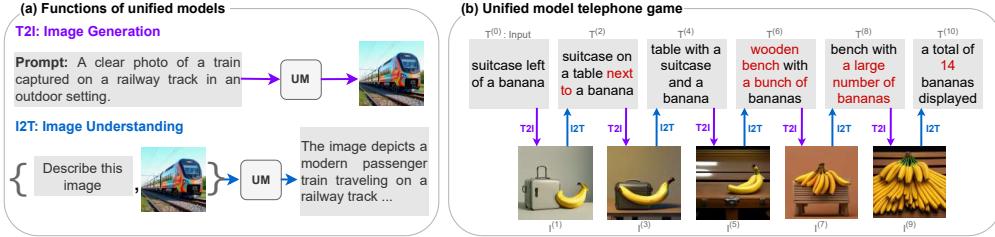


THE TELEPHONE GAME: EVALUATING SEMANTIC DRIFT IN UNIFIED MODELS

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010
011
012
013
014
015



016
017 **Figure 1: (a) Unified models** possess both image generation and image understanding function-
018 alities. **(b) Telephone Game:** Here, the unified model starts from a textual prompt $T^{(0)}$ about a
019 suitcase and a banana. After successive $T2I$ & $I2T$ steps we observe in the 5th generation image,
020 $I^{(5)}$, the model fails to generate a convincing suitcase. Subsequently the suitcase disappeared from
021 future generations. Also, $I^{(5)}$ has two bananas instead of one, which culminated in lots of bananas.

ABSTRACT

024 Employing a single, unified model (UM) for both visual understanding ([image-to-text: \$I2T\$](#)) and visual generation ([text-to-image: \$T2I\$](#)) has opened a new di-
025 rection in Visual Language Model (VLM) research. While UMs can also sup-
026 port broader unimodal tasks (e.g., text-to-text, image-to-image), we focus on the
027 core cross-modal pair $T2I$ and $I2T$. Existing evaluations benchmarks consider
028 these capabilities in isolation: FID and GenEval for $T2I$, and benchmarks such as
029 MME, MMBench for $I2T$. These isolated single-pass metrics do not reveal cross-
030 consistency: whether a model that “understands” a concept can also “render” it,
031 nor whether semantic meaning is preserved when cycling between image and text
032 modalities. To address this, we introduce the Semantic Drift Protocol (SDP) for
033 Unified Models, a cyclic evaluation protocol that alternates $I2T$ and $T2I$ over
034 multiple generations to quantify semantic drift. We propose two metrics: (i)
035 Mean Cumulative Drift (MCD), an embedding-based measure of overall semantic
036 loss; and (ii) Multi-Generation GenEval (MGG), an object-level compliance score
037 extending GenEval. To assess generalization beyond COCO dataset, which is
038 widely used in training, we create a new benchmark [NoCaps+Docci400](#), sam-
039 pled from NoCaps and DOCCI and evaluate on seven recent models. SDP reveals
040 substantial variation in cross-modal stability: some models like BAGEL maintain
041 semantics over many alternations, whereas others like Vila-u drift quickly despite
042 strong single-pass scores. Our results highlight SDP as a necessary complement
043 to standard $I2T$ and $T2I$ evaluations.

1 INTRODUCTION

044 Multimodal Unified Models (UMs) combine visual understanding and generation within a single
045 framework, enabling a wide range of unimodal tasks (e.g., text-to-text, image-to-image) as well as
046 cross-modal tasks (e.g., image-to-text, text-to-image). By sharing representations across modal-
047 ities, UMs can demonstrate interesting emerging capabilities such as intelligent photo editing, e.g.
048 BAGEL Deng et al. (2025). Despite rapid model progress, UM evaluation remains fragmented.
049 Existing metrics assess image understanding and image generation in isolation; e.g., MME, MM-
050 Bench, POPE, VQA Fu et al. (2024); Liu et al. (2024); Li et al. (2023); Agrawal et al. (2016) are
051 used for evaluating understanding ($I2T$), and Inception score, CLIPScore, FID, GenEval Radford
052 et al. (2016); Heusel et al. (2017); Ghosh et al. (2023) are used for evaluating image synthesis ($T2I$),

054 while overlooking the retention of important information during $\text{I2T} \leftrightarrow \text{T2I}$ multi-turn conversion.
 055 In other words, current single-pass metrics do not assess the retention of entities, attributes,
 056 relations, and counts under alternating $\text{I2T} \leftrightarrow \text{T2I}$ conversions. We defer unimodal tasks and center
 057 our analysis on I2T and T2I tasks as the potential for semantic divergence and its impact on real
 058 use is most pronounced on the cross-modal tasks.

059 We begin by formalizing two key notions,
 060 “semantic-drift” and “cross-consistency”. Se-
 061 mantic drift is the loss or distortion of mean-
 062 ing that accumulates when an input is repeat-
 063 edly transformed across modalities via T2I and
 064 I2T . Essentially, this drift can be defined as the
 065 changes in the core semantic content (e.g: ob-
 066 jects count, color, attribute relations, spatial po-
 067 sition) that occur when a model repeatedly ap-
 068 plies its own $\text{I2T} \leftrightarrow \text{T2I}$ transformations. On the
 069 other hand, cross-consistency refers to the over-
 070 lap between what a model can generate as im-
 071 ages from text and what it can faithfully under-
 072 stand from images as text. Much like the popular
 073 children’s game called *Telephone Game*, where a
 074 whispered message drifts in meaning as it passes
 075 from person to person, UMs tend to lose or dis-
 076 tort semantic meaning when cycling between text
 077 and image representations as shown in Fig. 1(b).
 078 Starting from a textual prompt: “a suitcase left
 079 of a banana”, the model produces an image $I^{(1)}$
 080 correctly, which is then captioned (I2T) to form
 081 the next prompt $T^{(2)}$, and so on. Although each
 082 individual step can look plausible in isolation, se-
 083 mantic drift accumulates across the cycles: by
 084 generation 5, the image has changed drastically.
 085 Notably, a model may score well on isolated single-pass I2T or T2I metrics, while still exhibiting
 086 these cross-modal inconsistencies, which the current metrics fail to capture. The concept of cross-
 087 consistency is illustrated in Fig. 2, where even state-of-the-art unified models like BAGEL Deng
 088 et al. (2025) can correctly reason about a chessboard image in I2T identifying that “the white side
 089 wins”, yet fail to produce a faithful T2I image of the same winning scenario.

090 There are several ways to evaluate a model’s image generation capabilities. For example, ClipScore
 091 Hessel et al. (2022) uses clip embeddings to measure semantic alignment of the prompt with gen-
 092 erated images. However, it strongly relies on clip embeddings, which may not always be reflective
 093 with human perceptions Ghosh et al. (2023). Fréchet Inception Distance (FID) Heusel et al. (2017)
 094 measures the distributional similarity between the generated images and real images, but ignores the
 095 generated image’s faithfulness to the input prompt. A model that ignores the input text and produces
 096 high-quality, yet off-prompt images can still score well Ghosh et al. (2023). GenEval Ghosh et al.
 097 (2023) improves on prompt alignment by checking object and relation-level compliance with de-
 098 tection models, however, by design, does not assess overall visual quality or realism, and like FID,
 099 remains a single-pass measure. A similar limitation is observed in the image-understanding bench-
 100 marks, such as MME and MMBench Fu et al. (2024); Liu et al. (2024) which assess I2T skills in
 101 isolation, without testing whether the model’s understanding capability aligns with its generation
 102 capability.

103 To address this gap, we evaluate unified models cross-consistency and drift in single- and multi-turn
 104 settings respectively. In the single-pass setting (one-step I2T and T2I on paired image–caption
 105 data), we perform a human cross-consistency study to judge consistency between model outputs
 106 relative to its inputs. In multi-pass, we propose the Semantic Drift Protocol for Unified Models
 107 (SDP), a cyclic evaluation protocol designed to quantify how well UMs preserve semantic mean-
 108 ing under repeated T2I and I2T conversions. Starting from an initial input $T^{(0)}$ (text) or $I^{(0)}$
 109 (image), the model alternates T2I or I2T to produce a sequence $\{I^{(g)}, T^{(g)}\}$, where g denotes gen-
 110 eration step. At each generation g , SDP measures semantic similarity back to the initial input and
 111 across steps, capturing drift directions and exposing misalignment between a model’s understand-

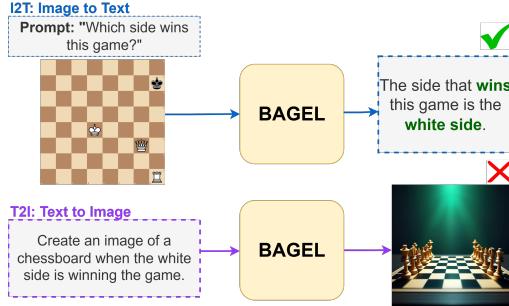


Figure 2: An example of cross-consistency in the BAGEL unified model. Given an image of a chess board along with a question (top), BAGEL performs I2T , correctly answering “white side wins”. By creating another caption for the T2I prompt (bottom), BAGEL should generate a chess board image consistent with the same semantic predicate (white winning side). However, the model generates a generic, mismatched chessboard image. This exposes a unified model inconsistency: BAGEL’s correct visual reasoning (I2T) does not carry over to generation (T2I) for the concept “winning side in chess”.

500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716

108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161

ing and generation spaces. We employ CLIP Radford et al. (2021), DINO Caron et al. (2021), and MPNet Song et al. (2020) embeddings for text–image, image–image, and text–text comparisons, respectively. For rigorous testing, we design two different metrics: Mean Cumulative Drift (MCD), and Multi-Generation Geneval (MGG). In MCD, we use raw embedding distance scores to quantify cumulative information retention, and MGG extends the GenEval benchmark for multiple generations. We propose a new benchmark dataset Nocaps+Docci400, sampling 200 image–text pairs from NoCaps Agrawal et al. (2019) and 200 image–text pairs DOCCI Onoe et al. (2024) datasets. These two datasets were selected for their novel objects and fine-grained visual details that better probe generalization. We benchmark 7 recent models spanning shared-weight, partially shared, and decoupled architectures, to analyze how architectural design choices influence semantic stability. Further, to validate the proposed embedding metrics, we also ask humans to rank the model outputs: we conduct a human study in which annotators score the fidelity of each output relative to its input and provide comparative rankings across multiple model outputs. The fidelity scores indicate the degree to which inconsistencies are present, while the rankings establish relative model performance according to human judgment.

Our experiments reveal substantial variation in semantic drift behavior across models. For example, BAGEL Deng et al. (2025) maintains strong semantic fidelity across multiple generation cycles, whereas models like Vila-U Wu et al. (2025) and Janus Wu et al. (2024) degrade rapidly, exposing weaker coupling between their visual understanding and visual generation capabilities despite competitive single-pass metrics. These findings underscore the need to move beyond isolated I2T or T2I metrics and toward evaluations that directly measure cross-consistency.

Our contributions are summarized as follows:

- We formalize the cross-consistency and semantic drift problem, showing that single-pass metrics cannot expose gaps between a model’s understanding and generation capabilities.
- We propose the Semantic Drift Protocol (SDP), which jointly evaluates I2T and T2I over multiple transitions to track semantic preservation.
- We extend GenEval Ghosh et al. (2023) to a multi-generation setting, which amplifies observable performance differences between models.
- We conduct a human study to determine cross-consistency in existing models and provide a comparative ranking.

2 UNIFIED MODELS

Unified models employ visual and textual modalities as both input and output. The motivation is that these universal models facilitate richer semantic interoperability among the two tasks, I2T and T2I . While most prior works focus on building a single model for both tasks, we propose a broader categorization that encompasses unified models as well as models that can emulate unified behavior.

Shared-Weights Unified Models This category has received the most attention in recent research. These models leverage a single model, typically a transformer decoder, to perform a wide spectrum of unimodal and cross-modal tasks, with T2I and I2T generation being prominent examples. The encoder component can vary where some models employ a shared visual encoder across tasks, while others use distinct encoders for generation and understanding. In our experiments, we use 5 such models: BAGEL Deng et al. (2025), Janus Pro 7B Wu et al. (2024), Show-o Xie et al. (2024), and Vila-u Wu et al. (2025).

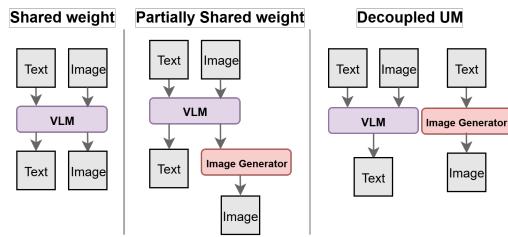


Figure 3: On the left, a single model handles both understanding and generation. In the middle, the architecture partially shares weights, with a decoder capable of generating text and visual features, the latter is passed to another image generation model. On the right, the understanding and generation processes are fully decoupled, using separate models for each task.

162 **Partially Shared Models** Models in this category retain a degree of parameter sharing, while
 163 delegating specific responsibilities to task-specific modules. This design allows more flexibility in
 164 handling modality-specific complexities while preserving shared knowledge across tasks. We use
 165 *Blip-3o* Chen et al. (2025) which incorporates a dedicated diffusion model for image generation.
 166

167 **Decoupled Models** Models in the third category are formed by constructing a unified pipeline
 168 by composing independently trained models, which in tandem can emulate unified behavior. The
 169 example we have used is pairing a VLM like *LLaVALiu* et al. (2023) for I2T with a *Stable Diffusion*
 170 *Podell* et al. (2023) model for T2I . This setup enables task interoperability without requiring
 171 joint training or weight sharing.
 172

173 3 SEMANTIC DRIFT EVALUATION

175 We propose a cyclic evaluation Protocol SDP which provides three different metrics to measures
 176 how well a unified model preserves semantic fidelity when alternating between I2T and T2I . SDP
 177 proposes to evaluate on multi-generation cycles to provide quantitative measures of semantic drift.
 178 In this setting, we treat the \mathcal{UM} as a model composed of at least two functionalities. **Image Generation:** $\mathcal{UM}_{\text{T2I}} : \mathcal{T} \rightarrow \mathcal{I}$, which synthesizes an image given a textual description. **Image Understanding (I2T):** $\mathcal{UM}_{\text{I2T}} : \mathcal{I} \rightarrow \mathcal{T}$, which generates a textual description from a given image. Here,
 179 \mathcal{T} denotes the set of all possible text representations (e.g., captions, instructions), and \mathcal{I} denotes the
 180 set of all possible image representations.
 181

182 Let $\mathcal{D} = \{(I_i, T_i)\}_{i=1}^N$ represent a dataset of N paired samples, where each $I_i \in \mathcal{I}$ and each $T_i \in \mathcal{T}$
 183 is its corresponding caption. A *generation step* is defined as the application of either $\mathcal{UM}_{\text{T2I}}$ or
 184 $\mathcal{UM}_{\text{I2T}}$ to transform an input from one modality into the other. We define alternating chains of
 185 length G starting from either text or image. Let $g \in \{0, 1, \dots, G\}$ be the generation step index.
 186 Then similar to the chains defined in Bahng et al. (2025), we consider two experimental setups
 187 depending on the initial modality:
 188

- 189 • **Text-First-Chain:** Starting from $T^{(0)}$, each step applies T2I then I2T :

$$T^{(0)} \xrightarrow{\text{T2I}} I^{(1)} \xrightarrow{\text{I2T}} T^{(2)} \xrightarrow{\text{T2I}} I^{(3)} \dots$$

190 Here, similarity can be measured from initial text against later texts or images, giving the distance
 191 mappings $\{\text{text} \rightarrow \text{text}, \text{text} \rightarrow \text{image}\}$.
 192

- 193 • **Image-First-Chain:** Starting from $I^{(0)}$, each step applies I2T then T2I :

$$I^{(0)} \xrightarrow{\text{I2T}} T^{(1)} \xrightarrow{\text{T2I}} I^{(2)} \xrightarrow{\text{I2T}} T^{(3)} \dots$$

194 Here, similarity can be measured from initial image against later images or texts, giving the dis-
 195 tance mappings $\{\text{image} \rightarrow \text{image}, \text{image} \rightarrow \text{text}\}$.
 196

197 Depending on the modality of initial input and the modality considered for distance calculation, we
 198 define a set of distance mappings, $\Delta = \{\text{text} \rightarrow \text{text}, \text{image} \rightarrow \text{text}, \text{text} \rightarrow \text{image}, \text{image} \rightarrow \text{image}\}$.
 199

200 The intuition for SDP is that a semantically consistent model will preserve the core meaning of
 201 the original content across many generations of alternating T2I and I2T ; A weaker model will
 202 drift away from the original meaning more quickly. To systematically measure this degradation, in
 203 our protocol we propose two distinct metrics. MCD provides a holistic measure of drift based on
 204 embedding similarity. On the other hand, MGG grounds the evaluation in object-level fidelity by
 205 extending the GenEval benchmark across multiple generations.
 206

211 3.1 MCD: MEAN CUMULATIVE DRIFT

212 MCD measures how much meaning a model can retain after multiple T2I and I2T cycles. To
 213 obtain this metric we compare the input with the output of later generations using embedding based
 214 similarity scores. For any dataset that has text-image pairs, we can construct two separate chains
 215 (Text-First and Image-First chains). Then, for each distance mapping $\delta \in \Delta$ we obtain a sequence

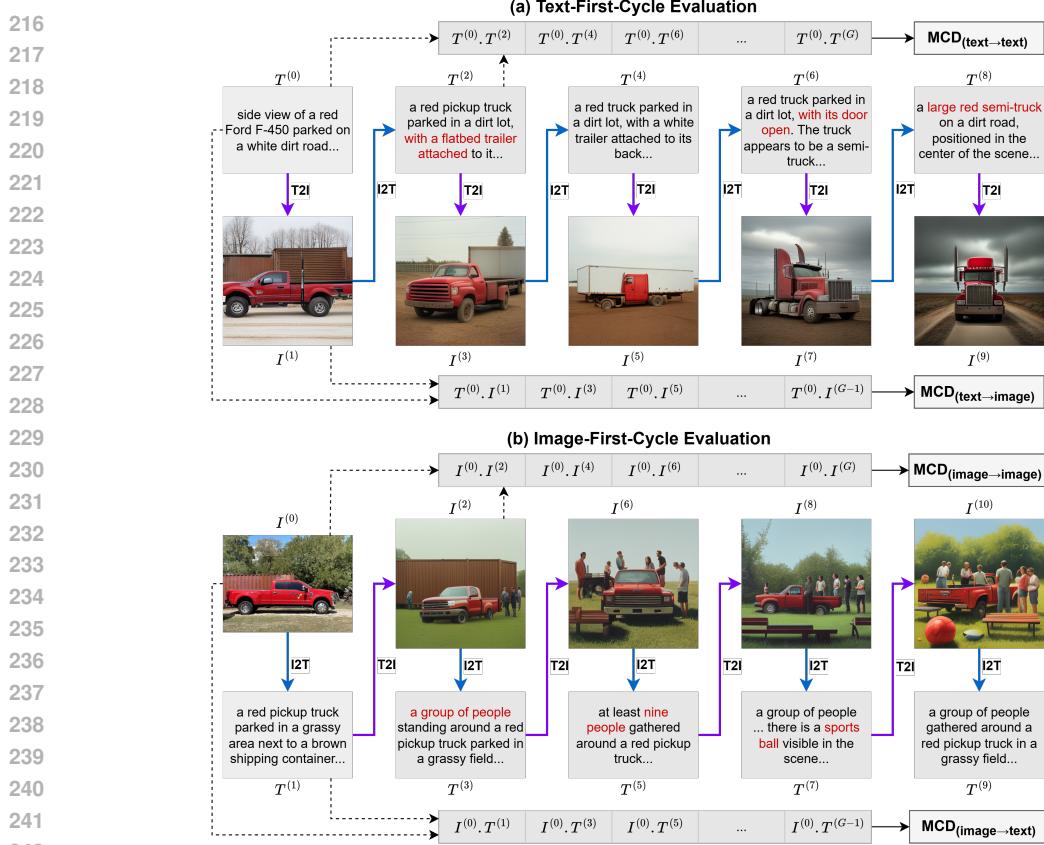


Figure 4: Semantic Drift Protocol (SDP). We alternate between text-to-image ($T2I$) and image-to-text ($I2T$) generations in two setups: Text-First-Chain (a) and Image-First-Chain (b). Blue arrows denote $I2T$; purple arrows denote $T2I$; dashed black arrows indicate similarities computed back to the initial input in both same- and cross-modality directions used for MCD. Across generations, concepts drift despite plausible single steps: a “red F-450 truck” evolves into a semi-truck with changing attachments and positions; in the image-first chain, group size inflates and new objects (e.g., a sports ball) appear. The proposed cyclic evaluation reveals cross-modal concept drift that single-pass metrics overlook, enabling direct comparison of unified model’s semantic stability.

of distance scores across the generations. We then average the sequences at every generation along the entire dataset \mathcal{D} ,

$$S_\delta(g) = \frac{1}{|\mathcal{D}|} \sum_{d \in \mathcal{D}} \text{sim}(inp_d, M_{d,\delta}^{(g)}) \quad (1)$$

where $S_\delta(g)$ is the average similarity at generation g for distance mapping δ , $M_{d,\delta}^{(g)}$ is the generated text or image at generation g . Here, sim denotes distance function using one of the embedding models (CLIP, DINO, or MPNet). To get overall drift, we compute mean across generations $S_\delta(g)$,

$$\text{MCD}_\delta = \frac{1}{G} \sum_{g=1}^G (S_\delta(g)), \quad (2)$$

where MCD_δ is a single integer denoting mean cumulative drift for a given distance mapping. To compute across all mappings, we compute mean across all distance mappings to get MCD_{avg} . A higher MCD means the chain retains its semantic meaning more consistently across generations, while a lower value indicates higher drift.

3.2 MGG: MULTI-GENERATION GENEVAL

To complement embedding-based similarities with object-level fidelity, we further extend GenEval Ghosh et al. (2023) to our proposed multi-generation setting. The existing Geneval protocol Ghosh et al. (2023) is designed to assess text-to-image fidelity across multiple dimensions of

270 quality. These dimensions include *single_object*, *two_object*, *counting*, *colors*, and *positions*, and
 271 *attributes_binding*. For each task, GenEval proposes a diverse set of prompts such as "a photo of
 272 a/an [COLOR] [OBJECT]". Once a model has generated images for all the prompts, GenEval uses
 273 a pre-trained object detection model to detect and localize objects in the generated images. This
 274 process allows us to calculate the accuracy of the model for each task. An average of the task level
 275 accuracies is then denoted by GenEval overall accuracy. We build on the existing benchmark by
 276 incorporating the GenEval Rewritten dataset Chen et al. (2025), adopting the newer OwlV2 object
 277 detection model Minderer et al. (2024), and extending evaluation across multiple generations. To
 278 calculate MGG, we first calculate the GenEval scores for each generation for all tasks. Then, similar
 279 to GenEval overall accuracy, we compute the tasks scores to obtain GenEval overall accuracy for
 280 each generation. Finally, we average the generation scores to obtain the MGG score. Higher MGG
 281 scores indicate better ability to produce semantically accurate and, context-preserving outputs.
 282



313 Figure 5: Information can be lost in different ways during a cyclic inference. In the first row, the
 314 model ignores the position of the clock, which is a crucial detail. In the second row, the model
 315 changes a baseball bat into a spoon. A model can also change the style from realistic to cartoon, as
 316 shown in the third row. In the fourth row the model loses count of four clocks and generates lots of
 317 clocks instead. In the fifth row a whole city is hallucinated around an empty road. In the sixth row,
 318 the model changes a brown bus into a yellow bus.

3.3 SINGLE-PASS HUMAN EVALUATION (CROSS-CONSISTENCY)

321 We complement our cyclic analysis with a single-step cross-consistency evaluation to highlight
 322 cross-modal fidelity issues, [sampling 100 Text-First and 100 Image-First chains from the MCD](#)
 323 [evaluation set for a total of 200 examples](#). Given a ground-truth pair (I, T) , we first generate a
 324 caption $T^{(1)} = \text{UM}_{\text{I}2\text{T}}(I)$ via $\text{I}2\text{T}$ and an image $I^{(1)} = \text{UM}_{\text{T}2\text{I}}(T)$ via $\text{T}2\text{I}$. We then assess whether

$T^{(1)}$ and $I^{(1)}$ preserve the semantics of (I, T) along two axes: (a) $I \rightarrow T^{(1)}$ consistency—does $T^{(1)}$ faithfully describe I ? and (b) $T \rightarrow I^{(1)}$ consistency—does $I^{(1)}$ depict T ? Six human annotators participated in the study; each received a comparable workload, and every example was evaluated independently by two different annotators. Using a web interface, annotators provided two judgments per sample: a three-level fidelity score (Good, Medium, or Poor) and a ranking of model outputs based on semantic correctness relative to the original input. To ensure unbiased evaluation and prevent positional bias, model identities were masked and the output order was randomized for every instance. Each sample page contained two sections: in the **understanding section**, annotators rated and ranked captions for the input image; in the **generation section**, they rated and ranked generated images for the input text prompt. Finally, rather than averaging annotators' opinions, we treat each annotation as an independent data point, allowing us to measure consistency without collapsing individual perspectives.

4 EVALUATIONS & FINDINGS

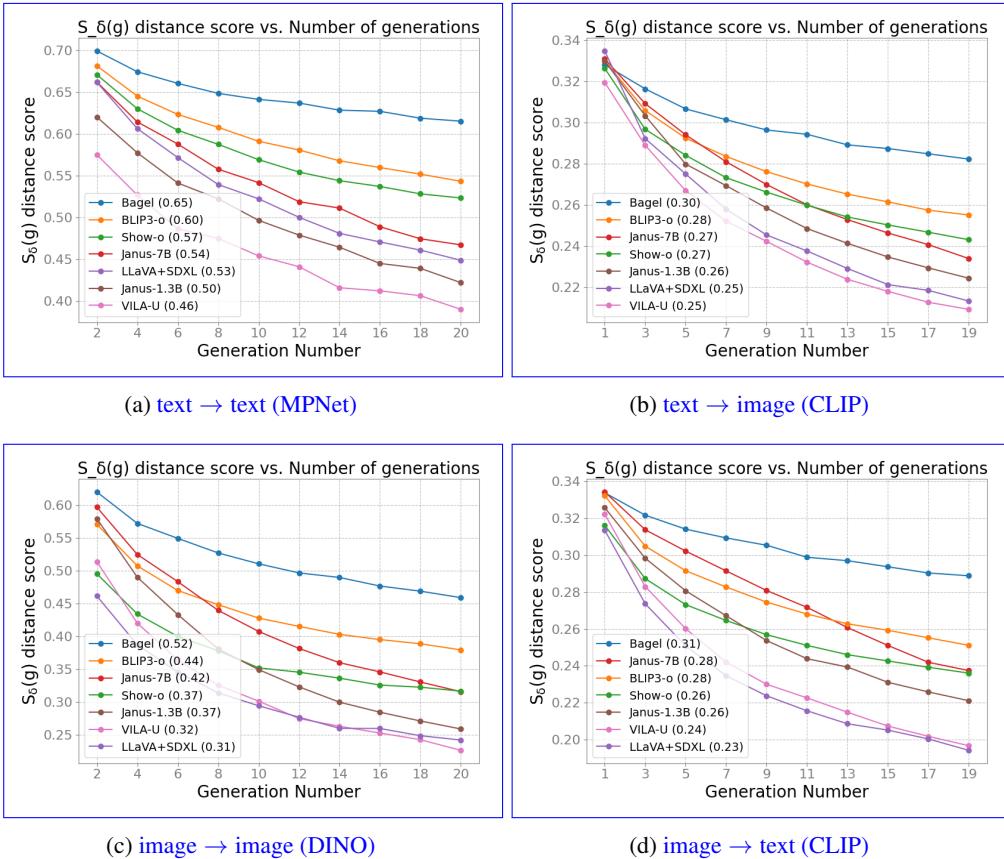


Figure 6: The graph shows $S_\delta(g)$ distance scores computed using Eq. 1. Plots showing Text First (a)(b) and Image First (c)(d) chains that illustrate semantic drift across generations. The legend mentions average scores across all generations for the given distance mapping.

For embedding based semantic drift analysis (MCD), we randomly sample 200 image-text pairs from each of the two challenging vision-language datasets, Nocaps Agrawal et al. (2019) and DOCCI Onoe et al. (2024). We denote this sample dataset as Nocaps+Docci400. These corpora stress both novel objects and fine-grained details, making them well-suited to reveal drift that single-pass metrics do not capture. NoCaps introduces nearly 400 novel objects unseen in COCO and features more visually complex images. The novel objects enables testing models on out-of-domain. DOCCI was specifically curated to evaluate fine-grained reasoning in image-text models. The image captions cover attributes, spatial relationships, object counts, text rendering, and

378 world knowledge. These data allow will allow us to evaluate models in their descriptive under-
 379 standing or generation capabilities. For multi-generation GenEval evaluations (MGG), we employ
 380 the GenEval-R (GenEval Rewritten) dataset Chen et al. (2025), which extends the short GenEval
 381 prompts into long descriptive texts which better match models' outputs.

384 4.1 SEMANTIC DRIFT PROTOCOL FINDINGS

385
 386 From our evaluations, we observe several inter-
 387 esting qualitative patterns. Fig. 5 illustrates six
 388 of such different ways in which unified models
 389 lose information under alternating $T2I \leftrightarrow I2T$
 390 cycles: 1. **Position Inconsistency**: the model
 391 fails to preserve spatial relationships that are
 392 central to the scene, 2. **Object Misidentifica-**
 393 **tion**: low-fidelity renderings lead to incorrect
 394 re-captioning, 3. **Style Transition**: the model
 395 may change the style of an image, particularly
 396 for rare object pairings (e.g., a horse on a key-
 397 board), 4. **Quantity Inconsistency**: numerical
 398 counts may be inflated, 5. **Object Hallu-**
 399 **cinations**: new elements are introduced, 6.
 400 **Color Inconsistency**: important colors are not
 401 retained.

402 Next, we present the empirical results in Fig. 6
 403 which shows the scores obtained from Eq. 1 for
 404 all distance mappings, $\{\text{text} \rightarrow \text{text}, \text{image} \rightarrow \text{text}, \text{text} \rightarrow \text{image}, \text{image} \rightarrow \text{image}\}$. These scores
 405 are later used to obtain MCD. In the ideal case, the similarities should remain nearly constant across
 406 generations. Instead, as shown in these plots we observe consistent degradation in semantic fidelity,
 407 with modality dependent asymmetries. Fig. 6(a) measures the similarity between the original cap-
 408 tion and the text generated in Text-First-Chain. Top performing models start with a high similarity
 409 ($\sim 0.65-0.70$), however only BAGEL maintains it relatively well, ending around 0.65. In contrast,
 410 models like VILA-U and Janus 1.3B exhibit a much steeper decline, with VILA-U's similarity drop-
 411 ping below 0.40, indicating that its generated texts or images quickly lose connection to the original
 412 prompt. Fig. 6(b) and Fig. 6(d) offer a cross-modal perspective, evaluating the $\text{text} \rightarrow \text{image}$, and
 413 $\text{image} \rightarrow \text{text}$ respectively. In both scenarios, BAGEL maintains a clear lead, while VILA-U's
 414 generations drift so severely that their relevance to the original text becomes minimal at later stages.
 415 Across both plots, the overall model ranking at the last step is exactly same. Fig. 6(c) measure visual
 416 fidelity by comparing the original image to the generated images at subsequent steps in Image-First-
 417 Chain. While the leading models perform similar to prior trends discussed above, we notice Janus
 418 1.3B scoring high in the first generation (0.6), but eventually degrading to a low score in the last
 419 generation. Overall, this behavior of models performing well in the first generation, but eventu-
 420 ally losing context along the generations is a characteristic not reliably captured by conventional
 421 single-pass metrics.

422 Fig. 7 shows that while initial MGG scores are high, they can mask qualitative differences between
 423 models. For instance, BAGEL produces more faithful generations than SHOW-O even with similar
 424 initial scores, a divergence that only becomes numerically apparent in later generations as semantic
 425 drift occurs. This underscores that cyclic evaluation reveals quality differences that single-pass
 426 metrics obscure. Furthermore, performance collapses most dramatically on compositional tasks like
 427 positioning and attribute binding (Fig. 11), suggesting this weakness is a key cause of semantic
 428 drift. Overall performance, summarized in Fig. 8, plots MGG against MCD_{avg} and reveals a cor-
 429 relation between object-level and embedding-level metrics. A notable exception is the decoupled
 430 LLaVA+SDXL system, which scores well on MGG but poorly on MCD, indicating it can render spe-
 431 cific objects while failing to preserve holistic scene semantics. Across all evaluations, BAGEL
 432 consistently shows the most resilience to semantic drift, likely due to its scale, architecture, and
 433 training on diverse interleaved datasets, which makes it uniquely robust against the compounding
 434 errors our protocol exposes.

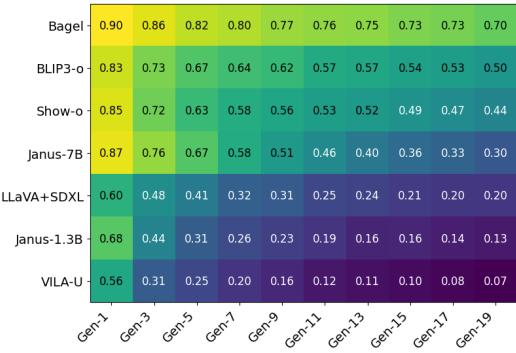


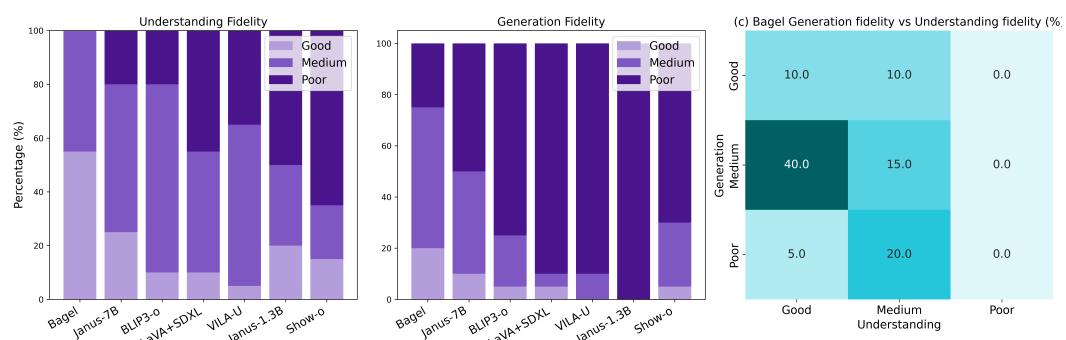
Figure 7: MGG results on the GenEval Rewritten dataset. This heatmap shows the overall performance across the six tasks described in the GenEval Ghosh et al. (2023) benchmark. On average, BAGEL consistently drifts the least from the semantic meaning of the original caption.

432 The findings above reveal that semantic drift is not linear, but rather catastrophic. Once a model
 433 commits a critical error (e.g., the brown bus turning yellow in Fig. 5), the original semantic meaning
 434 is irretrievably lost. While secondary details may continue to degrade in subsequent steps (e.g., the
 435 suitcase information in Fig. 5), the metric effectively saturates once the core semantic components
 436 are compromised. Hence, the maximum number of generations, G , needs to be sufficiently large to
 437 allow the drift to manifest, but not so large as to reach information saturation. We anchor $G = 20$
 438 based on the observation that the lowest performing model, VILA-U, reaches a near-zero value in
 439 the MGG metric by generation 19 as observed in Fig. 7. This duration is therefore optimal, as it also
 440 provides strong correlation with our human evaluations.

443 4.2 HUMAN EVALUATION RESULTS

444
 445 The dual-section design allowed us to capture
 446 cross-consistency. Specifically, if a model re-
 447 ceived the same fidelity rating (e.g., High) for
 448 both the caption and the generated image cor-
 449 responding to the same (I, T) pair, we con-
 450 sidered the model consistent. Conversely, a
 451 mismatch in fidelity indicated inconsistency.
 452 This approach allowed us to identify not only
 453 whether inconsistency exists, but also which
 454 type is more prevalent. For example, as shown
 455 in Fig. 9 and Appendix 14, most unified mod-
 456 els primarily exhibit inconsistencies in the gen-
 457 eration task. In Fig. 9(c) BAGEL, shows strong
 458 understanding but occasionally fails to generate
 459 images with high fidelity.

460 The ranking component served to compare
 461 human-perceived relevance across models. We
 462 computed the mean ranking of each model across all samples to establish a human-based ordering.
 463 These rankings were then compared with our embedding-based metrics to assess alignment with
 464 human judgment. As shown in Fig. 12, there is a clear correlation between human rankings and
 465 the MCD metric, validating our embedding-based approach as a reliable proxy for human-perceived
 466 semantic consistency.



480 Figure 9: Human evaluation of cross-consistency. First two plots show the percentage of samples
 481 (y-axis) rated with a fidelity score (color) for different models. We see that most models gain a high
 482 amount of Poor fidelity score in image generation, whereas understanding is pretty balanced, with
 483 Bagel almost always getting Medium or better. The third plot illustrates a finer look at the responses
 484 for the Bagel model. We see that while Bagel has 10% of Good-understanding-Bad-Generation type
 485 of inconsistency, it does not have any other type of inconsistency.

486 5 CONCLUSION
487

488 We introduced the Semantic Drift Protocol (SDP), a cyclic evaluation framework that alternates
489 image-to-text (I2T) and text-to-image (T2I) to measure how unified models preserve meaning
490 over repeated modality shifts. By combining embedding-based metrics (MCD) and object-level fi-
491 delity (MGG), SDP exposes vulnerabilities that single-pass evaluations cannot capture. Evaluating
492 seven recent models on the sampled Nocaps+Docci400 dataset shows substantial variability:
493 BAGEL maintains the strongest cross-modal stability, VILA-U and JANUS variants drift quickly,
494 and Show-o, while not always leading initially, degrades more gracefully across generations. Human
495 evaluations confirm these findings, showing that automated metrics like MCD strongly align with
496 human judgments. These results demonstrate that single-pass benchmarks can overstate robustness,
497 whereas our cyclic evaluation validated by human judgment reveals hidden inconsistencies between
498 image understanding and image generation. We conclude that cyclic evaluation is essential for reli-
499 able assessment of unified models.

500
501 REPRODUCIBILITY STATEMENT
502

503 All code used to generate images and captions relies on publicly available open-source implemen-
504 tations from the respective GitHub repositories of the models. The evaluation code required to
505 compute the reported scores will be released publicly. All datasets used are publicly available, as
506 referenced in the paper, and no proprietary data was used. Evaluation procedures are fully described
507 in the paper, and the exact code used to compute the reported scores is included with the submission.
508 We believe these details are sufficient for independent researchers to reproduce our results.

509
510 REFERENCES
511

Aishwarya Agrawal, Jiasen Lu, Stanislaw Antol, Margaret Mitchell, C. Lawrence Zitnick, Dhruv Batra, and Devi Parikh. Vqa: Visual question answering, 2016. URL <https://arxiv.org/abs/1505.00468>.

Harsh Agrawal, Karan Desai, Yufei Wang, Xinglei Chen, Rishabh Jain, Mark Johnson, Dhruv Batra, Devi Parikh, Stefan Lee, and Peter Anderson. nocaps: novel object captioning at scale. In *2019 IEEE/CVF International Conference on Computer Vision (ICCV)*. IEEE, October 2019. doi: 10.1109/iccv.2019.00904. URL <http://dx.doi.org/10.1109/ICCV.2019.00904>.

Hyojin Bahng, Caroline Chan, Fredo Durand, and Phillip Isola. Cycle consistency as reward: Learning image-text alignment without human preferences, 2025. URL <https://arxiv.org/abs/2506.02095>.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerging properties in self-supervised vision transformers, 2021. URL <https://arxiv.org/abs/2104.14294>.

Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T. Freeman. Maskgit: Masked generative image transformer, 2022. URL <https://arxiv.org/abs/2202.04200>.

Jiuhai Chen, Zhiyang Xu, Xichen Pan, Yushi Hu, Can Qin, Tom Goldstein, Lifu Huang, Tianyi Zhou, Saining Xie, Silvio Savarese, Le Xue, Caiming Xiong, and Ran Xu. Blip3-o: A family of fully open unified multimodal models-architecture, training and dataset, 2025. URL <https://arxiv.org/abs/2505.09568>.

Marcella Cornia, Matteo Stefanini, Lorenzo Baraldi, and Rita Cucchiara. Meshed-memory trans-
533 former for image captioning, 2020. URL <https://arxiv.org/abs/1912.08226>.

Chaorui Deng, Deyao Zhu, Kunchang Li, Chenhui Gou, Feng Li, Zeyu Wang, Shu Zhong, Weihao Yu, Xiaonan Nie, Ziang Song, Guang Shi, and Haoqi Fan. Emerging properties in unified
536 multimodal pretraining, 2025. URL <https://arxiv.org/abs/2505.14683>.

538 Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu
539 Zheng, Ke Li, Xing Sun, Yunsheng Wu, and Rongrong Ji. Mme: A comprehensive evaluation

540 benchmark for multimodal large language models, 2024. URL <https://arxiv.org/abs/2306.13394>.
 541
 542

543 Dhruba Ghosh, Hanna Hajishirzi, and Ludwig Schmidt. Geneval: An object-focused framework for
 544 evaluating text-to-image alignment, 2023. URL <https://arxiv.org/abs/2310.11513>.
 545
 546

547 Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A
 548 reference-free evaluation metric for image captioning, 2022. URL <https://arxiv.org/abs/2104.08718>.
 549
 550

551 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
 552 Gans trained by a two time-scale update rule converge to a local nash equilibrium.
 553 In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
 554 R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 30. Curran
 555 Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/8a1d694707eb0fef65871369074926d-Paper.pdf.
 556
 557

558 Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating ob-
 559 ject hallucination in large vision-language models, 2023. URL <https://arxiv.org/abs/2305.10355>.
 560
 561

562 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning, 2023. URL
 563 <https://arxiv.org/abs/2304.08485>.
 564
 565

566 Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan,
 567 Jiaqi Wang, Conghui He, Ziwei Liu, Kai Chen, and Dahua Lin. Mmbench: Is your multi-modal
 568 model an all-around player?, 2024. URL <https://arxiv.org/abs/2307.06281>.
 569
 570

571 Matthias Minderer, Alexey Gritsenko, and Neil Houlsby. Scaling open-vocabulary object detection,
 572 2024. URL <https://arxiv.org/abs/2306.09683>.
 573
 574

575 Yasumasa Onoe, Sunayana Rane, Zachary Berger, Yonatan Bitton, Jaemin Cho, Roopal Garg,
 576 Alexander Ku, Zarana Parekh, Jordi Pont-Tuset, Garrett Tanzer, Su Wang, and Jason Baldridge.
 577 Docci: Descriptions of connected and contrasting images, 2024. URL <https://arxiv.org/abs/2404.19753>.
 578
 579

580 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 581 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
 582 synthesis, 2023. URL <https://arxiv.org/abs/2307.01952>.
 583
 584

585 Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with
 586 deep convolutional generative adversarial networks, 2016. URL <https://arxiv.org/abs/1511.06434>.
 587
 588

589 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
 590 wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
 591 Sutskever. Learning transferable visual models from natural language supervision. *CoRR*,
 592 abs/2103.00020, 2021. URL <https://arxiv.org/abs/2103.00020>.
 593
 594

595 Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
 596 conditional image generation with clip latents, 2022. URL <https://arxiv.org/abs/2204.06125>.
 597
 598

599 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 600 resolution image synthesis with latent diffusion models, 2022. URL <https://arxiv.org/abs/2112.10752>.
 601

594 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kam-
 595 yar Seyed Ghasemipour, Burcu Karagol Ayan, S. Sara Mahdavi, Rapha Gontijo Lopes, Tim Sal-
 596 imans, Jonathan Ho, David J Fleet, and Mohammad Norouzi. Photorealistic text-to-image dif-
 597 fusion models with deep language understanding, 2022. URL <https://arxiv.org/abs/2205.11487>.

599 Baoguang Shi, Xiang Bai, and Cong Yao. An end-to-end trainable neural network for image-
 600 based sequence recognition and its application to scene text recognition, 2015. URL <https://arxiv.org/abs/1507.05717>.

602

603 Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. Mpnet: Masked and permuted pre-
 604 training for language understanding, 2020. URL <https://arxiv.org/abs/2004.09297>.

605 Chameleon Team. Chameleon: Mixed-modal early-fusion foundation models, 2025. URL <https://arxiv.org/abs/2405.09818>.

606

607

608 Shengbang Tong, Zhuang Liu, Yuexiang Zhai, Yi Ma, Yann LeCun, and Saining Xie. Eyes wide
 609 shut? exploring the visual shortcomings of multimodal llms, 2024. URL <https://arxiv.org/abs/2401.06209>.

610

611 Chengyue Wu, Xiaokang Chen, Zhiyu Wu, Yiyang Ma, Xingchao Liu, Zizheng Pan, Wen Liu,
 612 Zhenda Xie, Xingkai Yu, Chong Ruan, and Ping Luo. Janus: Decoupling visual encoding for
 613 unified multimodal understanding and generation, 2024. URL <https://arxiv.org/abs/2410.13848>.

614

615

616 Yecheng Wu, Zhuoyang Zhang, Junyu Chen, Haotian Tang, Dacheng Li, Yunhao Fang, Ligeng
 617 Zhu, Enze Xie, Hongxu Yin, Li Yi, Song Han, and Yao Lu. Vila-u: a unified foundation model
 618 integrating visual understanding and generation, 2025. URL <https://arxiv.org/abs/2409.04429>.

619

620 Jinheng Xie, Weijia Mao, Zechen Bai, David Junhao Zhang, Weihao Wang, Kevin Qinghong Lin,
 621 Yuchao Gu, Zhijie Chen, Zhenheng Yang, and Mike Zheng Shou. Show-o: One single transformer
 622 to unify multimodal understanding and generation, 2024. URL <https://arxiv.org/abs/2408.12528>.

623

624 Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Zicheng Liu, Xinchao Wang,
 625 and Lijuan Wang. Mm-vet: Evaluating large multimodal models for integrated capabilities, 2024.
 626 URL <https://arxiv.org/abs/2308.02490>.

627

628 Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens,
 629 Dongfu Jiang, Weiming Ren, Yuxuan Sun, Cong Wei, Botao Yu, Ruibin Yuan, Renliang Sun,
 630 Ming Yin, Boyuan Zheng, Zhenzhu Yang, Yibo Liu, Wenhao Huang, Huan Sun, Yu Su, and
 631 Wenhui Chen. Mmmu: A massive multi-discipline multimodal understanding and reasoning
 632 benchmark for expert agi, 2024. URL <https://arxiv.org/abs/2311.16502>.

633

634 Chunting Zhou, Lili Yu, Arun Babu, Kushal Tirumala, Michihiro Yasunaga, Leonid Shamis, Jacob
 635 Kahn, Xuezhe Ma, Luke Zettlemoyer, and Omer Levy. Transfusion: Predict the next token and
 636 diffuse images with one multi-modal model, 2024. URL <https://arxiv.org/abs/2408.11039>.

637

638

639

640

641

642

643

644

645

646

647

648
649

APPENDIX

650
651
652
653
654

This appendix provides additional details and extended analyses that complement the results presented in the main paper. We first describe the models used in our experiments, including their parameterization and image generation settings. We then report further evaluations using CLIP embeddings, and present comprehensive results from the extended multi-generation GenEval benchmark.

655

656
657

A MODELS & PARAMETERS

658
659
660

Tab. 1 lists the models included in our evaluations, along with their parameter counts and image resolutions used during generation.

Name	Parameters	Image Resolution
BAGEL	14B - Mixture of Transformers (7B Active)	1024×1024
Show-o	1.3B	512×512
Janus	1.3B	1024×1024
Janus Pro	7B	1024×1024
VILA-U	7B	256×256
Blip-3o	4B	1024×1024
LLaVA 1.5 + SDXL	7B + 3.5B	1024×1024

672
673
674
675

Table 1: Overview of models used in our experiments, including parameter counts and image resolution. The BAGEL model is a mixture-of-transformers architecture, where 7B parameters are active during inference.

676
677

B RELATED WORKS

678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694

Unified Models T2I generation has advanced with diffusion-based models such as DALL·E 2 Ramesh et al. (2022), Imagen Saharia et al. (2022), and Stable Diffusion Rombach et al. (2022), which synthesize high-fidelity images from textual prompts. Image captioning, on the other hand, has evolved from CNN-RNN pipelines Shi et al. (2015) to transformer-based decoders Cornia et al. (2020); Liu et al. (2023) trained with large web-scale data. Recent works in unified models have started investigating how to unite understanding and generation under one architecture. Chameleon Team (2025) is one of the early works in this domain which aimed to auto-regressively generate text tokens and image embeddings. Later, Transfusion Zhou et al. (2024) fused the auto-regressive and diffusion loss within a single architecture. Show-o Xie et al. (2024) has also used two different objectives, next token prediction for text generation, and masked token prediction Chang et al. (2022) for image generation. Vila-u Wu et al. (2025) uses next token prediction with different text and vision decoders. Janus and Janus-pro Wu et al. (2024) employ separate encoders for image input during understanding and generation. The idea is that a model might require different level of information for understanding and generation. Other works like Blip-3o Chen et al. (2025) demonstrates good quality of image generation by leveraging a separate diffusion transformer head. A recent work, BAGEL Deng et al. (2025) demonstrates some unique capabilities of unified models by training on a large-scale interleaved dataset.

695
696
697
698
699
700
701

Prior Evaluations A variety of benchmarks have been proposed to evaluate the multimodal capabilities of vision-language models. MME Fu et al. (2024) assesses basic perception and reasoning through fine-grained tasks such as object existence, color, and OCR. MMBench Liu et al. (2024) introduces more complex queries, especially in spatial reasoning. MMMU Yue et al. (2024) focuses on college-level academic problems in fields such as science and art. MM-VET Yu et al. (2024) covers diverse skills, including math, OCR, and spatial understanding. MathVista Lu et al. (2024) targets mathematical reasoning in visual contexts such as graphs. MMVP Tong et al. (2024) highlights flaws in existing benchmarks using CLIP-similar but human-atypical images. The FID score

Heusel et al. (2017) provides a metric-based evaluation of image generation quality, while Geneval Ghosh et al. (2023) benchmarks generative vision language models in instruction follow-up and visual grounding. Iterative text-image generation loops have rarely been studied in systematic depth. The work in Bahng et al. (2025) is the closest in spirit where they use cycle-consistency to create a preference dataset. However, this work only looks at one generation and is limited to VLM models in general and does not consider unified models.

C MORE RESULTS USING CLIP EMBEDDINGS

The main paper Fig. 6 presents $S_\delta(g)$ results for text \rightarrow text and image \rightarrow image settings using MPNet (for textual embeddings) and DINO (for visual embeddings). Here, we extend this analysis by incorporating CLIP as an additional backbone, shown in Fig. 10.

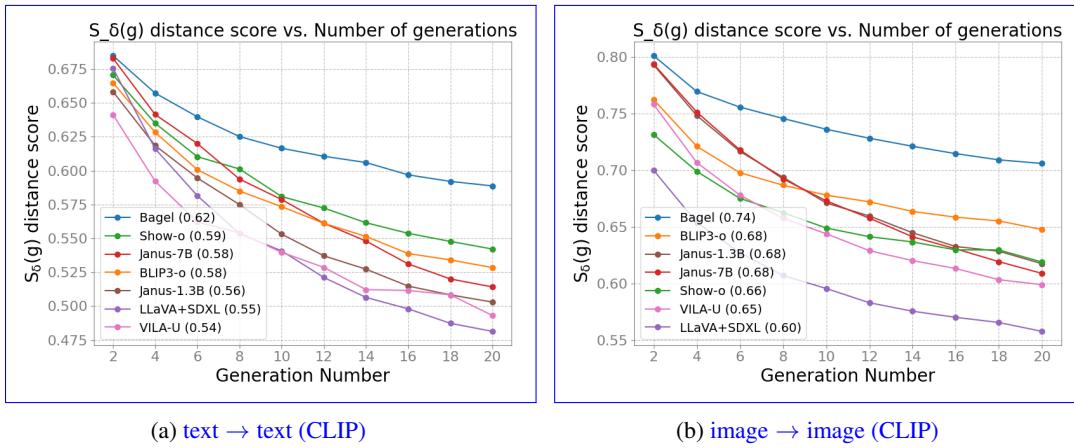


Figure 10: We show $S_\delta(g)$ distance scores computed using CLIP for both text \rightarrow text and image \rightarrow image.

For the Text-First-Chain, *text* \rightarrow *text* comparison shown in Fig. 10 (a), CLIP similarities are consistently lower than those produced with MPNet as shown in Fig. 6 (a). Despite this, the overall ranking of models is preserved as BAGEL continues to outperform others.

For the Image-First-Chain, *image* \rightarrow *image* comparison shown in Fig. 10 (b), the models have higher similarities in the first generation compared to DINO in Fig. 6 (c). The relative order of model performance remains consistent with DINO.

D ANALYSIS OF MULTI-GENERATION GENEVAL RESULTS

Fig. 11 shows multi-generation performance in the six tasks from GenEval benchmark. In these heatmaps, darker shades represent lower accuracy. Results from later generations reveal that a model’s proficiency in complex tasks is highly susceptible to generational semantic decay, a weakness that single-step evaluations fail to capture.

Fig. 11(a) Single Object: The simplest task, requiring generation of a single specified object. Nearly every model achieves near-perfect accuracy in the first generation, but consistency issues appear quickly. VILA-U shows clear degradation, struggling to maintain even one concept.

Fig. 11(b) Two Objects: This task assesses handling two entities. The performance drop-off is more pronounced than in the single-object case. Models like Janus 1.3B and LLaVA+SDXL, along with VILA-U lose the ability to consistently generate both objects after only a few generations.

Fig. 11(c) Counting: Tests counting capabilities. Initial accuracy is high, but many models fail rapidly, replacing precise numbers (e.g., “three dogs”) with vague quantities (e.g., “some dogs”), leading to cascading errors in subsequent generations.

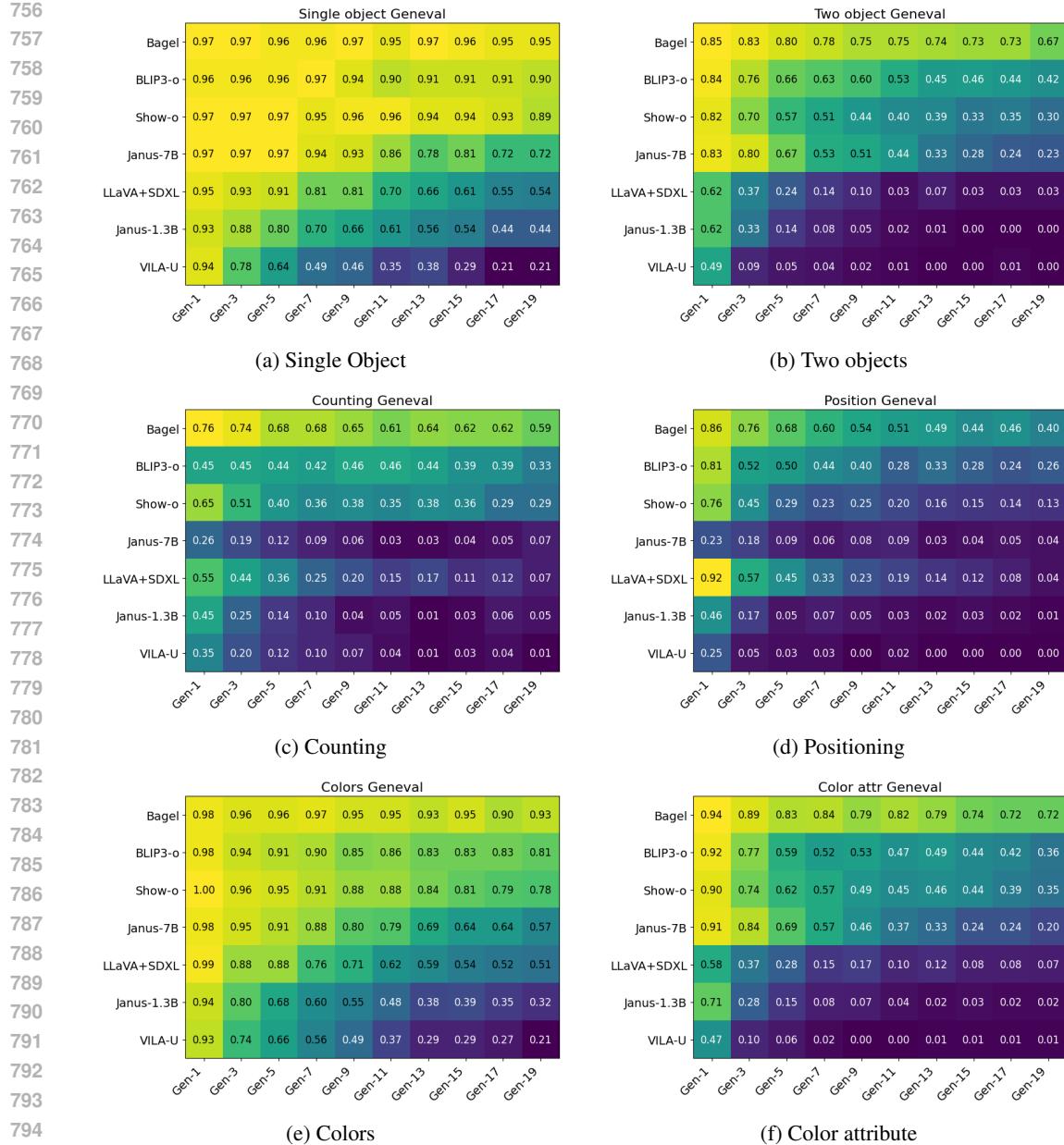


Figure 11: **Detailed Multi-Generation GenEval (MGG) Results.** Performance of unified models using MGG across 20 generations for six different evaluation categories: (a) Single Object, (b) Two Objects, (c) Counting, (d) Positioning, (e) Colors, and (f) Color Attribute. Darker colors indicate higher accuracy. The results show that while initial performance is high for many models, consistency varies significantly over successive generations, especially for complex tasks.

Fig. 11(d) Positioning: Evaluates spatial reasoning (e.g., “a cup to the left of a plate”). Accuracy plummets after the first generation for most models. Preserving spatial relationships proves extremely difficult. BAGEL maintains accuracy longer than other models.

Fig. 11(e) Colors & 11(f) Color Attribute: These assess attribute binding. “Colors” is simpler, while “Color Attribute” requires binding colors to specific objects. Both show rapid decay, particularly (f). Models often forget or swap colors. Only top performers retain any meaningful accuracy beyond the initial generations.

E CORRELATION OF HUMAN ANALYSIS WITH MCD AND MGG

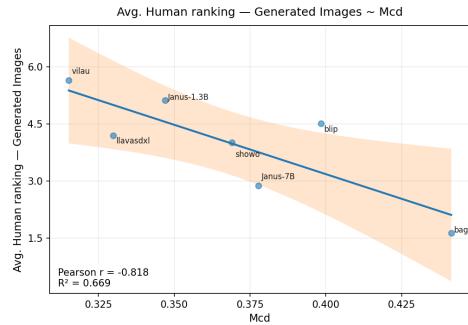
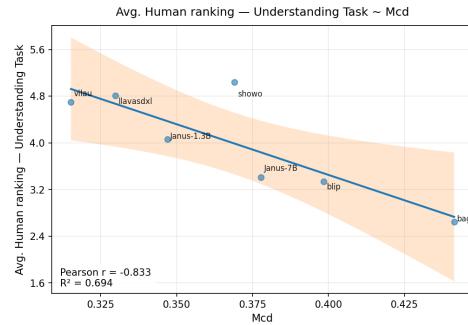


Figure 12: Validation of the MCD_{avg} metric against human judgments. For both image generation (a) and understanding (b), a lower (better) average human ranking strongly correlates with a higher (less drift) MCD_{avg} score. This alignment validates that MCD_{avg} serves as a reliable proxy for human-perceived cross-consistency.

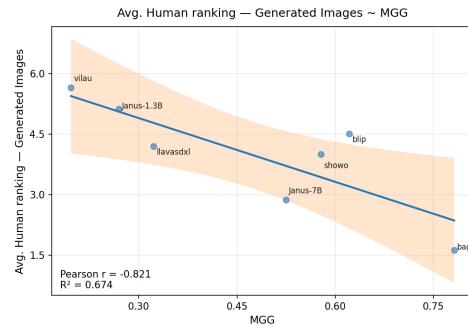


Figure 13: (left) We demonstrate correlation between the GenEval metric against human judgments. (right) We show correlation of MGG against human judgement. We find our metric correlates more strongly with human perception compared to classic GenEval.

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

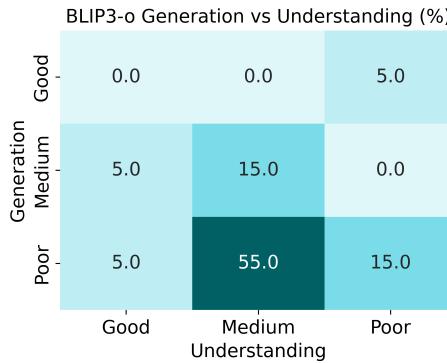
913

914

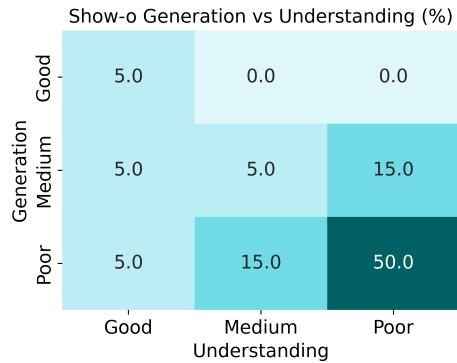
915

916

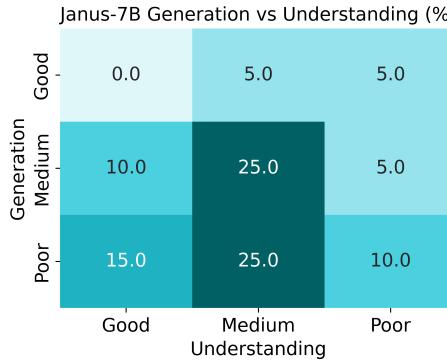
917



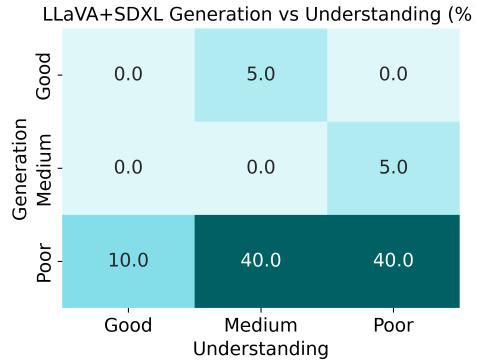
(a) BLIP3-o: Generation vs Understanding fidelity (%)



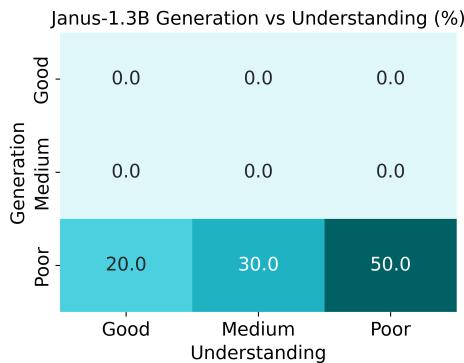
(b) Show-o: Generation vs Understanding fidelity (%)



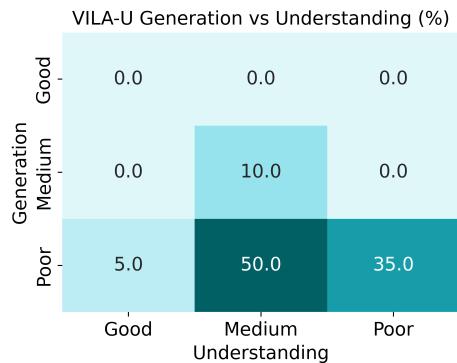
(c) Janus-7B: Generation vs Understanding fidelity (%)



(d) LLaVA+SDXL: Generation vs Understanding fidelity (%)



(e) Janus-1.3B: Generation vs Understanding fidelity (%)



(f) VILA-U: Generation vs Understanding fidelity (%)

Figure 14: Heatmaps showing the generation fidelity versus understanding fidelity for six models. Each cell shows the percentage of instances in that category. Darker shades indicate higher percentages. In our definitions, the top right corner and the bottom left corner of each heatmap would identify the two types of inconsistencies. As we can observe it is more likely that given a concept a model would be able to understand well while generating poorly rather than the opposite.

918 F SEMANTIC DRIFT EXAMPLES
919920 The following figures illustrate how semantic drift can occur due to hallucination in either generation
921 or understanding.
922

923 Generation 0 (input)	924 Generation 2	925 Generation 4	926 Generation 6	927 Generation 8
928 A clear photo of a black 929 vase placed on a simple 930 flat surface. The vase 931 has a sleek and elegant 932 design, with a glossy 933 finish that reflects light 934 subtly. Its shape is 935 classic, featuring a 936 flared opening at the 937 top. The background is 938 plain and unobtrusive, 939 ensuring that the 940 viewer's attention is 941 drawn entirely to the 942 vase.	943 The image features a 944 black vase with a glossy 945 finish. The vase has a 946 smooth, rounded body 947 that tapers slightly towards 948 the top, then widens into a flared 949 opening. It has a flared opening at the 950 top, which is wider than 951 the base. The vase is 952 placed on a flat, 953 light-colored surface, 954 and the background is a 955 plain, light grey color, 956 providing a neutral 957 backdrop that 958 highlights the vase. The 959 lighting in the image is 960 soft, casting subtle 961 shadows and reflections 962 on the surface of the 963 vase, which enhances 964 its sleek and polished 965 appearance. The overall 966 composition is simple 967 and minimalist, focusing 968 solely on the vase 969 without any additional 970 objects or distractions.	971 The image displays a 972 black vase with a glossy 973 finish. The vase has a 974 smooth, rounded body 975 that tapers slightly towards 976 the top, then widens into a flared 977 opening. The surface of 978 the vase is smooth and 979 reflective, showing a 980 slight reflection of the 981 surrounding environment. The vase 982 is placed on a flat, 983 light-colored surface, 984 and the background is a 985 plain, light grey color, 986 providing a neutral 987 backdrop that 988 highlights the vase. The 989 lighting in the image is 990 soft and even, casting 991 minimal shadows and 992 reflections on the vase's 993 sleek and modern 994 design. There are no 995 texts or additional 996 objects in the image. 997 The goal of the image 998 is a straightforward 999 product photograph, 999 likely intended to 999 showcase the vase's 999 design and color.	999 The image displays a 999 black vase with a glossy 999 finish. The vase has a 999 spherical body that 999 tapers slightly towards 999 the top, then widens into a flared 999 opening. The surface of 999 the vase is smooth and 999 reflective, showing a 999 slight reflection of the 999 surrounding environment. The vase 999 is placed on a flat, 999 light-colored surface, 999 and the background is a 999 plain, light grey color, 999 providing a neutral 999 backdrop that 999 highlights the vase. The 999 lighting in the image is 999 soft and even, casting 999 subtle shadows that 999 emphasize the 999 three-dimensional 999 appearance of the vase. 999 The overall composition 999 is simple and 999 minimalist, focusing 999 solely on the vase 999 without any additional 999 objects or distractions.	999 The image features a 999 black vase with a glossy 999 finish. The vase has a 999 rounded body that 999 tapers slightly towards 999 the top, then widens into a flared 999 opening. The surface of 999 the vase is highly reflective, 999 capturing the light and 999 creating subtle 999 highlights and shadows. 999 The vase is placed on a 999 flat, light-colored 999 surface, possibly a table 999 or countertop, against a 999 plain, light grey 999 background. The overall 999 composition is simple 999 and minimalist, focusing 999 on the sleek and 999 modern design of the 999 vase.
937 Generation 1	938 Generation 3	939 Generation 5	940 Generation 7	941 Generation 9
942	943	944	945	946

947 (a) Bagel is able to maintain the core subject of the topic across generations.
948

949 Generation 0 (input)	950 Generation 2	951 Generation 4	952 Generation 6	953 Generation 8
954 A clear photo of a black 955 vase placed on a simple 956 flat surface. The vase 957 has a sleek and elegant 958 design, with a glossy 959 finish that reflects light 960 subtly. Its shape is 961 classic, featuring a 962 flared opening at the 963 top. The background is 964 plain and unobtrusive, 965 ensuring that the 966 viewer's attention is 967 drawn entirely to the 968 vase.	969 The image features a 970 black vase with a long, 971 thin branch of leaves 972 inside it. The vase is 973 placed on a table, and 974 the branch appears to 975 be a part of a plant. The 976 vase is positioned in the 977 center of the frame, and 978 the branch is extending 979 from it, creating a 980 visually appealing 981 display.	982 The image features a 983 black vase filled with 984 green leaves, likely a 985 potted plant or a flower 986 arrangement. The vase 987 is placed on a white table, 988 creating a striking 989 contrast between the 990 dark vase and the light 991 surface. The leaves in the vase 992 are arranged in a way 993 that they appear to be 994 growing out of the vase, 995 adding a sense of life 996 and freshness to the 997 scene.	998 The image features a 999 black vase filled with 999 a variety of green leaves 999 and flowers. The vase is 999 placed on a white table, 999 creating a striking 999 contrast between the 999 dark vase and the light 999 background. The leaves 999 and flowers in the vase 999 are arranged in a 999 visually appealing 999 manner, making the 999 display an attractive 999 centerpiece.	999 The image features a 999 black vase filled with 999 a variety of green leaves 999 and flowers. The vase is 999 placed on a white table, 999 creating a striking 999 contrast between the 999 dark vase and the light 999 background. The leaves 999 and flowers in the vase 999 are arranged in a 999 visually appealing 999 manner, making the 999 display an attractive 999 centerpiece.
954 Generation 1	955 Generation 3	956 Generation 5	957 Generation 7	958 Generation 9
959	960	961	962	963

964 (b) LLaVA+SDXL hallucinates new elements across generations, inducing drift.
965966 Figure 15: Example showing two text-first chains: Bagel vs LLaVASDXL. In this example, Bagel
967 keeps the semantic meaning "a black vase" across the generations, whereas, LLaVA+SDXL contin-
968 uously hallucinates new objects or modifications mainly during its generation task.
969

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Generation 0 (input)	Generation 2	Generation 4	Generation 6	Generation 8
A clear photo of three snowboards standing upright next to each other against a snowy backdrop. Each snowboard features distinct designs and vibrant colors, showcasing a variety of patterns and styles. The snow-covered ground and soft, overcast sky create a chilly winter atmosphere, with the focus remaining on the three uniquely designed snowboards.	The image features three snowboards standing upright in a snowy landscape. The snowboards are positioned side by side, with the leftmost board having a predominantly black base with a red swoosh design, the middle board showcasing a gradient from red to blue, and the rightmost board displaying a mix of blue, red, and black & white dior logo. Each board has a series of small, evenly spaced holes along the top edge. The background consists of a snowy field with trees and a foggy sky, creating a serene winter setting.	The image displays three snowboards standing upright in a snowy landscape. The background features a foggy, wintry scene with snow-covered trees and a muted sky. The snowboards are positioned side by side, with the leftmost board being black with a red swoosh design, the middle board transitioning from red to blue, and the rightmost board featuring a blue and red geometric pattern with the letters DR at the bottom. Each board has a series of small holes along the top edge, likely for attaching bindings. The overall atmosphere of the image is serene and cold, emphasizing the winter sports theme.	The image displays three snowboards standing upright in a snowy landscape. The background features a foggy, wintry scene with snow-covered trees, suggesting a mountainous or forested area. The snowboards are positioned side by side, with the leftmost board with a red swoosh design, the middle board transitioning from red to blue, and the rightmost board featuring a blue and red swoosh-like shape on the side. The middle board also features a gradient color scheme transitioning from dark blue at the top to red at the bottom. The snowboards have small holes along the top edge, likely for attaching bindings. The overall atmosphere of the image is cold and serene, emphasizing the winter sports theme.	The image displays three snowboards standing upright in a snowy landscape. The background features a foggy, wintry scene with snow-covered trees, suggesting a mountainous or forested area. The snowboards are positioned side by side, with their tips pointing upwards and their tails in the snow. The snowboard on the left has a predominantly black design with a red swoosh-like shape on the side. The middle snowboard has a gradient color scheme transitioning from dark blue at the top to red at the bottom. The snowboard on the right has a design with a blue and red geometric pattern, including a large blue triangle and a red section with the letters DR in white.
Generation 1	Generation 3	Generation 5	Generation 7	Generation 9

(a) Bagel’s output remains similar across modalities across generations. The idea of three snowboards stay stable over the generations.

Generation 0 (input)	Generation 2	Generation 4	Generation 6	Generation 8
A clear photo of three snowboards standing upright next to each other against a snowy backdrop. Each snowboard features distinct designs and vibrant colors, showcasing a variety of patterns and styles. The snow-covered ground and soft, overcast sky create a chilly winter atmosphere, with the focus remaining on the three uniquely designed snowboards.	The image features a snowy landscape with two snowboards standing upright in the snow. The snowboards are colorful and have different designs, adding a vibrant touch to the otherwise white scene. The snowboards are positioned close to each other, with one slightly taller than the other, creating an interesting visual effect. The scene captures the essence of winter sports and outdoor activities, with the snowboards serving as a symbol of adventure and fun.	The image features a snowy landscape with two snowboards standing upright in the snow. The snowboards are positioned side by side, with one being red and the other being blue. The scene captures the essence of winter sports and outdoor activities, with the snowboards serving as a symbol of adventure and fun.	The image features a pair of snowboard boots, one red and one blue, standing upright in the snow. The boots are positioned side by side, with the red one on the left and the blue one on the right. The snow around the snowboard boots is covered in snow, indicating that they have been used in the snowboarding activity. The scene captures the essence of winter sports and outdoor adventure.	The image features a pair of red and blue snow boots standing upright in the snow. The boots are positioned side by side, with the red boot on the left and the blue boot on the right. The snow around the boots is white, indicating that it is freshly fallen or recently cleared. The boots appear to be well-fitted and ready for use in snowy conditions.
Generation 1	Generation 3	Generation 5	Generation 7	Generation 9

(b) Show-o misunderstands its own outputs, increasing drift. It first misunderstands three boards as two (generation 3), and then misunderstands the boards as boots.

Figure 16: Example showing two text-first chains: Bagel vs Show-o. Bagel is consistent, where Show-o shows semantic drift mainly due to poor understanding during the understanding task.

1026 G EXAMPLES OF CROSS-INCONSISTENCIES

1028 Figures 17 and 18 illustrate two distinct types of inconsistencies observed in unified models. In
 1029 Figure 17, when the BLIP3-o model processes an image of a worn-down rocky stairway (I2T), it
 1030 hallucinates a stream of water. Yet, when given the corresponding text prompt (T2I), it generates
 1031 an accurate image. In contrast, Figure 18 shows the reverse: the BAGEL model correctly describes
 1032 the image of a dog (I2T), but the input text prompt (T2I) produces a low quality depiction of the
 1033 animal. These cases suggest that models perform better at generation for some concepts and at
 1034 understanding for others.

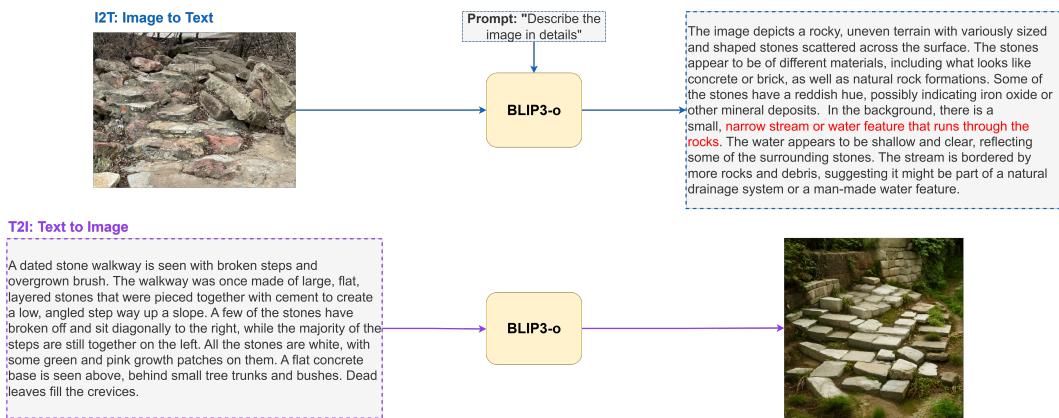


Figure 17: An example of cross inconsistency in the BLIP3-o unified model. When the model is prompted (I2T) to describe the given image (top), it incorrectly mentions a water stream in the image. However, when BLIP3-o is given the text prompt (T2I) (bottom), it generates an image that correctly represents the prompt. This exposes a UM inconsistency: BLIP3-o’s correct generation (T2I) does not carry over to visual reasoning (I2T) for this concept.

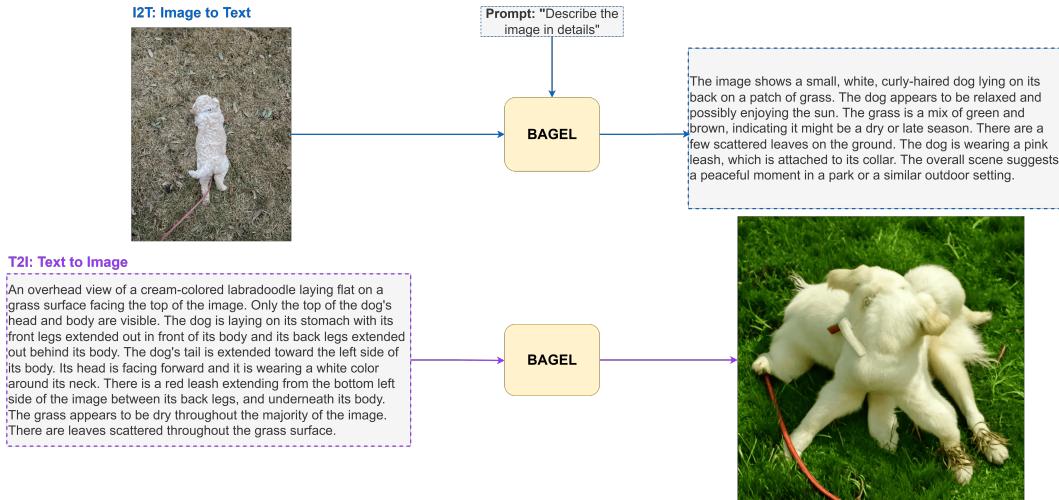


Figure 18: Another example of cross inconsistency in the BAGEL unified model. When the model is prompted (I2T) to describe the given image (top), it correctly describes the dog and its surroundings. However, when BAGEL is given the text prompt (T2I) (bottom), it fails to generate the animal. In this case, BAGEL’s correct understanding (I2T) does not carry over to generation (T2I).