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ABSTRACT

Distributionally robust policy learning aims to find a policy that performs well
under the worst-case distributional shift, and yet most existing methods for robust
policy learning consider the worst-case joint distribution of the covariate and the
outcome. The joint-modeling strategy can be unnecessarily conservative when we
have more information on the source of distributional shifts. This paper studies
a more nuanced problem — robust policy learning under the concept drift, when
only the conditional relationship between the outcome and the covariate changes.
To this end, we first provide a doubly-robust estimator for evaluating the worst-case
average reward of a given policy under a set of perturbed conditional distributions.
We show that the policy value estimator enjoys asymptotic normality even if
the nuisance parameters are estimated with a slower-than-root-n rate. We then
propose a learning algorithm that outputs the policy maximizing the estimated
policy value within a given policy class Π, and show that the sub-optimality gap of
the proposed algorithm is of the order κ(Π)n−1/2, with κ(Π) is the entropy integral
of Π under the Hamming distance and n is the sample size. The proposed methods
are implemented and evaluated in numerical studies, demonstrating substantial
improvement compared with existing benchmarks.

1 INTRODUCTION

In a wide range of fields, the abundance of user-specific historical data provides opportunities
for learning efficient individualized policies. Examples include learning the optimal personalized
treatment from electronic health record data (Murphy, 2003; Kim et al., 2011; Chan et al., 2012),
or obtaining an individualized advertising strategy using past customer behavior data (Bottou et al.,
2013; Kallus & Udell, 2016). Driven by such a practical need, a line of works have been devoted
to developing efficient policy learning algorithms using historical data — a task often known as
offline policy learning (Dudík et al., 2011; Zhang et al., 2012; Swaminathan & Joachims, 2015a;b;c;
Kitagawa & Tetenov, 2018; Athey & Wager, 2021; Zhou et al., 2023; Zhan et al., 2023; Bibaut et al.,
2021; Jin et al., 2021; 2022a).

Most existing methods for offline policy learning deliver performance guarantees under the premise
that the target environment remains the same as that from which the historical data is collected. It
has been widely observed, however, that such a condition is hardly met in practice (see e.g., Recht
et al. (2019); Namkoong et al. (2023); Liu et al. (2023); Jin et al. (2023) and the references therein).
Under distribution shift, a policy learned in one environment often shows degraded performance
when deployed in another environment. To address this issue, there is an emerging body of research
on robust policy learning, which aims at finding a policy that still performs well when the target
distribution is perturbed. Pioneering works in this area consider the case where the joint distribution
of the covariates and the outcome is shifted from the training distribution, and propose algorithms that
output a policy achieving reliable worst-case performance under the aforementioned shifts Si et al.
(2023); Kallus et al. (2022). The joint modeling approach, however, ignores the type of distributional
shifts, and the resulting worst-case value can be unnecessarily conservative in practice.

Indeed, distributional shifts can be categorized into two classes by their sources: (1) the shift in
the covariate X , and/or (2) the shift in the conditional relationship between the outcome Y and the
covariate X . The two types of distributional shifts have different implications in differnt applications,
and call for distinct treatment (Namkoong et al., 2023; Liu et al., 2023; Jin et al., 2023; Ai & Ren,
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2024). For example, when the distribution of covariates changes while that of Y |X remains invariant,
the distribution shift is identifiable/estimable since the covariates are often accessible in the target
in environment. Alternatively, when the Y |X distribution changes but the X distribution remains
invariant, the distribution shift is no longer identifiable, and we need to account for the worst-case
situation. This setting, known as concept drift, occurs when the distribution of the unobserved
confounder changes over time, or due to sudden external shocks (Widmer & Kubat, 1996; Lu et al.,
2018; Gama et al., 2014). For example, in advertising, the customer behavior can evolve over time as
the environment changes, while the population remains largely the same. In personalized medicine,
treatment may be affecting patients’ outcomes through some unmeasured confounders that have
different distributions in the training and target cohort, thereby inducing a concept drift.

Our work mainly focuses on robust policy learning under concept drift. Most existing methods for
robust policy learning (Si et al., 2023; Kallus et al., 2022) that model the distributional shift jointly
without distinguishing the sources, and the corresponding algorithms turn out to be suboptimal. The
reason behind their suboptimality is that the worst-case distributions under the two models — the
joint-shift model and the concept-drift model — can be substantially different, so it would be a “waste”
of our budget to consider adversarial distributions that are not feasible under concept drift. It is worth
mentioning that a recent paper by Mu et al. (2022) accounts for the sources of distributional shifts in
policy learning; their approach, however, applies only when the covariates take a finite number of
values, and therefore is limited in its applicability. When the covariate space is infinite, it remains
unclear how to efficiently learn a robust policy under concept drift. The current work aims to fill in
the gap by answering the following question:

How can we efficiently learn a policy with optimal worst-case average performance under concept
drift with minimal assumptions?

We provide a rigorous answer to the above question. Specifically, we assume the covariate distribution
remains the same in the training and target environments, while the Y |X distribution shift is bounded
in KL-divergence by a pre-specified constant δ. Our goal is to find a policy that maximizes the
worst-case averaged outcome over all possible target distributions satisfying the previous condition.

1.1 OUR CONTRIBUTIONS

Towards robust policy learning under concept drift, we make the following contributions.

Policy evaluation. Given a policy, we present a doubly-robust estimator for the worst-case policy
value under concept drift. We prove that the estimator is asymptotic normal under mild conditions on
the estimation rate of the nuisance parameter. Our approach involves first formulating the worst-case
policy value under the concept drift model as the optimal objective value of a distributionally robust
optimization problem with KL-divergence constraints. The optimization problem is then solved in its
dual form. Finally, we plug in the empirical risk optimizer into the dual objective function and take a
debiased step to obtain the final estimator.

Policy learning. We propose a robust policy learning algorithm that outputs a policy maximizing
the estimated policy value over a policy class Π. Compared with the oracle optimal policy, the policy
provided by our algorithm with high probability has a suboptimality gap of the order κ(Π) · n−1/2,
where κ(Π) is a measure quantifying the policy class complexity (to be formalized shortly) and
n is the number of samples. Compared with Mu et al. (2022), our algorithm and theory apply to
general covariate spaces and potentially infinite policy classes, while their method is restricted to
finite covariate space and policy class. Furthermore, the sample dependence of our sub-optimality
gap is O(n−1/2), which is sharper that the (n log n)−1/2 rate in Mu et al. (2022).

Implementation and empirics. We provide efficient implementation of our robust policy learning
algorithm, and compare its empirical performance with existing benchmarks in numerical studies.
Our proposed method exhibits substantial improvement.
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1.2 RELATED WORKS

Offline policy learning. There is a long list of works devoted to offline policy learning. Most of
them assume no distributional shifts (e.g., Dudík et al. (2011); Zhang et al. (2012); Swaminathan &
Joachims (2015a;b;c); Kitagawa & Tetenov (2018); Athey & Wager (2021); Zhou et al. (2023)). Zhan
et al. (2023); Jin et al. (2021; 2022a) allow the data to be adaptively collected, but the distribution over
the covariate and the (potential) outcomes remain invariant in the training and target environment.

As mentioned earlier, the work of Si et al. (2023); Kallus et al. (2022) study robust policy learning
when the joint distribution of (X,Y ) ranges in the neighborhood of the training distribution; Mu
et al. (2022) consider the case when the covariate shift and Y |X shift are specified separately; their
method, however, is restricted to finite covariate space, and their sub-optimality gap is logarithmic
factors slower than parametric rates. The work of Kallus & Zhou (2021) concerns robust policy
learning when the distribution shift is caused by hidden confounders — this is in fact a special type
of concept drift — and the corresponding Y |X shift is assumed to be bounded uniformly, which
is quite different from our f -divergence bound. More recently, Guo et al. (2024) considers a pure
covariate shift with a focus on policy evaluation, where the setup and the goal are different from ours.

Distributionally robust optimization. More broadly, our work is also closely related to DRO,
where the goal is to learn a model that has good performance under the worst-case distribution
(e.g., Bertsimas & Sim (2004); Delage & Ye (2010); Hu & Hong (2013); Duchi et al. (2019); Dudík
et al. (2011); Zhang et al. (2023)). The major focus of the aforementioned works involves parameter
estimation and prediction in supervised settings; we however take a decision-making perspective and
aim at learning a individualized policy with optimal worst-case performance guarantees.

1.3 NOTATION

We use [n] to denote the discrete set {1, 2, · · · , n} for any n ∈ Z. We use argmin and argmax to
denote the minimizers and maximizers; if the minimzer or the maximizer cannot be attained, we
project it back to the feasible set. We denote the usual p-norm as ∥ · ∥p. For any probability measure
P defined on the probability space (Ω, σ(Ω), P ). For any function f , we denote the L2(P )-norm of
f conventionally as ∥f∥L2(P ) = (

∫
|f(x)|2 dP (x))1/2 and ∥f∥L∞ = supx∈X |f(x)|. We use P̂ to

denote the empirical distribution of P . For any random variables X,Y , we use X |= Y to denote that
X is independent of Y . For a random variable/vector X , we use EX [·] to indicate the expectation
taken over the distribution of X .

2 PROBLEM FORMULATION

Consider a set of M actions denoted by [M ] and let X ⊆ Rd. Throughout the paper, we follow
the potential outcome framework (Imbens & Rubin, 2015), where Y (a) ∈ Ya ⊆ R denotes the
potential outcome had action a been taken for any a ∈ [M ]. We posit the underlying data-generating
distribution P on the joint covariate-outcome random vector (X,Y (1), · · · , Y (M)) ∈ X ×

∏M
a=1 Ya.

Consider a data set D = {(Xi, Ai, Yi)}i∈[n] consisting of n i.i.d. draws of (X,A, Y ), where Xi ∈ X
is the observed contextual vector, Ai ∈ [M ] the action, and Yi = Y (Ai) the realized reward. The
actions are selected by the behavior policy π0, where π0(a |x) := P(Ai = a |X = x), for any
a ∈ [M ], x ∈ X . We make the following assumptions for π0 and P .
Assumption 2.1. The behavior policy π0 and the joint distribution P satisfy the following.

(1) Unconfoundedness: (Y (1), · · · , Y (M)) |= A |X .

(2) Overlap: for some ε > 0, π0(a |x) ≥ ε, for all (a, x) ∈ [M ]×X .

(3) Bounded reward support: there exists ȳ > 0, such that 0 ≤ Y (a) ≤ ȳ for all a ∈ [M ].

The above assumptions are standard in the literature (see e.g., Athey & Wager, 2021; Zhou et al.,
2023; Si et al., 2023; Kallus et al., 2022). In particular, the unfoundedness assumption guarantees
identifiability, and the overlap assumption ensures sufficient exploration when collecting the training
dataset. The bounded reward support is assumed for the ease of exposition, and can be relaxed to the
sub-Gaussian reward straightforwardly.
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2.1 THE KL-DISTRIBUTIONALLY ROBUST FORMULATION

Given the training set D = {(Xi, Ai, Yi)}i∈[n] and a policy class Π, we aim to learn a policy π ∈ Π
that achieves high expected reward in a target environment that may deviate from the data-collection
environment where D is collected. While distribution shift can take place in various forms, we focus
primarily on the concept drift, where only the conditional reward distribution Y (a) |X differs in
the training and target environment. The distance between distributions is quantified by the KL
divergence.
Definition 2.2 (KL divergence). The KL divergence between two distributions Q and P is defined as
DKL(Q ∥P ) = EQ[log

dQ
dP ], where dQ

dP is the Radon-Nikodym derivative of Q with respect to P .

We define an uncertainty set of neighboring distributions around P , whose conditional outcome
distribution is bounded in KL divergence from P . Given a radius δ > 0, the uncertainty set of the
conditional distribution is defined as

P(PY |X , δ) :=
{
QY |X : DKL(QY |X ∥PY |X) ≤ δ

}
,

where PY |X and QY |X refers to the distribution of (Y (1), . . . , Y (d)) |X under P and Q respec-
tively. The distributionally robust policy value for any policy π at level δ is defined as

Vδ(π) := EPX

[
inf

QY |X∈P(PY |X ,δ)
EQY |X

[
Y
(
π(X)

) ∣∣∣X]]. (1)

The optimal policy in Π is the one that maximizes Vδ(π), i.e. π∗
δ := argmaxπ∈Π Vδ(π).1

Under this formulation, our goal is to learn a “robust” policy with a high value of Vδ(π) using a
dataset drawn from P . The task here is two-fold: we need to (i) estimate the policy value Vδ(π) for a
given policy π, and (ii) find a near-optimal robust policy π̂ ∈ Π whose policy value is close to the
optimal policy π∗

δ . Here, the performance of a learned policy π̂ is measured by the sub-optimality
gap (regret), defined as

Rδ(π̂) := Vδ(π∗
δ )− Vδ(π̂). (2)

In the following sections, we tackle each task sequentially.

2.2 STRONG DUALITY

In order to estimate Vδ(π), we first rewrite the inner optimization problem in Equation (1) in its dual
form using standard results in convex optimization. The transformation is formalized in the following
lemma, with its proof provided in Appendix B.1.
Lemma 2.3 (Strong Duality). Given any π ∈ Π and any x ∈ X , the optimal value of inner
optimization problem in Equation (1) equals to

− min
α≥0,η∈R

EP

[
α exp

(
− Y (π(X)) + η

α
− 1
)
+ η + αδ

∣∣∣X = x

]
. (3)

We note that the optimization problem in (3) depends on x and π — to manifest this dependence, we
use (α∗

π(x), η
∗
π(x)) to denote its optimizer, i.e.,(

α∗
π(x), η

∗
π(x)

)
∈ argmin

α≥0,η∈R
EP

[
α exp

(
−Y (π(X)) + η

α
− 1
)
+ η + αδ

∣∣∣X = x

]
.

With this notation and Lemma 2.3, the robust policy value becomes

Vδ(π) = −EP

[
α∗
π(X) exp

(
− Y (π(X)) + η∗π(X)

α∗
π(X)

− 1
)
+ η∗π(X) + α∗

π(X)δ

]
. (4)

The above formulation has thus translated the original distributionally robust optimization problem
into an empirical risk minimization (ERM) problem. We note that, unlike the well-studied joint

1When the supremum cannot be attained, we can always construct a sequence of policies whose policy values
converge to the supremum, and all the arguments go through with a limiting argument.
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distributional shift formulation, the above representation admits an optimizer pair (α∗
π(x), η

∗
π(x))

that is dependent on the context x (i.e. α∗
π, η

∗
π are functions of x) and the policy π. As we shall see

shortly, our proposed policy value estimation procedure employs ERM tools to estimate (α∗
π, η

∗
π), and

then compute an estimate of Vδ(π) by plugging (α∗
π, η

∗
π) into Equation (4). The remaining challenge

in this proposal is the slow estimation rate of the optimizers — if we naïvely plug in the optimizers,
the resulting policy value estimator typically has a convergence rate slower than root-n. To overcome
this, we incorporate a novel adjustment method to debias the estimator, which allows us to obtain a
doubly-robust estimator that achieves root-n rate of convergence even when then nuisance parameters
(e.g., (α∗

π, η
∗
π)) are converging slower than the root-n rate.

We end this section by discussing when α∗
π(x) > 0. Throughout, we shall make the following mild

assumption on the conditional outcome distribution.
Assumption 2.4. For a ∈ [M ] and x ∈ X , define y(x; a) = sup{t : P(Y (a) < t | X = x,A =

a) = 0} and p̃(x; a) = P(Y (a) = y(x; a) | X = x,A = a). Let f∗
KL(x) = ex−1. It holds that

p̃(x; a)f∗
KL(1/p̃(x; a)) + (1− p̃(x; a))f∗

KL(0) > δ for PX|A=a-almost all x.

The above assumption requires that PY |X,A does not posit a large point mass at its essential infimum,
which can be satisfied by many commonly used distributions, e.g., all the continuous distributions.
Next, the following result from Jin et al. (2022b, Proposition 4), shows that α∗ > 0 when Assump-
tion 2.4 holds, which ensures that the gradient of the risk function in ERM has a zero mean.
Proposition 2.5 (Jin et al. (2022b)). Under Assumption 2.4, the optimizer α∗ of (3) satisfies α∗ > 0.

3 POLICY VALUE ESTIMATION UNDER CONCEPT DRIFT

3.1 THE ESTIMATION PROCEDURE

Fixing a policy π, we aim to estimate the policy value Vδ(π) using the training dataset D. We first
split D into K equally sized disjoint folds, D(k) for k ∈ [K],2 where we slightly abuse the notation
and D(k) to denote the data points or the corresponding indices interchangeably.

For each k ∈ [K], we use data points in D(k+1) to obtain the propensity score estimator π̂(k)
0 and the

optimizers (α̂(k)
π , η̂

(k)
π ).3 Next, we define

Ĝ(k)
π (x, y) := α̂(k)

π (x) · exp
(
− y + η̂

(k)
π (x)

α̂
(k)
π (x)

− 1
)
+ η̂(k)π (x) + α̂(k)

π (x) · δ,

and its conditional expectation

ḡ(k)π (x) := EP

[
Ĝ(k)

π

(
X,Y (π(X))

) ∣∣X = x
]
.

We then use D(k+2) to obtain ĝ
(k)
π as an estimator of gπ . The policy value estimator V̂(k)

δ (π) for the
k-th fold is constructed as

V̂(k)
δ (π) =

1

|D(k)|
∑

i∈D(k)

1{π(Xi) = Ai}
π̂
(k)
0 (Ai |Xi)

·
(
Ĝ(k)

π (Xi, Yi)− ĝ(k)π (Xi)
)
+ ĝ(k)π (Xi). (5)

The final policy value estimator is given by

V̂δ(π) := −
1

K

K∑
k=1

V̂(k)
δ (π).

The complete procedure is summarized in Algorithm 1. A few remarks are in order.
Remark 3.1. The estimation procedure involves three model-fitting steps corresponding to π0,
(απ, ηπ), and ḡπ , respectively. The propensity score function π0 can be estimated with off-the-shelf
algorithms (e.g., logistic regression, random forest); the conditional mean g

(k)
π can be obtained by

2in practice, we only need a minimum of K = 3 folds.
3We use the convention that D(k+j) = D(k+j mod K) for any j, k.
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Algorithm 1 Policy estimation under concept drift
Input: Dataset D; policy π; uncertainty set parameter δ; propensity score estimation algorithm C;
ERM algorithm E for obtaining (α∗

π, η
∗
π); regression algorithmR for estimating ḡπ .

Randomly split D into K non-overlapping equally-sized folds D(k), k ∈ [K];
for k = 1, · · · ,K do

On D(k+1): π̂(k)
0 ← C(D(k+1)), (α̂(k)

π , η̂
(k)
π )← E(D(k+1));

On D(k+2): ĝ(k)π (·)← R
(
{Xi, Ai, Ĝ

(k)
π (Xi, Yi); i ∈ D(k+2)}

)
;

On D(k): compute V̂(k)
δ (π) according to Equation (5);

end for

Return: V̂δ(π)← − 1
K

∑K
k=1 V̂

(k)
δ (π).

regressing Ĝ
(k)
π (Xi, Yi) onto Xi for the points such that Ai = π(Xi) with standard regression algo-

rithms, e.g., kernel regression (Nadaraya, 1964; Watson, 1964), local polynomial regression (Cleve-
land, 1979; Cleveland & Devlin, 1988), smoothing spline (Green & Silverman, 1993), regression
trees (Loh, 2011) and random forests (Ho et al., 1995). The ERM step is more complex, and will be
discussed in detail shortly.
Remark 3.2. The construction of the estimator V̂δ(π) employs two major techniques: cross-fitting and
de-biasing. The cross-fitting technique crucially provides the convenient property of independence
and the de-biasing technique overcomes the slow rate of estimating the nuisance parameter απ, ηπ,
leading to the doubly-robust property of the proposed estimator.

The ERM step. For notational simplicity, we denote θ = (α, η) and write the loss function as

ℓ(x, y; θ) = α(x) exp
(
− y + η(x)

α(x)
− 1
)
+ η(x) + α(x)δ. (6)

By the notation, θ∗π(x) = (α∗
π(x), η

∗
π(x)) is the optimizer of EP [ℓ(x, Y (π(x)); θ∗) |X = x].

Throughout, we make the following assumption on θ∗π .
Assumption 3.3. For any policy π, there exist constants α, ᾱ, η̄ such that

0 < α ≤ α∗
π(x) ≤ ᾱ,

∣∣η∗π(x)∣∣ ≤ η̄, for all x ∈ X .

The above assumption is quite mild. It can be achieved, for example, when θ∗π(x) is continuous in x
and when X is compact. We refer the readers to Jin et al. (2022b) for a more detailed discussion.

Under the unconfoundedness assumption, it can be seen that θ∗π is also a minimizer of
EP

[
ℓ(X,Y ; θ)1{A = π(X)}

]
. We obtain an estimate of θ∗π by minimizing the empirical risk:

θ̂(k)π ∈ argmin
θ∈Θ

{
1

|D(k+1)|
∑

i∈D(k+1)

1{Ai = π(Xi)} · ℓ(Xi, Yi; θ)

}
, (7)

where Θ ⊆ {(α, η) : α(x) ≥ 0, η(x) ∈ R, for any x ∈ X} is to be determined. In our imple-
mentation, we follow Yadlowsky et al. (2022); Jin et al. (2022b); Sahoo et al. (2022), and adopt
the method of sieves (Geman & Hwang, 1982) to solve (7). Specifically, we consider an increas-
ing sequence Θ1 ⊂ Θ2 ⊂ · · · of spaces of smooth functions, and let Θ = Θn in Equation (7).
For example, Θn can be a class of polynomials, splines, or wavelets. It has been shown in Jin
et al. (2022b, Section 3.4) that under mild regularity conditions, θ̂(k)π converges to θ∗π at a non-
parametric rate. For example, if X =

∏d
j=1 Xj ⊆ Rd for some compact intervals Xj and that θ∗π

belongs to the Hölder class of p-smooth functions, with some other mild regularity conditions, then
∥θ̂(k)π −θ∗π∥L2(PX |A=π(X)) = OP ((

logn
n )−p/(2p+d)) and ∥θ̂(k)π −θ∗π∥L∞ = OP ((

logn
n )−2p2/(2p+d)2).

We refer the readers to Yadlowsky et al. (2018) and Jin et al. (2022b) for more details.

3.2 THEORETICAL GUARANTEES

We are now ready to present the theoretical guarantees for the policy value estimator V̂δ(π). To start,
we make the following assumption on the convergence rates of the nuisance parameter estimators.

6
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Assumption 3.4 (Asymptotic estimation rate). For any policy π, assume that for each k ∈ [K],

(a) The estimators π̂(k)
0 and ĝ

(k)
π satisfy

∥π̂(k)
0 − π0∥L2(PX |A=π(X)) = oP (n

−γπ ), ∥ĝ(k)π − ḡ(k)π ∥L2(PX |A=π(X)) = oP (n
−γg ),

for some γπ, γg ≥ 0 and γπ + γg ≥ 1
2 .

(b) The optimizer θ̂(k)π satisfies

∥θ̂(k)π − θ∗π∥L2(PX |A=π(X)) = oP (n
− 1

4 ), ∥θ̂(k)π − θ∗π∥L∞ = oP (1).

Assumption 3.4 (a) requires either the propensity score or the conditional mean of Ĝ(k)
π (X,Y ) is well

estimated, and is standard in the double machine learning literature (Chernozhukov et al., 2018; Athey
& Wager, 2021; Zhou et al., 2023; Kallus et al., 2019; 2022; Jin et al., 2022b) and can be achieved
by various commonly-used machine learning methods discussed in Section 3.1. Assumption 3.4 (b)
requires the optimizer θ̂(k)π to be estimated at a rate faster than n−1/4, and can be achieved by, for
example, the estimators discussed in Section 3.1 under mild conditions.

The following theorem states that our estimated policy value V̂δ(π) is consistent for estimating Vδ
and is asymptotically normal. Its proof is provided in Appendix B.2.

Theorem 3.5 (Asymptotic normality). Suppose Assumptions 2.1, 2.4, 3.3, and 3.4 hold. For any
policy π : X 7→ A, we have

√
n ·
(
V̂δ(π)− Vδ(π)

) d.→ N(0, σ2
π),

where

σ2
π = Var

(
1{A = π(X)}
π0(A |X)

·
(
G(X,Y )− g(X)

)
+ g(X)

)
;

Gπ(x, y) = ℓ(x, y; θ∗π) and gπ(x) := E
[
Gπ(X,Y (π(X))) |X = x

]
.

4 POLICY LEARNING UNDER CONCEPT DRIFT

Building on the results and methodology in Section 3, we turn to the problem of policy learning under
concept drift.

Given a policy class Π and an estimated policy value V̂δ(π) for each π ∈ Π, it is natural to consider
optimizing the estimated policy value over Π to find the best policy. The biggest challenge here is
that the quantity θ̂

(k)
π in defining V̂δ(π) is not only a function of x ∈ X , but also a function of π ∈ Π.

The above strategy requires carrying out the ERM step in Section 3.1, for all possible policies π ∈ Π,
posing major computational difficulties.

Instead of solving θ̂
(k)
π for each π ∈ Π, we propose an alternative strategy that solves a similar ERM

problem for each action a ∈ [M ]. To see why this is sufficient, note that for any π ∈ Π,

E
[
ℓ(X,Y (π(X)); θ) |X = x

]
=

M∑
a=1

1{π(X) = a} · E[ℓ(x, Y (a); θ) |X = x]. (8)

Letting θ∗a(x) ∈ argmin
θ

{
E[ℓ(x, Y (a); θ) |X = x]

}
, we can see that θ∗π(x)(x) is a minimizer of (8).

Then, the policy learning problem reduces to finding π ∈ Π that maximizes

−E

[
α∗
π(X)(X) · exp

(
−

Y (π(X)) + η∗π(X)(X)

α∗
π(X)(X)

− 1

)
+ η∗π(X)(X) + α∗

π(X)(X)δ

]
.

The following section instantiates this idea and provides a detailed algorithm for policy learning
under concept drift.
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Algorithm 2 Policy learning under concept drift
Input: Dataset D; policy class Π; uncertainty set parameter δ; propensity score estimation
algorithm C; ERM algorithm E(·) for obtaining θ∗a; regression algorithmR for estimating ḡa.

Randomly split D into K equal-sized folds;
for k = 1, . . . ,K do

π̂
(k)
0 ← C(D(k+1)),

for a = 1, · · · ,M do
θ̂
(k)
a ← E(D(k+1));
ĝ
(k)
a ← R(Xi, Ai, Ĝ

(k)
a (Xi, Yi); i ∈ D(k+2));

end for
end for

Return: π̂LN that maximizes V̂LN
δ (π) as in Equation (9).

4.1 THE LEARNING ALGORITHM

The policy learning algorithm consists of two main steps: (1) solving for θ∗a for each a ∈ [M ] and
constructing the policy value estimator V̂δ(π); (2) learning the optimal policy π∗

δ .

As before, we randomly split the original data set D into K folds. For each fold k ∈ [K], we use
samples in the (k+1)-th data foldD(k+1) to obtain the propensity estimator π̂(k)

0 (a | ·) (by regression)
and the optimizer θ̂(k)a (·) (by ERM) for each a ∈ [M ]. Next, for each a ∈ [M ], define

Ga(x, y) = ℓ(x, y; θ∗a), Ĝ
(k)
a (x, y) = ℓ(x, y; θ̂(k)a ), and ḡ(k)a (x) = E

[
Ĝ(k)

a (X,Y (a)) |X = x
]
.

We then obtain an estimator ĝ(k)a for ḡ(k)a by regressing Ĝ
(k)
a (Xi, Yi) onto Xi with i ∈ D(k+2).

Finally, we obtain the learned policy by maximizing the estimated policy value:

π̂LN = argmax
π∈Π

V̂LN
δ (π) :=

1

K

K∑
k=1

V̂LN,(k)
δ (π), where

V̂LN,(k)
δ (π) =

1

|D(k)|
∑

i∈D(k)

1{Ai = π(Xi)}
π̂
(k)
0 (Ai |Xi)

·
(
Ĝ

(k)
π(Xi)

(Xi, Yi)− ĝ
(k)
π(Xi)

(Xi)
)
+ ĝ

(k)
π(Xi)

(Xi).

(9)
Above, the optimization problem can be solved by first-order optimization methods or policy tree
search as in Zhou et al. (2023); we shall elaborate on the implementation in Section 5. The complete
policy learning procedure is summarized in Algorithm 2, in which D(k)

a := {(Xi, Ai, Yi) ∈ D(k) :
Ai = a}.

4.2 REGRET ANALYSIS

In this section, we present the regret analysis of π̂LN obtained by Algorithm 2 (recall that the
definition of regret is given in Equation (2)). Before we embark on the formal analysis, we introduce
the Hamming entropy integral κ(Π), which measures the complexity of Π.
Definition 4.1. Given a policy class Π and n data points {x1, . . . , xn} ⊆ X ,

(1) The Hamming distance dH(π, π′) between two policies π, π′ ∈ Π is defined as

dH(π, π′) =
1

n

n∑
i=1

1{π(xi) ̸= π′(xi)}.

(2) The ε-covering number of {x1, . . . , xn}, denoted as C(ϵ,Π; {x1, . . . , xn}), is the smallest
number L of policies {π1, . . . , πL} in Π, such that ∀ π ∈ Π, ∃ π′

ℓ such that dH(π, πℓ) ≤ ϵ.

(3) Denote NH(ϵ,Π) := supn≥1 supx1,...,xn
C(ϵ,Π; {x1, . . . , xn}). The Hamming entropy

integral of Π is defined as κ(Π) :=
∫ 1

0

√
logNH(ϵ2,Π) dϵ.

8
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Now we present the main result.
Theorem 4.2. Suppose Assumptions 2.1, 3.3, 3.4 hold. For any β ∈ (0, 1), there exists N ∈ N+ such
that when n ≥ N , we have with probability at least 1− β that

Rδ(π̂LN) ≤
5
√
KC0(ᾱ, α, η̄, δ, ε)√

n
·
(
22 + 4κ(Π) +

√
2 log(K/β)

)
,

where C0(ᾱ, α, η̄, δ, ε) := 6(ᾱ · exp(η̄/α− 1) + η̄ + ᾱδ)/ε.

The proof of Theorem 4.2 is deferred to Appendix B. The main idea is to start with the following
regret decomposition:

Rδ(π̂LN) = Vδ(π∗)− Vδ(π̂LN) ≤ Vδ(π∗)− V̂LN
δ (π∗) + V̂LN

δ (π∗)− V̂LN
δ (π̂LN) + V̂LN

δ (π̂LN)− Vδ(π̂LN)

≤ 2 sup
π∈Π
|V̂LN

δ (π)− Vδ(π)|.

We bound the above quantity by establishing uniform convergence results for the policy value
estimators.
Remark 4.3. The theorem shows that the dependence ofR(π̂LN) on n is of the order O(n− 1

2 ), which
outmatches the O(n− 1

2 log n) dependence for that of Mu et al. (2022) by a logarithmic factor.

5 NUMERICAL RESULTS

We evaluated our learning algorithm in a simulated setting against the benchmark algorithm SNLN in
Si et al. (2023). Our data generating process follows that of the linear boundary example in Si et al.
(2023). We let the context set X = {x ∈ R5 : ∥x∥2 ≤ 1} to be the closed unit ball of R5 and let the
action set to be A = {1, 2, 3}. We assume the rewards Y (j)’s are mutually independent conditioned
on X with conditional distribution that follows a Gaussian law. We prepared a training dataset Dtrain
(used for policy learning tasks) and a testing dataset Dtest (used to empirically derive the underlying
true policy value of the learnt policies, as the performance metric). The empirical policy value V̄δ(π)
of any policy π ∈ Π is calculated as the sample average

V̄δ(π) = −
1

|Dtest|
∑

i∈Dtest

[
απ(Xi) exp

(
− Yi(π(Xi)) + ηπ(Xi)

απ(Xi)
− 1
)
+ ηπ(Xi) + απ(Xi)δ

]
,

where the nuisance parameters απ(Xi), ηπ(Xi) are found via optimization:

argmin
α≥0,η∈R

(
1

|{j ∈ Dtest : Xj = Xi}|
∑

j∈Dtest

(
α exp

(
−Yj(π(Xj)) + η

α
− 1
)
+η+αδ

)
1{Xj = Xi}

)
.

The testing datasetDtest realized i.i.d. draws of data tuple (X,Y (1), · · · , Y (M)) so that the empirical
policy value V̄δ(π) could be computed for all π.

To perform our proposed learning Algorithm 2 combined with the policytree R package (Athey &
Wager, 2021), we first split the dataset into K = 3 folds. Then we use Random Forest Regressor from
scikit-learn Python library to find both π̂0 and ĝ; cubic spline is implemented to approximate
θ∗ with threshold at 0.001 to guarantee Proposition 2.5. We employ the Nelder-Mead optimization
method in SciPy Python library (Virtanen et al., 2020) to optimize the coefficients in the spline
approximation. For each data point (Xi, Ai, Yi), using the estimated parameters r̂, ĝ, (α̂a, η̂a)a∈A
outputted by Algorithm 2, the outcomes Ŷi(a) under any action a ∈ A for i ∈ [n] are estimated and
stored in an outcome matrix. Then policytree finds π̂LN with the outcome matrix.

The benchmark algorithm SNLN is adapted from Si et al. (2023, Algorithm 2). Since Si et al. (2023,
Algorithm 2) is designed for joint distribution shift formulation, we revised the original algorithm to
fit our concept drift setting. It is well-known that the chain rule of KL-divergence (Cover, 1999) gives

DKL(QX,Y ∥PX,Y ) = DKL(QX ∥PX) +DKL(QY |X ∥PY |X). (10)

Therefore, given any uncertainty set radius δ and known covariate shift (in this experiment, we
assume no covariate shift), Si et al. (2023, Algorithm 2) can be used to implement policy learning

9
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under concept drift. Note that SNLN admits known propensity scores. As we only consider the
case where the propensity scores are unknown, we complement Si et al. (2023, Algorithm 2) with
estimated propensity scores from Random Forest Regressor in scikit-learn, same as in the
implementation of Algorithm 2. The additional setup details are in Appendix A.

Both algorithms are fitted with K = 3 folds. We conduct the experiments under three uncertainty
set radii δ = 0.05, 0.1, 0.2 and repeat each experiment over 50 random seeds. Table 1 reports the
estimated average distribuionally robust values (with 95% confidence intervals) of the learnt policies
π̂LN and π̂SNLN, by Algorithm 2 and Si et al. (2023, Algorithm 2) respectively.

With a higher δ, the distribuionally robust values of π̂LN, π̂SNLN are smaller, due to a bigger uncertainty
set. Table 1 shows that π̂LN outperforms the benchmark π̂SNLN consistently across all tested setups,
with higher policy values and smaller 95% confidence intervals. Intuitively, Algorithm 2 admits
a subset of the uncertainty set that the benchmark algorithm SNLN considers, as explained in
Equation (10). Consequently, V̄δ(π̂SNLN) is a lower bound of V̄δ(π̂LN) in theory, and by the results
in Table 1, in practice. This shows that when only concept drift occurs, Algorithm 2 enjoys a better
worst-case performance comparing to the joint distributional shift policy learning benchmark, as the
latter is more conservative in this scenario.

In Appendix A, we also provide simulation results of Algorithm 1 for a fixed target policy, which show
that Algorithm 1 can estimate the distributionally robust policy value under concept drift efficiently.

SAMPLE SIZE V̄0.05(π̂LN) V̄0.05(π̂SNLN)

7500 0.2272±2.2e− 3 0.0554±5.9e− 3
13500 0.2299±1.8e− 3 0.0589±4.5e− 3
16500 0.2303±1.7e− 3 0.0617±4.2e− 3
19500 0.2310±1.8e− 3 0.0664±3.9e− 3

V̄0.1(π̂LN) V̄0.1(π̂SNLN)

7500 0.1579±7.0e− 3 0.0548±4.7e− 3
13500 0.1662±2.0e− 3 0.0580±4.2e− 3
16500 0.1663±1.8e− 3 0.0583±3.5e− 3
19500 0.1678±1.8e− 3 0.0616±4.3e− 3

V̄0.2(π̂LN) V̄0.2(π̂SNLN)

7500 0.0781±2.6e− 3 0.0182±3.0e− 3
13500 0.0802±2.0e− 3 0.0183±3.0e− 3
16500 0.0804±2.1e− 3 0.0200±3.2e− 3
19500 0.0831±2.3e− 3 0.0219±3.8e− 3

Table 1: Distributionally robust values of policies π̂LN, π̂SNLN found by Algorithm 2 and SNLN
respectively. The performance metric is V̄δ(·) estimated from the test data. We report the results
under cases δ = 0.05, 0.1, 0.2, sequentially in the table below.

REFERENCES

Jiahao Ai and Zhimei Ren. Not all distributional shifts are equal: Fine-grained robust conformal
inference. arXiv preprint arXiv:2402.13042, 2024.

Susan Athey and Stefan Wager. Policy learning with observational data. Econometrica, 89(1):
133–161, 2021.

Dimitris Bertsimas and Melvyn Sim. The price of robustness. Operations research, 52(1):35–53,
2004.

Aurélien Bibaut, Nathan Kallus, Maria Dimakopoulou, Antoine Chambaz, and Mark van Der Laan.
Risk minimization from adaptively collected data: Guarantees for supervised and policy learning.
Advances in neural information processing systems, 34:19261–19273, 2021.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Léon Bottou, Jonas Peters, Joaquin Quiñonero-Candela, Denis X Charles, D Max Chickering, Elon
Portugaly, Dipankar Ray, Patrice Simard, and Ed Snelson. Counterfactual reasoning and learning
systems: The example of computational advertising. Journal of Machine Learning Research, 14
(11), 2013.

Carri W Chan, Vivek F Farias, Nicholas Bambos, and Gabriel J Escobar. Optimizing intensive care
unit discharge decisions with patient readmissions. Operations research, 60(6):1323–1341, 2012.

Victor Chernozhukov, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen, Whit-
ney Newey, and James Robins. Double/debiased machine learning for treatment and structural
parameters, 2018.

William S Cleveland. Robust locally weighted regression and smoothing scatterplots. Journal of the
American statistical association, 74(368):829–836, 1979.

William S Cleveland and Susan J Devlin. Locally weighted regression: an approach to regression
analysis by local fitting. Journal of the American statistical association, 83(403):596–610, 1988.

Thomas M Cover. Elements of information theory. John Wiley & Sons, 1999.

Erick Delage and Yinyu Ye. Distributionally robust optimization under moment uncertainty with
application to data-driven problems. Operations research, 58(3):595–612, 2010.

John C Duchi, Tatsunori Hashimoto, and Hongseok Namkoong. Distributionally robust losses against
mixture covariate shifts. Under review, 2(1), 2019.

Miroslav Dudík, John Langford, and Lihong Li. Doubly robust policy evaluation and learning. arXiv
preprint arXiv:1103.4601, 2011.
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A EXPERIMENT DETAILS

We adopt the data generating process similar to the linear boundary example in Si et al. (2023). We
consider the context set X = {x ∈ R5 : ∥x∥2 ≤ 1} is the closed unit ball of R5, and the action
set A = {1, 2, 3}. We assume the rewards Y (j)’s are mutually independent conditioned on X with
conditional distribution Y (j) | X ∼ N(β⊤

i X,σ2
j ), for j = 1, 2, 3 and vectors {β1, β2, β3} ∈ R5

and {σ2
1 , σ

2
2 , σ

2
3} ∈ R+. We choose β’s and σ’s to be

β1 = (1, 0, 0, 0, 0), β2 = (−1/2,
√
3/2, 0, 0, 0), β3 = (−1/2,−

√
3/2, 0, 0, 0); σ = (0.2, 0.5, 0.8).

The underlying policy π0 chooses actions with context x according to the following rules:

(π0(1 |x), π0(2 |x), π0(3 |x)) =


(0.5, 0.25, 0.25), if argmax

i=1,2,3
{β⊤

i x} = 1,

(0.25, 0.5, 0.25), if argmax
i=1,2,3

{β⊤
i x} = 2,

(0.25, 0.25, 0.5), if argmax
i=1,2,3

{β⊤
i x} = 3.

We generate Dtrain according to the procedure described above as training dataset. We also generate
10,000 samples as our testing dataset Dtest = {i ∈ [10, 000] : (Xi, Yi(1), Yi(2), Yi(3))}, which we
use to estimate the true policy value.

We present the result of the policy estimation experiments in Figure 1, using Algorithm 1 with inputs
of the training datasets and the target policy π

π(x) =


1, if ∥x∥2 ∈ [0, 1/3],

2, if ∥x∥2 ∈ [1/3, 2/3],

3, if ∥x∥2 ∈ [2/3, 1].

The underlying true policy value is obtained by the testing dataset Dtest. Similar to the learning
experiment, we repeat the estimation experiment over 50 seeds. Figure 1 shows that as the sample
sizes increases, the estimated policy value by Algorithm 1 is more accurate and stable.
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Figure 1: The Mean Square Error (MSE) of the estimated policy value by Algorithm 1. The x-axis is
the number of samples used by Algorithm 1, and the y-axis is the mean squared error (MSE) of the
policy value estimator.

Implementation details. The experiments were run on the following cloud servers: (i) an Intel
Xeon Platinum 8160 @ 2.1 GHz with 766GB RAM and 96 CPU x 2.1 GHz; (ii) an Intel Xeon
Platinum 8160 @ 2.1 GHz with 1.5TB RAM and 96 CPU x 2.1 GHz; (iii) an Intel Xeon Gold 6132
@ 2.59 GHz with 768GB RAM and 56 CPU x 2.59 GHz and (iv) an Intel Xeon GPU E5-2697A v4
@ 2.59 GHz with 384GB RAM and 64 CPU x 2.59 GHz.

B DEFERRED PROOFS OF THE MAIN RESULTS

B.1 PROOF OF LEMMA 2.3

Fix π ∈ Π and x ∈ X . Letting L =
dQY |X=x

dPY |X=x
, we can rewrite the inner minimization in Equation (1)

as

inf
L measurable

EPY |X [Y (π(x))L |X = x]

s.t. EPY |X [L |X = x] = 1, (11)

EPY |X [fKL(L) |X = x] ≤ δ,

where the function fKL(x) = x log x represents the KL divergence function. In (11), the first
constraint reflects that L is an likelihood ratio, and the second constraint corresponds to the KL
divergence bound.

For notational simplicity, let Ex be the shorthand of EPY |X [· |X = x]. By Theorem 8.6.1 of Luen-
berger (1997), the Slater’s condition is satisfied and strong duality holds:

inf
Ex[L]=1,

Ex[fKL(L)]≤δ

Ex

[
Y (π(x))L

]
= max

α≥0,η∈R
φ(α, η, x), (12)

where

φ(α, η, x) = inf
L≥0
L(α, η, L, x),

L(α, η, L, x) =Ex[Y (π(x))L] + η ·
(
Ex[L]− 1

)
+ α ·

(
Ex[fKL(L)]− δ

)
=Ex

[
Y (π(x))L+ η(L− 1) + α(fKL(L)− δ)

]
.

We can explicitly work out the minimum of L(α, η, L, x), and we have

φ(α, η, x) = Ex

[
− αf∗

KL

(
− Y (π(x)) + η

α

)
− η − αδ

]
,

where f∗
KL(y) = exp(y − 1) is the conjugate function of fKL. Using Equation (12), we arrive at

inf
Ex[L]=1,

Ex[fKL(L)]≤δ

Ex

[
Y (π(x))L

]
= − min

α≥0,η∈R
Ex

[
α exp

(
− Y (π(x)) + η

α
− 1

)
+ η + αδ

]
.

The proof is thus completed.

14
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B.2 PROOF OF THEOREM 3.5

For notional simplicity, we drop the dependence on P in EP when the context is clear. The proof
of Theorem 3.5 makes use of the following lemma, which establishes some useful properties of the
optimizer θ∗π . The proof of Lemma B.1 can be found in Appendix C.1.
Lemma B.1. For any policy π, assume that Assumption 3.3 holds. We have the following properties
of the optimizer θ∗π:

(1) E
[
∇θ ℓ(x, Y (π(x)); θ) |X = x

]
= 0 at θ = θ∗π(x) for any x ∈ X .

(2) There exists a constant ξ > 0 such that for any θ satisfying ∥θ − θ∗π∥L∞ ≤ ξ,∣∣ℓ(x, y; θ(x))− ℓ(x, y; θ∗π(x))−∇θℓ(x, y; θ
∗
π(x))

⊤(θ(x)− θ∗π(x))
∣∣ ≤ ℓ̄(x, y) ·

∥∥θ(x)− θ∗π(x)
∥∥2
2
,

for some function ℓ̄(x, y) such that supx∈X E[ℓ̄(x, Y (π(x))) |X = x] < L for some L > 0.

(3) There exists a constant ξ1 > 0 such that for any θ satisfying ∥θ − θ∗π∥L2(PX |A=π(X)) ≤ ξ1.∥∥ℓ(X,Y (π(X)); θ)− ℓ(X,Y (π(X)); θ∗π)
∥∥
L2(PX,Y (π(X)) |A=π(X))

≤ Cℓ∥θ − θ∗π∥L2(PX |A=π(X)),

for some constant Cℓ > 0.

We proceed to show the asymptotic normality of θ̂π . For each k ∈ [K], we first define the following
oracle quantity:

V∗(k)
δ (π) =

1

|D(k)|
∑

i∈D(k)

1{π(Xi) = Ai}
π0(Ai |Xi)

·
(
Gπ(Xi, Yi)− gπ(Xi)

)
+ gπ(Xi).

In the sequel, we shall show that V̂(k)
δ (π) = V∗(k)

δ (π) + op(n
− 1

2 ). We begin by decomposing the
difference between V̂(k)

δ (π) and V∗(k)
δ :

V̂(k)
δ (π)− V∗(k)

δ (π)

=
1

|D(k)|
∑

i∈D(k)

[
1{π(Xi) = Ai}
π̂
(k)
0 (Ai |Xi)

·
(
Ĝ(k)

π (Xi, Yi)− ĝ(k)π (Xi)
)
− 1{π(Xi) = Ai}

π0(Ai |Xi)
·
(
Gπ(Xi, Yi)− gπ(Xi)

)]

+
1

|D(k)|
∑

i∈D(k)

(
ĝ(k)π (Xi)− gπ(Xi)

)
=

1

|D(k)|
∑

i∈D(k)

1{Ai = π(Xi)}
π0(Ai |Xi)

·
(
Ĝ(k)

π (Xi, Yi)−Gπ(Xi, Yi)
)

︸ ︷︷ ︸
(I)

− 1

|D(k)|
∑

i∈D(k)

(
1{Ai = π(Xi)}
π̂
(k)
0 (Ai |Xi)

− 1{Ai = π(Xi)}
π0(Ai |Xi)

)
·
(
ĝ(k)π (Xi)− ḡ(k)π (Xi)

)
︸ ︷︷ ︸

(II)

+
1

|D(k)|
∑

i∈D(k)

(
1{Ai = π(Xi)}
π̂
(k)
0 (Ai |Xi)

− 1{Ai = π(Xi)}
π0(Ai |Xi)

)
·
(
Ĝ(k)

π (Xi, Yi)− ḡ(k)π (Xi)
)

︸ ︷︷ ︸
(III)

− 1

|D(k)|
∑

i∈D(k)

1{Ai = π(Xi)}
π0(Ai |Xi)

·
(
ĝ(k)π (Xi)− gπ(Xi)

)
+

1

|D(k)|
∑

i∈D(k)

(ĝ(k)π (Xi)− gπ(Xi))︸ ︷︷ ︸
(IV)

.

Bounding term (I). Recall that (α∗
π(x), η

∗
π(x)) is the minimizer of

E
[
ℓ
(
x, Y (π(x)); (α, η)

) ∣∣X = x
]
.
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By the first-order condition established in part (1) of Lemma B.1, we have

E
[
∇α,ηℓ

(
x, Y (π(x)); (α∗

π, η
∗
π)
) ∣∣X = x

]
= 0, (13)

where we abuse the notation a bit and∇α,ηℓ(x, y; (α
∗
π, η

∗
π)) to denote the gradient of ℓ(x, y; (α, η))

with respect to (α, η) evaluated at (α∗
π(x), η

∗
π(x)). For any i ∈ D(k), by the unconfoundedness

condition in Assumption 2.1, we have

E

[
1{Ai = π(Xi)}
π0(Ai |Xi)

·
(
Ĝ(k)

π

(
Xi, Yi

)
−Gπ

(
Xi, Yi

))]

=E

[
1{Ai = π(Xi)}
π0(Ai |Xi)

·
(
Ĝ(k)

π

(
Xi, Yi(π(Xi))

)
−Gπ

(
Xi, Yi(π(Xi))

))]
=E

[
Ĝ(k)

π

(
Xi, Yi(π(Xi))

)
−Gπ

(
Xi, Yi(π(Xi))

)]
=E

[
ℓ
(
Xi, Yi(π(Xi)); (α̂

(k)
π , η̂(k)π )

)
− ℓ
(
Xi, Yi(π(Xi));α

∗
π, η

∗
π

)
−∇α,ηℓ

(
Xi, Y (π(Xi)); (α

∗
π, η

∗
π)
)]
,

where the last step is due to Equation (13). By Assumption 3.4, ∥θ̂(k)π − θ∗π∥L∞ = oP (1). Therefore,
for n sufficiently large, ∥θ̂(k)π (x)− θ∗π(x)∥2 ≤ ξ for all x ∈ X . Then by part (2) of Lemma B.1 and
Jensen’s inequality, we have∣∣∣∣∣E

[
1{Ai = π(Xi)}
π0(Ai |Xi)

·
(
Ĝ(k)

π

(
Xi, Yi

)
−Gπ

(
Xi, Yi

))]∣∣∣∣∣
≤E

[∣∣∣ℓ(Xi, Yi(π(Xi)); (α̂
(k)
π , η̂(k)π ))− ℓ(Xi, Yi(π(Xi));α

∗
π, η

∗
π)−∇α,ηℓ

(
Xi, Y (π(Xi)); (α

∗
π, η

∗
π)
)∣∣∣]

≤E
[
ℓ̄(Xi, Yi) · ∥θ̂(k)π (Xi)− θ∗π(Xi)∥22

]
≤ LE

[
∥θ̂(k)π (Xi)− θ∗π(Xi)∥22

]
= L∥θ̂(k)π − θ∗π∥2L2(PX).

By Chebyshev’s inequality, we have for any t > 0 that

P

(∣∣∣∣ 1

|D(k)|
∑

i∈D(k)

1{Ai = π(Xi)}
π0(Ai |Xi)

·
(
Ĝ(k)

π (Xi, Yi)−Gπ(Xi, Yi)
)

− E
[
1{A = π(X)}
π0(A |X)

·
(
Ĝ(k)

π (X,Y )−Gπ(X,Y )
)]∣∣∣∣ ≥ t

)

≤ 1

|D(k)|t2
Var
(
1{A = π(X)}
π0(A |X)

·
[
Ĝ(k)

π (X,Y )−Gπ(X,Y )
])

≤

∥∥Ĝ(k)
π −Gπ

∥∥2
L2(PX,Y |A=π(X))

ε2|D(k)|t2

≤
Cℓ

(∥∥θ̂(k)π − θ∗π
∥∥2
L2(PX |A=π(X))

)
ε2|D(k)|t2

,

where the last step is due to the stability property in Lemma B.1. Therefore, we have that∣∣∣∣∣ 1

|D(k)|
∑

i∈D(k)

1{Ai = π(Xi)}
π0(Ai |Xi)

·
(
Ĝ(k)

π (Xi, Yi)−Gπ(Xi, Yi)
)

− E
[
1{A = π(X)}
π0(A |X)

·
(
Ĝ(k)

π (X,Y )−Gπ(X,Y )
)]∣∣∣∣∣

= oP (n
−1/2).

Combining the above results, we have that

term (I) ≤ oP (n
−1/2) + L∥θ̂(k)π − θ∗π∥2L2(PX) ≤ oP (n

−1/2) +
L√
ε
∥θ̂(k)π − θ∗π∥2L2(PX) = oP (n

−1/2),

where the second step is due to the overlap and unconfoundedness assumption and the last step is due
to Assumption 3.4.
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Bounding term (II). Applying the Cauchy-Schwarz inequality to term (II), we have∣∣∣∣∣ 1

|D(k)|
∑

i∈D(k)

(
1{Ai = π(Xi)}
π̂
(k)
0 (Ai |Xi)

− 1{Ai = π(Xi)}
π0(Ai |Xi)

)
·
(
ĝ(k)π (Xi)− ḡ(k)π (Xi)

)∣∣∣∣∣
≤

√√√√ 1

|D(k)|
∑

i∈D(k)

(
1{Ai = π(Xi)}
π̂
(k)
0 (Ai |Xi)

− 1{Ai = π(Xi)}
π0(Ai |Xi)

)2

×
√

1

|D(k)|
∑

i∈D(k)

1{Ai = π(Xi)} ·
(
ĝ
(k)
π (Xi)− ḡ

(k)
π (Xi)

)2
=OP

(
ϵ−2
∥∥π̂(k)

0 − π0

∥∥
L2(PX |A=π(X))

·
∥∥ĝ(k)π − ḡ(k)π

∥∥
L2(PX |A=π(X))

)
= oP (n

−1/2),

where the next-to-last inequality is due to the lower bound on π0 and π̂(k); the last equality is due to
the given convergence rate of the product estimation error in Assumption 3.4.

Bounding term (III). By Assumption 3.4, for any β ∈ (0, 1), there exists N ∈ N+ such that for
n ≥ N ,

P
(
∥θ̂(k)π − θ∗∥L∞ ≤ min(α, η̄)/2

)
≥ 1− β.

On the event ∥θ̂(k)π −θ∗∥L∞ ≤ min(α, η̄)/2, we can find a constant Lg such that |ℓ(x, y; θ̂(k)π )| ≤ Lg

for any x ∈ X and y ∈ Y , which implies that Var
(
Ĝ

(k)
π (Xi, Yi) |Xi,D(−k)

)
≤ L2

g. Since β is

arbitrary, we have that Var
(
Ĝ

(k)
π (Xi, Yi) |Xi,D(−k)

)
= O(1).

Next, since ḡ
(k)
π is the conditional expectation of Ĝ(k)

π , for any i ∈ D(k),

E

[(
1{Ai = π(Xi)}
π̂
(k)
0 (Ai |Xi)

− 1{Ai = π(Xi)}
π0(Ai |Xi)

)
·
(
Ĝ(k)

π (Xi, Yi)− ḡ(k)π (Xi)
) ∣∣∣∣D(−k)

]

=E

[
E
[
1{Ai = π(Xi)}
π̂
(k)
0 (Ai |Xi)

− 1{Ai = π(Xi)}
π0(Ai |Xi)

∣∣∣Xi,D(−k)

]

× E
[
Ĝ(k)

π (Xi, Y (π(Xi)))− ḡ(k)π (Xi)
∣∣Xi,D(−k)

] ∣∣∣∣D(−k)

]
= 0.

By Chebyshev’s inequality, for any t > 0,

P

(∣∣∣∣ 1

|D(k)|
∑

i∈D(k)

(
1{Ai = π(Xi)}
π̂
(k)
0 (Ai |Xi)

− 1{Ai = π(Xi)}
π0(Ai |Xi)

)
·
(
Ĝ(k)

π (Xi, Yi)− ḡ(k)π (Xi)
)∣∣∣∣ ≥ t

∣∣∣∣D(−k)

)

≤ 1

|D(k)|t2
Var

([
1{Ai = π(Xi)}
π̂
(k)
0 (Ai |Xi)

− 1{Ai = π(Xi)}
π0(Ai |Xi)

]
·
(
Ĝ(k)

π (Xi, Yi)− ḡ(k)π (Xi)
) ∣∣∣∣D(−k)

)

≤ 1

|D(k)|t2
E

[[
1{Ai = π(Xi)}
π̂
(k)
0 (Ai |Xi)

− 1{Ai = π(Xi)}
π0(Ai |Xi)

]2
·
(
Ĝ(k)

π (Xi, Yi)− ḡ(k)π (Xi)
)2 ∣∣∣∣D(−k)

]

=
1

|D(k)|t2
O
(
∥π̂(k)

0 − π0∥2L2(PX |T=π(X))

)
,

where the last step is because of the overlap condition and that Var
(
Ĝ

(k)
π (Xi, Yi) |Xi,D(−k)

)
=

O(1). The above inequality implies that term (III) = OP

(
∥π̂(k)

0 − π0∥L2(PX |A=π(X))/
√
|D(k)|

)
. By

the consistency of π̂(k)
0 assumed in Assumption 3.4, term (III) is of rate oP (n

−1/2).
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Bounding term (IV). We first show that term (IV) is of zero-mean:

E

[
− 1

|D(k)|
∑

i∈D(k)

1{Ai = π(Xi)}
π0(Ai |Xi)

·
(
ĝ(k)π (Xi)− gπ(Xi)

)
+

1

|D(k)|
∑

i∈D(k)

(ĝ(k)π (Xi)− gπ(Xi))

∣∣∣∣D(−k)

]

= − E

[
1{Ai = π(Xi)}
π0(Ai |Xi)

·
(
ĝ(k)π (Xi)− gπ(Xi)

) ∣∣∣∣D(−k)

]
+ E

[
ĝ(k)π (Xi)− gπ(Xi)

∣∣D(−k)
]
= 0.

By Chebyshev’s inequality, for any t > 0,

P

(∣∣∣∣ 1

|D(k)|
∑

i∈D(k)

1{π(Xi) = Ai}
π0(Ai |Xi)

· (ĝ(k)π (Xi)− gπ(Xi))−
1

|D(k)|
∑

i∈D(k)

(
ĝ(k)π (Xi)− gπ(Xi)

)∣∣∣∣ ≥ t

∣∣∣∣D(−k)

)

≤ 1

|D(k)|t2
Var

(
1{Ai = π(Xi)}
π0(Ai |Xi)

·
(
ĝ(k)π (Xi)− gπ(Xi)

)
−
(
ĝ(k)π (Xi)− gπ(Xi)

) ∣∣∣∣D(−k)

)

=
1

|D(k)|t2
E
[
(1− π0(π(Xi) |Xi))

2

π0(π(Xi) |Xi)
·
(
ĝ(k)π (Xi)− gπ(Xi)

)2 ∣∣∣D(−k)

]
.

As a result, term (IV) = OP

(
∥ĝ(k)π − gπ∥L2(PX)/

√
n
)
. Note that

∥ĝ(k)π − gπ∥L2(PX) = O(∥ĝ(k)π − gπ∥L2(PX |A=π(X)))

≤ O
(
∥ĝ(k)π − ḡπ∥L2(PX |A=π(X)) + ∥ḡ

(k)
π − gπ∥L2(PX |A=π(X))

)
,

where the first inequality follows from the overlap condition. By Assumption 3.4, ∥ĝ(k)π −
ḡπ∥L2(PX |A=π(X)) = oP (1). Meanwhile,

∥ḡ(k)π − gπ∥2L2(PX |A=π(X))
= E

[
(ḡ(X)− g(X))2 |A = π(X)

]
= E

[(
E
[
ℓ(X,Y (π(X)); θ̂(k)π )− ℓ(X,Y (π(X)); θ∗π) |X

])2 ∣∣A = π(X)

]
(i)
≤ E

[(
ℓ(X,Y (π(X)); θ̂(k)π )− ℓ(X,Y (π(X)); θ∗π)

)2 ∣∣A = π(X)

]
(ii)
= O

(
∥θ̂(k)π − θ∗π∥2L2(PX |A=π(X))

)
= oP (1).

Above, we slightly abuse the notation, taking the expectation conditional on D(−k) without explicitly
writing so; step (i) follows from Jensen’s inequality and step (ii) from Lemma B.1. Combining
everything, we have that term (IV) is of rate oP (n

−1/2).

Putting everything together. So far we have shown that for each fold k ∈ [K], there is

V̂(k)
δ (π)− V∗(k)

δ (π) = oP (n
−1/2).

Averaging over all k folds, we have
√
n ·
(
V̂δ(π)− Vδ(π)

)
=

1√
n

∑
i∈[n]

{
1{Ai = π(Xi)}
π0(Ai |Xi)

·
(
Gπ(Xi, Yi)− gπ(Xi)

)
+ gπ(Xi)

}
− Vδ(π) + oP (1),

By the central limit theorem and Slutsky’s theorem.
√
n ·
(
V̂δ(π)− Vδ(π)

) d.→ N (0, σ2),

where

σ2 = Var
(
1{A = π(X)}
π0(A |X)

·
(
G(X,Y )− g(X)

)
+ g(X)

)
.
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B.3 PROOF OF THEOREM 4.2

The regret bound of Algorithm 2 builds on the following regret decomposition:

Rδ(π̂LN) =Vδ(π∗)− Vδ(π̂LN)

=Vδ(π∗)− V̂LN
δ (π∗) + V̂LN

δ (π∗)− V̂LN
δ (π̂LN) + V̂LN

δ (π̂LN)− Vδ(π̂LN)

≤Vδ(π∗)− V̂LN
δ (π∗) + V̂LN

δ (π̂LN)− Vδ(π̂LN)

≤ 2 sup
π∈Π

∣∣V̂LN
δ (π)− Vδ(π)

∣∣, (14)

where the second-to-last step is by the choice of π̂LN. For any π ∈ Π and any fold k ∈ [K], we define
an intermediate quantity

Ṽ(k)
δ :=

1

|D(k)|
∑

i∈D(k)

1{Ai = π(Xi)}
π0(Ai |Xi)

·
(
Gπ(Xi)(Xi, Yi)− gπ(Xi)(Xi)

)
+ gπ(Xi)(Xi).

Letting Ṽδ = 1
K

∑K
k=1 Ṽ

(k)
δ , we have

∣∣V̂LN
δ (π)− Vδ(π)

∣∣ = ∣∣∣∣ 1K
K∑

k=1

V̂LN,(k)
δ (π)− Vδ(π)

∣∣∣∣
≤
∣∣∣∣ 1K

K∑
k=1

V̂LN,(k)
δ (π)− Ṽδ(π)

∣∣∣∣+ ∣∣∣∣Ṽδ(π)− Vδ(π)∣∣∣∣
≤ sup

π∈Π

∣∣∣∣ 1K
K∑

k=1

V̂LN,(k)
δ (π)− 1

K

K∑
k=1

Ṽ(k)
δ (π)

∣∣∣∣+ sup
π∈Π

∣∣∣∣ 1K
K∑

k=1

Ṽ(k)
δ (π)− Vδ(π)

∣∣∣∣.
Taking the supremum over all π ∈ Π, we have that

sup
π∈Π

∣∣V̂LN
δ (π)− Vδ(π)

∣∣ ≤ sup
π∈Π

∣∣∣∣Ṽδ(π)− Vδ(π)∣∣∣∣+ sup
π∈Π

∣∣∣∣ 1K
K∑

k=1

V̂LN,(k)
δ (π)− 1

K

K∑
k=1

Ṽ(k)
δ (π)

∣∣∣∣.
We proceed to bound the above two terms separately. The following lemma is essential for establishing
the uniform convergence results.
Lemma B.2. Suppose h is a function of (x, a, y, π(x)) such that

(1) |h| ≤ Ch for some constant Ch > 0;

(2) E[h(X,A, Y, π(X))] = 0.

Then for any β > 0, with probability 1− β, we have that

sup
π∈Π

∣∣∣∣ 1n
n∑

n=1

h
(
Xi, Ai, Yi, π(Xi)

)∣∣∣∣ ≤ Ch√
n

(
20 + 4κ(Π) +

√
2 log(1/β)

)
.

We now focus on the first term. Denote Zi = (Xi, Ai, Yi) and take

h(Zi, π(Xi)) =
1{Ai = π(Xi)}
π0(Ai |Xi)

·
(
Gπ(Xi)(Xi, Yi)− gπ(Xi)(Xi)

)
+ gπ(Xi)(Xi)− Vδ(π).

Under the unconfoundedness assumption in Assumption 2.1, E[h(Zi, π(Xi))] = 0. By Assump-
tion 3.3, we have

|h(Zi, π(Xi))| ≤
6

ε
·
(
ᾱ · exp

( η̄
α
− 1
)
+ η̄ + ᾱδ

)
=: C0(ᾱ, α, η̄, δ, ε).

Meanwhile, we have write

sup
π∈Π

∣∣∣∣ 1K
K∑

k=1

Ṽ(k)
δ (π)− Vδ(π)

∣∣∣∣ = sup
π∈Π

∣∣∣∣ 1K
K∑

k=1

1

|D(k)|
∑

i∈D(k)

h(Zi;π)

∣∣∣∣ = sup
π∈Π

∣∣∣∣ 1n
n∑

i=1

h(Zi;π)

∣∣∣∣.
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Applying Lemma B.2, for any β ∈ (0, 1), we have with probability at least 1− β,

sup
π∈Π

∣∣Ṽδ(π)− Vδ(π)∣∣ ≤ C0(ᾱ, α, η̄, δ, ε)√
n

(
20 + 4κ(Π) +

√
2 log(1/β)

)
. (15)

We now proceed to the second term. For any π ∈ Π and any k ∈ [K], consider the following
decomposition:

V̂LN,(k)
δ (π)− Ṽ(k)

δ (π)

=
1

|D(k)|
∑

i∈D(k)

1{Ai = π(Xi)}
π̂0(Ai |Xi)

(
Ĝ

(k)
π(Xi)

(Xi, Yi)− ĝ
(k)
π(Xi)

(Xi)
)
+ ĝ

(k)
π(Xi)

(Xi)

− 1

|D(k)|
∑

i∈D(k)

1{Ai = π(Xi)}
π0(Ai |Xi)

(
Gπ(Xi)(Xi, Yi)− gπ(Xi)(Xi)

)
− gπ(Xi)(Xi)

=
1

|D(k)|
∑

i∈D(k)

(
1{Ai = π(Xi)}
π̂0(Ai |Xi)

− 1{Ai = π(Xi)}
π0(Ai |Xi)

)(
Ĝ

(k)
π(Xi)

(Xi, Yi)− ḡ
(k)
π(Xi)

(Xi)
)

+
1

|D(k)|
∑

i∈D(k)

(
1{Ai = π(Xi)}
π̂0(Ai |Xi)

− 1{Ai = π(Xi)}
π0(Ai |Xi)

)(
ḡ
(k)
π(Xi)

(Xi)− ĝ
(k)
π(Xi)

(Xi)
)

+
1

|D(k)|
∑

i∈D(k)

1{Ai = π(Xi)}
π0(Ai |Xi)

(
Ĝ

(k)
π(Xi)

(Xi, Yi)−Gπ(Xi)(Xi, Yi)
)

− 1

|D(k)|
∑

i∈D(k)

1{Ai = π(Xi)}
π0(Ai |Xi)

(
ĝ
(k)
π(Xi)

(Xi)− gπ(Xi)(Xi)
)
+

1

|D(k)|
∑

i∈D(k)

(
ĝ
(k)
π(Xi)

(Xi)− gπ(Xi)(Xi)
)
.

For notational simplicity, we denote

K1(π) :=
1

|D(k)|
∑

i∈D(k)

(
1{Ai = π(Xi)}
π̂0(Ai |Xi)

− 1{Ai = π(Xi)}
π0(Ai |Xi)

)(
Ĝ

(k)
π(Xi)

(Xi, Yi)− ḡ
(k)
π(Xi)

(Xi)
)
,

K2(π) :=
1

|D(k)|
∑

i∈D(k)

(
1{Ai = π(Xi)}
π̂0(Ai |Xi)

− 1{Ai = π(Xi)}
π0(Ai |Xi)

)(
ḡ
(k)
π(Xi)

(Xi)− ĝ
(k)
π(Xi)

(Xi)
)
,

K3(π) :=
1

|D(k)|
∑

i∈D(k)

1{Ai = π(Xi)}
π0(Ai |Xi)

(
Ĝ

(k)
π(Xi)

(Xi, Yi)−Gπ(Xi)(Xi, Yi)
)
,

K4(π) := −
1

|D(k)|
∑

i∈D(k)

1{Ai = π(Xi)}
π0(Ai |Xi)

(
ĝ
(k)
π(Xi)

(Xi)− gπ(Xi)(Xi)
)
+

1

|D(k)|
∑

i∈D(k)

(
ĝ
(k)
π(Xi)

(Xi)− gπ(Xi)(Xi)
)
.

We proceed to bound each term separately.

Bounding K1(π). Here, we take

h1(Zi;π(Xi)) :=

(
1{Ai = π(Xi)}
π̂0(Ai |Xi)

− 1{Ai = π(Xi)}
π0(Ai |Xi)

)(
Ĝ

(k)
π(Xi)

(Xi, Yi)− ḡ
(k)
π(Xi)

(Xi)
)
.

Since ḡ
(k)
a (X) is the conditional expectation of Ĝ(k)

a (X,Y (a)), we have

E
[
h1(Zi, π(Xi)) | D(−k)

]
= E

[(
1{Ai = π(Xi)}
π̂0(Ai |Xi)

− 1{Ai = π(Xi)}
π0(Ai |Xi)

)(
Ĝ

(k)
Ai

(Xi, Yi)− ḡ
(k)
Ai

(Xi)
) ∣∣∣∣D(−k)

]

= E

[(
π0(π(Xi))

π̂0(Ai |Xi)
− 1

)
E
[
Ĝ

(k)
π(Xi)

(Xi, Yi)− ḡ
(k)
π(Xi)

(Xi)
∣∣Xi,D(−k)

] ∣∣∣∣D(−k)

]
= 0.

By Assumption 3.4, there exists N1 ∈ N+, such that when n ≥ N1, w. p. at least 1− β,

max
a∈[M ]

∥θ̂(k)a − θ∗a∥L∞ ≤ max(ᾱ, α, η̄)/2.
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On the event {maxa∈[M ] ∥θ̂
(k)
a − θ∗a∥L∞ ≤ max(ᾱ, α, η̄)/2}, we have∣∣hi(Zi, π(Xi))

∣∣ ≤ C0(ᾱ, α, η̄, δ, ε).

We now apply Lemma B.2 to h1(Zi, π(Xi)) on the event {maxa∈[M ] ∥θ̂
(k)
a − θ∗a∥L∞ ≤

max(ᾱ, α, η̄)/2},

P
(
sup
π∈Π

∣∣K1(π)
∣∣ ≥ C0(ᾱ, α, η̄, δ, ε)√

|D(k)|
(
20 + 4κ(Π) +

√
2 log(1/β)

) ∣∣∣D(−k)

)
≤ β.

Taking a union bound, with probability at least 1− 2β, we have that

sup
π∈Π

∣∣K1(π)
∣∣ ≤ C0(ᾱ, α, η̄, δ, ε)√

|D(k)|
(
20 + 4κ(Π) +

√
2 log(1/β)

)
(16)

Bounding K2(π). We first note that by Cauchy-Schwarz inequality,∣∣∣∣ 1

|D(k)|
∑

i∈D(k)

(
1{Ai = π(Xi)}
π̂0(Ai |Xi)

− 1{Ai = π(Xi)}
π0(Ai |Xi)

)(
h̄
(k)
Ai

(Xi)− ĝ
(k)
Ai

(Xi)
)∣∣∣∣

≤ 1

|D(k)|ε2

√ ∑
i∈D(k)

(
π̂
(k)
0 (π(Xi) |Xi)− π0(π(Xi) |Xi)

)2
.

√ ∑
i∈D(k)

(
ḡ
(k)
π(Xi)

(Xi)− ĝ
(k)
π(Xi)

(Xi)
)2

≤ 1

|D(k)|ε2

√√√√ ∑
i∈D(k)

M∑
a=1

(
π̂
(k)
0 (a |Xi)− π0(a |Xi)

)2√√√√ ∑
i∈D(k)

M∑
a=1

(
ḡ
(k)
a (Xi)− ĝ

(k)
a (Xi)

)2
.

Then for any t > 0, let

s =
M

tε2
max
a∈[M ]

{
∥π̂(k)

a − π
(k)
0,a∥L2(PX)

}
max
a∈[M ]

{
∥ḡ(k)a − ĝ(k)a ∥L2(PX)

}
.

Then

P

(
max
π∈Π

∣∣∣∣ 1

|D(k)|
∑

i∈D(k)

(
1{Ai = π(Xi)}
π̂0(Ai |Xi)

− 1{Ai = π(Xi)}
π0(Ai |Xi)

)(
ĝ
(k)
Ai

(Xi)− ḡ
(k)
Ai

(Xi)
)∣∣∣∣ ≥ s

∣∣∣∣D(−k)

)

≤P

(
1

|D(k)|ε2

√√√√ ∑
i∈D(k)

M∑
a=1

(
π̂
(k)
0 (a |Xi)− π0(a |Xi)

)2√√√√ ∑
i∈D(k)

M∑
a=1

(
ĝ
(k)
a (Xi)− ḡ

(k)
a (Xi)

)2 ≥ s

∣∣∣∣D(−k)

)

≤P

(
1

ε

√√√√ 1

|D(k)|
∑

i∈D(k)

M∑
a=1

(
π̂
(k)
0 (a |Xi)− π0(a |Xi)

)2 ≥ √M√
tε

max
a∈[M ]

{
∥π̂(k)

a − π
(k)
0,a∥L2(PX)

} ∣∣∣∣D(−k)

)

+ P

(
1

ε

√√√√ 1

|D(k)|
∑

i∈D(k)

M∑
a=1

(
ĝ
(k)
a (Xi)− ḡ

(k)
a (Xi)

)2 ≥ √M√
tε

max
a∈[M ]

{
∥ĝ(k)a − ĝ(k)a ∥L2(PX)

} ∣∣∣∣D(−k)

)
≤ 2t,

where the last inequality is due to Chebyshev’s inequality. Marginalizing over the randomness of
D(−k), for any β ∈ (0, 1), we have with probability at least 1− β that

max
π∈Π
|K2(π)| <

2M

βε2
max
a∈[M ]

{
∥π̂(k)

a − π
(k)
0,a∥L2(PX)

}
max
a∈[M ]

{
∥ĝ(k)a − ḡ(k)a ∥L2(PX)

}
.

Bounding K3(π). We start by taking

h3(Zi, π(Xi)) =
1{Ai = π(Xi)}
π0(Ai |Xi)

·
[
Ĝ

(k)
π(Xi)

(
Xi, Yi(π(Xi))

)
−Gπ(Xi)

(
Xi, Yi(π(Xi))

)]
.
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For any π ∈ Π,

E
[
K3(π) | D(−k)

]
=E

[
1{Ai = π(Xi)}
π0(Ai |Xi)

·
(
Ĝ

(k)
Ai

(Xi, Yi(π(Xi)))−GAi
(Xi, Yi(π(Xi)))

) ∣∣D(−k)
]

=E
[
Ĝ

(k)
π(Xi)

(Xi, Yi(π(Xi)))−Gπ(Xi)(Xi, Yi(π(Xi)))
∣∣D(−k)

]
=E

[
ℓ
(
Xi, Yi(π(Xi)); θ

(k)
π(Xi)

)
− ℓ(Xi, Yi; θ

∗
π(Xi)

)−∇ℓ(Xi, Yi(π(Xi)); θ
∗
π(Xi)

)⊤
(
θ̂
(k)
π(Xi)

− θ∗π(Xi)

) ∣∣D(−k)
]
,

where the last step follows from part (1) of Lemma B.1. By Assumption 3.4, for any β ∈ (0, 1), there
exists N3 ∈ N such that when n ≥ N3,

P
(

max
a∈[M ]

∥θ̂(k)a − θ∗a∥L∞ > min
(
ξ, ᾱ, α, η̄

)
/2

)
≤ β.

On the event
{
maxa∈[M ] ∥θ̂

(k)
a − θ∗a∥L∞ ≤ min(ξ, ᾱ, α, η̄)/2

}
, we have∣∣∣ℓ(Xi, Yi; θ

(k)
π(Xi)

)
− ℓ(Xi, Yi; θ

∗
π(Xi)

)−∇ℓ(Xi, Yi; θ
∗
π(Xi)

)⊤
(
θ̂
(k)
π(Xi)

− θ∗π(Xi)

)∣∣∣
≤ ℓ̄(Xi, Yi) ·

∑
a∈[M ]

∥∥θ̂a(Xi)− θ∗a(Xi)
∥∥2
2
,

and∣∣∣∣1{Ai = π(Xi)}
π0(Ai |Xi)

·
(
Ĝ

(k)
Ai

(Xi, Yi(π(Xi)))−GAi
(Xi, Yi(π(Xi)))

)
− E[K3(π) | D(−k)]

∣∣∣∣ ≤ C0(ᾱ, α, η̄, δ, ε).

As a result, on the event {maxa∈[M ] ∥θ̂
(k)
a − θ∗a∥L∞ ≤ min(ξ, ᾱ, α, η̄)/2

}
,

sup
π∈Π

∣∣E[K3(π) | D(−k)]
∣∣ ≤ L

∑
a∈[M ]

∥∥θ̂a − θ∗a
∥∥2
L2(PX)

.

We now take

h3(Zi, π(Xi)) =
1{Ai = π(Xi)}
π0(Ai |Xi)

·
(
Ĝ

(k)
Ai

(Xi, Yi(π(Xi)))−GAi(Xi, Yi(π(Xi)))
)
− E

[
K3(π) | D(−k)

]
.

By the previous derivation we have E[h3(Zi, π(Xi)) | D(−k)] = 0 and |h3(Zi, π(Xi))| ≤
C0(ᾱ, α, η̄, δ, ε) on the event {maxa∈[M ] ∥θ̂

(k)
a − θ∗a∥L∞ ≤ min(ξ, ᾱ, α, η̄)/2

}
. On the same event,

applying Lemma B.2, we have

P
(
max
π∈Π
|K3(π)| ≥ L

∑
a∈[M ]

∥∥θ̂a − θ∗a
∥∥2
L2(PX)

+
C0(ᾱ, α, η̄, δ, ε)√

|D(k)|
(
20 + 4κ(Π) +

√
2 log(1/β)

) ∣∣∣D(−k)

)

≤P
(
max
π∈Π

∣∣∣K3(π)− E
[
K3(π) | D(−k)

]∣∣∣ ≥ C0(ᾱ, α, η̄, δ, ε)√
|D(k)|

(
20 + 4κ(Π) +

√
2 log(1/β)

) ∣∣∣D(−k)

)
=P
(
max
π∈Π

∣∣∣ 1

|D(k)|
∑

i∈D(k)

h3(Zi, π(Xi))
∣∣∣ ≥ C0(ᾱ, α, η̄, δ, ε)√

|D(k)|
(
20 + 4κ(Π) +

√
2 log(1/β)

) ∣∣∣D(−k)

)
≤β.

Taking a union bound, with probability at least 1− 2β, we have

max
π∈Π
|K3(π)| ≤ L

∑
a∈[M ]

∥∥θ̂a − θ∗a
∥∥2
L2(PX)

+
C0(ᾱ, α, η̄, δ, ε)√

|D(k)|
(
20 + 4κ(Π) +

√
2 log(1/β)

)
.

(17)
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Bounding K4(π). For K4(π), we take

h4(Zi, π(Xi)) = −
1{Ai = π(Xi)}
π0(Ai |Xi)

(
ĝ
(k)
π(Xi)

(Xi)− gπ(Xi)(Xi)
)
+
(
ĝ
(k)
π(Xi)

(Xi)− gπ(Xi)(Xi)
)
.

and therefore K4(π) =
1

|D|
∑

i∈D(k) h4(Zi, π(Xi)). Again by the unconfoundedness assumption,

E
[
h4(Zi, π(Xi)) | D(−k)

]
= 0.

As the case of bounding K3(π), when n ≥ N3, with probability at least 1− β,

max
a∈[M ]

∥θ̂(k)a − θ∗a∥L∞ ≤ max(ξ, ᾱ, α, η̄)/2.

On the event {maxa∈[M ] ∥θ̂
(k)
a − θ∗a∥L∞ ≤ max(ξ, ᾱ, α, η̄)/2}, we have∣∣h4(Zi, π(Xi))

∣∣ ≤ 2C0(ᾱ, α, η̄, δ, ε).

Applying Lemma B.2 to h4(Zi, π(Xi)) and taking a union bound, we have with probability at least
1− 2β that

max
π∈Π

∣∣K4(π)
∣∣ ≤ 2C0(ᾱ, α, η̄, δ, ε)√

|D(k)|
(
20 + 4κ(Π) +

√
2 log(1/β)

)
. (18)

Combining (15)-(18) and taking a union bound over k ∈ [K], when n ≥ max(N1, N3) we have that
with probability at least 1− 8β,

sup
π∈Π

∣∣V̂LN
δ (π)− Vδ(π)

∣∣ ≤ 5
√
KC0(ᾱ, α, η̄, δ, ε)√

n

(
20 + 4κ(Π) +

√
2 log(K/β)

)
+ L

∑
a∈[M ]

∥∥θ̂a − θ∗a
∥∥2
L2(PX)

+
2M

βε2
max
a∈[M ]

{
∥π̂(k)

a − π
(k)
0,a∥L2(PX)

}
max
a∈[M ]

{
∥ĝ(k)a − ḡ(k)a ∥L2(PX)

}
.

By Assumption 3.4, there exists N4 ∈ N+, such that when n ≥ N4,

P
(

max
a∈[M ]

∥θ̂a − θ∗a∥2L2(PX) ≥
1

L
√
n
, max

a∈[M ]

{
∥π̂(k)

a − π
(k)
0,a∥L2(PX)

}
max
a∈[M ]

{
∥ĝ(k)a − ḡ(k)a ∥L2(PX)

}
≥ βε2

2M
√
n

)
≤ β.

Taking a union bound, with probability at least 1− 9β, we have that

sup
π∈Π

∣∣V̂LN
δ (π)− Vδ(π)

∣∣ ≤ 5
√
KC0(ᾱ, α, η̄, δ, ε)√

n

(
22 + 4κ(Π) +

√
2 log(K/β)

)
.

We have thus completed the proof of Theorem 4.2.

C PROOF OF TECHNICAL LEMMAS

C.1 PROOF OF LEMMA B.1

Recall that our loss function is

ℓ(x, y; θ) = α · e−
y+η
α −1 + η + αδ.

By the strong duality, E[ℓ(X,Y (π(X)); θ) |X] is convex in θ; by Proposition 2.5, the first-order
condition of convex optimization implies

∇θE
[
ℓ(x, Y (π(x)); θ∗)

∣∣X = x
]
= 0.

For any x ∈ X and θ ∈ Θ,

∂

∂α
ℓ(x, y; θ) =

(
1 +

y + η

α

)
· exp

(
− y + η

α
− 1
)
+ δ,

∂

∂η
ℓ(x, y; θ) = 1− exp

(
− y + η

α
− 1
)
. (19)
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For some a such that |a− α∗| ≤ α∗/2, by the monotonicity of ∂
∂αℓ(x, y; (α, η

∗)) in α, we have∣∣∣∣ ∂∂αℓ(x, y; (a, η∗))

∣∣∣∣ ≤ max

{∣∣∣∣ ∂∂αℓ(x, y; (3α∗/2, η∗))

∣∣∣∣, ∣∣∣∣ ∂∂αℓ(x, y; (α∗/2, η∗))

∣∣∣∣
}
,

where the right-hand side is integrable. By dominated convergence theorem,

E
[
∂

∂α
ℓ(x, Y (π(x)); θ∗)

∣∣X = x

]
=

∂

∂α
E
[
ℓ(x, Y (π(x)); θ∗)

∣∣X = x
]
= 0.

Similarly, since ∂
∂η
ℓ(x, y; (α∗, η)) is non-decreasing in η, for |η − η∗| ≤ 1,∣∣∣∣ ∂∂η ℓ(x, y; (α∗, η))

∣∣∣∣ ≤ max

{∣∣∣∣ ∂∂η ℓ(x, y; (α∗, η∗ + 1))
∣∣∣, ∣∣∣ ∂

∂η
ℓ(x, y; (α∗, η∗ − 1))

∣∣∣∣
}
,

with the right-hand side being integrable. By dominated convergence theorem,

E
[
∂

∂η
ℓ(x, Y (π(x)); θ∗)

∣∣X = x

]
=

∂

∂η
E
[
ℓ(x, Y (π(x)); θ∗)

∣∣X = x

]
= 0.

We have thus completed the proof of Lemma B.1.

Next, for any x ∈ X and θ ∈ Θ,

∂2

∂α2
ℓ(x, y; θ) =

(y + η)2

α3
exp

(
− y + η

α
− 1
)
,

∂2

∂α∂η
ℓ(x, y; θ) = −y + η

α2
exp

(
− y + η

α
− 1
)
,

∂2

∂η2
ℓ(x, y; θ) =

1

α
exp

(
− y + η

α
− 1
)
.

By the Taylor expansion,

ℓ(x, y; θ)− ℓ(x, y; θ∗) = ∇ℓ(x, y; θ∗)⊤(θ − θ∗) +
1

2
(θ − θ∗)⊤∇2ℓ(x, y; θ̃)(θ − θ∗),

⇒
∣∣ℓ(x, y; θ)− ℓ(x, y; θ∗)−∇ℓ(x, y; θ∗)⊤(θ − θ∗)

∣∣
≤ 1

2

( (y + η̃)2

α̃3
+

1

α̃

)
exp

(
− y + η̃

α̃
− 1
)
∥θ − θ∗∥22,

where θ̃ = tθ + (1− t)θ∗ for some t ∈ [0, 1] and α and η implicitly depend on x. To emphasize the
dependence on x, we write α(x) and η(x) in the following. Letting ξ = min(α, |η|, |η|)/2, consider
θ̃ = (α̃, η̃) such that |α̃(x)− α(x)| ≤ ξ and |η̃(x)− η(x)| ≤ ξ, for all x ∈ X . Then,

1

2

( (y + η̃(x))2

α̃(x)3
+

1

α̃(x)

)
exp

(
− y + η̃(x)

α̃(x)
− 1
)
· ∥θ̃(x)− θ∗(x)∥22

≤
(8ȳ2 + 8η̄2

α3
+

2

α

)
· exp

(
−

y + η

ᾱ
− 1
)
· ∥θ(x)− θ∗(x)∥22.

We have thus completed the proof of (2).

We proceed to prove (3). Again by the Taylor expansion,

ℓ(x, y; θ)− ℓ(x, y; θ∗) = ∇ℓ(x, y; θ̃)⊤(θ(x)− θ∗(x)),

where θ̃ = tθ+(1−t)θ∗ for some t ∈ [0, 1]. Plugging the expressions of the gradient in Equation (19),
we have[

ℓ(x, y; θ)− ℓ(x, y; θ∗)
]2

=
[
∇ℓ(x, y; θ̃)⊤(θ(x)− θ∗(x))

]2
=
(
θ(x)− θ∗(x)

)⊤∇ℓ(x, y; θ̃)∇ℓ(x, y; θ̃)⊤(θ(x)− θ∗(x)
)

≤

{[(
1 +

y + η(x)

α(x)

)
exp

(
− y + η(x)

α(x)
− 1
)
+ δ

]2
+

[
1− exp

(
− y + η(x)

α(x)
− 1
)]2}

·
∥∥θ(x)− θ∗(x)

∥∥2
2

≤C(ᾱ, α, η̄, δ) ·
∥∥θ(x)− θ∗(x)

∥∥2
2
,
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where C(ᾱ, α, η̄, δ) is a function of ᾱ, α, η̄, δ. Taking the expectation over X , we have

∥∥ℓ(x, Y ; θ)− ℓ(x, Y ; θ∗)
∥∥
L2(PX,Y |A=π(X))

≤ C(ᾱ, α, η̄, δ) ·
∥∥θ − θ∗

∥∥
L2(PX,Y |A=π(X))

,

completing the proof of (3).

C.2 PROOF OF LEMMA B.2

For any i ∈ [n], let zi = (xi, ai, yi) and z′i = (x′
i, a

′
i, y

′
i). Define

f(z1, . . . , zn;π) =
1

n

n∑
i=1

h(zi, π(xi)).

We can check that for any π ∈ Π and any j ∈ [n],

∣∣f(z1, . . . , zj , . . . , zn;π)∣∣− sup
π′∈Π

∣∣f(z1, . . . , z′j , . . . , zn;π′)
∣∣

≤
∣∣f(z1, . . . , zj , . . . , zn;π)∣∣− ∣∣f(z1, . . . , z′j , . . . , zn;π)∣∣
≤ sup

π∈Π

∣∣f(z1, . . . , zj , . . . , zn;π)− f(z1, . . . , z
′
j , . . . , zn;π)

∣∣
= sup

π∈Π

1

n

∣∣h(zj ;π)− h(z′j ;π)
∣∣ ≤ 2Ch/n. (20)

Above, the first inequality is because of the definition of sup and the second is due to the triangle
inequality; the last step is due to the boundedness of h. Taking the supremum over all π ∈ Π in (20),
we have that

sup
π∈Π

∣∣f(z1, . . . , zj , . . . , zn;π)∣∣− sup
π∈Π

∣∣f(z1, . . . , z′j , . . . , zn;π)∣∣ ≤ 2Ch/n.

By the bounded difference inequality (Wainwright, 2019, Corollary 2.21), for any t > 0,

P

(
sup
π∈Π

∣∣∣ 1
n
h
(
Zi, π(Xi)

)∣∣∣− E
[
sup
π∈Π

∣∣∣ 1
n
h
(
Zi, π(Xi)

)∣∣∣] ≥ t

)

=P

(
sup
π∈Π

∣∣f({Zi}i∈[n];π
)∣∣− E

[
sup
π∈Π

∣∣f({Zi}i∈[n];π
)∣∣] ≥ t

)
≤ e

− nt2

2C2
h .

Take t = Ch

√
2
n log

(
1
β

)
. Then with probability at least 1− β,

sup
π∈Π

∣∣∣ 1
n
h
(
Zi, π(Xi)

)∣∣∣ < E
[
sup
π∈Π

∣∣∣ 1
n
h
(
Zi, π(Xi)

)∣∣∣]+ Ch

√
2

n
log
( 1
β

)
.
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It remains to bound the expectation term. Let Z ′
1, . . . , Z

′
n be an i.i.d. copy of Z1, . . . , Zn, and

ϵi
i.i.d.∼ Unif({±1}). Then

E

[
sup
π∈Π

∣∣∣∣ 1n ∑
i∈[n]

h(Zi, π(Xi))− E
[
h(Zi, π(Xi))

]∣∣∣∣
]

=E

[
sup
π∈Π

∣∣∣∣ 1n ∑
i∈[n]

h(Zi, π(Xi))− EZ′

[ 1
n

∑
i∈[n]

h(Z ′
i, π(X

′
i))
]∣∣∣∣
]

(i)
≤E

[
sup
π∈Π

∣∣∣∣ 1n ∑
i∈[n]

h(Zi, π(Xi))−
1

n

∑
i∈[n]

h(Z ′
i, π(Xi))

∣∣∣∣
]

(ii)
= E

[
sup
π∈Π

∣∣∣∣ 1n ∑
i∈[n]

ϵi
(
h(Zi, π(Xi))− h(Z ′

i, π(Xi))
)∣∣∣∣
]
,

≤ 2E

[
sup
π∈Π

∣∣∣∣ 1n ∑
i∈[n]

ϵih(Zi, π(Xi))

∣∣∣∣
]

=2E

[
Eϵ

[
sup
π∈Π

∣∣∣∣ 1n ∑
i∈[n]

ϵih(Zi, π(Xi))

∣∣∣∣ ]
]
, (21)

step (i) is by Jensen’s inequality and step (ii) is because of the symmetry of (Zi, Z
′
i). Before

proceeding, we introduce the ℓ2 distance on the policy space Π, as well as the corresponding covering
number.

Definition C.1. Given a function h and a set of realized data z1, . . . , zn,

(1) the ℓ2 distance between two policies π1, π2 ∈ Π with respect to {z1, . . . , zn} is defined as

ℓ2(π1, π2; {z1, . . . , zn}) =
1

2Ch

√√√√ 1

n

n∑
i=1

(
h(zi, π(xi)

)
− h(zi;π′(xi))

)2
.

(2) N2(γ,Π; {z1, . . . , zn}) is the minimum number of policies needed to γ-cover Π under ℓ2
with respect {z1, . . . , zn}.

Under the ℓ2 distance, we define a sequence of approximation operators Aj : Π 7→ Π for j ∈ [J ],
where J = ⌈log2 n⌉. Specifically, for any j = 0, 1, . . . , J , let Sj be the set of policies that 2−j-covers
Π and satisfies |Sj | = N2(2

−j ,Π; {Z1, . . . , Zn}). Specially, S0 = {π̄}, with π0 is an arbitrary policy
in Π — this is a valid choice since for any π ∈ Π,

ℓ2(π, π̄; {Z1, . . . , Zn}) =
1

2Ch

√√√√ 1

n

n∑
i=1

(
h(Zi, π(Xi))− h(Zi, π̄(Xi))

)2 ≤ 1.

The approximation operators are defined in a backward manner: for any π ∈ Π,

(1) define AJ [π] = argmin
π′∈SJ

ℓ2
(
π, π′; {Z1, . . . , Zn}

)
;

(2) for j = J − 1, . . . , 0, define

Aj [π] = argmin
π′∈Sj

ℓ2
(
Aj+1[π], π

′; {Z1, . . . , Zn}
)
.
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Using the sequential approximation operators, we decompose the inner expectation term in (21)
(Rademacher complexity) as

Eϵ

[
sup
π∈Π

∣∣∣∣ 1n ∑
i∈[n]

ϵih(Zi, π(Xi))

∣∣∣∣
]

≤Eϵ

[
sup
π∈Π

∣∣∣∣ 1n ∑
i∈[n]

ϵi
[
h(Zi, π(Xi))− h(Zi, AJ [π](Xi))

]∣∣∣∣
]

+ Eϵ

[
sup
π∈Π

∣∣∣∣ J∑
j=1

1

n

∑
i∈[n]

ϵi
[
h(Zi, Aj [π](Xi))− h(Zi, Aj−1[π](Xi))

]∣∣∣∣
]

+ Eϵ

[
sup
π∈Π

∣∣∣∣ 1n ∑
i∈[n]

ϵih(Zi, A0[π](Xi))

∣∣∣∣
]

=:Ξ1 + Ξ2 + Ξ3.

For any π ∈ Π, by the Cauchy-Schwarz inequality,∣∣∣∣ 1n ∑
i∈[n]

ϵi
[
h(Zi, π(Xi))− h(Zi, AJ [π](Xi))

]∣∣∣∣ ≤ 1

n

√
n
∑
i∈[n]

(
h
(
Zi, π(Xi))− h(Zi, AJ [π](Xi))

)2
= 2Ch · ℓ2(π,AJ(π); {Z1, . . . , Zn})

≤ 2Ch2
−J ≤ 2Ch

n
,

where the second-to-last step is because AJ(π) is 2−J -close to π and the last step is by the choice of
J . As a result the above derivation, Ξ1 ≤ 2Ch/n.

Next, for any j = 1, . . . , J we use Pj to denote the projection of π to Sj , i.e., Aj−1[π] = Pj−1[Aj [π]].
For any s > 0,

Pϵ

(
sup
π∈Π

∣∣∣∣ 1n ∑
i∈[n]

ϵi
[
h(Zi, Aj [π](Xi))− h(Zi;Aj−1[π](Xi))

]∣∣∣∣ ≥ s

)

≤
∑

π′∈Sj

Pϵ

(∣∣∣∣ 1n ∑
i∈[n]

ϵi

[
h(Zi, π

′(Xi))− h(Zi, Pj−1[π
′](Xi))

]∣∣∣∣ ≥ s

)

≤
∑

π′∈Sj

2 · exp

(
− 2ns2∑n

i=1[h(Zi, π′(Xi))− h(Zi, Pj−1[π′](Xi))]2/n

)

=
∑

π′∈Sj

2 · exp

(
− ns2

2C2
hℓ2(π

′, Pj−1(π′);Z)2

)

≤ 2N2(2
−j ,Π;Z) · exp

(
− ns2

C2
h2

−2j+1

)
,

we Z is a shorthand for {Z1, . . . , Zn}. For any j = 1, . . . , J and m ∈ N, take

sj,m =
Ch

2j−1/2

√
1

n
log
(
N2(2−j ,Π;Z) · 2m+1).

For a fixed m, with a union bound over j = 1, . . . , J we have that

Pϵ

(
sup
π∈Π

∣∣∣∣ J∑
j=1

1

n

∑
i∈[n]

ϵi
[
h(Zi, Aj [π](Xi))− h(Zi, Aj−1[π](Xi))

]∣∣∣∣ ≥ J∑
j=1

sj,m

)

≤
J∑

j=1

Pϵ

(
sup
π∈Π

∣∣∣∣ 1n ∑
i∈[n]

ϵi
[
h(Zi, Aj [π](Xi))− h(Zi, Aj−1[π](Xi))

]∣∣∣∣ ≥ sj,m

)
≤

J∑
j=1

1

j22m
≤ 1

2m−1
.

To proceed, we shall use the following lemma, whose proof is deferred to Appendix C.3.
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Lemma C.2. For any realization z1, . . . , zn and γ > 0, there is N2(γ,Π; z1, . . . , zn) ≤ NH(γ2,Π).

By Lemma C.2, for any m ∈ N+,
J∑

j=1

sj,m =

J∑
j=1

Ch

2j−1/2
√
n

√
log
(
N2(2−j ,Π;Z) · 2m+1

)
≤

J∑
j=1

Ch

2j−1/2
√
n

√
log(NH(2−2j ,Π)) + (m+ 1) log 2

(i)
≤ 2Ch√

n

J∑
j=1

2−j ·
(√

log(NH

(
2−2j ,Π)

)
+
√
m+ 1

)
(ii)

≤ 4Ch√
n

(
κ(Π) +

√
m+ 1

)
=: um,

where step (i) uses
√
a+ b ≤

√
a+
√
b for a, b ≥ 0; step (ii) uses the definition of κ(Π). Then

Ξ2 = Eϵ

[
sup
π∈Π

∣∣∣∣ J∑
j=1

1

n

∑
i∈[n]

ϵi

[
h(Zi, Aj [π](Xi))− h(Zi, Aj−1[π](Xi))

]∣∣∣∣
]

=

∫ ∞

0

Pϵ

(
sup
π∈Π

∣∣∣∣ J∑
j=1

1

n

∑
i∈[n]

ϵi

[
h(Zi, Aj [π](Xi))− h(Zi, Aj−1[π](Xi))

]∣∣∣∣ > s

)
ds

≤ u1 +

∞∑
k=1

(uk+1 − uk) · 2−k+1

=
C(ᾱ, α, η̄, η)
√
nε

·
(
κ(Π) +

√
2 +

∞∑
k=1

(
√
k + 2−

√
k + 1) · 2−k+1

)
≤ 4Ch√

n
·
(
κ(Π) + 4

)
.

Finally, we consider Ξ3. Recall that S0 = {π̄}, and therefore

Ξ3 = Eϵ

[∣∣∣∣ 1n ∑
i∈[n]

ϵih(Zi, π̄(Xi))

∣∣∣∣
]
≤

√√√√Eϵ

[( 1
n

∑
i∈[n]

ϵih(Zi, π̄(Xi))
)2]
≤ 2Ch√

n
.

Putting everything together, we have with probability 1− β that

sup
π∈Π

∣∣∣ 1
n

n∑
i=1

h
(
Zi, π(Xi)

)∣∣∣ ≤ Ch√
n

(
20 + 4κ(Π) +

√
2 log

( 1
β

))
.

C.3 PROOF OF LEMMA C.2

Fix γ > 0. If NH(γ2,Π) = ∞, the lemma is trivially true. Otherwise, let N0 = NH(γ2; Π). For
any realization z1, . . . , zn, define

(π∗
i,1, π

∗
i,2) = argmax

π1,π2

{
|h(zi, π1(xi))− h(zi, π2(xi))|

}
.

Implicitly, (π∗
i,1, π

∗
i,2) depends on zi. For an arbitrary positive integer m and i ∈ [n], we define

ni =
⌈ m

4C2
hn

{
h(zi, π

∗
i,1(xi))− h(zi, π

∗
i,2(xi))

}2⌉
.

We then construct a new set of data

{z̃1, . . . , z̃N} = {z1, . . . , z1, z2, . . . , z2, . . . , zn, . . . , zn},
where zi appears ni times and

N =

n∑
i=1

ni =

n∑
i=1

⌈ m

4C2
hn

{
h(zi, π

∗
i,1(xi))− h(zi, π

∗
i,2(xi))

}2⌉ ≤ m+ n.
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By definition, there exists a policy set S0 to be a γ2-cover of Π the Hamming distance with respect to
x̃ := {x̃1, . . . , x̃N} such that |S0| = N0. As a result, for any π ∈ Π, there exists π′ ∈ S0 such that
H(π, π′; x̃) ≤ γ2. On the other hand,

H(π, π′; x̃) =
1

N

N∑
i=1

1{π(x̃i) ̸= π′(x̃i)}

(i)
=

1

N

n∑
i=1

ni1{π(xi) ̸= π′(xi)}

≥ 1

N

n∑
i=1

m

4C2
hn

{
h(zi, π

∗
i,1(xi))− h(zi, π

∗
i,2(xi))

}2 · 1{π(xi) ̸= π′(xi)}

(ii)
≥ 1

N

n∑
i=1

m

4C2
hn

{
h(zi, π(xi))− h(zi, π

′(xi))
}2 · 1{π(xi) ̸= π′(xi)}

(iii)
=

1

N

n∑
i=1

m

4C2
hn

{
h(zi, π(xi))− h(zi, π

′(xi))
}2

.

Above, step (i) and (ii) follow from the choice of z̃ and (π∗
i,1, π

∗
i,2), respectively; step (iii) is because

when π(xi) = π′(xi), h(zi, π(xi)) = h(zi, π(x
′
i)). By the definition of the ℓ2 distance and that

N ≤ m+ n, we further have

γ2 ≥ H(π, π′; x̃) ≥ m

(m+ n)
ℓ2(π, π′; z).

Since m is arbitrary, we take m to infinity and have ℓ2(π, π
′; z) ≤ γ. By definition, S0 is a γ-cover

of Π under ℓ2 with respect to z1, . . . , zn, and therefore N2(γ,Π; z1, . . . , zn) ≤ NH(γ,Π).
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