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ABSTRACT

Conventional wisdom in the age of LLMs dictates that solving IQ-test-like visual
puzzles from the ARC-AGI-1 benchmark requires capabilities derived from massive
pretraining. To counter this, we introduce CompressARC, a 76K parameter model
without any pretraining that solves 20% of evaluation puzzles by minimizing
the description length (MDL) of the target puzzle purely during inference time.
The MDL endows CompressARC with extreme generalization abilities typically
unheard of in deep learning. To our knowledge, CompressARC is the only deep
learning method for ARC-AGI where training happens only on a fraction of one
sample: the target inference puzzle itself, with the final solution information
removed. Moreover, CompressARC does not train on the pre-provided ARC-
AGI “training set”. Under these extremely data-limited conditions, we do not
ordinarily expect any puzzles to be solvable at all. Yet CompressARC still solves
a diverse distribution of creative ARC-AGI puzzles, suggesting MDL to be an
alternative, highly feasible way to produce intelligence, besides conventional
massive pretraining.

1 INTRODUCTION

The ARC-AGI-1 benchmark consists of abstract visual reasoning puzzles designed to evaluate a
system’s ability to rapidly acquire new skills from minimal input data. (Chollet, 2019) Recent
progress in LLM-based reasoning has shown impressive skill acquisition capabilities, but these
systems still rely on massive amounts of pretraining data. In this paper, we explore how little data is
truly required to tackle ARC-AGI by introducing CompressARC, a solution method derived from the
Minimum Description Length (MDL) principle. (Rissanen, 1978) CompressARC performs all of
its learning at inference time and achieves 20% accuracy on ARC-AGI-1 evaluation puzzles—using
only the puzzle being solved as input data.

Figure 1: CompressARC approximates a specific
code-golfing algorithm, whose goal is to convert
the ARC-AGI puzzle dataset into the shortest piece
of code that prints it out exactly, with arbitrary
puzzle solutions included. These printed solutions
are assumed to be good predictors of the actual
solutions, according to Occam’s razor.

The key to CompressARC’s extreme data ef-
ficiency is its formulation as a code-golfing
problem: to find the shortest possible self-
contained program that outputs the entire ARC-
AGI dataset, with any unsolved grids filled ar-
bitrarily. By Occam’s razor, the shortest such
program is expected to contain the “correct” so-
lutions. A naïve implementation would require
exhaustively enumerating and executing many
candidate programs, which is computationally
infeasible. (Solomonoff, 1964; Hutter, 2005)
CompressARC overcomes this limitation by re-
stricting the search to a parametric subspace of
programs defined by a neural network with high
expressive capacity (see Figure 1). This converts
the combinatorial search into a differentiable op-
timization problem, allowing us to minimize
program length using gradient descent under the
constraint of reproducing one target puzzle.

This framing preserves several attractive proper-
ties of the original code-golf formulation:
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• No pretraining: Since we begin with the target puzzle(s) in hand, no training phase is required.

• Inference-time learning: Program length is minimized during inference by optimizing network
weights with respect to the target puzzle(s).

• Minimal data requirement: Following Occam’s razor, we assume strong generalization from the
shortest program and use only the puzzle(s) themselves—no additional data is loaded into memory.

Despite never using the training set, performing no pretraining, and having only 76K parameters in
it’s network, CompressARC generalizes strongly, solving 20% of evaluation puzzles and 34.75% of
training puzzles—performance that would be impossible for traditional deep learning methods under
these constraints.

The remainder of this paper introduces the ARC-AGI benchmark (Section 2), details the problem
framing (Section 3), describes CompressARC’s architecture (Section 4), presents empirical results
(Section 5), and concludes with a discussion of implications (Section 6).

2 BACKGROUND: THE ARC-AGI BENCHMARK

ARC-AGI-1 is an artificial intelligence benchmark designed to test a system’s ability to acquire new
skills from minimal examples. (Chollet, 2019) Each puzzle in the benchmark consists of a different
hidden rule, which the system must apply to an input colored grid to produce a ground truth target
colored grid. The hidden rules make use of themes like objectness, goal-directedness, numbers &
counting, basic geometry, and topology. Several input-output grid pairs are given as examples to help
the system figure out the hidden rule in the puzzle, and no other information is given.

Please refer to Appendix K for more details about the ARC-AGI-1 benchmark. An extended survey
of other related work is also included in Appendix I. Note that we will generally refer to ARC-AGI-1
just as ARC-AGI in this paper.

3 METHOD

We frame ARC-AGI as a code-golfing problem: to find the shortest possible program that reproduces
the ARC-AGI dataset. (Rissanen, 1978) In code golf, the goal is to achieve the shortest possible
program code that solves a certain problem. In this case, the code must be entirely self-contained,
receive no inputs, and must print out the entire ARC-AGI dataset of puzzles with any solutions
filled in. Each puzzle takes the form of a tensor of shape [n_exmpl,width, height, 2], containing
color designations for every pixel in the 2 × n_exmpl grids. The shapes listed in this section are
for explanatory purposes and the actual data format is introduced in Section 4. A first pass attempt
may involve writing a program that hard-codes the dataset as a giant string and prints it out, though
subsequent iterations will refine the program by de-duplicating substrings and taking advantage of
the structure of the printed data in other clever ways.

3.1 RESTRICTING THE PROGRAM SPACE

It is typically infeasible to run an algorithmic search to solve code-golf problems, because we would
have to search through a huge number of increasingly lengthy programs to find one whose printout
matches our requirements. Despite this, search can be made more amenable for our ARC-AGI code-
golf problem if we restrict ourselves to a suitably well-conditioned subspace of programs. Namely,
we picked a program subspace consisting of a template program (Algorithm 1) to be completed
by substituting various hard-coded values into designated locations (shown in red). The template
program performs the operations for every puzzle:

1. it randomly samples a tensor z of shape [n_exmpl, n_colors,width, height, 2] from a standard
normal distribution, (line 4)

2. processes this with a neural network which outputs a [n_exmpl, n_colors,width, height, 2]-shaped
logit tensor, (line 6)

3. and obtains a [n_exmpl,width, height, 2]-shaped puzzle by sampling colors from the probability
distribution implied by the logit tensor. (line 8)

2
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Algorithm 1: Template for a short program that produce completed puzzles Pfilled with solutions
filled in. Red text is to be substituted in with hard-coded values produced via Algorithm 2.

1 Define an equivariant_NN architecture;
2

3 Set seed_z = <seed_z1>; Hardcoded seed from Algo 2, puzzle 1
4 z ← sampleseed_z(N(0, 1)); Generate inputs z
5 Set θ = < θ1 >; Hardcoded weights from Algo 2, puzzle 1
6 grid_logits← equivariant_NNθ(z); Forward pass
7 Set seed_error = <seed_error1>; Hardcoded seed from Algo 2, puzzle 1
8 Pfilled ← sampleseed_error(grid_logits); Generate puzzle
9 Print Pfilled

10

11 Set seed_z = <seed_z2>; Hardcoded seed from Algo 2, puzzle 2
12 (...code repeats for all puzzles) ...

The template allows for two pseudo-random sampling seeds to be filled in for every puzzle (lines 3
and 7,) and the resulting printed puzzles can be guaranteed to match by manipulating the final seed in
line 7, regardless of the seed chosen on line 3. With this guarantee in place, we can sum up the length
of the code for the template, and find that the total length varies based on the number of bits/digits
required to write down the two seeds. So, in order to search for short programs, we just need to make
all the seeds as short as possible.

Multiple areas of the program can be adjusted to help minimize the seed length, and we will cover
each in respective sections: the seeds and the weights on lines 3, 5, and 7 (Section 3.2 below), and
the architecture on line 1 (Section 4).

3.2 SEED OPTIMIZATION

Algorithm 2 presents a first pass attempt at optimizing the seeds and weights in template Algorithm 1
to reduce the total seed length. It first tries to manipulate the seed on line 3 of the template to imitate
z being sampled from a different learned normal distribution (line 7), and then tries to manipulate
the second seed to guarantee matching puzzle output (line 10). It then performs gradient descent on
the normal distribution parameters and the neural network weights to minimize the total seed length
(lines 12-13).

Algorithm 2: Minimize Description Length, a.k.a. code-golf.
1 Input: ARC-AGI dataset;
2 Define an equivariant_NN architecture;
3 foreach puzzle P in ARC-AGI dataset do
4 Measure n_exmpl, n_colors,width, height from P to initialize equivariant_NNθ;
5 Initialize input distribution µ of shape [n_exmpl, n_colors,width, height, 2], and diagonal Σ;
6 foreach step do
7 Set seed_z, by manipulating to imitate z ∼ N(µ,Σ);
8 z ← sampleseed_z(N(0, 1), [n_exmpl, n_colors,width, height, 2]);
9 grid_logits← equivariant_NNθ(z);

10 Set seed_error, by manipulating to obtain desired puzzle P ;
11 Pfilled ← sampleseed_error(grid_logits);
12 L← len(seed_z) + len(seed_error); ≈len(Algo 1) + C
13 µ,Σ, θ ← Adam(∇µL,∇ΣL,∇θL);
14 end foreach
15 Insert values seed_z, θ, and seed_error into the pseudo-code for Algo 1;
16 end foreach
17 Return code for Algo 1

3
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The issue with running Algorithm 2 directly is that running seed manipulation on lines 7 and 10 takes
a lot of time when the imitated distribution is far from the sampling distribution. (Flamich et al.,
2021) So to make it faster, we skip these steps and imitate their expected downstream consequences
instead, resulting in CompressARC (Algorithm 3). Namely for line 7, z is now directly sampled from
the imitated distribution, and the seed length from line 12 is replaced by it’s expected length, which
is very close to the KL divergence between the imitated and sampling distributions (see Appendix
A for derivation). For line 10, the unknown grids of the puzzle are sampled directly, and the seed
length from line 12 is approximated closely by the negative log likelihood of sampling the known
grids exactly, i.e., the crossentropy (see Appendix A for derivation).

Algorithm 3: CompressARC. It is the same as Algorithm 2, but with simulated seed manipulation,
and truncated to return solved puzzles instead of description.

1 Input: ARC-AGI dataset;
2 Define an equivariant_NN architecture;
3 foreach puzzle P in ARC-AGI dataset do
4 Measure n_exmpl, n_colors,width, height from P to initialize equivariant_NNθ;
5 Initialize input distribution µ of shape [n_exmpl, n_colors,width, height, 2], and diagonal Σ;
6 foreach step do
7 z ← sample(N(µ,Σ));
8 grid_logits← equivariant_NNθ(z);
9 L← KL(N(µ,Σ)||N(0, 1)) + crossentropy(grid_logits, P ); ≈len(Algo 1) + C

10 µ,Σ, θ ← Adam(∇µL,∇ΣL,∇θL);
11 end foreach
12 Pfilled ← sample(grid_logits);
13 Add Pfilled to solved puzzles
14 end foreach
15 Return solved puzzles

Now that we have a way to pick weights and seeds for template Algorithm 1, what remains of the
code-golfing task is to pick an architecture on line 1 of Algorithm 1, which we will design by hand.
Since the architecture definition only appears once in Algorithm 1 while seeds appear repeatedly
for every puzzle, using a sophisticated architecture can help us shorten the length of the template
Algorithm 1, by trading off architecture description length to allow for shorter seeds. This serves as
the primary basis for us to engineer the neural network architecture.

4 ARCHITECTURE

The central idea in designing the neural network architecture is to create a high probability of sampling
the ARC-AGI puzzles, consequently reducing the length of the seeds and by extension the length of
template Algorithm 1. According to the template structure, this means we need the neural network to
have good inductive biases for transforming noise into reasonable-seeming ARC-AGI puzzles.1

Since ARC-AGI puzzles would be just as likely to appear in any combination of input/output example
orderings, colors, orientations, etc., we want our network to assign them all equal probability by
default. So, we made our architecture equivariant to example permutations, color permutations,
rotations, and flips; (Cohen & Welling, 2016a) guaranteeing that any computation learned for one
example/color/orientation can also equally be applied to any other example/color/orientation. For any
asymmetries a puzzle may have, we require Algorithm 3 to manipulate the seed of the random input
z, to bias the outputted puzzle one way or another.

The architecture, shown in Figure 2, consists of a decoding layer functioning like an embedding
matrix (details in Appendix C.1), followed by a core with a residual backbone, followed by a linear
readout on the channel dimension (see Appendix C.8). In the core, linear projections on the channel
dimension read data from the residual into specially designed operations, which write their outputs
back into the residual through another projection. Normalization operations are scattered throughout

1The training puzzles play no role in our method other than to boost our efforts to better engineer the inductive
biases into our layers.
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Figure 2: Core structure of CompressARC’s neural network, which operates on multitensor data.
Individual operations (colored) read and write to a residual backbone through learned projections
(grey) in the channel dimension. The network is equivariant to permutations of indices along the other,
non-channel dimensions as a result. Some layers like cummax break certain geometric symmetries,
giving the architecture specific geometric abilities listed in Appendix G. Normalization, softmax,
shift, and directional layers are not shown.

the layers, and then the whole block of core layers is repeated 4 times. This is much like a transformer
architecture, (Vaswani et al., 2023) except that the specially designed operations are not the attention
and nonlinear operations on sequences, but instead the following operations on puzzle-shaped data:

• summing one tensor along an axis and/or broadcasting the result back up, (see Appendix C.2)

• taking the softmax along one or multiple axes of a tensor, (see Appendix C.3)

• taking a cumulative max along one of the geometric dimensions of a tensor, (see Appendix C.4)

• shifting by one pixel along one of the geometric dimensions of a tensor, (see Appendix C.4)

• elementwise nonlinearity, (see Appendix C.6)

• normalization along the channel dimension, (see Appendix C.7)

along with one more described in Appendix C.5. The operations have no parameters and have their
behaviors controlled by their residual read/write weights. All of these read/write projections operate
on the channel dimension. We used 16 channels in some parts of the backbone and 8 in others to
reduce computational costs. Since these projections take up the majority of the model weights, the
entire model only has 76K parameters.

The actual data format that the neural network uses for computation is not a single tensor shaped like
[n_exmpl, n_colors,width, height, channel], but instead a bucket of tensors that each have a different
subset of these dimensions, for example a [n_colors,width, channel] tensor. Both the input z to
the network and the outputted logits, as well as all of the internal activations, take the form of a
multitensor. Generally, there is a tensor for every subset of these dimensions for storing information
of that shape, which helps to build useful inductive biases. For example, an assignment of grid
columns to colors can be stored as a one-hot table in the [color,width, channel]-shaped tensor. More
details on multitensors are in Appendix B.

5 RESULTS

We gave CompressARC 2000 steps on every puzzle, taking about 20 minutes per puzzle. With this,
CompressARC solves 20% of evaluation set puzzles and 34.75% of training set puzzles. Figure 3
shows the performance increase as more inference-time compute is given. Tables 3 and 4 in the
Appendix document the numerical solve accuracies with timings.
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(a) Training set of 400 puzzles. (b) Evaluation set of 400 puzzles.

Figure 3: CompressARC’s puzzle solve accuracy rises as inference time learning progresses. Various
numbers of allowed solution attempts (pass@n) for accuracy measurement are shown. The official
benchmark is reported with 2 allowed attempts, which is why we report 20% on the evaluation set.

5.1 WHAT PUZZLES CAN AND CAN’T WE SOLVE?

CompressARC tries to use its abilities to figure out as much as it can, until it gets bottlenecked
by one of it’s inabilities.

For example, puzzle 28e73c20 in the training set requires extension of a pattern from the edge towards
the middle, as shown in Figure 11a in the Appendix. Given the layers in it’s network, CompressARC
is generally able to extend patterns for short ranges but not long ranges. So, it does the best that
it can, and correctly extends the pattern a short distance before guessing at what happens near the
center (Figure 11b, Appendix). Appendix G includes a list of which abilities we have empirically
seen CompressARC able to and not able to perform.

5.2 CASE STUDY: COLOR THE BOXES

Figure 4: Color the Boxes, puzzle 272f95fa.

In the puzzle shown (Figure 4), you must
color the boxes depending on which side of
the grid the box is on. We call this puzzle
“Color the Boxes”.

Human Solution: We first realize that the
input is divided into boxes, and the boxes
are still there in the output, but now they’re
colored. We then try to figure out which
colors go in which boxes. First, we notice
that the corners are always black. Then, we
notice that the middle is always magenta.
And after that, we notice that the color of
the side boxes depends on which direction
they are in: red for up, blue for down, green
for right, and yellow for left. At this point,
we copy the input over to the answer grid,
then we color the middle box magenta, and
then color the rest of the boxes according
to their direction.

CompressARC Solution: Table 1 shows
CompressARC’s learning behavior over
time. After CompressARC is done learn-
ing, we can deconstruct it’s learned z dis-
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tribution to find that it codes for a color-direction correspondence table and row/column divider
positions (Figure 6).

During training, the reconstruction error fell extremely quickly. It remained low on average, but
would spike up every once in a while, causing the KL from z to bump upwards at these moments, as
shown in Figure 5a.

(a) Relative proportion of the KL and reconstruc-
tion terms to the loss during training, before taking
the weighted sum. The KL dominates the loss and
reconstruction is most often nearly perfect.

(b) Breaking down the KL loss during training into
contributions from each individual shaped tensor
in the multitensor z. Four tensors dominate, indi-
cating they contain information, and the other 14
fall to zero, indicating their lack of information
content.

Figure 5: Breaking down the loss components during training tells us where and how CompressARC
prefers to store information relevant to solving a puzzle.

5.2.1 SOLUTION ANALYSIS

We observe the representations stored in z to see how CompressARC learns to solve Color the Boxes.

Since z is a multitensor, each of the tensors it contains produces an additive contribution to the total
KL for z. By looking at the per-tensor contributions (see Figure 5b), we can determine which tensors
in z code for information that is used to represent the puzzle.

All the tensors fall to zero information content during training, except for four tensors. In some
replications of this experiment, we saw one of these four necessary tensors fall to zero information
content, and CompressARC typically does not recover the correct answer after that. Here we are
showing a lucky run where the [color, direction, channel] tensor almost falls but gets picked up 200
steps in, which is right around when the samples from the model begin to show the correct colors in
the correct boxes.

We can look at the average output of the decoding layer (explained in Appendix C.1) corresponding
to individual tensors of z, to see what information is stored there (see Figure 6). Each tensor contains
a vector of dimension n_channels for various indices of the tensor. Taking the PCA of these vectors
reveals some number of activated components, telling us how many pieces of information are coded
by the tensor.

6 DISCUSSION

The prevailing reliance of modern deep learning on high-quality data has put the field in a chokehold
when applied to problems requiring intelligent behavior that have less data available. This is espe-
cially true for the data-limited ARC-AGI benchmark, where LLMs trained on specially augmented,
extended, and curated datasets dominate (Knoop, 2024). In the midst of this circumstance, we
built CompressARC, which not only uses no training data at all, but forgoes the entire process of
pretraining altogether. One should intuitively expect this to fail and solve no puzzles at all, but by
applying MDL to the target puzzle during inference time, CompressARC solves a surprisingly large
portion of ARC-AGI-1.

7
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Table 1: CompressARC learning the solution for Color the Boxes, over time.

Learning
steps What is CompressARC doing? Sampled solution guess

50

CompressARC’s network outputs an answer
grid (sample) with light blue rows/columns
wherever the input has the same. It has no-
ticed that all the other input-output pairs in the
puzzle exhibit this correspondence. It doesn’t
know how the other output pixels are assigned
colors; an exponential moving average of the
network output (sample average) shows the
network assigning mostly the same average
color to non-light-blue pixels.

150

The network outputs a grid where nearby pix-
els have similar colors. It has likely noticed
that this is common among all the outputs, and
is guessing that it applies to the answer too.

200

The network output now shows larger blobs of
colors that are cut off by the light blue borders.
It has noticed the common usage of borders
to demarcate blobs of colors in other outputs,
and applies the same idea here. It has also no-
ticed black corner blobs in other given outputs,
which the network imitates.

350

The network output now shows the correct col-
ors assigned to boxes of the correct direction
from the center. It has realized that a single
color-to-direction mapping is used to pick the
blob colors in the other given outputs, so it
imitates this mapping. It is still not the best
at coloring within the lines, and it’s also con-
fused about the center blob, probably because
the middle does not correspond to a direction.
Nevertheless, the average network output does
show a tinge of the correct magenta color in
the middle, meaning the network is catching
on.

1500

The network is as refined as it will ever be.
Sometimes it will still make a mistake in the
sample it outputs, but this uncommon and fil-
tered out.
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(a) (example, height, channel) tensor. For ev-
ery example and row, there is a vector of dimen-
sion n_channels. Taking the PCA of this set of
vectors, the top principal component (1485 times
stronger than the other components) visualized as
the (example, height) matrix shown above tells us
which examples/row combinations are uniquely
identified by the stored information. For every
example, the two brightest pixels give the rows
where the light blue rows in the grids are.

(b) (example,width, channel) tensor. A similar
story here to 6a: in the top principal component
of this tensor, the two darkest pixels for every
example give the columns where the light blue
columns in the grids are. The top principal com-
ponent is 1253 times stronger than the next princi-
pal component.

(c) (direction, color, channel) tensor. The four
brightest pixels identify blue with up, green with
left, red with down, and yellow with right. This
tensor tells each direction which color to use for
the opposite edge’s box. The top principal compo-
nent is 829 times stronger than the next principal
component.

(d) (color, channel) tensor. Here, we look at the
top three principal components, since the first and
second principal components are 134 and 87 times
stronger than the third component, indicating that
they play a role while the third component does not.
The magenta and light blue colors are uniquely
identified, indicating their special usage amongst
the rest of the colors as the center color and the
color of the row/column divisions, respectively.

Figure 6: Breaking down the loss components during training tells us where and how CompressARC
prefers to store information relevant to solving a puzzle.

CompressARC’s theoretical underpinnings come from minimizing the length of a programmatic
description of the target puzzle. While other MDL search strategies have been scarce due to the
intractablly large search space of possible programs, CompressARC explores a simplified, neural
network-based search space through gradient descent. Though CompressARC’s architecture is
heavily engineered, it’s incredible ability to generalize from as low as two demonstration input/output
pairs puts it in an entirely new regime of generalization for ARC-AGI.

We challenge the assumption that intelligence must arise from massive pretraining and data, showing
instead that clever use of MDL and compression principles can lead to surprising capabilities. We
use CompressARC as a proof of concept to demonstrate that modern deep learning frameworks can
be melded with MDL to create a possible alternative, complimentary route to AGI.

Note: Large Language Models (LLMs) were used to polish the writing in this paper, in particular to find the
most clear and concise way of introducing our work in Section 1.
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A SEED LENGTH ESTIMATION BY KL AND CROSSENTROPY

In Section 3.1, we estimate len(seed_z) in line 12 of template Algorithm 2 as KL(N(µ,Σ)||N(0, 1)), and
len(seed_error) as crossentropy(grid_logits, P ). In this section, we will argue for the reasonability of this
approximation. Readers may also refer to Flamich et al. (2021), which introduces this seed manipulation method
as “Relative Entropy Coding” (REC). This work shows that seed manipulation is effectively most bit-efficient
way for an encoder and decoder to communicate samples from a distribution Q if there is a shared source of
randomness P . This uses KL(P ||Q) expected bits per sample communicated.

To recap, we original procedure in Algorithm 2 manipulates the seed for sampling z ∼ N(0, 1) to simulate as
though z ∼ N(µ,Σ), and we would like to show that the expected number of bits in the seed is approximately
KL(N(µ,Σ)||N(0, 1)).

Concretely, suppose for instance that Algorithm 2 implements something similar to rejection sampling, (Forsythe,
1972) iterating through seeds one by one and accepting the sample with probability min(1, w(z)), where w(z)
is the probability ratio

w(z) =
N(z;µ,Σ)

N(z; 0, 1)

Then the probability of accepting at each step is∫
N(z; 0, 1)min(1, w(z)) dz =

∫
N(z; 0, 1)min

(
1,

N(z;µ,Σ)

N(z; 0, 1)

)
dz

=

∫
min (N(z; 0, 1), N(z;µ,Σ)) dz

=1− TV(N(0, 1)||N(µ,Σ))

≥1

2
exp(−KL(N(µ,Σ)||N(0, 1)))

where TV denotes the total variation distance and the last step applies the Bretagnolle–Huber inequality;
(Bretagnolle & Huber, 1978) and therefore, the expected seed is the inverse of this probability,

2 exp(KL(N(µ,Σ)||N(0, 1)))

so the expected seed length is the logarithm,

KL(N(µ,Σ)||N(0, 1)) + log 2

matching up with our stated approximation.

For the seed_error term, Algorithm 2 manipulates the seed to sample a puzzle P from a distribution implied
by some logits. This is effectively the same as sampling grid_logits ∼ Categorical_distribution(logits) and
trying to get grid_logits ∼ Delta_distribution(P ). Then, the same argument as before applies to show that the
expected seed_error length is at most

KL(Delta_distribution(P )||Categorical_distribution(logits)) + log 2

which simplifies as

Ex∼Delta_distribution(P )

[
log

δ(x = P )

Categorical_probability(x; logits)

]
+ log 2

= log
δ(P = P )

Categorical_probability(P ; logits)
+ log 2

=− logCategorical_probability(P ; logits) + log 2

= cross_entropy(logits, P ) + log 2

where the δ is 1 when the statement within is true, and 0 otherwise.

B MULTITENSORS

The actual data (z, hidden activations, and puzzles) passing through our layers comes in a format that we call a
“multitensor”, which is just a bucket of tensors of various shapes, as shown in Figure 7. All the equivariances
we use can be described in terms of how they change a multitensor.

Most common classes of machine learning architectures operate on a single type of tensor with constant
rank. LLMs operate on rank-3 tensors of shape [n_batch, n_tokens, n_channels], and Convolutional Neural
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Figure 7: Our neural network’s internal representations come in the form of a "mul-
titensor", a bucket of tensors of different shapes. One of the tensors is shaped like
[example, color, height,width, channel], an adequate shape for storing a whole ARC-AGI puzzle.

Networks (CNNs) operate on rank-4 tensors of shape [n_batch, n_channels, height,width]. Our multitensors
are a set of varying-rank tensors of unique type, whose dimensions are a subset of a rank-6 tensor of shape
[n_exmpl, n_colors, n_directions, height,width, n_channels], as illustrated in Figure 7. We always keep the
channel dimension, so there are at most 32 tensors in each multitensor. We also maintain several rules (see
Appendix D.1) that determine whether a tensor shape is “legal” or not, which reduces the number of tensors in a
multitensor to 18.

Dimension Description
Example Number of examples in the ARC-AGI puzzle, including the one with held-out

answer
Color Number of unique colors in the ARC-AGI puzzle, not including black, see Ap-

pendix E.2
Direction 8
Height Determined when preprocessing the puzzle, see Appendix E.1
Width Determined when preprocessing the puzzle, see Appendix E.1
Channel In the residual connections, the size is 8 if the direction dimension is included, else

16. Within layers it is layer-dependent.

Table 2: Size conventions for multitensor dimensions.

To give an idea of how a multitensor stores data, an ARC-AGI puzzle can be represented by using the
[example, color, height,width, channel] tensor, by using the channel dimension to select either the input or
output grid, and the height/width dimensions for pixel location, a one hot vector in the color dimension, specify-
ing what color that pixel is. The [example, height, channel] and [example,width, channel] tensors can similarly
be used to store masks representing grid shapes for every example for every input/output grid. All those tensors
are included in a single multitensor that is computed by the network just before the final linear head (described
in Appendix C.8).

When we apply an operation on a multitensor, we by default assume that all non-channel dimensions are treated
identically as batch dimensions by default. The operation is copied across the indices of dimensions unless
specified. This ensures that we keep all our symmetries intact until we use a specific layer meant to break a
specific symmetry.

A final note on the channel dimension: usually when talking about a tensor’s shape, we will not even mention
the channel dimension as it is included by default.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

C LAYERS IN THE ARCHITECTURE

C.1 DECODING LAYER

This layer’s job is to sample a multitensor z and bound its information content, before it is passed to the next
layer. This layer and outputs the KL divergence between the learned z distribution and N(0, I). Penalizing
the KL prevents CompressARC from learning a distribution for z that memorizes the ARC-AGI puzzle in an
uncompressed fashion, and forces CompressARC to represent the puzzle more succinctly. Specifically, it forces
the network to spend more bits on the KL whenever it uses z to break a symmetry, and the larger the symmetry
group broken, the more bits it spends.

This layer takes as input:

• A learned target multiscalar, called the "target capacity".2 The decoding layer will output z whose information
content per tensor is close to the target capacity,3

• learned per-element means for z,4

• learned per-element capacity adjustments for z.

We begin by normalizing the learned per-element means for z.5 Then, we figure out how much Gaussian noise
we must add into every tensor to make the AWGN channel capacity (Shannon, 1948) equal to the target capacity
for every tensor (including per-element capacity adjustments). We apply the noise to sample z, keeping unit
variance of z by rescaling.6

We compute the information content of z as the KL divergence between the distribution of this sample and
N(0, 1).

Finally, we postprocess the noisy z by scaling it by the sigmoid of the signal-to-noise ratio.7 This ensures that
z is kept as-is when its variance consists mostly of useful information and it is nearly zero when its variance
consists mostly of noise. All this is done 4 times to make a channel dimension of 4. Then we apply a projection
(with different weights per tensor in the multitensor, i.e., per-tensor projections) mapping the channel dimension
up to the dimension of the residual stream.

C.2 MULTITENSOR COMMUNICATION LAYER

This layer allows different tensors in a multitensor to interact with each other.

First, the input from the residual stream passes through per-tensor projections to a fixed size (8 for downwards
communication and 16 for upwards communication). Then a message is sent to every other tensor that has at least
the same dimensions for upwards communication, or at most the same dimensions for downwards communication.
This message is created by either taking means along dimensions to remove them, or unsqueezing+broadcasting
dimensions to add them, as in Figure 8. All the messages received by every tensor are summed together and
normalization is applied. This result gets up-projected back and then added to the residual stream.

C.3 SOFTMAX LAYER

This layer allows the network to work with internal one-hot representations, by giving it the tools to denoise
and sharpen noisy one-hot vectors. For every tensor in the input multitensor, this layer lists out all the possible
subsets of dimensions of the tensor to take a softmax over,8 takes the softmax over these subsets of dimensions,
and concatenates all the softmaxxed results together in the channel dimension. The output dimension varies
across different tensors in the multitensor, depending on their tensor rank. A pre-norm is applied, and per-tensor
projections map to and from the residual stream. The layer has input channel dimension of 2.

2Target capacities are exponentially parameterized and rescaled by 10x to increase sensitivity to learning,
initialized at a constant 104 nats per tensor, and forced to be above a minimum value of half a nat.

3The actual information content, which the layer computes later on, will be slightly different because of the
per-element capacity adjustments.

4Means are initialized using normal distribution of variance 10−4.
5Means and variances for normalization are computed along all non-channel dimensions.
6There are many caveats with the way this is implemented and how it works; please refer to the code (see

Appendix N) for more details.
7We are careful not to let the postprocessing operation, which contains unbounded amounts of information

via the signal-to-noise ratios, to leak lots of information across the layer. We only let a bit of it leak by averaging
the signal-to-noise ratios across individual tensors in the multitensor.

8One exception: we always include the example dimension in the subset of dimensions.
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Figure 8: Multitensor communication layer. Higher rank tensors shown at the top, lower rank at the
bottom. Tensors transform between ranks by mean reduction and unsqueezing dimensions.

C.4 DIRECTIONAL CUMMAX/SHIFT LAYER

The directional cummax and shift layers allow the network to perform the non-equivariant cummax and shift
operations in an equivariant way, namely by applying the operations once per direction, and only letting the output
be influenced by the results once the directions are aggregated back together (by the multitensor communication
layer). These layers are the sole reason we included the direction dimension when defining a multitensor: to
store the results of directional layers and operate on each individually. Of course, this means when we apply a
spatial equivariance transformation, we must also permute the indices of the direction dimension accordingly,
which can get complicated sometimes.

The directional cummax layer takes the eight indices of the direction dimension, treats each slice as corresponding
to one direction (4 cardinal, 4 diagonal), performs a cumulative max in the respective direction for each slice,
does it in the opposite direction for half the channels, and stacks the slices back together in the direction
dimension. An illustration is in Figure 9. The slices are rescaled to have min −1 and max 1 before applying the
cumulative max.

The directional shift layer does the same thing, but for shifting the grid by one pixel instead of applying the
cumulative max, and without the rescaling.

Some details:

• Per-tensor projections map to and from the residual stream, with pre-norm.

• Input channel dimension is 4.

• These layers are only applied to the [example, color, direction, height,width, channel] and
[example, direction, height,width, channel] tensors in the input multitensor.

C.5 DIRECTIONAL COMMUNICATION LAYER

By default, the network is equivariant to permutations of the eight directions, but we only want symmetry up
to rotations and flips. So, this layer provides a way to send information between two slices in the direction
dimension, depending on the angular difference in the two directions. This layer defines a separate linear map to
be used for each of the 64 possible combinations of angles, but the weights of the linear maps are minimally tied
such that the directional communication layer is equivariant to reflections and rotations. This gets complicated
really fast, since the direction dimension’s indices also permute when equivariance transformations are applied.
Every direction slice in a tensor accumulates it’s 8 messages, and adds the results together.9

For this layer, there are per-tensor projections to and from the residual stream with pre-norm. The input channel
dimension is 2.

9We also multiply the results by coefficients depending on the angle: 1 for 0 degrees and 180 degrees, 0.2 for
45 degrees and 135 degrees, and 0.4 for 90 degrees.
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Figure 9: The directional cummax layer takes a directional tensor, splits it along the direction axis,
and applies a cumulative max in a different direction for each direction slice. This operation helps
CompressARC transport information across long distances in the puzzle grid.

C.6 NONLINEAR LAYER

We use a SiLU nonlinearity with channel dimension 16, surrounded by per-tensor projections with pre-norm.

C.7 NORMALIZATION LAYER

We normalize all the tensors in the multitensor, using means and variances computed across all dimensions
except the channel dimension. Normalization as used within other layers also generally operates this way.

C.8 LINEAR HEADS

We must take the final multitensor, and convert it to the format of an ARC-AGI puzzle. More specifically, we
must convert the multitensor into a distribution over ARC-AGI puzzles, so that we can compute the log-likelihood
of the observed grids in the puzzle.

Figure 10: The linear head layer takes the final multitensor of the residual stream and
reads a [example, color, height,width, channel] tensor to be interpreted as color logits, and a
[example, height, channel] tensor and a [example,width, channel] tensor to serve as shape masks.

The colors of every pixel for every example for both input and output, have logits defined by the
[example, color, height,width, channel] tensor, with the channel dimension linearly mapped down to a size

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

of 2, representing the input and output grids.10 The log-likelihood is given by the crossentropy, with sum
reduction across all the grids.

For grids of non-constant shape, the [example, height, channel] and [example,width, channel] tensors are used
to create distributions over possible contiguous rectangular slices of each grid of colors, as shown in Figure 10.
Again, the channel dimension is mapped down to a size of 2 for input and output grids. For every grid, we have
a vector of size [width] and a vector of size [height]. The log likelihood of every slice of the vector is taken to be
the sum of the values within the slice, minus the values outside the slice. The log likelihoods for all the possible
slices are then normalized to have total probability one, and the colors for every slice are given by the color
logits defined in the previous paragraph.

With the puzzle distribution now defined, we can now evaluate the log-likelihood of the observed target puzzle,
to use as the reconstruction error.11

D OTHER ARCHITECTURAL DETAILS

D.1 RULES FOR LEGAL MULTITENSORS

1. At least one non-example dimension must be included. Examples are not special for any reason not having to
do with colors, directions, rows, and columns.

2. If the width or height dimension is included, the example dimension should also be included. Positions are
intrinsic to grids, which are indexed by the example dimension. Without a grid it doesn’t make as much sense
to talk about positions.

D.2 WEIGHT TYING FOR REFLECTION/ROTATION SYMMETRY

When applying a different linear layer to every tensor in a multitensor, we have a linear layer for tensors having
a width but not height dimension, and another linear layer for tensors having a height but not width dimension.
Whenever this is the case, we tie the weights together in order to preserve the whole network’s equivariance to
diagonal reflections and 90 degree rotations, which swap the width and height dimensions.

The softmax layer is not completely symmetrized because different indices of the output correspond to different
combinations of dimension to softmax over. Tying the weights properly would be a bit complicated and time
consuming for the performance improvement we expect, so we did not do this.

D.3 TRAINING

We train for 2000 iterations using Adam, with learning rate 0.01, β1 of 0.5, and β2 of 0.9.

E PREPROCESSING

E.1 OUTPUT SHAPE DETERMINATION

The raw data consists of grids of various shapes, while the neural network operates on grids of constant shape.
Most of the preprocessing that we do is aimed towards this shape inconsistency problem.

Before doing any training, we determine whether the given ARC-AGI puzzle follows three possible shape
consistency rules:

1. The outputs in a given ARC-AGI puzzle are always the same shape as corresponding inputs.

2. All the inputs in the given ARC-AGI puzzle are the same shape.

3. All the outputs in the given ARC-AGI puzzle are the same shape.

10The linear map is initialized to be identical for both the input and output grid, but isn’t fixed this way during
learning. Sometimes this empirically helps with problems of inconsistent input vs output grid shapes. The
bias on this linear map is multiplied by 100 before usage, otherwise it doesn’t seem to be learned fast enough
empirically. This isn’t done for the shape tensors described by the following paragraph though.

11There are multiple slices of the same shape that result in the correct puzzle to be decoded. We sum together
the probabilities of getting any of the slices by applying a logsumexp to the log probabilities. But, we found
empirically that training prematurely collapses onto one particular slice. So, we pre-multiply and post-divide
the log probabilities by a coefficient when applying the logsumexp. The coefficient starts at 0.1 and increases
exponentially to 1 over the first 100 iterations of training. We also pre-multiply the masks by the square of this
coefficient as well, to ensure they are not able to strongly concentrate on one slice too early in training.
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Based on rules 1 and 3, we try to predict the shape of held-out outputs, prioritizing rule 1 over rule 3. If either
rule holds, we force the postprocessing step to only consider the predicted shape by overwriting the masks
produced by the linear head layer. If neither rule holds, we make a temporary prediction of the largest width and
height out of the grids in the given ARC-AGI puzzle, and we allow the masks to predict shapes that are smaller
than that.

The largest width and height that is given or predicted, are used as the size of the multitensor’s width and height
dimensions.

The predicted shapes are also used as masks when performing the multitensor communication, directional
communication and directional cummax/shift layers. We did not apply masks for the other layers because of
time constraints and because we do not believe it will provide for much of a performance improvement.12

E.2 NUMBER OF COLORS

We notice that in almost all ARC-AGI puzzles, colors that are not present in the puzzle are not present in the true
answers. Hence, any colors that do not appear in the puzzle are not given an index in the color dimension of the
multitensor.

In addition, black is treated as a special color that is never included in the multitensor, since it normally represents
the background in many puzzles. When performing color classification, a tensor of zeros is appended to the
color dimension after applying the linear head, to represent logits for the black color.

F POSTPROCESSING

Since the generated answer grid is stochastic from randomness in z, we save the answer grids throughout training,
and roughly speaking, we choose the most frequently occuring one as our denoised final prediction. This is
complicated by the variable shape grids present in some puzzles.

Generally, when we sample answers from the network by taking the logits of the
[example, color, height,width, channel] tensor and argmaxxing over the color dimension, we find that
the grids are noisy and will often have the wrong colors for several random pixels. We developed several
methods for removing this noise:

1. Find the most commonly sampled answer.

2. Construct an exponential moving average of the output color logits before taking the softmax to produce
probabilities. Also construct an exponential moving average of the masks.

3. Construct an exponential moving average of the output color probabilities after taking the softmax. Also
construct an exponential moving average of the masks.

When applying these techniques, we always take the slice of highest probability given the mask, and then we
take the colors of highest probability afterwards.

We explored several different rules for when to select which method, and arrived at a combination of 1 and 2
with a few modifications:

• At every iteration, count up the sampled answer, as well as the exponential moving average answer (decay
= 0.97).

• If before 150 iterations of training, then downweight the answer by a factor of e−10. (Effectively, don’t count
the answer.)

• If the answer is from the exponential moving average as opposed to the sample, then downweight the answer
by a factor of e−4.

• Downweight the answer by a factor of e−10∗uncertainty, where uncertainty is the average (across pixels) negative
log probability assigned to the top color of every pixel.

G EMPIRICALLY OBSERVED ABILITIES AND DISABILITIES OF
COMPRESSARC

A short list of abilities that can be performed by CompressARC includes:

12The two masks for the input and output are combined together to make one mask for use in these operations,
since the channel dimension in these operations don’t necessarily correspond to the input and output grids.
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(a) Puzzle 28e73c20

(b) CompressARC’s solution to puzzle 28e73c20

Figure 11: Puzzle 28e73c20, and CompressARC’s solution to it.

• Assigning individual colors to individual procedures (see puzzle 0ca9ddb6)

• Infilling (see puzzle 0dfd9992)

• Cropping (see puzzle 1c786137)

• Connecting dots with lines, including 45 degree diagonal lines (see puzzle 1f876c06)

• Same color detection (see puzzle 1f876c06)

• Identifying pixel adjacencies (see puzzle 42a50994)

• Assigning individual colors to individual examples (see puzzle 3bd67248)

• Identifying parts of a shape (see puzzle 025d127b)

• Translation by short distances (see puzzle 025d127b)

We believe these abilities to be individually endowed by select layers in the architecture, which we designed
specifically for the purpose of conferring those abilities to CompressARC.

A short list of abilities that cannot be performed by CompressARC includes:

• Assigning two colors to each other (see puzzle 0d3d703e)

• Repeating an operation in series many times (see puzzle 0a938d79)

• Counting/numbers (see puzzle ce9e57f2)

• Translation, rotation, reflections, rescaling, image duplication (see puzzles 0e206a2e, 5ad4f10b, and 2bcee788)

• Detecting topological properties such as connectivity (see puzzle 7b6016b9)

• Planning, simulating the behavior of an agent (see puzzle 2dd70a9a)

• Long range extensions of patterns (see puzzle 28e73c20 above)

H PUZZLE SOLVE ACCURACY TABLES

See Tables 3 and 4 for numerically reported puzzle solve accuracies on the whole dataset.
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Table 3: CompressARC’s puzzle solve accuracy on the training set as a function of the number of
steps of inference time learning it is given, for various numbers of allowed attempts (pass@n). The
official benchmark is reported with 2 allowed attempts, which is why we report 20% on the evaluation
set. Total training set solve time is reported for an NVIDIA RTX 4070 GPU by solving one puzzle at
a time in a sequence.

Training Iteration Time Pass@1 Pass@2 Pass@5 Pass@10 Pass@100 Pass@1000
100 6 h 1.00% 2.25% 3.50% 4.75% 6.75% 6.75%
200 13 h 11.50% 14.25% 16.50% 18.25% 23.25% 23.50%
300 19 h 18.50% 21.25% 23.50% 26.75% 31.50% 32.50%
400 26 h 21.00% 25.00% 28.75% 31.00% 36.00% 37.50%
500 32 h 23.00% 27.50% 31.50% 33.50% 39.25% 40.75%
750 49 h 28.00% 30.50% 34.00% 36.25% 42.75% 44.50%

1000 65 h 28.00% 31.75% 35.50% 37.75% 43.75% 46.50%
1250 81 h 29.00% 32.25% 37.00% 39.25% 45.50% 49.25%
1500 97 h 29.50% 33.00% 38.25% 40.75% 46.75% 51.75%
2000 130 h 30.25% 34.75% 38.25% 41.50% 48.50% 52.75%

Table 4: CompressARC’s puzzle solve accuracy on the evaluation set, reported the same way as in
Table 3.

Training Iteration Time Pass@1 Pass@2 Pass@5 Pass@10 Pass@100 Pass@1000
100 7 h 0.75% 1.25% 2.25% 2.50% 3.00% 3.00%
200 14 h 5.00% 6.00% 7.00% 7.75% 12.00% 12.25%
300 21 h 10.00% 10.75% 12.25% 13.25% 15.50% 16.25%
400 28 h 11.75% 13.75% 16.00% 17.00% 19.75% 20.00%
500 34 h 13.50% 15.00% 17.75% 19.25% 20.50% 21.50%
750 52 h 15.50% 17.75% 19.75% 21.50% 22.75% 25.50%

1000 69 h 16.75% 19.25% 21.75% 23.00% 26.00% 28.75%
1250 86 h 17.00% 20.75% 23.00% 24.50% 28.25% 30.75%
1500 103 h 18.25% 21.50% 24.25% 25.50% 29.50% 31.75%
2000 138 h 18.50% 20.00% 24.25% 26.00% 31.25% 33.75%

I RELATED WORK

I.1 EQUIVALENCE OF COMPRESSION AND INTELLIGENCE

The original inspiration of this work came from the Hutter Prize (Hutter, 2006), which awards a prize for those
who can compress a file of Wikipedia text the most, as a motivation for researchers to build intelligent systems.
It is premised upon the idea that the ability to compress information is equivalent to intelligence.

This equivalence between intelligence and compression has a long history. For example, when talking about
intelligent solutions to prediction problems, the ideal predictor implements Solomonoff Induction, a theoretically
best possible but uncomputable prediction algorithm that works universally for all prediction tasks. (Solomonoff,
1964) This prediction algorithm is then equivalent to a best possible compression algorithm whose compressed
code length is the Kolmogorov Complexity of the data. (Kolmogorov, 1998) This prediction algorithm can also
be used to decode a description of the data of minimal length, linking these formulations of intelligence to MDL.
(Rissanen, 1978) In our work, we try to approximate this best possible compression algorithm with a neural
network.

I.2 INFORMATION THEORY AND CODING THEORY

Since we build an information compression system, we make use of many results in information theory and
coding theory. The main result required to motivate our model architecture is the existence of Relative Entropy
Coding (REC). (Flamich et al., 2021) The fact that REC exists means that as long as a KL divergence can be
bounded, the construction of a compression algorithm is always possible and the issue of realizing the algorithm
can be abstracted away. Thus, problems about coding theory and translating information from Gaussians into
binary and back can be ignored, since we can figure out the binary code length directly from the Gaussians
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instead. In other words, we only need to do enough information theory using the Gaussians to get the job done,
with no coding theory at all. While the existence of arithmetic coding (Langdon, 1984) would suffice to abstract
the problem away when distributions are discrete, neural networks operate in a continuous space so we need
REC instead.

Our architecture sends z information through an additive white Gaussian noise (AWGN) channel, so the AWGN
channel capacity formula (Gaussian input Gaussian noise) plays a heavy role in the design of our decoding layer.
(Shannon, 1948)

I.3 VARIATIONAL AUTOENCODERS

The decoder side of the variational autoencoder (Kingma & Welling, 2022) serves as our decompression
algorithm. While we would use something that has more general capabilities like a neural Turing machine (Graves
et al., 2014) instead, neural Turing machines are not very amenable to gradient descent-based optimization so
we stuck with the VAE.

VAEs have a long history of developments that are relevant to our work. At one point, we tried using multiple
decoding layers to make a hierarchical VAE decoder (Sønderby et al., 2016) instead. This does not affect the
KL calculation because a channel capacity with feedback is equal to the channel capacity without feedback.
(Shannon, 1956) But, we found empirically that the first decoding layer would absorb all of the KL contribution,
making the later decoding layers useless. Thus, we only used one decoding layer at the beginning.

The beta-VAE (Higgins et al., 2017) introduces a reweighting of the reconstruction loss to be stronger than
the KL loss, and we found that to work well in our case. The NVAE applies a non-constant weighting to
loss components. (Vahdat & Kautz, 2021) A rudimentary form of scheduled loss recombination is used in
CompressARC.

I.4 ARC-AGI METHODS

Aside from LLM-based methods for solving ARC with data augmentation, synthetic datasets, fine-tuning,
test-time training, and reasoning, several other classes of solution have been studied:

• An older class of methods consists of hard-coded searches through program spaces in hand-written domain-
specific languages designed specifically for ARC. (Hodel, 2024; Odouard, 2024)

• (Bonnet & Macfarlane, 2024) introduced a VAE-based method for searching through a latent space of programs.
This is the most similar work to ours that we found due to their VAE setup.

I.5 DEEP LEARNING ARCHITECTURES

We designed our own neural network architecture from scratch, but not without borrowing crucial design
principles from many others.

Our architecture is fundamentally structured like a transformer, consisting of a residual stream where representa-
tions are stored and operated upon, followed by a linear head. (Vaswani et al., 2023; He et al., 2015) Pre-and
post-norms with linear up- and down-projections allow layers to read and write to the residual stream. (Xiong
et al., 2020) The SiLU-based nonlinear layer is especially similar to a transformer’s. (Hendrycks & Gimpel,
2023)

Our equivariance structures are inspired by permutation-invariant neural networks, which are a type of equivariant
neural network. (Zaheer et al., 2018; Cohen & Welling, 2016b) Equivariance transformations are taken from
common augmentations to ARC-AGI puzzles.

J HOW TO IMPROVE OUR WORK

At the time of release of CompressARC, there were several ideas which we thought of trying or attempted at
some point, but didn’t manage to get working for one reason or another. Some ideas we still believe in, but
didn’t use, are listed below.

J.1 JOINT COMPRESSION VIA WEIGHT SHARING BETWEEN PUZZLES

Template Algorithm 1 includes a hard-coded value of θ for every single puzzle. We might be able to further
shorten the template program length by sharing a single θ between all the puzzles, knowing that Occam’s razor
says a shorter program corresponds to more correct puzzle solutions. Algorithm 2 would have to be changed
accordingly.
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To implement this, we would most likely explore strategies like:

• Using the same network weights for all puzzles, and training for puzzles in parallel. Each puzzle gets assigned
some perturbation to the weights, that is constrained in some way, e.g., LORA. (Hu et al., 2021)

• Learning a "puzzle embedding" for every puzzle that is a high dimensional vector (more than 16 dim, less
than 256 dim), and learning a linear mapping from puzzle embeddings to weights for our network. This
mapping serves as a basic hypernetwork, i.e., a neural network that outputs weights for another neural network.
(Chauhan et al., 2024)

Unfortunately, testing this would require changing CompressARC (Algorithm 3) to run all puzzles in parallel
rather than one at a time in series. This would slow down the research iteration process, which is why we did not
explore this option.

J.2 CONVOLUTION-LIKE LAYERS FOR SHAPE COPYING TASKS

This improvement is more ARC-AGI-specific and may have less to do with AGI in our view. Many ARC-AGI-1
puzzles can be seen to involve copying shapes from one place to another, and our network has no inductive
biases for such an operation. An operation which is capable of copying shapes onto multiple locations is the
convolution. With one grid storing the shape and another with pixels activated at locations to copy to, convolving
the two grids will produce another grid with the shape copied to the designated locations.

There are several issues with introducing a convolutional operation for the network to use. Ideally, we would
read two grids via projection from the residual stream, convolve them, and write it back in via another projection,
with norms in the right places and such. Ignoring the fact that the grid size changes during convolution (can
be solved with two parallel networks using different grid sizes), the bigger problem is that convolutions tend
to amplify noise in the grids much more than the sparse signals, so their inductive bias is not good for shape
copying. We can try to apply a softmax to one or both of the grids to reduce the noise (and to draw an interesting
connection to attention), but we didn’t find any success.

The last idea that we were tried before discarding the idea was to modify the functional form of the convolution:

(f ∗ g)(x) =
∑
y

f(x− y)g(y)

to a tropical convolution (Fan et al., 2021), which we found to work well on toy puzzles, but not well enough for
ARC-AGI-1 training puzzles (which is why we discarded this idea):

(f ∗ g)(x) = max
y

f(x− y) + g(y)

Convolutions, when repeated with some grids flipped by 180 degrees, tend to create high activations at the center
pixel, so sometimes it is important to zero out the center pixel to preserve the signal.

J.3 KL FLOOR FOR POSTERIOR COLLAPSE

We noticed during testing that crucial posterior tensors whose KL fell to zero during learning would never
make a recovery and play their role in the encoding, just as in the phenomenon of mode collapse in variational
autoencoders. (van den Oord et al., 2018) We believe that the KL divergence may upper bound the information
content of the gradient training signal for parts of the network that process the encoded information. Thus, when
a tensor in z falls to zero KL, the network stops learning to use its encoded information, and the KL is no longer
incentivized to recover. If we artificially hold the KL above zero for an extended period of training, then the
network may learn to make use the tensor’s information, incentivizing the KL to stay above zero when released
again.

We implemented a mechanism to keep the KL above a minimum threshold so that the network always learns to
use that information, but we do not believe the network learns fast enough for this to be useful, as we have never
seen a tensor recover before. Therefore, it might be useful to explore different ways to schedule this KL floor to
start high and decay to zero, to allow learning when the KL is forced to be high, and to leave the KL unaffected
later on in learning. This might cause training results to be more consistent across runs.

J.4 REGULARIZATION

In template Algorithm 1, we do not code-golf θ to reduce the number of bits it takes up. If we were to code-golf
θ as well, this would produce an extra KL term to the loss in CompressARC (Algorithm 3), and the KL term
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would simplify to an L2 regularization on θ under certain reasonable limits. It is somewhat reckless for us to
neglect code-golfing θ in our work due to the sheer number of bits θ contributes, and making this change may
improve our results.

K ADDITIONAL DETAILS ABOUT THE ARC-AGI BENCHMARK

Hidden Rules: Figure 12 shows three examples of ARC-AGI-1 training puzzles. For every puzzle, there is a
hidden rule that maps each input grid to each output grid. There are 400 training puzzles and they are easier
to solve than the 400 evaluation puzzles. The training set is intended to help teach your system the following
general themes which underlie the hidden rules in the evaluation set:

• Objectness: Objects persist and cannot appear or disappear without reason. Objects can interact or not
depending on the circumstances.

• Goal-directedness: Objects can be animate or inanimate. Some objects are “agents” - they have intentions
and they pursue goals.

• Numbers & counting: Objects can be counted or sorted by their shape, appearance, or movement using basic
mathematics like addition, subtraction, and comparison.

• Basic geometry & topology: Objects can be shapes like rectangles, triangles, and circles which can be
mirrored, rotated, translated, deformed, combined, repeated, etc. Differences in distances can be detected.

(a) Hidden rule: Shift every ob-
ject right by one pixel, except the
bottom/right edges of the object.

(b) Hidden rule: Shrink the big
object and set its color to the scat-
tered dots’ color.

(c) Hidden rule: Extend the
green line to meet the red line by
turning when hitting a wall.

Figure 12: Three example ARC-AGI-1 puzzles.

Scoring: You are given some number of examples of input-to-output mappings, and you get two attempts to
guess the output grid for a given input grid, without being told the hidden rule. If either guess is correct, then
you score 1 for that puzzle, else you score 0. Some puzzles have more than one input/output pair that you have
to guess, in which case the score for that puzzle may be in between.

Scoring Environment: The competitions launched by the ARC Prize Foundation have been restricted to 12
hours of compute per solution submission, in a constrained environment with no internet access. This is where a
hidden semi-private evaluation set is used to score solutions. The scores we report are on the public evaluation
set, which is of the same difficulty as the semi-private evaluation set, which we had no access to when we
performed this work.

Comparisons and Baselines: The scores we listed for reasoning models were achieved with compute budgets
well over the limits of the constrained environment. Otherwise, all other solutions we mention are scored on the
semi-private evaluation set within the competition constraints.
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The puzzles are designed so that humans can reasonably find the answer, but machines should have more
difficulty. The average human can solve 76.2% of the training set, and a human expert can solve 98.5%. (LeGris
et al., 2024) Current methods for solving ARC-AGI focus primarily on tokenizing the puzzles and arranging
them in a sequence to prompt an LLM for a solution, or code that computes a solution. (Greenblatt, 2024) Top
methods typically fine-tune on augmented training puzzles and larger alternative synthetic puzzle datasets (Li
et al., 2024) and use test-time training (Sun et al., 2020; Barbadillo, 2024). Reasoning LLMs have managed to
get up to 87.5% on the semi-private evaluation set, albeit with astronomical amounts of compute. (Chollet, 2024)

L ADDITIONAL CASE STUDIES

Below, we show two additional puzzles and a dissection of CompressARC’s solution to them.

L.1 CASE STUDY: BOUNDING BOX

Puzzle 6d75e8bb is part of the training split, see Figure 13.

Figure 13: Bounding Box: Puzzle 6d75e8bb from the training split.

L.1.1 WATCHING THE NETWORK LEARN: BOUNDING BOX

Human Solution: We first realize that the input is red and black, and the output is also red and black, but some
of the black pixels are replaced by light blue pixels. We see that the red shape remains unaffected. We notice
that the light blue box surrounds the red shape, and finally that it is the smallest possible surrounding box that
contains the red shape. At this point, we copy the input over to the answer grid, then we figure out the horizontal
and vertical extent of the red shape, and color all of the non-red pixels within that extent as light blue.

CompressARC Solution: See Table 5

L.1.2 SOLUTION ANALYSIS: BOUNDING BOX

Figure 14 shows the amount of contained information in every tensor within z.

All the tensors in z fall to zero information content during training, except for three tensors. From 600-1000
steps, we see the (example, height,width, channel) tensor suffer a massive drop in information content, with no
change in the outputted answer. We believe it was being used to identify the light blue pixels in the input, but this
information then got memorized by the nonlinear portions of the network, using the (example, height, channel)
and (example,width, channel) as positional encodings.

Figure 15 shows the average output of the decoding layer for these tensors to see what information is stored
there.

L.2 CASE STUDY: CENTER CROSS

Puzzle 41e4d17e is part of the training split, see Figure 16a.
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Table 5: CompressARC learning the solution for Bounding Box, over time.

Learning
steps What is CompressARC doing? Sampled solution guess

50

The average of sampled outputs shows that
light blue pixels in the input are generally pre-
served in the output. However, black pixels in
the input are haphazardly and randomly col-
ored light blue and red. CompressARC does
not seem to know that the colored input/output
pixels lie within some kind of bounding box,
or that the bounding box is the same for the
input and output grids.

100

The average of sampled outputs shows red
pixels confined to an imaginary rectangle sur-
rounding the light blue pixels. CompressARC
seems to have perceived that other examples
use a common bounding box for the input and
output pixels, but is not completely sure about
where the boundary lies and what colors go in-
side the box in the output. Nevertheless, guess
2 (the second most frequently sampled output)
shows that the correct answer is already being
sampled quite often now.

150

The average of sampled outputs shows almost
all of the pixels in the imaginary bounding
box to be colored red. CompressARC has
figured out the answer, and further training
only refines the answer.
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Figure 14: Breaking down the KL loss during training into contributions from each individual shaped
tensor in the multitensor z.

(a) (example, height, channel) tensor. The first
principal component is 771 times stronger than
the second principal component. A brighter pixel
indicates a row with more light blue pixels. It
is unclear how CompressARC knows where the
borders of the bounding box are.

(b) (example,width, channel) tensor. The first
principal component is 550 times stronger than
the second principal component. A darker pixel
indicates a column with more light blue pixels.
It is unclear how CompressARC knows where the
borders of the bounding box are.

(c) (color, channel) tensor. This tensor serves to
distinguish the roles of the two colors apart.

Figure 15: Breaking down the loss components during training tells us where and how CompressARC
prefers to store information relevant to solving a puzzle.

Human Solution: We first notice that the input consists of blue "bubble" shapes (really they are just squares, but
the fact that they’re blue reminds us of bubbles) on a light blue background and the output has the same. But in
the output, there are now magenta rays emanating from the center of each bubble. We copy the input over to
the answer grid, and then draw magenta rays starting from the center of each bubble out to the edge in every
cardinal direction. At this point, we submit our answer and find that it is wrong, and we notice that in the given
demonstrations, the blue bubble color is drawn on top of the magenta rays, and we have drawn the rays on top of
the bubbles instead. So, we pick up the blue color and correct each point where a ray pierces a bubble, back to
blue.

CompressARC Solution: We don’t show CompressARC’s solution evolving over time because we think it is
uninteresting; instead will describe. We don’t see much change in CompressARC’s answer over time during
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(a) The puzzle.

(b) CompressARC’s solution.

Figure 16: Center Cross: Puzzle 41e4d17e from the training split.

learning. It starts by copying over the input grid, and at some point, magenta rows and columns start to appear,
and they slowly settle on the correct positions. At no point does CompressARC mistakenly draw the rays on top
of the bubbles; it has always had the order correct.

L.2.1 SOLUTION ANALYSIS: CENTER CROSS

Figure 17 shows another plot of the amount of information in every tensor in z. The only surviving tensors are
the (color, channel) and (example, height,width, channel) tensors, which are interpreted in Figure 18.

Figure 17: Breaking down the KL loss during training into contributions from each individual shaped
tensor in the multitensor z.
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(a) (example, height,width, channel) tensor.
The top principal component is 2496 times
stronger than the second principal component.
This tensor codes for the centers of the bubbles.
In the KL contribution plot, we can see that the
information content of this tensor is decreasing
over time. Likely, CompressARC is in the process
of eliminating the plus shaped representation, and
replacing it with a pixel instead, which takes fewer
bits. (b) (color, channel) tensor. This tensor just serves

to distinguish the individual roles of the colors in
the puzzle.

Figure 18: Breaking down the loss components during training tells us where and how CompressARC
prefers to store information relevant to solving a puzzle.

M LIST OF MENTIONED ARC-AGI-1 PUZZLES

See Table 6 below.

Puzzle 025d127b Puzzle 0a938d79 Puzzle 0ca9ddb6
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Puzzle 0d3d703e Puzzle 0dfd9992 Puzzle 0e206a2e

Puzzle 1c786137 Puzzle 1f876c06 Puzzle 28e73c20
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Puzzle 272f95fa Puzzle 2bcee788 Puzzle 2dd70a9a

Puzzle 3bd67248 Puzzle 41e4d17e Puzzle 42a50994
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Puzzle 5ad4f10b Puzzle 6d75e8bb Puzzle 7b6016b9

Puzzle ce9e57f2

Table 6: List of Mentioned ARC-AGI=1 Puzzles. All these puzzles are part of the training split.

N CODE

Code for this project is provided in the supplemental materials.
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