X = ifj] - n(z;) — afz;)d.

Letting p; = P(Y(7(z;)) = 1| X = z;), we have

Y(r(z;))

E (— )‘X: | = piexp(=1/a(z;)) + 1 — p;,
P {exp o(z;) Ly pjexp(—1/a(z;)) + pj
which is decreasing in p; and is minimized when 7(z;) = f,,(x;). By construction, such a policy

is in II. As a result,

22) = max é zi: [ a(x;)exp ( Yo, () + m(x;) — 1) —n(z;) —a(z;)d ‘ X = ch]

a(z;)

[anp<Y(ij($j))+77

" l)naéle]}

H‘M& H'QFﬂHm 3

1+A).

inf Eay x [¥ (fo, (a3)) | X = 23] = g (=

Qv | x€P(P, Y\X:wjv(s)

The last step is because Y (f5, (z;)) | X = x; ~ Bern((1 + A)/2). Similarly, for V(7), we have

Vs(7) =E f E Y(7(X)) | X
@) =B [t Eo V(X))
1 d
= - inf E Y(7(x;))| X =x;
d;QY\XGP(IPIi‘Y|X:mj’6) QY\X[ (71'(%])” JUJ]

- 3= s lo(52) e gt 52)

+ L{®(x5) # fo, (25): =0, () }9(1/4).

Combining the calculation above, we have

_2:: = aj(xj)}'{9<1J;A)—g(1_2A>}
FUFE) £ fry (o) Lo ) {0 (55 - a1/}

iﬂl{w (@) # o) {o (152 - s/}

&.\H

Ve
Ul -

—
=
=

(V4
QU=
‘Mg Ik

d
() # o)) 0 ©OA 2 23 1R ;) £ o ),

1

J

where step (i) uses that g is non-decreasing (c.f. Cauchois et al. (2024, Proposition 1)); in step (ii),
e ((1—-A)/2,(14+ A)/2), and step (iii) follows from Lemma B.3.
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Next, we denote o[j] to be the vector o with the j-th element flipped. Then, we have

d
b Y EnR@Iz G Y Epﬁz (7)) # Iy ()}

oce{£1}4 2 oe{£1}4

A d
= i > > {PP: (7 (@) # f1(z5)) + Ppr (F(z)) # f—1($j))}

j=lo:o;=1

d
> d2§+1 Z Z ]P’P;l (%(ZL']) # fl(mj)) + Pp:[]_] (%(xj) = fl(l’]))

j=lo:i0;=1
A d
= 42d+1 Z Z (1- DTV<P£7P;L[]’]))’ (23)
j=1lo:0;=1

where the last step follows from the definition of the TV distance. By Pinsker’s inequality, there is

* D (P21 Py
= *ZEP [log(

=3 Ly E, {R{Xi =2, 4i = fai(z;)} - Alog (ii)}

i=1

D3y (P}, PJy)

| A

(Xi»Ain))}

U[J]

3ne
< ZZA2
— 2d

where the last step follows from zlog(12) < 322, for z € (0,1/3). Take A = L/ % — this is
possible since n > d? and d > 4/(9¢) and then

d d2d-! 1 d
23y >4 /8% L %
(23) 2 \/;15d2d+2 120 Ve

C PROOF OF TECHNICAL LEMMAS

C.1 PROOF OF LEMMA B.1

Proof of (1). Given 0, recall that our loss function is

é(m,y;@):aexp(—yz:in—l) + 1+ ad.

By the strong duality, E[¢(X,Y (7 (X));0) | X] is convex in 0; by Proposition 2.5, the first-order
condition of convex optimization problem implies

vgﬁ[g(x,y(w(x)); 07 (x)) | X = a:] —0.

Meanwhile, we can compute the gradient of ¢(z, y; 6) as

Lz, y;0) = (l—l—y;—n) exp(—%—l)—l—d,

Ao
0 B Y+
5 (xy,&)-l—exp(—T—l). (24)

For any a such that |a — o (2)| < a(z), we have

%((%y; (a,n;(x)))‘ < (1 + W) - exp (@ - 1) 16 < .
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By the mean value theorem and the dominated convergence theorem, we can change the order of
expectation and taking limits and therefore

E[aiﬁ(x,Y(ﬂ(x));H;(w)) | X = x} = SB[l Y (r()):630) | X = 2] =0,

Similarly, since o 9 ¢(x,y; (a’(x),n)) is non-decreasing in 7, for | — n*(z)| < 1,

;E(Iv,y; (o (), m)| < maX{ ;E(x,y; (o (), mz(x) + 1)),

with the right-hand side being integrable under Py | x. Agian by the mean-value theorem and the
dominated convergence theorem,

E[;nﬁ(x,Y(ﬁ(x)); 0 (z)) ‘X - x} - ;E[ﬁ(m, Y (n(x)); 0% () ’X - x] —0.

We have thus completed the proof part (1) of Lemma B.1.

9 hay: (0t (), () — 1>>\},

n

Proof of (2). We now compute the Hessian of £(z, y; 6):
82 2
5 l(,y;0) = (R +377) exp ( Sy 1),
a

Oa? o

0 y+n y+n
aaane('ﬁay70) - CEQ € - = 1)7
0 y+n
ﬁg(l‘v?ﬁe) - 7eXp(_7_ )

By the Taylor expansion,
* * * 1 * n *
Uz, y;0) = U, y; 07 (x)) = Ve, y;07(2)) " (0 = 07(2)) + 5(0 = 07(2)) " V2w, 5:0)(0 — 07(x)),
= |l(x,y;0) — l(z,y; 0% (x)) — VL(z,y; 05 (x)) T (0 — 05 (2))]
Li+a)?® 1 Y+ £ (N12
< Z — — _ —
~ <5( ) e (- L - 1) 10— 0: @),
where § = t0 + (1 — t)0%(x) for some ¢ € [0, 1] and the last step is because
~ 2 ~
2 gyl o< (WS 1 L yt+n
V26, y:0)]|, < ( -+ d) exp( =1 1)
Let £ = min(a,7)/2. For any 6 such that |6 — 0% (z)||2 < &, we also have |& — o’ (z)| < € and
|7 = nz ()| < £ Then
Loy+n)? 1 y+i 8y + 8> | 2 2y + 477
- = _ L) (222 L 2. —1).
2( as +d)eXp< & 1)*( o3 +a) eXp( a 1)

Letting the right-hand side be £(x, y), we have thus completed the proof of (2).

Proof of (3). By the Taylor expansion,
Uz, y;0) — U(z,y; 0, () Ve(z,y; é)T(H( ) — 0% (z ))
[

)=
where @ = t0(z) + (1 — t)@: for some ¢ € [0, 1]. Let 51 = min(a,7)/2. When ||0 — 0%||1.. <&,
we have | — af(z)| < & and |77 — ni(x)| < &. Plugging the expressions of the grad1ent in
Equation (24), we have

(6, y;0(x)) — Uz, 3 05(2))]” = [Vel(z,:0(x))T (0(z) - 02(x))]
{[(1—&- yz(z() )>exp(—y—(;(i’r()x)—1> —|—5} + [1—exp(—yg(z()x) —1)] }HO(JB)—O:(JJ)H;

<C(g,a,a,1,9) - ||0(x) — 6%(2) |2

where C(y, &, a, 7, 0) is a function of( a, 1, 6). Taking the expectation over Px y | ao—r(x), We
have

16X, Y;0(X)) — (X, Y;05(X
completing the proof of (3).

2

< C(y, o, ,1,0) - ||0 — 07

HLz(Px Y| A=m(X)) — Lo (Px | a=x(x))’
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C.2 PROOF OF LEMMA B.2

We first introduce the ¢y distance on the policy space II, as well as the corresponding covering
number.

Definition C.1. Given a function h and a set of realized data 21, ..., z,,

(1) the ¢, distance between two policies 71, mo € II with respect to {z1, ..., z,, } is defined as
2
izt (h(ziy (i) = h(zi; ma(x:)))
Y4 ; .. = = .
2(71-177727{'21’ 7Z?’L}) \/ 4227,:1 Ci(zi)z

(2) Na(v,IL;{z1,..., 2, }) is the minimum number of policies needed to y-cover IT under 5
with respect {z1, ..., 2, }.

Under the /5 distance, we define a sequence of approximation operators A; : II — II for j € [J],
where J = [log, n]. Specifically, forany j = 0, 1,...,.J, let S; be the set of policies that 27-covers
IT and satisfies |S;| = No(277,1;{Z1, ..., Z,}). Specially, Sy = {7}, with 7 is an arbitrary policy
in IT — this is a valid choice since for any 7 € II,

n _ 2
i Sy (he (@) — bz 7 ()
14 ; ceyZn)) = = . <1.
) ¢ 1T ) :
We shall let A = 21/) ", ¢;(2;)? to denote the normalization factor. The approximation operators
are defined in a backward manner: for any 7 € II,

(1) define A [r] = argmin ¢y (7r, 7' {z1,. .., zn}),
€Sy

) forj=J—1,...,0,define
Aj[r] = argmin £y (Aj+1[7r], 7' {z1,. .. ,zn})

7' €S,

Using the sequential approximation operators, we decompose the inner expectation term in (16)
(Rademacher complexity) as

E. | sup

mell |

1€[n]

1 3 eih(Zi,ﬁ(Xi))H

<E.

sup
mell

L3l m(X0) - Wz Al
1€[n]

+ E. | sup

mell

Jj=

Zl % .ZH & [P(Z;, A;[7)(X5)) — h(Zi, Ay [7)(X5))] H

+ E. | sup

mell

1

Ly eih<zi,Ao[w1<Xi>>H
i€[n]

=5 + 5o + Z3.

For any 7 € II, by the Cauchy-Schwarz inequality,

L3 alnnn(a) ~ A Aslal(an)]

sup

well icln)

1 2
<= n Y (h(zi,m(@) = h(zi, Aglr(2:))

i€[n]

= Lt Asmi (e )
= \/ﬁ 27, Ag(T); %1, s An

A, A
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where the second-to-last step is because A j(7) is 277/ -close to 7 and the last step is by the choice of
J. As a result the above derivation, Z; < A/n%/2.

Next, for any j = 1,...,J we use P; to denote the projection of projecting a policy to S}, i.e.,
Aj_1[r] = Pj_1[A;[x]]. Once A;() is determined, A;_1 () is also determined. For any s > 0,

R(SHIF)I % Z € [h(zi, Aj[m)(2;)) — h(zi; Aj—a [7)(z z))}’ > S)
e i€[n]

> P (‘711 doa {h(zivﬂ'(l’i)) - h(Zij—l[W/](ifi))H > 5)

' €S i€[n]

IN

IN

2n2s?
2-ex — 5
71';93' ) p( Sy [Pzis 7 () — h(zi, Pia[n)(2:))] )
2n?s?
= Z 2. eXp<_A2€2(7r’, jl(ﬂ’);2)2>

7' eS;
. n?s?
§2N2(2 j,]:LZ) exp(— m)7
we z is a shorthand for {z1,...,2,}. Forany j = 1,...,J and m € N, take

Siim = oi— 1/2 \/log Np (277,15 Z) - 2m 41 j2).

For a fixed m, with a union bound over j = 1,...,J we have that

(ggzzza (21,1 <mwm%&ﬂﬂmﬂzéﬁﬁ
SRICT

mell

A A > < -1 < !
Z ei[h(zi, Ajlr] () — h(z, j—l[ﬂ](fﬂi))}‘ > Sjym> = Z j2om = gm—1-

ze[n] j=1

To proceed, we shall use the following lemma, whose proof is deferred to Appendix C.3.

Lemma C.2. For any realization z1, . . ., z, and ~y > 0, there is No(7y,11; 21, ..., 2,) < Ny (v2,10).

By Lemma C.2, forany m € N,

Zst:ZQJ 172, \/Iog (N2(277, 11 Z) - 2m+152)

j=1

iy | |
< Z 172 V10s(Ni (2727, T0)) + (m + 1) log 2 + 2log ()

mMZW(W%M@”W+W””V%g)

@4‘/\(( )+ vVm+14+1) = up,

n
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where step (i) uses v/a + b+ ¢ < v/a + Vb + /¢ for a, b, ¢ > 0; step (ii) uses the definition of r(IT).
Then

==K ligg Z Zez[ 2iy Aj[ml(2:)) — h(zi, Aja[7] (@ J)}H
:/O <i‘€1§ Z Z 61[ zi, Ajlm) () h(zi,Aj_l[ﬂ](xi))H > 5> ds

<wu; + Z(ukH — uk) s
k=1

:4A-(m(H)+\f2+1+§:(\/ﬁ—x/m)-2‘k“)SWA (R(IT) + 7).

n
k=1

Finally, we consider =3. Recall that Sy = {7}, and therefore

% > eih(zi,ﬂ(xi))H = /OOO P, (‘; > eih(zi,ﬂ(a:i))‘ > s> ds

1€[n] i€[n]

23 =E.

Putting everything together,

]Ee{ Tlli:eih(xi,ai,yi,w(xi))” < % - (4k(I1) + 32)

i=1

C.3 PROOF OF LEMMA C.2

Fix v > 0. If Ny (v2,1I) = oo, the lemma is trivially true. Otherwise, let Ng = Ny (v?;1I). For
any realization z1, ..., 2,, define

(751, mio) = argmax{ A (zi, 71 (2)) — h(zi, m2(2:))|}.

L, T2

Implicitly, (7}, 7} 5) depends on z;. For an arbitrary positive integer m and i € [n], we define

m * * 2
ny = |5 (a0 @) =z mha(@) ).
where we recall that A> = 4" | ¢;(2;)?. We then construct a new set of data

{Z1,. 2N} = {21, -, 21,22, - -, 225 oy Zns e oy Zn by
where z; appears n; times and

n

N = Zm = Z [%{h(%ﬁg(xi)) - h(%ﬂiz(%))}ﬂ <m+n.
i—1

i=1

By definition, there exists a policy set Sy to be a y2-cover of I the Hamming distance with respect to
Z:={&1,...,Zn} such that |So| = Ny. As aresult, for any 7 € II, there exists 7’ € Sy such that
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H(m,7';%) < ~2. On the other hand,

N

H(m,7';%) = %Z (%) # 7' (2:)}

i=1

2 Z:\[]; %{h(zz, w1 (i) — h(%»ﬁg(%))ﬁ {7 (z;) # 7' (2)}
(i 1 <~ m , 2 ,
> % 2 e s m(an)) = W v/ (@)} - L) # 7 (00)

Gy 1 " m 2
= N E{h(zl,ﬂ'(l‘z)) —h(Zi,ﬂ'/(J?i))} .
i=1
Above, step (i) and (ii) follow from the choice of Z and (77;‘71, 7r;‘72), respectively; step (iii) is because
when 7(z;) = 7'(z;), h(z, w(x;)) = h(z,7(x})). By the definition of the ¢y distance and that
N < m + n, we further have

v > H(m, 7' %) > (s 2).

(m+n)
Since m is arbitrary, we take m to infinity and have ¢y (7, 7’; 2) < 5. By definition, Sy is a y-cover
of IT under /5 with respect to z1, . . ., 2, and therefore No(v,1L; 21, . .., 2,) < Ny (72, 10).

C.4 PROOF OF LEMMA B.3

By Yang et al. (2022, Lemma B12), gs(q) is differentiable in ¢, and

Hg) = _94Dxilg(@)|la) _ 9(@)/a—(1—g(a)/(1—q) .
9pDx(9(9) 19)  log (9(a)/(1 — 9(q))) —log (a/(1 — q))

Also by Yang et al. (2022, Lemma B12), g5(g) is convex in g, so gj(g) is increasing in ¢. Since
q € [0.4,0.6], g5(q) > g5(0.4). From the dual form, we can check that g(0.4) > 0.1. Plugging in
q = 0.4, we have

901 4 902 _5/3 _ 9(0.4)/0.24 —5/3
log (9(0.4)/(1 — g(0.4))) —log(2/3)  log(g(0.4)/(1 — g(0.4))) — log(2/3)

Since the function f(z) = e /E(/lo_i%;_‘r’l/o 3g(2 73y 18 increasing in z for z € (0,0.4), we conclude that

95(0.4) =

) 1/2.4—5/3
90O = tog1/9) —Tog(23) = %

completing the proof.
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