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Figure 1: (a) Unified models possess both image generation and image understanding function-
alities. (b) Telephone Game: Here, the unified model starts from a textual prompt 7(°) about a
suitcase and a banana. After successive T2I & I2T steps we observe in the 5" generation image,
I®), the model fails to generate a convincing suitcase. Subsequently the suitcase disappeared from
future generations. Also, 1 (%) has two bananas instead of one, which culminated in lots of bananas.

ABSTRACT

Employing a single, unified model (UM) for both visual understanding (image-
to-text: I2T) and visual generation (text-to-image: T2I) has opened a new di-
rection in Visual Language Model (VLM) research. While UMs can also sup-
port broader unimodal tasks (e.g., text-to-text, image-to-image), we focus on the
core cross-modal pair T2 and I2T. Existing evaluations benchmarks consider
these capabilities in isolation: FID and GenEval for T2 I, and benchmarks such as
MME, MMBench for I2T. These isolated single-pass metrics do not reveal cross-
consistency: whether a model that “understands” a concept can also “render” it,
nor whether semantic meaning is preserved when cycling between image and text
modalities. To address this, we introduce the Semantic Drift Protocol (SDP) for
Unified Models, a cyclic evaluation protocol that alternates I2T and T2I over
multiple generations to quantify semantic drift. We propose two metrics: (i)
Mean Cumulative Drift (MCD), an embedding-based measure of overall semantic
loss; and (ii) Multi-Generation GenEval (MGG), an object-level compliance score
extending GenEval. To assess generalization beyond COCO dataset, which is
widely used in training; we create a new benchmark Nocaps+Docci400, sam-
pled from NoCaps and DOCCI and evaluate on seven recent models. SDP reveals
substantial variation in cross-modal stability: some models like BAGEL maintain
semantics over many alternations, whereas others like Vila-u drift quickly despite
strong single-pass scores. Our results highlight SDP as a necessary complement
to standard I2T and T2 T evaluations.

1 INTRODUCTION

Multimodal Unified Models (UMs) combine visual understanding and generation within a single
framework, enabling a wide range of unimodal tasks (e.g., text-to-text, image-to-image) as well as
cross-modal tasks (e.g., image-to-text, text-to-image). By sharing representations across modali-
ties, UMs can demonstrate interesting emerging capabilities such as intelligent photo editing, e.g.
BAGEL [Deng et al.| (2025). Despite rapid model progress, UM evaluation remains fragmented.
Existing metrics assess image understanding and image generation in isolation; e.g., MME, MM-
Bench, POPE, VQA [Fu et al.| (2024)); ILiu et al.| (2024); Li et al.|(2023); |/Agrawal et al.| (2016)) are
used for evaluating understanding (I2T), and Inception score, CLIPScore, FID, GenEval Radford
et al.[(2016));|Heusel et al.|(2017);/Ghosh et al.|(2023) are used for evaluating image synthesis (T21I),
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while overlooking the retention of important information during T2 I or I2T multi-turn conversion.
In other words, current single-pass metrics do not assess the retention of entities, attributes, rela-
tions, and counts under alternating I2T <> T2 conversions. We defer unimodal tasks and center
our analysis on I2T and T27T tasks as the potential for semantic divergence and its impact on real

use is most pronounced on the cross-modal tasks.

We begin by formalizing two key notions,
“semantic-drift” and “ cross-consistency”. Se-
mantic drift is the loss or distortion of mean-
ing that accumulates when an input is repeat-
edly transformed across modalities via T2T and
I2T. Essentially, this drift can be defined as the
changes in the core semantic content (e.g: ob-
jects count, color, attribute relations, spatial po-
sition) that occur when a model repeatedly ap-
plies its own I2T <> T2I transformations. On the
other hand, cross-consistency refers to the over-
lap between what a model can generate as im-
ages from text and what it can faithfully under-
stand from images as text. Much like the popular
children’s game called Telephone Game, where a
whispered message drifts in meaning as it passes
from person to person, UMs tend to lose or dis-
tort semantic meaning when cycling between text
and image representations as shown in Fig. [T[b).
Starting from a textual prompt: “a suitcase left
of a banana”, the model produces an image [ ™
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Figure 2: An example of cross-consistency in
the BAGEL unified model. Given an image of a
chess board along with a question (top), BAGEL
performs I2T, correctly answering “white side
wins”. By creating another caption for the
T21T prompt (bottom), BAGEL should generate
a chess board image consistent with the same
semantic predicate (white winning side). How-
ever, the model generates a generic, mismatched
chessboard image. This exposes a unified model

inconsistency: BAGEL'’s correct visual reason-
ing (I2T) does not carry over to generation
(T21) for the concept “winning side in chess”.

correctly, which is then captioned (I2T) to form
the next prompt 7*), and so on. Although each
individual step can look plausible in isolation, se-
mantic drift accumulates across the cycles: by generation 5, the image has changed drastically.
Notably, a model may score well on isolated single-pass I2T or T2 I metrics, while still exhibiting
these cross-modal inconsistencies, which the current metrics fail to capture. The concept of cross-
consistency is illustrated in Fig. |2} where even state-of-the-art unified models like BAGEL |Deng
et al.[(2025)) can correctly reason about a chessboard image in I2T identifying that “the white side
wins”, yet fail to produce a faithful T2 T image of the same winning scenario.

There are several ways to evaluate a model’s image generation capabilities. For example, ClipScore
Hessel et al.| (2022)) uses clip embeddings to measure semantic alignment of the prompt with gen-
erated images. However, it strongly relies on clip embeddings, which may not always be reflective
with human perceptions |Ghosh et al.|(2023). Fréchet Inception Distance (FID) Heusel et al.| (2017)
measures the distributional similarity between the generated images and real images, but ignores the
generated image’s faithfulness to the input prompt. A model that ignores the input text and produces
high-quality, yet off-prompt images can still score well |Ghosh et al.|(2023). GenEval |Ghosh et al.
(2023) improves on prompt alignment by checking object and relation-level compliance with de-
tection models, however, by design, does not assess overall visual quality or realism, and like FID,
remains a single-pass measure. A similar limitation is observed in the image-understanding bench-
marks, such as MME and MMBench |[Fu et al.| (2024); [Liu et al.| (2024) which assess I2T skills in
isolation, without testing whether the model’s understanding capability aligns with its generation
capability.

To address this gap, we evaluate unified models cross-consistency and drift in single- and multi-turn
settings respectively. In the single-pass setting (one-step I2T and T2I on paired image—caption
data), we perform a human cross-consistency study to judge consistency between model outputs
relative to its inputs. In multi-pass, we propose the Semantic Drift Protocol for Unified Models
(SDP), a cyclic evaluation protocol designed to quantify how well UMs preserve semantic mean-
ing under repeated T2 and I2T conversions. Starting from an initial input 7 (text) or I(®)
(image), the model alternates T2 or I2T to produce a sequence {/ (9), T(g)}, where g denotes gen-
eration step. At each generation g, SDP measures semantic similarity back to the initial input and
across steps, capturing drift directions and exposing misalignment between a model’s understand-
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ing and generation spaces. We employ CLIP Radford et al.|(2021)), DINO |Caron et al.|(2021), and
MPNet Song et al.[ (2020) embeddings for text—image, image—image, and text—text comparisons,
respectively. For rigorous testing, we design two different metrics: Mean Cumulative Drift (MCD),
and Multi-Generation Geneval (MGG). In MCD, we use raw embedding distance scores to quantify
cumulative information retention, and MGG extends the GenEval benchmark for multiple genera-
tions. We propose a new benchmark dataset Nocaps+Docci400, sampling 200 image-text pairs
from NoCaps |Agrawal et al.| (2019) and 200 image-text pairs DOCCI |Onoe et al.| (2024) datasets.
These two datasets were selected for their novel objects and fine-grained visual details that better
probe generalization. We benchmark 7 recent models spanning shared-weight, partially shared, and
decoupled architectures, to analyze how architectural design choices influence semantic stability.
Further, to validate the proposed embedding metrics, we also ask humans to rank the model outputs:
we conduct a human study in which annotators score the fidelity of each output relative to its input
and provide comparative rankings across multiple model outputs. The fidelity scores indicate the de-
gree to which inconsistencies are present, while the rankings establish relative model performance
according to human judgment.

Our experiments reveal substantial variation in semantic drift behavior across models. For exam-
ple, BAGEL Deng et al.|(2025) maintains strong semantic fidelity across multiple generation cycles,
whereas models like Vila-U|Wu et al.| (2025) and Janus |Wu et al.| (2024) degrade rapidly, exposing
weaker coupling between their visual understanding and visual generation capabilities despite com-
petitive single-pass metrics. These findings underscore the need to move beyond isolated I2T or
T21T metrics and toward evaluations that directly measure cross-consistency.

Our contributions are summarized as follows:

* We formalize the cross-consistency and semantic drift problem, showing that single-pass metrics
cannot expose gaps between a model’s understanding and generation capabilities.

* We propose the Semantic Drift Protocol (SDP), which jointly evaluates I2T and T2I over multi-
ple transitions to track semantic preservation.

* We extend GenEval (Ghosh et al.| (2023) to a multi-generation setting, which amplifies observable
performance differences between models.

* We conduct a human study to determine cross-consistency in existing models and provide a com-
parative ranking.

2 UNIFIED MODELS

Unified models employ visual and textual modalities as both input and output. The motivation is that
these universal models facilitate richer semantic interoperability among the two tasks, I2T and T2T.
While most prior works focus on building a sin-
gle model for both tasks, we propose a broader

categorization that encompasses unified models g @ ﬂ @ Text mage
as well as models that can emulate unified be-
havior.

é E é ImageGenerator

Image|

Shared weight  Partially Shared weight Decoupled UM

Image Generator

Shared-Weights Unified Models This cat-
egory has received the most attention in re-
cent research. These models leverage a single
model, typically a transformer decoder, to per-
form a wide spectrum of unimodal and cross-
modal tasks, with T2T and I2T generation be-
ing prominent examples. The encoder compo-
nent can vary where some models employ a
shared visual encoder across tasks, while oth-
ers use distinct encoders for generation and un-
derstanding. In our experiments, we use 5 such
models: BAGEL |Deng et al.| (2025)), Janus 1.3B |Wu et al.| (2024), Janus Pro 7B |Wu et al.| (2024),
Show-o [Xie et al.|(2024)), and Vila-u/Wu et al.|(2025).

Figure 3: On the left, a single model handles both
understanding and generation. In the middle, the
architecture partially shares weights, with a de-
coder capable of generating text and visual fea-
tures, the latter is passed to another image gen-
eration model. On the right, the understanding
and generation processes are fully decoupled, us-
ing separate models for each task.
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Partially Shared Models Models in this category retain a degree of parameter sharing, while
delegating specific responsibilities to task-specific modules. This design allows more flexibility in
handling modality-specific complexities while preserving shared knowledge across tasks. We use
Blip-30/|Chen et al.|(2025) which incorporates a dedicated diffusion model for image generation.

Decoupled Models Models in the third category are formed by constructing a unified pipeline
by composing independently trained models, which in tandem can emulate unified behavior. The
example we have used is pairing a VLM like LLaVALiu et al|(2023) for I2T with a Stable Diffu-
sion |Podell et al.| (2023) model for T2I. This setup enables task interoperability without requiring
joint training or weight sharing.

3 SEMANTIC DRIFT EVALUATION

We propose a cyclic evaluation Protocol SDP which provides three different metrics to measures
how well a unified model preserves semantic fidelity when alternating between I2T and T2I. SDP
proposes to evaluate on multi-generation cycles to provide quantitative measures of semantic drift.
In this setting, we treat the /M as a model composed of at least two functionalities. Image Gen-
eration: Y Mr,: : T — Z, which synthesizes an image given a textual description. Image Under-
standing (I2T): UM :,7 : T — T, which generates a textual description from a given image. Here,
T denotes the set of all possible text representations (e.g., captions, instructions), and Z denotes the
set of all possible image representations.

Let D = {(;, T;)}Y, represent a dataset of N paired samples, where each I; € Z and each T; € T
is its corresponding caption. A generation step is defined as the application of either U/ M 1,1 or
UM 1,7 to transform an input from one modality into the other. We define alternating chains of
length G starting from either text or image. Let g € {0,1,...,G} be the generation step index.
Then similar to the chains defined in [Bahng et al.| (2025)), we consider two experimental setups
depending on the initial modality:

+ Text-First-Chain: Starting from 7°), each step applies T2 then I27T:
70 T2L, y(1) 12T m(2) T2L, 1(3)

Here, similarity can be measured from initial text against later texts or images, giving the distance
mappings {text— text, text— image}.

« Image-First-Chain: Starting from I(%), each step applies I2T then T21:

7O 22, p(1) T21, p(2) 12T, p(3)
Here, similarity can be measured from initial image against later images or texts, giving the dis-
tance mappings {image — image, image — text}.

Depending on the modality of initial input and the modality considered for distance calculation, we
define a set of distance mappings, A = {text— text, image — text, text — image, image — image}.

The intuition for SDP is that a semantically consistent model will preserve the core meaning of
the original content across many generations of alternating T2I and I2T; A weaker model will
drift away from the original meaning more quickly. To systematically measure this degradation, in
our protocol we propose two distinct metrics. MCD provides a holistic measure of drift based on
embedding similarity. On the other hand, MGG grounds the evaluation in object-level fidelity by
extending the GenEval benchmark across multiple generations.

3.1 MCD: MEAN CUMULATIVE DRIFT

MCD measures how much meaning a model can retain after multiple T2I and I2T cycles. To
obtain this metric we compare the input with the output of later generations using embedding based
similarity scores. For any dataset that has text-image pairs, we can construct two separate chains
(Text-First and Image-First chains). Then, for each distance mapping 6 € A we obtain a sequence
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Figure 4: Semantic Drift Protocol (SDP). We alternate between text-to-image (T2I) and image-to-
text (I12T) generations in two setups: Text-First-Chain (a) and Image-First-Chain (b). Blue arrows
denote I2T; purple arrows denote T2TI; dashed black arrows indicate similarities computed back
to the initial input in both same- and cross-modality directions used for MCD. Across generations,
concepts drift despite plausible single steps: a “red F-450 truck” evolves into a semi-truck with
changing attachments and positions; in the image-first chain, group size inflates and new objects
(e.g., a sports ball) appear. The proposed cyclic evaluation reveals cross-modal concept drift that
single-pass metrics overlook, enabling direct comparison of unified model’s semantic stability.

of distance scores across the generations. We then average the sequences at every generation along
the entire dataset D,
1

Ss(g) = D]

>~ sim(inpg, M) (1
deD

where S5(g) is the average similarity at generation g for distance mapping J, Mégg is the generated
text or image at generation g. Here, sim denotes distance function using one of the embedding

models (CLIP, DINO, or MPNet). To get overall drift, we compute mean across generations Ss(g),

G
MCD; = &3 (S5(0), @

g=1

where MCDy is a single integer denoting mean cumulative drift for a given distance mapping. To
compute across all mappings, we compute mean across all distance mappings to get MCDgpg. A
higher MCD means the chain retains its semantic meaning more consistently across generations,
while a lower value indicates higher drift.

3.2 MGG: MULTI-GENERATION GENEVAL

To complement embedding-based similarities with object-level fidelity, we further extend
GenEval [Ghosh et al| (2023)) to our proposed multi-generation setting. The existing Geneval pro-
tocol |Ghosh et al.| (2023)) is designed to assess text-to-image fidelity across multiple dimensions of
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quality. These dimensions include single_object, two_object, counting, colors, and positions, and
attributes_binding. For each task, GenEval proposes a diverse set of prompts such as ’a photo of
a/an [COLOR] [OBJECT]”. Once a model has generated images for all the prompts, GenEval uses
a pre-trained object detection model to detect and localize objects in the generated images. This
process allows us to calculate the accuracy of the model for each task. An average of the task level
accuracies is then denoted by GenEval overall accuracy. We build on the existing benchmark by
incorporating the GenEval Rewritten dataset |Chen et al.| (2025), adopting the newer OwlV2 object
detection model Minderer et al.|(2024), and extending evaluation across multiple generations. To
calculate MGG, we first calculate the GenEval scores for each generation for all tasks. Then, similar
to GenEval overall accuracy, we compute the tasks scores to obtain GenEval overall accuracy for
each generation. Finally, we average the generation scores to obtain the MGG score. Higher MGG
scores indicate better ability to produce semantically accurate and, context-preserving outputs.

Position Inconsistency
70) (Input): A clear photo of a clock positioned directly below a television mounted on a wall...

L g ﬁea-@-e» w00

Ja— TR

‘<5) o |(9) m) 113) |(15) 1(17) |(w9>
Object Inconsistency

TO) (Input): a photo of a baseball bat

Style Transition
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70) (Input): A hlgh angle view of an old faded street corner. . orange spray painted word ""ROW""

Color Inconsistency
T (Input): A clear photo featuring a yellow sultcase and a brown bus positioned next to each other...

Figure 5: Information can be lost in different ways during a cyclic inference. In the first row, the
model ignores the position of the clock, which is a crucial detail. In the second row, the model
changes a baseball bat into a spoon. A model can also change the style from realistic to cartoon, as
shown in the third row. In the fourth row the model loses count of four clocks and generates lots of
clocks instead. In the fifth row a whole city is hallucinated around an empty road. In the sixth row,
the model changes a brown bus into a yellow bus.

3.3 SINGLE-PASS HUMAN EVALUATION (CROSS-CONSISTENCY)

We complement our cyclic analysis with a single-step cross-consistency evaluation to highlight
cross-modal fidelity issues, sampling 100 Text-First and 100 Image-First chains from the MCD
evaluation set for a total of 200 examples. Given a ground-truth pair (I, T"), we first generate a cap-
tion () = UM;,1(I) via I2T and an image 1) = UMz, (T') via T2I. We then assess whether
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T and I preserve the semantics of (1, T') along two axes: (a) I — T'") consistency—does 7'(*)
faithfully describe I? and (b) T — I") consistency—does I(*) depict 7? Six human annotators
participated in the study; each received a comparable workload, and every example was evaluated
independently by two different annotators. Using a web interface, annotators provided two judg-
ments per sample: a three-level fidelity score (Good, Medium, or Poor)and a ranking of model
outputs based on semantic correctness relative to the original input. To ensure unbiased evaluation
and prevent positional bias, model identities were masked and the output order was randomized for
every instance. Each sample page contained two sections: in the understanding section, annotators
rated and ranked captions for the input image; in the generation section, they rated and ranked gen-
erated images for the input text prompt. Finally, rather than averaging annotators’ opinions, we treat
each annotation as an independent data point, allowing us to measure consistency without collapsing
individual perspectives.

4 EVALUATIONS & FINDINGS
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Figure 6: The graph shows Ss(g) distance scores computed using Eq. |1l Plots showing Text First
(a)(b) and Image First (c)(d) chains that illustrate semantic drift across generations. The legend
mentions average scores across all generations for the given distance mapping.

For embedding based semantic drift analysis (MCD), we randomly sample 200 image-text pairs
from each of the two challenging vision-language datasets, Nocaps Agrawal et al.| (2019) and
DOCCI [Onoe et al|(2024). We denote this sample dataset as Nocaps+Docci400. These cor-
pora stress both novel objects and fine-grained details, making them well-suited to reveal drift that
single-pass metrics do not capture. NoCaps introduces nearly 400 novel objects unseen in COCO
and features more visually complex images. The novel objects enables testing models on out-of-
domain. DOCCI was specifically curated to evaluate fine-grained reasoning in image-text mod-
els. The image captions cover attributes, spatial relationships, object counts, text rendering, and
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world knowledge. These data allow will allow us to evaluate models in their descriptive under-
standing or generation capabilities. For multi-generation GenEval evaluations (MGG), we employ
the GenEval-R (GenEval Rewritten) dataset/Chen et al.| (2025), which extends the short GenEval
prompts into long descriptive texts which better match models’ outputs.

4.1 SEMANTIC DRIFT PROTOCOL FINDINGS

Bagel
From our evaluations, we observe several inter-
esting qualitative patterns. Fig. []illustrates six
of such different ways in which unified models

BLIP3-0

Show-o

lose information under alternating T2T <+ I2T
cycles: 1. Position Inconsistency: the model
fails to preserve spatial relationships that are
central to the scene, 2. Object Misidentifica-

Janus-7B

LLaVA+SDXL

Janus-1.38

tion: low-fidelity renderings lead to incorrect
re-captioning, 3. Style Transition: the model
may change the style of an image, particularly
for rare object pairings (e.g., a horse on a key-
board), 4. Quantity Inconsistency: numer-
ical counts may be inflated, 5. Object Hal-
lucinations: new elements are introduced, 6.
Color Inconsistency: important colors are not
retained.

VILA-U

Figure 7: MGG results on the GenEval Rewrit-
ten dataset. This heatmap shows the overall per-
formance across the six tasks described in the
GenEval|Ghosh et al.| (2023)) benchmark. On aver-
age, BAGEL consistently drifts the least from the
semantic meaning of the original caption.

Next, we present the empirical results in Fig. [6]
which shows the scores obtained from Eq.[I]for
all distance mappings, {text — text,image — text, text — image, image — image}. These scores
are later used to obtain MCD. In the ideal case, the similarities should remain nearly constant across
generations. Instead, as shown in these plots we observe consistent degradation in semantic fidelity,
with modality dependent asymmetries. Fig. [6{a) measures the similarity between the original cap-
tion and the text generated in Text-First-Chain. Top performing models start with a high similarity
(~ 0.65-0.70), however only BAGEL maintains it relatively well, ending around 0.65. In contrast,
models like VILA-U and Janus 1.3B exhibit a much steeper decline, with VILA-U’s similarity drop-
ping below 0.40, indicating that its generated texts or images quickly lose connection to the original
prompt. Fig. [f[b) and Fig. [6[d) offer a cross-modal perspective, evaluating the text — image, and
image — text respectively. In both scenarios, BAGEL maintains a clear lead, while VILA-U’s
generations drift so severely that their relevance to the original text becomes minimal at later stages.
Across both plots, the overall model ranking at the last step is exactly same. Fig.[6|c) measure visual
fidelity by comparing the original image to the generated images at subsequent steps in Image-First-
Chain. While the leading models perform similar to prior trends discussed above, we notice Janus
1.3B scoring high in the first generation (0.6), but eventually degrading to a low score in the last
generation. Overall, this behavior of models performing well in the first generation, but eventu-
ally losing context along the generations is a characteristic not reliably captured by conventional
single-pass metrics.

Fig.|7| shows that while initial MGG scores are high, they can mask qualitative differences between
models. For instance, BAGEL produces more faithful generations than SHOW-0 even with similar
initial scores, a divergence that only becomes numerically apparent in later generations as seman-
tic drift occurs. This underscores that cyclic evaluation reveals quality differences that single-pass
metrics obscure. Furthermore, performance collapses most dramatically on compositional tasks like
positioning and attribute binding (Fig. [IT)), suggesting this weakness is a key cause of semantic
drift. Overall performance, summarized in Fig. EI, plots MGG against MCDg,,, and reveals a cor-
relation between object-level and embedding-level metrics. A notable exception is the decoupled
LLaVA+SDXL system, which scores well on MGG but poorly on MCD, indicating it can render spe-
cific objects while failing to preserve holistic scene semantics. Across all evaluations, BAGEL
consistently shows the most resilience to semantic drift, likely due to its scale, architecture, and
training on diverse interleaved datasets, which makes it uniquely robust against the compounding
errors our protocol exposes.
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The findings above reveal that semantic drift is not linear, but rather catastrophic. Once a model
commits a critical error (e.g., the brown bus turning yellow in Fig.[3), the original semantic meaning
is irretrievably lost. While secondary details may continue to degrade in subsequent steps (e.g., the
suitcase information in Fig. [)), the metric effectively saturates once the core semantic components
are compromised. Hence, the maximum number of generations, (&, needs to be sufficiently large to
allow the drift to manifest, but not so large as to reach information saturation. We anchor G = 20
based on the observation that the lowest performing model, VILA-U, reaches a near-zero value in
the MGG metric by generation 19 as observed in Fig.[7] This duration is therefore optimal, as it also
provides strong correlation with our human evaluations.

4.2 HUMAN EVALUATION RESULTS

The dual-section design allowed us to capture o
cross-consistency. Specifically, if a model re-
ceived the same fidelity rating (e.g., High) for ®Bagel
both the caption and the generated image cor-
. . @BLIP

responding to the same (I,7") pair, we con- ) oshon 8
sidered the model consistent. Conversely, a "
mismatch in fidelity indicated inconsistency. ® LLaVA+SDXL

. . . @Janus-1.3B
This approach allowed us to identify not only VILA-U
whether inconsistency exists, but also which
type is more prevalent. For example, as shown 00+ s o T
in Fig. 0] and Appendix |E|, most unified mod- MCDayg
els primarily exhibit inconsistencies in the gen-  Figure 8: Comparison across MCD and MGG shows
eration task. In Fig.[9(c) BAGEL, shows strong that BAGEL achieves the highest performance on
understanding but occasionally fails to generate  both metrics, while VILA-U lags in both. The
images with high fidelity. models align in a linear fashion, hinting at a cor-
relation between the two scores.

MGG

The ranking component served to compare
human-perceived relevance across models. We
computed the mean ranking of each model across all samples to establish a human-based ordering.
These rankings were then compared with our embedding-based metrics to assess alignment with
human judgment. As shown in Fig[T2] there is a clear correlation between human rankings and
the MCD metric, validating our embedding-based approach as a reliable proxy for human-perceived
semantic consistency.
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Figure 9: Human evaluation of cross-consistency. First two plots show the percentage of samples
(y-axis) rated with a fidelity score (color) for different models. We see that most models gain a high
amount of Poor fidelity score in image generation, whereas understanding is pretty balanced, with
Bagel almost always getting Medium or better. The third plot illustrates a finer look at the responses
for the Bagel model. We see that while Bagel has 10% of Good-understanding-Bad-Generation type
of inconsistency, it does not have any other type of inconsistency.
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5 CONCLUSION

We introduced the Semantic Drift Protocol (SDP), a cyclic evaluation framework that alternates
image-to-text (I2T) and text-to-image (T2I) to measure how unified models preserve meaning
over repeated modality shifts. By combining embedding-based metrics (MCD) and object-level fi-
delity (MGG), SDP exposes vulnerabilities that single-pass evaluations cannot capture. Evaluating
seven recent models on the sampled Nocaps+Docci4 00 dataset shows substantial variability:
BAGEL maintains the strongest cross-modal stability, VILA-U and JANUS variants drift quickly,
and Show-o, while not always leading initially, degrades more gracefully across generations. Human
evaluations confirm these findings, showing that automated metrics like MCD strongly align with
human judgments. These results demonstrate that single-pass benchmarks can overstate robustness,
whereas our cyclic evaluation validated by human judgment reveals hidden inconsistencies between
image understanding and image generation. We conclude that cyclic evaluation is essential for reli-
able assessment of unified models.

REPRODUCIBILITY STATEMENT

All code used to generate images and captions relies on publicly available open-source implemen-
tations from the respective GitHub repositories of the models. The evaluation code required to
compute the reported scores will be released publicly. All datasets used are publicly available, as
referenced in the paper, and no proprietary data was used. Evaluation procedures are fully described
in the paper, and the exact code used to compute the reported scores is included with the submission.
We believe these details are sufficient for independent researchers to reproduce our results.
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APPENDIX

This appendix provides additional details and extended analyses that complement the results pre-
sented in the main paper. We first describe the models used in our experiments, including their
parameterization and image generation settings. We then report further evaluations using CLIP em-
beddings, and present comprehensive results from the extended multi-generation GenEval bench-
mark.

A MODELS & PARAMETERS

Tab. |1 lists the models included in our evaluations, along with their parameter counts and image
resolutions used during generation.

Name Parameters Image Resolution
BAGEL 14B - Mixture of Transformers 1024 <1024
(7B Active)

Show-o 1.3B 512x512
Janus 1.3B 1024 <1024
Janus Pro 7B 1024 <1024
VILA-U 7B 256x256
Blip-30 4B 1024 x 1024
LLaVA 1.5 + SDXL 7B + 3.5B 1024 x 1024

Table 1: Overview of models used in our experiments, including parameter counts and image resolu-
tion. The BAGEL model is a mixture-of-transformers architecture, where 7B parameters are active
during inference.

B RELATED WORKS

Unified Models T2 generation has advanced with diffusion-based models such as DALL-E 2
Ramesh et al.| (2022), Imagen Saharia et al.[ (2022), and Stable Diffusion Rombach et al.| (2022),
which synthesize high-fidelity images from textual prompts. Image captioning, on the other hand,
has evolved from CNN-RNN pipelines [Shi et al.| (2015) to transformer-based decoders Cornia
et al. (2020); |Liu et al.| (2023)) trained with large web-scale data. Recent works in unified mod-
els have started investigating how to unite understanding and generation under one architecture.
Chameleon [Team| (2025)) is one of the early works in this domain which aimed to auto-regressively
generate text tokens and image embeddings. Later, Transfusion |[Zhou et al.| (2024)) fused the auto-
regressive and diffusion loss within a single architecture. Show-o Xie et al.|(2024) has also used two
different objectives, next token prediction for text generation, and masked token prediction |[Chang
et al.[(2022) for image generation. Vila-u |[Wu et al.| (2025) uses next token prediction with differ-
ent text and vision decoders. Janus and Janus-pro Wu et al.[ (2024) employ separate encoders for
image input during understanding and generation. The idea is that a model might require different
level of information for understanding and generation. Other works like Blip-30|Chen et al.| (2025)
demonstrates good quality of image generation by leveraging a separate diffusion transformer head.
A recent work, BAGEL |Deng et al.|(2025) demonstrates some unique capabilities of unified models
by training on a large-scale interleaved dataset.

Prior Evaluations A variety of benchmarks have been proposed to evaluate the multimodal capa-
bilities of vision-language models. MME |Fu et al.| (2024) assesses basic perception and reasoning
through fine-grained tasks such as object existence, color, and OCR. MMBench [Liu et al.| (2024)
introduces more complex queries, especially in spatial reasoning. MMMU |Yue et al.|(2024) focuses
on college-level academic problems in fields such as science and art. MM-VET |Yu et al.| (2024)
covers diverse skills, including math, OCR, and spatial understanding. MathVista Lu et al.| (2024)
targets mathematical reasoning in visual contexts such as graphs. MMVP [Tong et al.|(2024) high-
lights flaws in existing benchmarks using CLIP-similar but human-atypical images. The FID score
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Heusel et al.|(2017) provides a metric-based evaluation of image generation quality, while Geneval
Ghosh et al.|(2023) benchmarks generative vision language models in instruction follow-up and vi-
sual grounding. Iterative text-image generation loops have rarely been studied in systematic depth.
The work in [Bahng et al.| (2025) is the closest in spirit where they they use cycle-consistency to
create a preference dataset. However, this work only looks at one generation and is limited to VLM
models in general and does not consider unified models.

C MORE RESULTS USING CLIP EMBEDDINGS

The main paper Fig. |§| presents Ss(g) results for text — text and image — image settings using
MPNet (for textual embeddings) and DINO (for visual embeddings). Here, we extend this analysis
by incorporating CLIP as an additional backbone, shown in Fig.[T0]

S_6(g) distance score vs. Number of generations S_6(g) distance score vs. Number of generations
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Figure 10: We show Ss(g) distance scores computed using CLIP for both text — text and image —
image.

For the Text-First-Chain, text — text comparison shown in Fig. (a), CLIP similarities are con-
sistently lower than those produced with MPNet as shown in Fig. |6 (a). Despite this, the overall
ranking of models is preserved as BAGEL continues to outperform others.

For the Image-First-Chain, image — image comparison shown in Fig. [I0] (b), the models have
higher similarities in the first generation compared to DINO in Fig. [6] (c). The relative order of
model performance remains consistent with DINO.

D ANALYSIS OF MULTI-GENERATION GENEVAL RESULTS

Fig. [IT] shows multi-generation performance in the six tasks from GenEval benchmark. In these
heatmaps, darker shades represent lower accuracy. Results from later generations reveal that a
model’s proficiency in complex tasks is highly susceptible to generational semantic decay, a weak-
ness that single-step evaluations fail to capture.

Fig. [[1(a) Single Object: The simplest task, requiring generation of a single specified object.
Nearly every model achieves near-perfect accuracy in the first generation, but consistency issues
appear quickly. VILA-U shows clear degradation, struggling to maintain even one concept.

Fig. [[1(b) Two Objects: This task assesses handling two entities. The performance drop-off is
more pronounced than in the single-object case. Models like Janus 1.3B and LLaVA+SDXL, along
with VILA-U lose the ability to consistently generate both objects after only a few generations.

Fig. [1(c) Counting: Tests counting capabilities. Initial accuracy is high, but many models fail
rapidly, replacing precise numbers (e.g., “three dogs™) with vague quantities (e.g., “some dogs”),
leading to cascading errors in subsequent generations.
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Figure 11: Detailed Multi-Generation GenEval (MGG) Results. Performance of unified models
using MGG across 20 generations for six different evaluation categories: (a) Single Object, (b) Two
Objects, (c¢) Counting, (d) Positioning, (e) Colors, and (f) Color Attribute. Darker colors indicate
higher accuracy. The results show that while initial performance is high for many models, consis-
tency varies significantly over successive generations, especially for complex tasks.

Fig. [{1(d) Positioning: Evaluates spatial reasoning (e.g., “a cup to the left of a plate”). Accu-
racy plummets after the first generation for most models. Preserving spatial relationships proves
extremely difficult. BAGEL maintains accuracy longer than other models.

Fig. [IT{e) Colors & [T1[f) Color Attribute: These assess attribute binding. “Colors” is simpler,
while “Color Attribute” requires binding colors to specific objects. Both show rapid decay, particu-
larly (f). Models often forget or swap colors. Only top performers retain any meaningful accuracy

beyond the initial generations.
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E CORRELATION OF HUMAN ANALYSIS WITH MCD AND MGG
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Figure 12: Validation of the MCD,,,, metric against human judgments. For both image generation
(a) and understanding (b), a lower (better) average human ranking strongly correlates with a higher
(Iess drift) MCDgy4 score. This alignment validates that MCD,,4 serves as areliable proxy for human-
perceived cross-consistency.
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Figure 13: (left) We demonstrate correlation between the GenEval metric against human judgments.
(right) We show correlation of MGG agains human judgement. We find our metric correlates more
strongly with human perception compared to classic GenEval.
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Figure 14: Heatmaps showing the generation fidelity versus understanding fidelity for six models.
Each cell shows the percentage of instances in that category. Darker shades indicate higher per-
centages. In our definitions, the top right corner and the bottom left corner of each heatmap would
identify the two types of inconsistencies. As we can observe it is more likely that given a concept a
model would be able to understand well while generating poorly rather than the opposite.
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F SEMANTIC DRIFT EXAMPLES

The following figures illustrate how semantic drift can occur due to hallucination in either generation
or understanding.

Generation 0 (input)

Generation 2

Generation 4

Generation 6

Generation 8

A clear photo of a black
vase placed on a simple
flat surface. The vase
has a sleek and elegant
design, with a glossy
finish that reflects light
subtly. Its shape Is
classic, featuring a
flared opening at the
top. The background is
plain and unobtrusive,
ensuring that the
viewer’s attention is
drawn entirely to the
vase.

The image features a
black vase with a glossy
finish. The vase has a
smooth, rounded body
that tapers slightly
towards the top. It has
a flared opening at the
top, which is wider than
the base. The vase is
placed on a flat,
light-colored surface,
and the background is a
plain, light grey color,
providing a neutral
backdrop that
highlights the vase. The
lighting in the image is
soft, casting subtle

The image displays a
black vase with a glossy
finish. The vase has a
bulbous body that
tapers slightly towards
the neck, which then
widens into a flared
opening. The surface of
the vase is smooth and
reflective, showing a
slight reflection of the
surrounding
environment. The vase
is placed on a flat,
light-colored surface,
and the background is a
plain, light grey color,
providing a neutral

tha

and re
on the surface of the
vase, which enhances
its sleek and polished
appearance. The overall
composition is simple
and minimalist, focusing
solely on the vase
without any additional
objects or distractions.

highlights the vase. The
lighting in the image is
soft and even, casting
minimal shadows and
emphasizing the vase's
sleek and modern
design. There are no
texts or additional
objects in the image.
The style of the image
is a straightforward
product photograph,
likely intended to
showcase the vase's
design and color.

The image displays a
black vase with a glossy
finish. The vase has a
spherical body that
tapers slightly towards
the top, forming a
narrow neck that
widens into a flared
opening. The surface of
smooth and
ndicating a
high-quality finish. The
vase is placed on a flat,
light-colored surface,
and the background is a
plain, light grey, which
contrasts with the black
color of the vase,
making it stand out
prominently. The
lighting in the image is
soft and even, casting
subtle shadows that
enhance t
three-dimensional
appearance of the vase.
The overall composition
is simple and
minimalist, focusing
solely on the vase
without any additional
objects or distractions.

The image features a
black vase with a glossy
finish. The vase has a
rounded body that
tapers slightly towards
the top, forming a
flared opening. The
surface of the vase is
highly reflective,
capturing the light and
creating subtle
highlights and shadows.
se is placed on a
flat, light-colored
surface, possibly a table
or countertop, against a
plain, light grey
background. The overall

and minimalist, focusing
on the sleek and
modern design of the
vase.

Generation 1

Generation 3

Generation 5

Generation 7

Generation 9

.

(a) Bagel is able to maintain the core subject of the topic across generations.

Generation 0 (input)

Generation 2

Generation 4

Generation 6

Generation 8

A clear photo of a black
vase placed on a simple
flat surface. The vase
has a sleek and elegant
design, with a glossy
finish that reflects light
subtly. Its shape is
classic, featuring a
flared opening at the
top. The background is
plain and unobtrusive,
ensuring that the
viewer’s attention is
drawn entirely to the
vase.

The image features a
black vase with a long,
ranch of leaves
inside it. The vase is
placed on a table, and
the branch appears to
be a part of a plant. The
vase is positioned in the
center of the scene, and
the branch is extending
from it, creating a
visually appealing
display.

The image features a
black vase filled with
green leaves, creating a
striking contrast
between the vase and
the leaves. The vase is
placed on a white table,
which serves as a
backdrop for the scene.
The leaves in the vase
are arranged in a way
that they appear to be
growing out of the vase,
adding a sense of life
and freshness to the
display.

The image features a
black vase filled with
green leaves, likely a
potted plant or a flower
arrangement. The vase
is placed on a white
table, creating a
contrast between the
black vase and the
white surface. The
leaves in the vase are
arranged in a way that
they appear to be
growing out of the vase,
adding a sense of life
and freshness to the
scene.

The image features a
black vase filled with a
variety of green leaves
and flowers. The vase is
placed on a white table,
creating a striking
contrast between the
dark vase and the light
The leaves
in the vase

manner, making the
display an attractive
centerpiece.

Generation 1

Generation 3

Generation 5

Generation 7

Generation 9

(b) LLaVA+SDXL hallucinates new elements across generations, inducing drift.

Figure 15: Example showing two text-first chains: Bagel vs LLaVASDXL. In this example, Bagel
keeps the semantic meaning ~’a black vase” across the generations, whereas, LLaVA+SDXL contin-
uously hallucinates new objects or modifications mainly during its generation task.
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Generation 0 (input)

Generation 2

Generation 4

Generation 6

Generation 8

A clear photo of three

The image features

upright next to each
other against a snowy
backdrop. Each
snowboard features
distinct designs and
vibrant colors,
showcasing a variety of
patterns and styles. The
snow-covered ground
and soft, overcast sky
create a chilly winter
atmosphere, with the
focus remainin,
three uniquely designed
snowboards.

three

standing upright in a
snowy landscape. The
snowboards are
positioned side by side,
with the leftmost board
having a predominantly
black base with a red
and white design, the
middle board
showcasing a gradient
from red to blue, and
the rightmost board
displaying a mix of blue,
red, and black with a
white dior logo. Each
board has a series of
small, evenly spaced
holes along the top
edge. The background
consists of a snowy field
with trees and a foggy
sky, creating a serene
winter setting.

The image displays
three snowboards
standing upright in a
snowy landscape. The
background features a
foggy, wintry scene with
snow-covered trees and
a muted sky. The

pos
with the leftmost board
being black with a red
swoosh design, the
middle board

transitioning from red
to blue, and the
rightmost board
featuring a blue and red
geometric pattern with
the letters DR at the
bottom. Each board has
a series of small holes
along the top edge,
likely for attaching
bindings. The overall
atmosphere of the
image is serene and

The image displays

three snowboards

standing upright in a

snowy landscape. The

background features a

foggy, wintry scene with
d t

The image displays

three snowboards

standing upright in a

snowy landscape. The

background features a

foggy, wintry scene with
d t

rees,
suggesting a
mountainous or
forested area. The
snowboards are
positioned side by side,
with the leftmost board
being black with a red
swoosh design, the
middle board
transitioning from red
to blue, and the
rightmost board
featuring a blue and red
geometric pattern with
the letters DR at the
bottom. Each board has
a series of small holes
along the top edge,
likely for attaching
bindings. The overall
of the

cold, the
winter sports theme.

image is cold and
serene, emphasizing the
winter sports theme.

rees,
suggesting a
mountainous or
forested area. The

snowboards are
positioned side by side,
with their tips pointing
upwards and their tails
in the snow. The
snowboard on the left
has a predominantly
black design with a red
swoosh-like shape on
the side. The middle
snowboard features a
gradient color scheme
transitioning from dark
blue at the top to red at
the bottom. The
snowboard on the right
has a design with a blue
and red geometric
pattern, including a
large blue triangle and
a red section with the
letters DR in white.

Generation 1

Generation 3

Generation 5

Generation 7

Generation 9

&el 4

ik

it

14

(a) Bagel’s output remains similar across modalities across generations. The idea of three
snowboards stay stable over the generations.

Generation 0 (input)

Generation 2

Generation 4

Generation 6

Generation 8

A clear photo of three

The image features a
it

upright next to each
other against a snowy
backdrop. Each
snowboard features
distinct designs and
vibrant colors,
showcasing a variety of
patterns and styles. The
snow-covered ground
and soft, overcast sky
create a chilly winter
atmosphere, with the
focus remaining on the
three uniquely designed
snowboards.

nowy with
two snowboards|

in the
snow. The snowboards
are colorful and have
different designs,
adding a vibrant touch
to the otherwise white
surroundings. The
snowboards are
positioned close to each
other, with one slightly
taller than the other,
creating an interesting
visual effect. The scene
captures the essence of
winter sports and
outdoor activities.

The image features a
snowy with

The image features a
pair of

two snowboards
standing upright in the
snow. The snowboards
are positioned side by
side, with one being red
and the other being
blue. The scene
captures the essence of
winter sports and
outdoor activities, with
the snowboards serving
as a symbol of
adventure and fun.

boots, pne red and one
anding upright
in the snow. The boots
are positioned side by
side, with the red one
on the left and the blue
one on the right. The
snowboard boots are
covered in snow,
indicating that they
have been used i
snowboarding activity.
The scene captures the
essence of winter sports
and outdoor adventure.

The image features a
pair of red and blue
snow boots standing
upright in the snow. The
boots are positioned
side by side, with the
red boot on the left and
the blue one on

right. The snow around
the boots is white,
indicating that it is
freshly fallen or
recently cleared. The
boots appear to be
well-fitted and ready for
use in snowy conditions.

Generation 1

Generation 3

Generation 5

Generation 7

Generation 9

e |

— -

(b) Show-o misunderstands its own outputs, increasing drift. It first misunderstands three
boards as two (generation 3), and then misunderstands the boards as boots.

Figure 16: Example showing two text-first chains: Bagel vs Show-o. Bagel is consistent, where
Show-o shows semantic drift mainly due to poor understanding during the understanding task.
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G EXAMPLES OF CROSS-INCONSISTENCIES

Figures [T7] and [T8] illustrate two distinct types of inconsistencies observed in unified models. In
Figure (17 when the BLIP3-0 model processes an image of a worn-down rocky stairway (I2T), it
hallucinates a stream of water. Yet, when given the corresponding text prompt (T21), it generates
an accurate image. In contrast, Figure [T8]shows the reverse: the BAGEL model correctly describes
the image of a dog (I2T), but the input text prompt (T2 I) produces a low quality depiction of the
animal. These cases suggest that models perform better at generation for some concepts and at
understanding for others.

12T: Image to Text { Prompt: "Describe the ! i
= i _image in details" | iThe image depicts a rocky, uneven terrain with variously sized

1and shaped stones scattered across the surface. The stones !
\appear to be of different materials, including what looks like
iconcrete or brick, as well as natural rock formations. Some of 1
Ethe stones have a reddish hue, possibly indicating iron oxide or

BLIP3-o ———>other mineral deposits. In the background, there is a .
ismall, narrow stream or water feature that runs through the ]
irocks. The water appears to be shallow and clear, reflecting
isome of the surrounding stones. The stream is bordered by
imore rocks and debris, suggesting it might be part of a natural
:drainage system or a man-made water feature.

EAdated stone walkway is seen with broken steps and !
rovergrown brush. The walkway was once made of large, flat, |
llayered stones that were pieced together with cement to create |

\a low, angled step way up a slope. A few of the stones have ]

ibroken off and sit diagonally to the right, while the majority of the——————  BLIP3-0
fsteps are still together on the left. All the stones are white, with :

'some green and pink growth patches on them. A flat concrete

ibase is seen above, behind small tree trunks and bushes. Dead |

leaves fill the crevices. H

Figure 17: An example of cross inconsistency in the BLIP3-o unified model. When the model is
prompted (I2T) to describe the given image (top), it incorrectly mentions a water stream in the
image. However, when BLIP3-0 is given the text prompt (T21I) (bottom), it generates an image that
correctly represents the prompt. This exposes a UM inconsistency: BLIP3-0’s correct generation
(T21) does not carry over to visual reasoning (I2T) for this concept.

I12T: Image to Text {Prompt: "Describe the

;The image shows a small, white, curly-haired dog lying on its 3
'back on a patch of grass. The dog appears to be relaxed and
\possibly enjoying the sun. The grass is a mix of green and

BAGEL sbrown, indicating it might be a dry or late season. There are a
\few scattered leaves on the ground. The dog is wearing a pink
Eleash, which is attached to its collar. The overall scene suggests:
1a peaceful moment in a park or a similar outdoor setting.

\An overhead view of a cream-colored labradoodle laying flat on a
\grass surface facing the top of the image. Only the top of the dog's :
ihead and body are visible. The dog is laying on its stomach with its |
«front legs extended out in front of its body and its back legs extended ;
:out behind its body. The dog's tail is extended toward the left side of | BAGEL
lits body. Its head is facing forward and it is wearing a white color H
:around its neck. There is a red leash extending from the bottom left :
iside of the image between its back legs, and underneath its body.

‘The grass appears to be dry throughout the majority of the image.

‘There are leaves scattered throughout the grass surface. H

Figure 18: Another example of cross inconsistency in the BAGEL unified model. When the model is
prompted (I2T) to describe the given image (top), it correctly describes the dog and its surroundings.
However, when BAGEL is given the text prompt (T2I) (bottom), it fails to generate the animal. In
this case, BAGEL’s correct understanding (I2T) does not carry over to generation (T21).
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