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Abstract

Data valuation has emerged as a powerful framework to quantify the contribution1

of each datum to the training of a particular machine learning model. However, it2

is crucial to recognize that the quality of various cells within a single data point3

can vary greatly in practice. For example, even in the case of an abnormal data4

point, not all cells are necessarily noisy. The single scalar valuation assigned by5

existing methods blurs the distinction between noisy and clean cells of a data6

point, thereby compromising the interpretability of the valuation. In this paper,7

we propose 2D-OOB, an out-of-bag estimation framework for jointly determining8

helpful (or detrimental) samples, as well as the particular cells that drive them.9

Our comprehensive experiments demonstrate that 2D-OOB achieves state-of-the-art10

performance across multiple use cases, while being exponentially faster. 2D-OOB11

excels in detecting and rectifying fine-grained outliers at the cell level, as well as12

localizing backdoor triggers in data poisoning attacks.13

1 Introduction14

From customer behavior prediction and medical image analysis to autonomous driving and policy15

making, machine learning (ML) systems process ever increasing amounts of data. In such data-rich16

regimes, a fraction of the samples is often noisy, incorrect annotations are likely to occur, and uniform17

data quality standards become difficult to enforce. To address these challenges, data valuation emerges18

as a research field receiving increasing attention, focusing on properly assessing the contribution19

of each datum to ML training [12]. These methods have proven useful in identifying low-quality20

samples that can be detrimental to model performance, as well as selecting subsets of data that are21

representative of enhanced model performance [23, 48, 27]. Furthermore, they are widely applicable22

in data marketplace for fair revenue allocation and incentive design [51, 45, 40].23

Nevertheless, existing data valuation methods assign a scalar score to each datum, thereby failing to24

account for the varied roles of individual cells. This leaves the valuation rationale unclear and can be25

unsatisfactory and sub-optimal in various practical scenarios. Firstly, whenever a score is assigned26

to a data point by a particular data valuation method, it is crucial to understand the underlying27

justifications to ensure transparency and reliability, especially in high-stakes decision making [39].28

Secondly, it is important to recognize the fact that even if a data point is of low quality, it is rarely the29

case that all the cells within this data point are noisy [37, 26, 43]. The absence of detailed insights into30

how individual cells contribute to ML training inevitably leads to discarding entire data points. This31

can result in substantial data waste, particularly when only a few cells are noisy and data acquisition32

is expensive. Finally, in data markets, different cells within a data point may originate from different33

data sellers [3, 10]. Consequently, a singular valuation for the entire point fails to offer equitable34

compensation to all contributing parties.35
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Figure 1: Comparison of data valuation and joint valuation. (a) Data valuation evaluates the
quality of individual data points, whereas (b) joint valuation evaluates the quality of individual cells.
Both panels illustrate the same hypothetical dataset, and the darker colors overlaid represent the
higher quality or importance. Joint valuation provides a finer level of attributions than data valuation
and aims to describe how features affect data values. As panel (b) illustrates, the joint valuation
framework can identify outlier cells highlighted with blue boxes (i.e., −1 in "Income" and 100 in
"Education") and provide quantitative interpretations of data values.

Our contributions In this paper, we propose 2D-OOB, a powerful and efficient joint valuation36

framework that can attribute a data point’s value to its individual features. 2D-OOB quantifies the37

importance of each cell in a dataset, as illustrated in Figure 1, providing interpretable insights into38

which cells are associated with influential data points. Our method is computationally efficient as39

well as theoretically supported by its connections with Data-OOB [23]. Moreover, our extensive40

empirical experiments demonstrate the practical effectiveness of 2D-OOB in various use cases. 2D-OOB41

accurately identifies cell outliers and pinpoints which cells to fix to improve model performance.42

2D-OOB enables inspection of data poisoning attacks by precisely localizing the backdoor trigger, an43

artifact inserted into a training sample to induce malicious model behavior [13, 5]. 2D-OOB is on44

average 200 times faster than state-of-the-art methods across all datasets examined.45

2 Preliminaries46

Notations Throughout this paper, we focus on supervised learning settings. For d ∈ N, we denote47

an input space and an output space by X ⊆ Rd and Y ⊆ R, respectively. We denote a training dataset48

with n data points by D = {(xi, yi)}ni=1 where (xi, yi) is the i-th pair of the input covariates xi ∈ X49

and its output label yi ∈ Y . For an event A, an indicator function 1(A) is 1 if A is true, otherwise 0.50

For j ∈ N, we set [j] := {1, . . . , j}. For a set S, we denote its power set by 2S and its cardinality by51

|S|.52

DataShapley The primary goal of data valuation is to quantify the contribution of individual data53

points to a model’s performance. Leveraging the Shapley value in cooperative game theory [38],54

DataShapley [12] measures the average change in a utility function U : 2D → R when a data point55

is removed. For i ∈ [n], DataShapley of i-th datum is defined as follows.56

ϕShapi :=
1

n

n∑
k=1

1(
n−1
k−1

) ∑
S⊂D(i)

k

[U(S ∪ {(xi, yi)})− U(S)] (1)

where D(i)
k := {S ⊆ D|(xi, yi) /∈ S, |S| = k − 1}. DataShapley ϕShapi in (1) considers every set57

S ∈ D(i)
k and computes the average difference in utility U(S ∪ {(xi, yi)})− U(S). It characterizes58

the impact of a data point, but its computation requires evaluating U for all possible subsets of D,59

rendering precise calculations infeasible. Many efficient computation algorithms have been studied60

[15, 25, 50], and in these studies, Shapley-based methods have demonstrated better effectiveness61

in detecting low-quality samples than standard attribution approaches, such as leave-one-out and62

influence function methods [20, 9].63
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Data-OOB As an alternative efficient data valuation method, Kwon and Zou [23] propose64

Data-OOB, which leverages a bagging model and measures the similarity between a nominal label65

and weak learners’ predictions. To be more specific, we suppose a bagging model consists of B66

weak learners, where for b ∈ [B], the b-th weak learner ĥb is given as a minimizer of the weighted67

empirical risk,68

ĥb := argminh

n∑
i=1

wbiℓ(yi, h(xi)),

where ℓ : Y × Y → R is a loss function and wbi ∈ N is the number of times the i-th datum (xi, yi)69

is selected by the b-th bootstrap dataset. Let wb be a weight vector wb := (wb1, . . . , wbn) for all70

b ∈ [B]. For i ∈ [n] and {(wb, ĥb)}Bb=1, Data-OOB of the i-th datum is defined as follows.71

ϕOOB
i :=

∑B
b=1 1(wbi = 0)T (yi, ĥb(xi))∑B

b=1 1(wbi = 0)
, (2)

where T (yi, ĥb(xi)) is a score function evaluated at (xi, yi). We assume that the higher T , the better72

the prediction. In classification settings, a common choice for T is 1(yi = ĥb(xi)), and in this case,73

Data-OOB ϕOOB
i measures the average similarity between a nominal label yi and weak learners’74

predictions ĥb(xi) when a datum (xi, yi) is not sampled in a bootstrap dataset. It intuitively captures75

the quality of a data point. For instance, when (xi, yi) is a mislabeled sample or an outlier, the label76

yi is likely to differ from ĥb(xi), resulting in ϕOOB
i being close to zero.77

It is noteworthy that Data-OOB in (2) can be computed by training a single bagging model, making78

it computationally efficient. Kwon and Zou [23] show that Data-OOB can easily scale to millions79

of data points, but for DataShapley this is often very impractical. In addition, Data-OOB is often80

comparable to or even more effective than DataShapley in detecting mislabeled data points and81

selecting helpful data points [23, 16].82

3 Attributing Data Contribution through Joint Valuation Framework83

Data valuation quantifies desiderata of data points, however, it does not describe what features84

contribute and how much to those specific data values. For instance, in anomaly detection tasks, data85

valuation methods can be deployed to detect anomalous data points, but they do not explain why they86

are abnormal, which is not generally desirable in practice. To address this challenge, we consider a87

joint valuation framework and assess a cell score for each feature of a data point. Here, a cell score88

is designed to quantify how a feature affects the value of an individual data point, attributing a data89

value to features.90

To the best of the author’s knowledge, Liu et al. [29] first consider a concept of the joint valuation91

in literature and introduce 2D-Shapley to quantitatively interpret DataShapley. To this end, we92

denote a 2D utility function by u : [n]× [d] → R, which takes as input a subset of data points S ⊆ [n]93

and a subset of features F ⊆ [d], and measure the utility of a fragment of the given dataset consisting94

of cells {(i, j)}i∈S,j∈F , where a tuple (i, j) denotes a cell at the i-th datum and the j-th column.95

Then, 2D-Shapley is defined as96

ψ2D−Shap
ij :=

1

nd

n∑
k=1

d∑
l=1

1(
n−1
k−1

)(
d−1
l−1

) ∑
(S,F )⊂D(i,j)

k,l

M i,j
u (S, F ) (3)

where D(i,j)
k,l := {(S, F )|S ⊆ [n]\{i}, F ⊆ [d]\{j}, |S| = k − 1, |F | = l − 1} and97

M i,j
u (S, F ) = u(S ∪ {i}, F ∪ {j}) + u(S, F )− u(S ∪ {i}, F )− u(S, F ∪ {j}).

The function M i,j
u allows us to quantify how much removing a specific cell at (i, j) from a given set98

(S ∪ {i}, F ∪ {j}) affects the overall utility, and 2D-Shapley ψ2D−Shap
ij evaluates the average M i,j

u99

across all possible data fragments (S, F ) ⊂ D(i,j)
k,l .100

Similar to DataShapley, the permutation of all rows and columns required for exact 2D-Shapley101

calculations presents significant computational challenges. To address this, Liu et al. [29] develop102
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2D-KNN, which utilizes k-nearest-neighbors models as surrogates to approximate 2D-Shapley val-103

ues. However, the approximation methods can compromise the accuracy of valuations [23, 16].104

Additionally, 2D-KNN still faces challenges scaling to large-scale datasets and high-dimensional105

settings.106

We propose 2D-OOB, an efficient and model-agnostic joint valuation framework that leverages out-107

of-bag estimation to attribute data contribution. We further illustrate how 2D-OOB is connected to108

Data-OOB, thereby facilitating sample-wise interpretation for data valuation in Section 3.2.109

3.1 2D-OOB: an efficient joint valuation framework110

Our idea builds upon the subset bagging model [14], which is well recognized as an earlier version111

of Breiman’s random forest model [4]. A key distinction from a standard bagging model is that a112

weak learner in a subset bagging model is trained on a randomly selected subset of features. For113

b ∈ [B], we denote the b-th random feature subset by Sb ⊆ [d]. Then, the b-th weak learner of a114

subset bagging model is given as follows.115

f̂b := argminf

n∑
i=1

wbiℓ(yi, f(xi,Sb
)),

where xi,Sb
is a subvector of xi that only takes elements in a subset Sb. This difference enables us116

to assess the impact of which features are more influential: if Sb includes a helpful (or detrimental)117

feature, we can expect the out-of-bag prediction f̂(xi,Sb
) to be good (or poor). We formalize this118

intuition and propose 2D-OOB. For i ∈ [n], j ∈ [d] and {(wb, Sb, f̂b)}Bb=1, the 2D-OOB for the j-th119

cell of the i-th data point is defined as follows,120

ψ2D−OOB
ij :=

∑B
b=1 1(wbi = 0, j ∈ Sb)T (yi, f̂b(xi,Sb

))∑B
b=1 1(wbi = 0, j ∈ Sb)

, (4)

where T : Y × Y → R is a utility function that scores the performance of the weak learner f̂b(xi,Sb
)121

on the i-th datum (xi, yi). Specifically, for binary or multi-class classification problems, we can122

adopt T (yi, f̂b(xi,Sb
)) = 1(yi = f̂b(xi,Sb

)). In this case, 2D-OOB measures the average accuracy123

score of out-of-bag predictions (specifically, when the i-th data point is out-of-bag) if a cell j is used124

in training f̂b. For regression problems, we can use the negative squared error loss function, defined125

as T (yi, f̂b(xi,Sb
)) = −(yi − f̂b(xi,Sb

))2. In practice, X could also be incorporated into T to suit126

the specific use case.127

While Data-OOB in (2) aims to assess the impact of the i-th datum, 2D-OOB in (4) provides inter-128

pretable insights by evaluating the data point with various combinations of features, revealing which129

cells are influential to model performance. Leveraging subset bagging scheme, 2D-OOB requires a130

single training of the bagging model, and thus it is computational efficiency.131

3.2 Connection to Data-OOB132

We now present interpretable expressions of how 2D-OOB connects to Data-OOB in the following133

proposition. To begin with, we denote a set of subsets of [d] by S := {S ⊆ [d]}. With {(wb, f̂b)}Bb=1,134

we define the i-th Data-OOB when a particular subset S is used as follows and denote it by ϕOOB
i (S).135

ϕOOB
i (S) :=

∑B
b=1 1(wbi = 0)T (yi, f̂b(xi,S))∑B

b=1 1(wbi = 0)
.

Proposition 3.1. For all i ∈ [n] and j ∈ [d], ψ2D−OOB
ij can be expressed as follows.136

ψ2D−OOB
ij = EF̂S

[ϕOOB
i (S) | j ∈ S],

where F̂S is an empirical distribution with respect to S induced by the sampling process.137

A proof is given in the Appendix C. Proposition 3.1 shows that 2D-OOB ψ2D−OOB
ij can be expressed as138

a conditional empirical expectation of Data-OOB provided that the j-th feature is used in Data-OOB139

computation. It provides intuitive interpretations: for a fixed i and j ̸= k, ψ2D−OOB
ij > ψ2D−OOB

ik140

implies that the cell xij is more helpful to achieve the high OOB score, which serves as an indicator141

of model performance, than the cell xik.142
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Figure 2: Cell-level outlier detection rate curves for 2D-OOB, 2D-KNN, and Random. The x-axis
represents the percentage of inspected cells. The y-axis represents the detection rate, defined as the
ratio of the number of detected outlier cells to the total number of outlier cells present in a dataset.
The error bars show a 95% confidence interval based on 30 independent experiments. We examine
the cells in ascending order, starting from those with the lowest values, and thus a curve closer to the
left-top corner indicates better performance. 2D-OOB efficiently detects the majority of outlier cells
by examining only a small fraction of the total cells, while 2D-KNN and Random require scanning
nearly all the cells.

4 Experiments143

In this section, we empirically show the effectiveness of 2D-OOB across multiple use cases of the144

joint valuation: cell-level outlier detection, cell fixation, and backdoor trigger detection. As a145

summary, 2D-OOB can precisely identify anomalous cells that should be prioritized for examination146

and subsequent fixation to improve model performance. In the context of backdoor trigger detection,147

2D-OOB demonstrates its efficacy by accurately identifying different types of triggers within poisoned148

data, showcasing its proficiency in detecting non-random, targeted anomalies. Our method also149

exhibits high computational efficiency through run-time comparison.150

Throughout all of our experiments, 2D-OOB uses a subset bagging model with B = 1000 decision151

trees. We randomly select a fixed ratio of features to build each decision tree. Unless otherwise152

specified, we utilize half of the features for each weak learner and set T (yi, f̂(xi,Sb
)) = 1(yi =153

f̂(xi,Sb
)). The run time is measured on a single Intel Xeon Gold 6226 2.9 Ghz CPU processor.154

4.1 Cell-level outlier detection155

Experimental setting In practical situations, even when dealing with abnormal data points, it is not156

always the case that all cells are noisy [37, 29, 21]. To simulate more realistic settings, we introduce157

noise to certain cells in the following two-step process: First, we randomly select 20% rows for each158

dataset. We then select 20% columns uniformly at random, allowing each selected row to have a159

different set of perturbed cells. We inject noises sampled from the low-probability region into these160

cells, following Du et al. [8] and Liu et al. [29]. Details on the outlier injection process can be found161

in Appendix A.3.162

We use 12 publicly accessible binary classification datasets from OpenML, encompassing a range of163

both low and high-dimensional datasets, which have been widely used in the literature [12, 22, 23].164

Details on these datasets are presented in Appendix A.1. For each dataset, 1000 and 3000 data165

points are randomly sampled for training and test datasets, respectively. For the baseline method,166

we consider 2D-KNN, a fast and performant variant of 2D-Shapley [29]. We incorporate a distance167

regularization term in the utility function T for enhanced performance.168

Results We calculate the valuations for each cell using our joint valuation framework. Ideally, the169

outlier cells should receive a low valuation. We then arrange the cell valuations in ascending order170

and inspect those cells with the lowest values first.171
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Table 1: Cell-level outlier detection results. AUC and run-time comparison between 2D-OOB and
2D-KNN across the twelve datasets. The average and standard error of the AUC and run-time (in
seconds) based on 30 independent experiments are denoted by “average ± standard error”. Bold
numbers denote the best method. The AUC value for the Random method consistently remains at
0.5 across all datasets. Overall, 2D-OOB achieves a significantly higher AUC while being orders of
magnitude faster than 2D-KNN.

Dataset AUC ↑ Run-time ↓
2D-OOB (ours) 2D-KNN 2D-OOB (ours) 2D-KNN

lawschool 0.88± 0.0027 0.75± 0.0011 3.33 ± 0.06 177.56 ± 1.92
electricity 0.77± 0.0072 0.68± 0.0014 3.39 ± 0.07 191.38 ± 2.60
fried 0.91± 0.0015 0.61± 0.0005 3.97 ± 0.10 322.79 ± 2.98
2dplanes 0.87± 0.0015 0.62± 0.0005 3.46 ± 0.05 295.25 ± 2.37
creditcard 0.72± 0.0028 0.69± 0.0011 4.56 ± 0.10 662.34 ± 7.12
pol 0.82± 0.0014 0.67± 0.0006 4.34 ± 0.05 759.33 ± 4.37
MiniBooNE 0.77± 0.0058 0.63± 0.0019 7.46 ± 0.06 1507.83 ± 14.50
jannis 0.83± 0.0042 0.55± 0.0004 7.98 ± 0.07 1753.10 ± 12.35
nomao 0.79± 0.0021 0.67± 0.0009 7.69± 0.11 2564.58 ± 23.11
vehicle_sensIT 0.81± 0.0014 0.61± 0.0005 9.87 ± 0.08 3113.65 ± 24.54
gas_drift 0.86± 0.0010 0.84± 0.0017 11.28± 0.10 3878.31 ± 40.72
musk 0.88± 0.0008 0.71± 0.0006 14.09 ± 0.11 4415.45 ± 22.96

Average 0.83 0.67 6.78 1636.80
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Figure 3: Cell fixation experiment results (test accuracy curves) for 2D-OOB, 2D-KNN, and Random.
We replace cells with their corresponding ground-truth annotations, starting with those cells assigned
the lowest valuations. The results from 6 datasets are presented, and additional results are provided
in Appendix B.2. We conduct 30 independent trials and report the average results. A higher curve
indicates better performance. 2D-OOB demonstrates a superior capability in accurately identifying
and rectifying cell-level outliers.

The detection rate curve of inserted outlier is shown in Figure 2. For all datasets, 2D-OOB successfully172

identifies over 90% of the outlier cells by inspecting only 30% of the bottom cells. In comparison,173

2D-KNN requires examining nearly 90% of the cells to achieve the same detection level.174

We also evaluate the area under the curve (AUC) as a quantitative metric and the run-time. As175

Table 1 shows, 2D-OOB achieves an average AUC of 0.83 across 12 datasets, compared to 0.67 for176

2D-KNN, while being significantly faster. For high-dimensional datasets such as the musk dataset,177

which comprises 166 features, 2D-KNN would take more than an hour to process, while 2D-OOB can178

finish in seconds. Furthermore, we present additional results on multi-class classification datasets in179

Appendix B.1, demonstrating the consistently superior performance and efficiency of 2D-OOB.180

4.2 Cell fixation experiment181

Experimental setting A naive strategy to handle cell-level outliers is to eliminate data points182

that contain outliers. This method, however, risks substantial data loss, particularly when outliers183

are scattered and data points are costly to collect. We instead consider a cell fixation experiment,184

where we assume that the ground-truth annotations of outlier cells can be restored with external185

expert knowledge. At each step, we “fix" a certain number of cells by substituting them with their186

ground-truth annotations, prioritizing cells that have the lowest valuations. Then we fit a logistic187

model and evaluate the model’s performance with a test set of 3000 samples. It is important to note188

that correcting normal cells has no effect, whereas fixing outlier cells is expected to enhance the189

model’s performance. We adopt the same datasets and implementations as in Section 4.1.190
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Figure 4: Backdoor trigger detection rate curve for 2D-OOB, 2D-KNN, and Random. The panels
A. and B. correspond to Trojan square and BadNets square, respectively. We prioritize cells within
each poisoned sample, ranking from highest to lowest based on their valuations. The detection rate
curve shows the average detection rate across all poisoned samples, and error bars represent a 95%
confidence interval based on 15 independent runs. 2D-OOB demonstrates superior performance in
detecting the cells implanted with triggers.

Results Figure 3 illustrates the anticipated trend in the performance of 2D-OOB, validating our191

method’s capability to accurately identify and prioritize the most impactful outliers for correction. As192

cells with the lowest valuations are progressively fixed, 2D-OOB demonstrates a consistent improve-193

ment in model accuracy. In contrast, when applying the same procedure with 2D-KNN, such notable194

performance enhancements are not observed.195

Additionally, we investigate a scenario where ground-truth annotations remain unavailable. We adopt196

the setup from Liu et al. [29], where we replace the outlier cells with the average of other cells in the197

same feature column. 2D-OOB uniformly demonstrates significant superiority over its counterparts.198

Results are provided in Appendix B.2.199

4.3 Backdoor trigger detection200

A common strategy of data poisoning attacks involves inserting a predefined trigger (e.g., a specific201

pixel pattern in an image) into a few training data [13, 5, 28]. These malicious manipulations can be202

challenging to detect as they only infect targeted samples. Even when poisoned data are present, it203

could be difficult to discern the cause of attacks since manually reviewing the images is expensive and204

time-consuming. In this experiment, we introduce a novel joint valuation task: detecting backdoor205

triggers in data poisoning attacks. Distinct from random outliers investigated previously, such cell206

contamination is targeted and deliberate.207

We consider two popular backdoor attack algorithms: BadNets [13] and Trojan Attack [28]. The208

poisoned samples, relabeled as the adversarial target class, are mixed up with the clean data in the209

training process. As a result, the model is trained to incorrectly treat the trigger as a main feature of210

the poisoned samples. At the test time, those inputs containing the trigger will be misclassified to the211

target class. In this context, our goal is to effectively pinpoint the triggers by recognizing them as212

influential features through our joint valuation framework.213

Experimental setting We select 5 pairs of CIFAR-10 classes. For each pair, we designate one as the214

target attack class and the other as the source class. The training dataset comprises 1000 images. For215

each attack, we contaminate 15% of the training samples from the source class and relabel them to216

the target class. Two types of attack triggers are implemented: Trojan square and BadNets square217

[13, 35, 28]. These triggers are placed in the lower right corner of the original images to minimize218

occlusion. Details of these attacks are available in the Appendix A.4. In our experiment, the ratio of219

poisoned cells is approximately 1%. We sample 25% features to build each weak learner.220
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Figure 5: Qualitative examples for 2D-OOB in the backdoor trigger detection task. Each pair of
images shows a poisoned image and its cell valuation. The color of the heatmap indicates importance:
red cells are more important than blue cells. The first two pairs consider the case the class “bird” is
relabeled as “cat”, and the latter two pairs consider the case the class “deer” is relabeled as “cat”. The
heatmaps clearly show that higher cell valuations predominantly concentrate on the regions containing
triggers, while areas featuring actual objects receive lower valuations. This pattern suggests that
2D-OOB effectively captures the triggers as the impactful features responsible for the misclassification
of the poisoned samples.

Results We adopt the same detection scheme and baseline methods as in Section 4.1. Ideally,221

the poisoned cell should receive a high valuation based on the fact that such data point has been222

relabeled. We plot the detection rate curves of five datasets as shown in Figure 4. 2D-OOB significantly223

outperforms 2D-KNN in detecting both types of triggers. Overall, 2D-OOB achieves an average AUC224

of 0.95 across all datasets and attack types, compared to 0.83 for 2D-KNN.225

Qualitative examples Figure 5 displays the heatmaps for poisoned samples based on cell valuations226

of 2D-OOB. Areas with higher cell valuations (marked as dark red color) precisely indicate the trigger227

location in these samples, illustrating the effectiveness of our detection. More examples are included228

in the Appendix B.3.229

4.4 Ablation study230

We conduct ablation studies on the cell-level outlier detection task, as outlined in Section 4.1, to231

examine the impact of the selection and number of weak learners on 2D-OOB estimations.232

Selection of weak learners Although our study primarily employs decision trees as weak learners,233

it is important to note that 2D-OOB is model-agnostic, enabling the use of any class of machine234

learning models as weak learners. We compare efficacy of decision trees, logistic regression, a235

single-layer MLP with 64 dimensions, and a two-layer MLP with 64 and 32 dimensions.236

Table 2 presents a comparison of detection AUC across 12 datasets, indicating that 2D-OOB is not237

model-free. The selection of weak learners slightly affects the valuation results, with more complex238

models generally yielding better performance. Nonetheless, all variations of 2D-OOB outperform239

2D-KNN, highlighting the significant advantages of the 2D-OOB approach.240

The number of weak learners Increasing the number of weak learners allows for a greater241

number of data-feature subset pairs to be explored, potentially leading to more accurate estimates.242

However, we empirically observe that beyond a certain threshold, adding extra weak learners does243

not substantially enhance performance, indicating convergence of the estimation in Appendix B.4. As244

a summary, we vary the number of weak learners B ∈ {500, 1000, 3000} and compare the cell-level245

outlier detection performance. Typically, when the number of weak learners is 1000, i.e., B = 1000,246

it is sufficient to achieve converged estimates across different datasets.247

Lastly, we present additional ablation study results for other key hyperparameters in Appendix B.4.248

Apart from the experiments discussed above, we showcase that marginalization of 2D-OOB can either249

match or surpass state-of-the-art data valuation methods on standard benchmarks in Appendix D.250

5 Related work251

Data contribution estimation In addition to the marginal contribution-based methods discussed in252

Section 2, many other approaches are emerging in the area of data valuation. Just et al. [18] develop a253

non-conventional class-wise Wasserstein distance between the training and validation sets and use the254
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Table 2: Ablation study results of weak learner types. The average and standard error of the AUC
based on 30 independent experiments are denoted by “average ± standard error”. Results of 2D-KNN
are added for comparison. Different types of weak learners lead to variations in the valuation results,
with more complex models generally showing better performance.

Dataset Decision Tree Logistic Regression MLP (single-layer) MLP (two-layer) 2D-KNN (Baseline)

lawschool 0.88 ± 0.0027 0.81 ± 0.0014 0.83 ± 0.0023 0.86 ± 0.0049 0.75 ± 0.0011
electricity 0.77 ± 0.0072 0.75 ± 0.0029 0.75 ± 0.0039 0.74 ± 0.0064 0.68 ± 0.0014
fried 0.91 ± 0.0015 0.82 ± 0.0023 0.85 ± 0.0020 0.88 ± 0.0027 0.61 ± 0.0005
2dplanes 0.87 ± 0.0015 0.82 ± 0.0026 0.86 ± 0.0026 0.88 ± 0.0037 0.62 ± 0.0005
creditcard 0.72 ± 0.0028 0.74 ± 0.0023 0.74 ± 0.0026 0.74 ± 0.0071 0.69 ± 0.0011
pol 0.82 ± 0.0014 0.79 ± 0.0029 0.85 ± 0.0014 0.86 ± 0.0019 0.67 ± 0.0006
MiniBooNE 0.77 ± 0.0058 0.77 ± 0.0059 0.80 ± 0.0057 0.81 ± 0.0119 0.63 ± 0.0019
jannis 0.83 ± 0.0042 0.76 ± 0.0040 0.79 ± 0.0048 0.80 ± 0.0108 0.55 ± 0.0004
nomao 0.79 ± 0.0021 0.82 ± 0.0012 0.83 ± 0.0010 0.83 ± 0.0017 0.67 ± 0.0009
vehicle-sensIT 0.81 ± 0.0014 0.81 ± 0.0026 0.80 ± 0.0025 0.82 ± 0.0037 0.61 ± 0.0005
gas-drift 0.86 ± 0.0010 0.89 ± 0.0005 0.88 ± 0.0005 0.88 ± 0.0006 0.84 ± 0.0017
musk 0.88 ± 0.0008 0.87 ± 0.0005 0.88 ± 0.0005 0.88 ± 0.0008 0.71 ± 0.0006

Average 0.83 0.80 0.82 0.83 0.67

gradient information to evaluate each data point. Wu et al. [47] extend data valuation to deep neural255

networks, introducing a training-free data valuation framework based on neural tangent kernel theory.256

Yoon et al. [48] leverage reinforcement learning techniques to automatically learn data valuation257

scores by training a regression model. However, all these data valuation methods do not assign258

importance scores to cells, whereas our method provides additional insights into how individual cells259

contribute to the data valuations.260

Feature attribution Feature attribution is a pivotal research domain in explainable machine learning261

that primarily aims to provide insights into how individual features influence model predictions.262

Various effective methods have been proposed, including SHAP-based explanation [30, 31, 24, 7, 6],263

counterfactual explanation [44, 17, 36, 32, 33], and backpropagation-based explanation [1, 2, 42,264

41, 49]. Among these methods, the SHAP-based explanation stands out as the most widely adopted265

approach, utilizing cooperative game theory principles to compute the Shapley value [38]. While266

feature attribution offers a potential method to attribute data valuation scores across individual cells,267

our empirical experiments in Appendix B.1 reveal that this two-stage scheme falls short in efficacy268

compared to our proposed joint valuation paradigm, which integrates data valuation and feature269

attribution in a simultaneous process.270

6 Conclusion271

We propose 2D-OOB, an efficient joint valuation framework that assigns a score to each cell in a272

dataset, thereby facilitating a finer attribution of data contribution and enabling a deeper understanding273

of datasets. Through comprehensive experiments, we show that 2D-OOB is computationally efficient274

and competitive over state-of-the-art methods in both joint valuation tasks.275

Limitation and future work While our study primarily explores random forest models applied to276

tabular datasets and simple image datasets, the potential application of neural network models within277

the 2D-OOB framework for more complex vision and language tasks presents a promising avenue for278

future investigation. For instance, in text datasets, tokens or words can be treated as cells. 2D-OOB279

can be easily integrated into any bagging training scheme that uses language models.280

Overall, we believe that our work will inspire further exploration in the field of joint valuation, with281

the broader goal of improving the transparency and interpretability of machine learning, as well as282

developing an equitable incentive mechanism for data sharing.283

9



References284

[1] Marco Ancona, Enea Ceolini, Cengiz Öztireli, and Markus Gross. Towards better understanding of285

gradient-based attribution methods for deep neural networks. arXiv preprint arXiv:1711.06104, 2017.286

[2] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Müller, and287

Wojciech Samek. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance288

propagation. PloS one, 10(7):e0130140, 2015.289

[3] Jens Bleiholder and Felix Naumann. Data fusion. ACM computing surveys (CSUR), 41(1):1–41, 2009.290

[4] Leo Breiman. Random forests. Machine learning, 45:5–32, 2001.291

[5] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor attacks on deep292

learning systems using data poisoning. arXiv preprint arXiv:1712.05526, 2017.293

[6] Ian Covert and Su-In Lee. Improving kernelshap: Practical shapley value estimation using linear regression.294

In International Conference on Artificial Intelligence and Statistics, pages 3457–3465. PMLR, 2021.295

[7] Ian Covert, Scott M Lundberg, and Su-In Lee. Understanding global feature contributions with additive296

importance measures. Advances in Neural Information Processing Systems, 33:17212–17223, 2020.297

[8] Xuefeng Du, Zhaoning Wang, Mu Cai, and Yixuan Li. Vos: Learning what you don’t know by virtual298

outlier synthesis. arXiv preprint arXiv:2202.01197, 2022.299

[9] Vitaly Feldman and Chiyuan Zhang. What neural networks memorize and why: Discovering the long tail300

via influence estimation. Advances in Neural Information Processing Systems, 33:2881–2891, 2020.301

[10] Raul Castro Fernandez, Pranav Subramaniam, and Michael J Franklin. Data market platforms: Trading302

data assets to solve data problems. arXiv preprint arXiv:2002.01047, 2020.303

[11] Matthias Feurer, Jan N Van Rijn, Arlind Kadra, Pieter Gijsbers, Neeratyoy Mallik, Sahithya Ravi, Andreas304

Müller, Joaquin Vanschoren, and Frank Hutter. Openml-python: an extensible python api for openml. The305

Journal of Machine Learning Research, 22(1):4573–4577, 2021.306

[12] Amirata Ghorbani and James Zou. Data shapley: Equitable valuation of data for machine learning. In307

International Conference on Machine Learning, pages 2242–2251. PMLR, 2019.308

[13] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulnerabilities in the machine309

learning model supply chain. arXiv preprint arXiv:1708.06733, 2017.310

[14] Tin Kam Ho. Random decision forests. In Proceedings of 3rd international conference on document311

analysis and recognition, volume 1, pages 278–282. IEEE, 1995.312

[15] Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nezihe Merve Gurel, Bo Li, Ce Zhang, Costas J313

Spanos, and Dawn Song. Efficient task-specific data valuation for nearest neighbor algorithms. arXiv314

preprint arXiv:1908.08619, 2019.315

[16] Kevin Fu Jiang, Weixin Liang, James Zou, and Yongchan Kwon. Opendataval: a unified benchmark for316

data valuation. arXiv preprint arXiv:2306.10577, 2023.317

[17] Shalmali Joshi, Oluwasanmi Koyejo, Warut Vijitbenjaronk, Been Kim, and Joydeep Ghosh. Towards318

realistic individual recourse and actionable explanations in black-box decision making systems. arXiv319

preprint arXiv:1907.09615, 2019.320

[18] Hoang Anh Just, Feiyang Kang, Jiachen T Wang, Yi Zeng, Myeongseob Ko, Ming Jin, and Ruoxi Jia.321

Lava: Data valuation without pre-specified learning algorithms. arXiv preprint arXiv:2305.00054, 2023.322

[19] Markelle Kelly, Rachel Longjohn, and Kolby Nottingham. https://archive.ics.uci.edu, 2017. The323

UCI Machine Learning Repository.324

[20] Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In325

International conference on machine learning, pages 1885–1894. PMLR, 2017.326

[21] Hans-Peter Kriegel, Peer Kröger, Erich Schubert, and Arthur Zimek. Outlier detection in axis-parallel327

subspaces of high dimensional data. In Advances in Knowledge Discovery and Data Mining: 13th Pacific-328

Asia Conference, PAKDD 2009 Bangkok, Thailand, April 27-30, 2009 Proceedings 13, pages 831–838.329

Springer, 2009.330

10

https://archive.ics.uci.edu


[22] Yongchan Kwon and James Zou. Beta shapley: a unified and noise-reduced data valuation framework for331

machine learning. arXiv preprint arXiv:2110.14049, 2021.332

[23] Yongchan Kwon and James Zou. Data-OOB: Out-of-bag estimate as a simple and efficient data value.333

In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan334

Scarlett, editors, Proceedings of the 40th International Conference on Machine Learning, volume 202335

of Proceedings of Machine Learning Research, pages 18135–18152. PMLR, 23–29 Jul 2023. URL336

https://proceedings.mlr.press/v202/kwon23e.html.337

[24] Yongchan Kwon and James Y Zou. Weightedshap: analyzing and improving shapley based feature338

attributions. Advances in Neural Information Processing Systems, 35:34363–34376, 2022.339

[25] Yongchan Kwon, Manuel A. Rivas, and James Zou. Efficient computation and analysis of distributional340

shapley values. In Arindam Banerjee and Kenji Fukumizu, editors, Proceedings of The 24th International341

Conference on Artificial Intelligence and Statistics, volume 130 of Proceedings of Machine Learning342

Research, pages 793–801. PMLR, 13–15 Apr 2021. URL https://proceedings.mlr.press/v130/343

kwon21a.html.344

[26] Andy Leung, Hongyang Zhang, and Ruben Zamar. Robust regression estimation and inference in the345

presence of cellwise and casewise contamination. Computational Statistics & Data Analysis, 99:1–11,346

2016.347

[27] Weixin Liang, Girmaw Abebe Tadesse, Daniel Ho, L Fei-Fei, Matei Zaharia, Ce Zhang, and James Zou.348

Advances, challenges and opportunities in creating data for trustworthy ai. Nature Machine Intelligence, 4349

(8):669–677, 2022.350

[28] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang Wang, and X. Zhang.351

Trojaning attack on neural networks. In Network and Distributed System Security Symposium, 2018. URL352

https://api.semanticscholar.org/CorpusID:31806516.353

[29] Zhihong Liu, Hoang Anh Just, Xiangyu Chang, Xi Chen, and Ruoxi Jia. 2d-shapley: A framework for354

fragmented data valuation. arXiv preprint arXiv:2306.10473, 2023.355

[30] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. Advances in356

neural information processing systems, 30, 2017.357

[31] Scott M Lundberg, Gabriel G Erion, and Su-In Lee. Consistent individualized feature attribution for tree358

ensembles. arXiv preprint arXiv:1802.03888, 2018.359

[32] Divyat Mahajan, Chenhao Tan, and Amit Sharma. Preserving causal constraints in counterfactual explana-360

tions for machine learning classifiers. arXiv preprint arXiv:1912.03277, 2019.361

[33] Ramaravind K Mothilal, Amit Sharma, and Chenhao Tan. Explaining machine learning classifiers through362

diverse counterfactual explanations. In Proceedings of the 2020 conference on fairness, accountability,363

and transparency, pages 607–617, 2020.364

[34] Maria-Irina Nicolae, Mathieu Sinn, Minh Ngoc Tran, Beat Buesser, Ambrish Rawat, Martin Wistuba,365

Valentina Zantedeschi, Nathalie Baracaldo, Bryant Chen, Heiko Ludwig, Ian Molloy, and Ben Edwards.366

Adversarial robustness toolbox v1.2.0. CoRR, 1807.01069, 2018. URL https://arxiv.org/pdf/1807.367

01069.368

[35] Ren Pang, Zheng Zhang, Xiangshan Gao, Zhaohan Xi, Shouling Ji, Peng Cheng, and Ting Wang. Trojanzoo:369

Towards unified, holistic, and practical evaluation of neural backdoors. In Proceedings of IEEE European370

Symposium on Security and Privacy (Euro S&P), 2022.371

[36] Rafael Poyiadzi, Kacper Sokol, Raul Santos-Rodriguez, Tijl De Bie, and Peter Flach. Face: feasible and372

actionable counterfactual explanations. In Proceedings of the AAAI/ACM Conference on AI, Ethics, and373

Society, pages 344–350, 2020.374

[37] Peter J Rousseeuw and Wannes Van Den Bossche. Detecting deviating data cells. Technometrics, 60(2):375

135–145, 2018.376

[38] Lloyd S Shapley et al. A value for n-person games. 1953.377

[39] Rachael Hwee Ling Sim, Xinyi Xu, and Bryan Kian Hsiang Low. Data valuation in machine learn-378

ing:“ingredients”, strategies, and open challenges. In Proc. IJCAI, 2022.379

[40] Rachael Hwee Ling Sim, Yehong Zhang, Trong Nghia Hoang, Xinyi Xu, Bryan Kian Hsiang Low, and380

Patrick Jaillet. Incentives in private collaborative machine learning. In Thirty-seventh Conference on381

Neural Information Processing Systems, 2023.382

11

https://proceedings.mlr.press/v202/kwon23e.html
https://proceedings.mlr.press/v130/kwon21a.html
https://proceedings.mlr.press/v130/kwon21a.html
https://proceedings.mlr.press/v130/kwon21a.html
https://api.semanticscholar.org/CorpusID:31806516
https://arxiv.org/pdf/1807.01069
https://arxiv.org/pdf/1807.01069
https://arxiv.org/pdf/1807.01069


[41] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks: Visualising383

image classification models and saliency maps. arXiv preprint arXiv:1312.6034, 2013.384

[42] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. Striving for simplicity:385

The all convolutional net. arXiv preprint arXiv:1412.6806, 2014.386

[43] Peng Su, Garth Tarr, and Samuel Muller. Robust variable selection under cellwise contamination. Journal387

of Statistical Computation and Simulation, pages 1–17, 2023.388

[44] Sandra Wachter, Brent Mittelstadt, and Chris Russell. Counterfactual explanations without opening the389

black box: Automated decisions and the gdpr. Harv. JL & Tech., 31:841, 2017.390

[45] Jiachen T Wang, Prateek Mittal, and Ruoxi Jia. Efficient data shapley for weighted nearest neighbor391

algorithms. arXiv preprint arXiv:2401.11103, 2024.392

[46] Tianhao Wang and Ruoxi Jia. Data banzhaf: A data valuation framework with maximal robustness to393

learning stochasticity. arXiv preprint arXiv:2205.15466, 2022.394

[47] Zhaoxuan Wu, Yao Shu, and Bryan Kian Hsiang Low. Davinz: Data valuation using deep neural networks395

at initialization. In International Conference on Machine Learning, pages 24150–24176. PMLR, 2022.396

[48] Jinsung Yoon, Sercan Arik, and Tomas Pfister. Data valuation using reinforcement learning. In International397

Conference on Machine Learning, pages 10842–10851. PMLR, 2020.398

[49] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In Computer399

Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings,400

Part I 13, pages 818–833. Springer, 2014.401

[50] Jiayao Zhang, Qiheng Sun, Jinfei Liu, Li Xiong, Jian Pei, and Kui Ren. Efficient sampling approaches to402

shapley value approximation. Proc. ACM Manag. Data, 1(1), may 2023. doi: 10.1145/3588728. URL403

https://doi.org/10.1145/3588728.404

[51] Boxin Zhao, Boxiang Lyu, Raul Castro Fernandez, and Mladen Kolar. Addressing budget allocation and405

revenue allocation in data market environments using an adaptive sampling algorithm. arXiv preprint406

arXiv:2306.02543, 2023.407

12

https://doi.org/10.1145/3588728


Supplementary Materials408

In the supplementary materials, we provide implementation details, additional experimental results,409

rigorous formalized proofs and data valuation experiment results. Code repository can be found at410

https://anonymous.4open.science/r/2d-oob-C4A0/.411

A Implementation details412

A.1 Datasets413

Tabular datasets We use 12 binary classification datasets obtained from OpenML [11]. A summary414

of all the datasets is provided in Table 3. These datasets are used in Section 4.1, 4.2, and Appendix D.415

For each dataset, we first employ a standard normalization procedure, where each feature is normalized416

to have zero mean and unit standard deviation. After preprocessing, we randomly partition a subset417

of the data into two non-overlapping sets: a training dataset and a test dataset, which consists of418

1000 and 3000 samples respectively. The training dataset is used to obtain the joint (or marginal)419

valuation for each cell (or data point). The test dataset is exclusively used for cell fixation (or point420

removal) experiments when evaluating the test accuracy. Note that for methods that need a validation421

dataset such as KNNShapley and DataShapley, we additionally sample a separate validation dataset422

(disjoint from training dataset and test dataset) to evaluate the utility function. The size of the423

validation dataset is set to 10% of the training sample size.424

Image datasets We create datasets by pairing CIFAR-10 classes, each pair consisting of a target425

attack class and a source class. The training and test dataset comprises 1000 and 2000 samples426

respectively. The size of the validation dataset is set to 10% of the training sample size. To manage427

the computational challenges posed by the baseline method, we employ the super-pixel technique428

to transform the (32,32,3) image into a 256-dimensional vector. Specifically, we first average the429

pixel values across three channels for each pixel. Then, we partition these transformed images into430

equally sized 2× 2 grids. In each grid, we use average pooling to reduce the pixel values to a single431

cell value. These cell values are then arranged into a flattened input vector. We annotate a cell as432

poisoned if at least 25% of its corresponding grid area contains the trigger.433

A.2 Implementation details for different methods434

2D-OOB 2D-OOB involves fitting a subset random forest model with B = 1000 decision trees based435

on the package “scikit-learn”. When constructing each decision tree, we fix the feature subset size436

ratio as 0.5. Ablations on the hyperparameters can be found in Appendix B.4. For Section 4.3 and437

Appendix D, we simply adopt T (yi, f̂(xi,Sb
)) = 1(yi = f̂(xi,Sb

)). For Section 4.1 and 4.2, we438

further calculate the normalized negative L2 distance between covariates and the class-specific mean in439

the bootstrap dataset, denoted as dnorm. Then we use T (yi, f̂(xi,Sb
)) = 1(yi = f̂(xi,Sb

)) + dnorm.440

2D-KNN 2D-KNN employs KNN as a surrogate model to approximate 2D-Shapley. We set the441

number of nearest neighbors as 10 and the number of permutations as 1000. The hyperparameters442

are selected based on convergence behavior and we determine the run time until the values converge.443

A.3 Implementation details for cell-level outlier generation444

Following Du et al. [8] and Liu et al. [29], we replace a given cell with the outlier value. Here, the445

outlier value is randomly generated from the two-sided “tails” of the Gaussian distribution with the446

column mean and standard deviation, where the probability of the two-sided tail area is set to be 1%.447

4% (20%× 20%) of the cells in total are replaced with the corresponding outlier value.448

A.4 Implementation details for backdoor trigger generation449

Following the prior work [13, 28], we generate the BadNets square and the Trojan square trigger. For450

BadNets, we adopt the implementation in Nicolae et al. [34]. For Trojan Attack, we use a pretrained451

ResNet18 model on CIFAR-10 dataset and employ the implementation in Pang et al. [35]. For452
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each attack, we evaluate its effectiveness by training a decision tree model on the poisoned dataset.453

The accuracy on a clean test set remains nearly unchanged compared to the model trained on an454

uncontaminated training set, while the attack success rate on a hold-out poisoned test sample set is455

guaranteed to exceed 75%.456

Table 3: A summary of all the datasets used in 4.1, 4.2, and Appendix D. These datasets have
been commonly used in previous literature [12, 22, 23]

Name Total sample size Input dimension Majority class proportion OpenML ID

lawschool 20800 6 0.679 43890
electricity 38474 6 0.5 44080
fried 40768 10 0.502 901
2dplanes 40768 10 0.501 727
creditcard 30000 23 0.779 42477
pol 15000 48 0.664 722
MiniBooNE 72998 50 0.5 43974
jannis 57580 54 0.5 43977
nomao 34465 89 0.715 1486
vehicle_sensIT 98528 100 0.50 357
gas_drift 5935 128 0.507 1476
musk 6598 166 0.846 1116

B Additional experimental results457

In Section 4.1, we demonstrate that 2D-OOB shows promising performance in identifying cell-level458

outliers. This section further shows that our result is not sensitive to the selection of hyperparameters.459

Furthermore, ours generally performs better than 2D-KNN in different settings. We also provide460

additional results for Section 4.2 and 4.3.461

B.1 Additional results for cell-level outlier detection462

Additional results on multi-class classification datasets We have conducted cell-level outlier463

detection experiments (as in Section 4.1) on three multi-class classification datasets from the UCI464

Machine Learning repository [19]. As shown in the table, 2D-OOB displays superior detection465

performance and efficiency.466

Table 4: Cell-level outlier experiment results on multi-class classification datasets The average
and standard error of the detection AUC and Elapsed Time (in seconds) based on 30 independent
experiments are denoted by “average ± standard error“.

Dataset AUC ↑ Run-time ↓
2D-OOB (ours) 2D-KNN 2D-OOB (ours) 2D-KNN

Covertype 0.81±0.0156 0.63±0.0183 3.98±0.5774 962.34±1.3383
Dry Bean 0.88±0.0059 0.85±0.0192 3.31±0.4586 347.80±2.0212
Wine Quality 0.86±0.0178 0.57±0.0252 2.90±0.1240 269.14±1.1825

Additional baseline: two-stage attribution Once we obtain the data valuation scores, an alternative467

solution approach to determining cell-level attributions involves leveraging feature attribution methods468

such as SHAP [30]. We explore an additional baseline method building upon this idea: initially,469

Data-OOB (or any other data valuation method) is computed for the i-th data point, denoted as dvi.470

Subsequently, TreeSHAP [31] is fitted, using dvi as the target and the concatenation of xi and yi471

(denoted as xi ⊕ yi) as the predictor. The derived local feature attributions are then interpreted as472

joint valuation results. We refer to this method as ‘two-stage attribution’.473

Table 5 indicates that 2D-OOB substantially outperforms its two-stage counterpart. We hypothesize474

that the superiority of our method stems from integrating data valuation and feature attribution475

into a cohesive framework. Conversely, the two-stage method treats data valuation and feature476
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Table 5: Cell-level outlier detection results (AUC) of 2D-OOB and the two-stage attribution. Our
method shows a better performance than the alternative method by a significant performance margin.

Dataset AUC ↑
2D-OOB (ours) Two-stage attribution

lawschool 0.88± 0.0027 0.83± 0.0064
electricity 0.77± 0.0072 0.64± 0.0093
fried 0.91± 0.0015 0.82± 0.0068
2dplanes 0.87± 0.0015 0.80± 0.0058
creditcard 0.72± 0.0028 0.67± 0.0051
pol 0.82± 0.0014 0.78± 0.0042
MiniBooNE 0.77± 0.0058 0.70± 0.0041
jannis 0.83± 0.0042 0.62± 0.0043
nomao 0.79± 0.0021 0.71± 0.0041
vehicle_sensIT 0.81± 0.0014 0.64± 0.0033
gas_drift 0.86± 0.0010 0.73± 0.0143
musk 0.88± 0.0008 0.68± 0.0028

Average 0.83 0.72

Table 6: Cell-level outlier detection results (AUC) of different joint valuation methods when the
row outlier ratio and column outlier ratio are both 50%. Our method consistently outperforms
2D-KNN even in the presence of significant noise.

Dataset AUC ↑
2D-OOB (ours) 2D-KNN

lawschool 0.75± 0.0084 0.60± 0.0144
electricity 0.64± 0.0155 0.60± 0.0106
fried 0.74± 0.0087 0.54± 0.0027
2dplanes 0.74± 0.0063 0.55± 0.0033
creditcard 0.63± 0.0055 0.61± 0.0053
pol 0.69± 0.0069 0.60± 0.0042
MiniBooNE 0.67± 0.0128 0.60± 0.0048
jannis 0.70± 0.0113 0.53± 0.0014
nomao 0.70± 0.0088 0.58± 0.0052
vehicle_sensIT 0.70± 0.0075 0.55± 0.0031
gas_drift 0.73± 0.0077 0.65± 0.0114
musk 0.77± 0.0063 0.64± 0.0038

Average 0.71 0.59

attribution as separate processes, potentially resulting in sub-optimal outcomes. Furthermore, due to477

the computational complexity of TreeSHAP, the two-stage approach is notably slower compared to478

our method.479

A noisy setting with more outlier cells We consider a more challenging scenario with increased480

outlier levels, where both the row outlier ratio and column outlier ratio increase from 20% (as in481

Section 4.1) to 50%. Consequently, this leads to 25% (50% × 50%) of the cells being replaced482

with outlier values. We follow the same outlier generation procedure outlined in Appendix A.3.483

The findings, presented in Table 6, demonstrate that our method maintains a significantly superior484

performance over 2D-KNN, even under such a noisy setting.485

B.2 Additional results for cell fixation experiment486

Figure 6 presents the results for the cell fixation experiment on 6 additional datasets. 2D-OOB excels487

in precisely detecting and correcting relevant cell outliers.488

The scenario without ground-truth knowledge Following [29], we examine a situation where489

external information on the ground-truth annotations of outlier cells is not accessible. In this scenario,490

we address these outliers by substituting them with the average of other cells in the same feature491

column. This procedure starts by addressing cells with the lowest valuations, based on the hypothesis492
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Figure 6: Cell fixation experiment results (test accuracy curves) for 2D-OOB, 2D-KNN and a
random baseline. We replace cell values with ground-truth values from the cells with the lowest
valuation to the highest valuation. The results from 6 datasets are displayed. We conduct 30
independent trials and report the average results. A higher curve indicates better performance.
2D-OOB sets itself apart by its remarkable precision in detecting and rectifying relevant cell outliers.
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Figure 7: Cell fixation experiment (without ground-truth knowledge) results (test accuracy
curves) for 2D-OOB, 2D-KNN and a random baseline. We replace cell values with column mean
imputations from the cells with the lowest value to the highest value. The results from 6 datasets are
displayed. We conduct 30 independent trials and report the average results. A higher curve indicates
better performance.

that correcting these cells is likely to maintain or potentially improve the model’s performance. As493

depicted in Figure 7, 2D-OOB conforms to this expected trend, demonstrating the effectiveness of our494

method in joint valuation. Conversely, 2D-KNN fails to show similar performance improvements.495

B.3 Additional results for backdoor trigger experiment496

We provide additional qualitative examples of backdoor trigger detection experiments in Figure 8.497

B.4 Additional results for ablation study498

We present the results of ablation study on the number of base learners B and feature subset ratio499

K/d. Specifically, we examine the AUC of the detection curve in the cell-level outlier detection500

experiment (refer to Table 1).501

The number of base learners B When we increase the number of base learners from 500 to 3000,502

the detection AUC for each dataset remains unchanged, as shown in Table 7. This indicates that 1000503

base learners are sufficient to get an equitable joint valuation.504

Feature subset ratio K/d In addition to 0.50, We test two additional feature subset ratios 0.25505

and 0.75. The results in Table 8 suggest that in general, the joint valuation capacity of our method is506

robust to the choice of feature subset ratio.507

C Proof of Proposition 3.1508

Proof. For simplicity, we denote ϕOOB
i (S) as ϕi(S) and ψ2D−OOB

ij as ψij in the proof. With the509

set of subsets S := {S ⊆ [d]} and the definition Data-OOB ϕi(S) for all i ∈ [n], where S is510
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Table 7: Ablation results on the number of base learners B. The cell-level outlier detection results
(AUC) are examined. Increasing the number of base learners from 1000 to 3000 does not yield a
notable performance improvement.

Dataset AUC ↑
B = 500 B = 1000 B = 3000

lawschool 0.86 ± 0.0035 0.88 ± 0.0027 0.88 ± 0.0026
electricity 0.77 ± 0.0062 0.77 ± 0.0072 0.77 ± 0.0070
fried 0.87 ± 0.0022 0.91 ± 0.0015 0.91 ± 0.0014
2dplanes 0.87 ± 0.0016 0.87 ± 0.0015 0.87 ± 0.0015
creditcard 0.72 ± 0.0025 0.72 ± 0.0028 0.72 ± 0.0028
pol 0.78 ± 0.0022 0.82 ± 0.0014 0.82 ± 0.0014
MiniBooNE 0.77 ± 0.0042 0.77 ± 0.0058 0.77 ± 0.0058
jannis 0.78 ± 0.0045 0.83 ± 0.0042 0.83 ± 0.0039
nomao 0.79 ± 0.0018 0.79 ± 0.0021 0.79 ± 0.0020
vehicle_sensIT 0.80 ± 0.0021 0.81 ± 0.0014 0.81 ± 0.0014
gas_drift 0.86 ± 0.0007 0.86 ± 0.0010 0.86 ± 0.0010
musk 0.88 ± 0.0008 0.88 ± 0.0008 0.88 ± 0.0008

Average 0.81 0.83 0.83

Table 8: Ablation results on feature subset ratio K/d. The cell-level outlier detection results
(AUC) are examined. Our method’s joint valuation capacity remains relatively stable regardless of
the selected feature subset ratio.

Dataset AUC ↑
K/d = 0.25 K/d = 0.50 K/d = 0.75

lawschool 0.86± 0.0026 0.88± 0.0027 0.88± 0.0024
electricity 0.79± 0.0070 0.77± 0.0072 0.73± 0.0070
fried 0.86± 0.0024 0.91± 0.0015 0.89± 0.0007
2dplanes 0.82± 0.0015 0.87± 0.0015 0.88± 0.0014
creditcard 0.73± 0.0029 0.72± 0.0028 0.71± 0.0028
pol 0.66± 0.0031 0.82± 0.0014 0.82± 0.0014
MiniBooNE 0.78± 0.0076 0.77± 0.0058 0.77± 0.0049
jannis 0.84± 0.0035 0.83± 0.0042 0.82± 0.0043
nomao 0.79± 0.0019 0.79± 0.0021 0.78± 0.0021
vehicle_sensIT 0.81± 0.0014 0.81± 0.0014 0.80± 0.0015
gas_drift 0.88± 0.0009 0.86± 0.0010 0.86± 0.0009
musk 0.89± 0.0008 0.88± 0.0008 0.88± 0.0008

Average 0.81 0.83 0.82

a feature subset, we denote the cardinality of S as L := |S| = 2d. Let γb be a weight vector511

γb := (γb1, . . . , γbL) for all b ∈ [B], where γbl ∈ {0, 1} and γbl = 1 indicates the l-th subset is used512

in the b-th weak learner. With {wb, γb, f̂b}Bb=1, we can also denote the i-th Data-OOB on l-th feature513

subset Sl as514

ϕi(Sl) =

∑B
b=1 1(wbi = 0)1(γbl = 1)T (yi, f̂b(xi,Sl

))∑B
b=1 1(wbi = 0)1(γbl = 1)

.
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Figure 8: Qualitative results on more datasets for the backdoor trigger detection experiment.
The first two images originate from the class “airplane” while relabeled as “automobile”. The latter
two images originate from the class “frog” while relabeled as “horse”.
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With slight abuse of notation, the formulation of 2D-OOB in (4) can be expressed as follows.515

ψij =

∑L
l=1

∑B
b=1 1(wbi = 0)1(γbl = 1)1(j ∈ Sl)T (yi, f̂b(xi,Sl

))∑L
l=1

∑B
b=1 1(wbi = 0)1(γbl = 1)1(j ∈ Sl)

=

L∑
l=1

1(j ∈ Sl)

∑B
b=1 1(wbi = 0)1(γbl = 1)T (yi, f̂b(xi,Sl

))∑L
l=1

∑B
b=1 1(wbi = 0)1(γbl = 1)1(j ∈ Sl)

=

L∑
l=1

1(j ∈ Sl)

∑B
b=1 1(wbi = 0)1(γbl = 1)∑L

l=1

∑B
b=1 1(wbi = 0)1(γbl = 1)1(j ∈ Sl)

∑B
b=1 1(wbi = 0)1(γbl = 1)T (yi, f̂b(xi,Sl

))∑B
b=1 1(wbi = 0)1(γbl = 1)

=

L∑
l=1

αi,j,lϕi(Sl),

where αi,j,l ∝ 1(j ∈ Sl)
∑B

b=1 1(wbi = 0)1(γbl = 1),∀i ∈ [n], j ∈ [d], l ∈ [L] and
∑L

l=1 αi,j,l =516

1. Define Pi(Sl|j ∈ Sl, {wbi}Bb=1) = αi,j,l, which specifies an empirical distribution of the feature517

subset S, conditioned on j ∈ S, in relation to the bootstrap sampling process. Here, 1(j ∈ Sl)518

implies the distribution is conditioned on the presence of the j-th feature within the feature subset Sl.519

wbi indicates whether the i-th sample is out-of-bag in the b-th bootstrap, and γbl indicates whether520

the l-th feature subset is selected in the b-th weak learner. Thus, the point mass is determined by the521

sampling process.522

523

D Data valuation experiment524

In this section, we show that 2D-OOB-data, the marginalization of 2D-OOB, offers an effective525

approach to data valuation. This serves as the basis of our enhanced performance in joint valuation.526

Marginalization 2D-OOB aims to attribute data contribution through cells. Consequently, by527

summing up 2D-OOB over all columns, we can derive data contribution values. For i ∈ [n], we define528

the 2D-OOB-data ψdata
i as follows.529

ψdata
i :=

1

d

d∑
j=1

ψ2D−OOB
ij , (5)

Proof. Based on definition of 2D-OOB-Data, for i ∈ [n],530

ψdata
i :=

1

d

d∑
j=1

ψ2D−OOB
ij =

1

d

d∑
j=1

L∑
l=1

αi,j,lϕ
OOB
i (Sl)

=

L∑
l=1

(
1

d

d∑
j=1

αi,j,l)ϕ
OOB
i (Sl),

where αi,j,l is defined in Appendix C. We have
∑L

l=1(
1
d

∑d
j=1 αi,j,l) =

1
d

∑d
j=1

∑L
l=1 αi,j,l = 1.531

Denote Pi(Sl|{wbi}Bb=1) =
1
d

∑d
j=1 αi,j,l, which induces the empirical expectation of Data-OOB532

with respect to Sl.533

Based on discussions in Section 3.2, the marginalizations also connect with Data-OOB:534

Proposition D.1. For all i ∈ [n], the marginalizations ψdata
i can be expressed as follows.535

ψdata
i = EF̂S

[ϕOOB
i (S)],

where the notations follow the same definitions as Proposition 3.1.536
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Proposition D.1 indicates 2D-OOB-data ψdata
i can be expressed as the average Data-OOB value for537

the i-th data point. As a result, 2D-OOB-data is expected to inherit the advanced ability of Data-OOB538

in terms of data valuation, as will be empirically examined in the Appendix D.539

Experimental setting Following the standard protocol in Kwon and Zou [22, 23] and Jiang et al.540

[16], we randomly select 10% of the data points and change its label to the other class. For joint541

valuation methods, we calculate the valuation of each cell and perform the marginalization over542

features to obtain the data valuation scores. For the baseline methods, we further incorporate543

several state-of-the-art data valuation methods including DataShapley [12], KNNShapley [15],544

DataBanzhaf [46], LAVA [18], and Data-OOB [23]. Implementation details are listed below. To545

guarantee a fair comparison, we also employ the decision tree as the base model in DataShapley546

and DataBanzhaf. Mislabeled data detection and data removal experiment are examined based on547

this setting. We adopt the same 12 datasets as outlined in Section 4.1.548

Data-OOB Data-OOB involves fitting a random forest model without feature subset sampling,549

consisting of 1000 decision trees.550

DataShapley We use a Monte Carlo-based algorithm. The Gelman-Rubin statistics is computed551

to determine the termination criteria of the algorithm. Following Jiang et al. [16], We adopt the552

threshold to be 1.05. To ensure a fair comparison with the proposed method, we employ the decision553

tree model for the utility evaluation.554

KNNShapley We set the number of nearest neighbors to be 10% of the sample size following Jia555

et al. [15].556

LAVA We calculate the class-wise Wasserstein distance following Just et al. [18]. The “OTDD”557

framework is adopted to complete the optimal transport calculation.558

DataBanzhaf We adopt the implementation from Jiang et al. [16]. We employ the decision tree559

model and set “the number of models to train” to 1000.560

D.1 Mislabeled data detection561

We calculate the precision-recall curve by comparing the actual annotations, which denote whether562

data points are mislabeled, against the data valuation scores computed by different methods. Misla-563

beled data typically have a detrimental impact on model performance. Therefore, data points that564

receive a lower valuation score are regarded as having a higher chance of being mislabeled. We565

then determine AUCPR (the AUC of the precision-recall curve) as a quantitative metric to assess the566

detection efficacy.567

As shown in Table 9, 2D-OOB-data consistently outperforms 2D-KNN-data across all datasets,568

suggesting its superior ability to detect mislabeled data points. It is worth noting that 2D-OOB-data’s569

results are on par with Data-OOB, while significantly exceeding the performance of other data570

valuation methods. These results are in line with our theoretical analysis regarding the resemblance571

between Data-OOB and 2D-OOB-data. However, it is important to highlight that applying Data-OOB572

to the joint tasks is not feasible as mentioned earlier, underscoring the necessity for the development573

of 2D-OOB.574

D.2 Point removal experiment575

Removing low-quality data points has the potential to enhance model performance. Based on this idea,576

we employ the point removal experiment, a widely used benchmark in data valuation [23, 12, 22].577

According to the calculated data valuation scores, we progressively remove data points from the578

dataset in ascending order. Specifically, we begin by removing the data points with the lowest data579

valuations. Each time we remove a datum, we fit a logistic model and use the held-out test set580

consisting of 3000 instances to evaluate the model performance. The expected behavior is that the581

model performance will improve initially as the detrimental data points are gradually eliminated from582

the training process. Removing an excessive number of data points may result in a drastically altered583

dataset. Consequently, we opt to remove the bottom 20% data points.584
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Table 9: Point-level mislabeled data detection results. AUCPR of different data valuation and
(marginalized) joint valuation methods. The average and standard error of the AUCPR based on 30
independent experiments are denoted by “average ± standard error”. Bold numbers denote the best
method, for data valuation and joint valuation respectively. The AUCPR value for the Random method
consistently remains at 0.5 across all datasets. 2D-OOB-data exhibits performance comparable to
Data-OOB, while significantly surpassing 2D-KNN-data (the marginalization of 2D-KNN) and all
other data valuation methods.

Dataset Data Valuation Joint Valuation (Marginalized)
KNNShapley LAVA DataBanzhaf DataShapley Data-OOB 2D-KNN-data 2D-OOB-data (ours)

lawschool 0.66 ± 0.013 0.13 ± 0.003 0.46 ± 0.008 0.88 ± 0.007 1.00 ± 0.000 0.46 ± 0.011 0.99 ± 0.002
electricity 0.22 ± 0.008 0.11 ± 0.002 0.18 ± 0.005 0.26 ± 0.007 0.44 ± 0.007 0.20 ± 0.006 0.39 ± 0.007
fried 0.40 ± 0.014 0.11 ± 0.002 0.22 ± 0.007 0.35 ± 0.009 0.76 ± 0.007 0.34 ± 0.010 0.73 ± 0.008
2dplanes 0.46 ± 0.016 0.12 ± 0.002 0.32 ± 0.007 0.54 ± 0.009 0.78 ± 0.008 0.44 ± 0.011 0.68 ± 0.010
creditcard 0.37 ± 0.007 0.11 ± 0.003 0.16 ± 0.004 0.28 ± 0.006 0.40 ± 0.007 0.20 ± 0.005 0.40 ± 0.007
pol 0.19 ± 0.017 0.11 ± 0.002 0.37 ± 0.010 0.58 ± 0.012 0.93 ± 0.004 0.29 ± 0.018 0.87 ± 0.005
MiniBooNE 0.41 ± 0.013 0.13 ± 0.006 0.23 ± 0.007 0.41 ± 0.010 0.78 ± 0.007 0.36 ± 0.008 0.78 ± 0.007
jannis 0.20 ± 0.007 0.11 ± 0.002 0.14 ± 0.003 0.17 ± 0.005 0.38 ± 0.010 0.19 ± 0.006 0.37 ± 0.010
nomao 0.61 ± 0.012 0.14 ± 0.003 0.33 ± 0.010 0.58 ± 0.009 0.87 ± 0.006 0.33 ± 0.011 0.88 ± 0.005
vehicle_sensIT 0.22 ± 0.009 0.11 ± 0.002 0.21 ± 0.007 0.33 ± 0.011 0.56 ± 0.010 0.14 ± 0.005 0.56 ± 0.010
gas_drift 0.87 ± 0.013 0.16 ± 0.006 0.42 ± 0.009 0.75 ± 0.008 0.98 ± 0.002 0.88 ± 0.006 0.98 ± 0.002
musk 0.33 ± 0.010 0.11 ± 0.003 0.31 ± 0.007 0.47 ± 0.012 0.85 ± 0.005 0.21 ± 0.008 0.85 ± 0.005
Average 0.41 0.12 0.28 0.47 0.73 0.34 0.71

Test accuracy curves throughout the data removal process are shown for 12 datasets (Figure 9).585

A higher curve signifies better performance in terms of data valuation. Overall, 2D-OOB-data586

demonstrates similar performance to Data-OOB, while significantly outperforming all other data587

valuation methods and the random baseline. When a few data points with poor quality are removed,588

the test performance of 2D-OOB-data exhibits an evident increase. However, such a positive trend589

does not apply to other popular data valuation methods including DataShapley and LAVA. These590

findings highlight the potential of 2D-OOB-data in selecting a subset of critical data points that can591

maintain model performance when the dataset is pruned.592
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Figure 9: Point removal experiment results (test accuracy curves) of 7 data valuation methods –
2D-OOB-data, 2D-KNN-data, Data-OOB, LAVA, DataBanzhaf, DataShapley, KNNShapley and
a random baseline. We remove data points from the lowest valuation to the highest valuation.
The results from 6 binary classification datasets are displayed. For each dataset, we conduct 30
independent trials and report the average results. A higher curve indicates better performance.
2D-OOB-data demonstrates superior ability in finding a set of helpful data points.
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NeurIPS Paper Checklist593

1. Claims594

Question: Do the main claims made in the abstract and introduction accurately reflect the595

paper’s contributions and scope?596

Answer: [Yes]597

Justification: The paper’s contributions have been clearly stated in the abstract and section 1.598

Guidelines:599

• The answer NA means that the abstract and introduction do not include the claims600

made in the paper.601

• The abstract and/or introduction should clearly state the claims made, including the602

contributions made in the paper and important assumptions and limitations. A No or603

NA answer to this question will not be perceived well by the reviewers.604

• The claims made should match theoretical and experimental results, and reflect how605

much the results can be expected to generalize to other settings.606

• It is fine to include aspirational goals as motivation as long as it is clear that these goals607

are not attained by the paper.608

2. Limitations609

Question: Does the paper discuss the limitations of the work performed by the authors?610

Answer: [Yes]611

Justification: The paper has included discussion about limitations in section 6.612

Guidelines:613

• The answer NA means that the paper has no limitation while the answer No means that614

the paper has limitations, but those are not discussed in the paper.615

• The authors are encouraged to create a separate "Limitations" section in their paper.616

• The paper should point out any strong assumptions and how robust the results are to617

violations of these assumptions (e.g., independence assumptions, noiseless settings,618

model well-specification, asymptotic approximations only holding locally). The authors619

should reflect on how these assumptions might be violated in practice and what the620

implications would be.621

• The authors should reflect on the scope of the claims made, e.g., if the approach was622

only tested on a few datasets or with a few runs. In general, empirical results often623

depend on implicit assumptions, which should be articulated.624

• The authors should reflect on the factors that influence the performance of the approach.625

For example, a facial recognition algorithm may perform poorly when image resolution626

is low or images are taken in low lighting. Or a speech-to-text system might not be627

used reliably to provide closed captions for online lectures because it fails to handle628

technical jargon.629

• The authors should discuss the computational efficiency of the proposed algorithms630

and how they scale with dataset size.631

• If applicable, the authors should discuss possible limitations of their approach to632

address problems of privacy and fairness.633

• While the authors might fear that complete honesty about limitations might be used by634

reviewers as grounds for rejection, a worse outcome might be that reviewers discover635

limitations that aren’t acknowledged in the paper. The authors should use their best636

judgment and recognize that individual actions in favor of transparency play an impor-637

tant role in developing norms that preserve the integrity of the community. Reviewers638

will be specifically instructed to not penalize honesty concerning limitations.639

3. Theory Assumptions and Proofs640

Question: For each theoretical result, does the paper provide the full set of assumptions and641

a complete (and correct) proof?642

Answer: [Yes]643
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Justification: The paper discusses theoretical interpretation in section 3.2 and the proof has644

been included in Appendix C.645

Guidelines:646

• The answer NA means that the paper does not include theoretical results.647

• All the theorems, formulas, and proofs in the paper should be numbered and cross-648

referenced.649

• All assumptions should be clearly stated or referenced in the statement of any theorems.650

• The proofs can either appear in the main paper or the supplemental material, but if651

they appear in the supplemental material, the authors are encouraged to provide a short652

proof sketch to provide intuition.653

• Inversely, any informal proof provided in the core of the paper should be complemented654

by formal proofs provided in appendix or supplemental material.655

• Theorems and Lemmas that the proof relies upon should be properly referenced.656

4. Experimental Result Reproducibility657

Question: Does the paper fully disclose all the information needed to reproduce the main ex-658

perimental results of the paper to the extent that it affects the main claims and/or conclusions659

of the paper (regardless of whether the code and data are provided or not)?660

Answer: [Yes]661

Justification: All implementation details have been included in section 4 and Appendix A.662

Guidelines:663

• The answer NA means that the paper does not include experiments.664

• If the paper includes experiments, a No answer to this question will not be perceived665

well by the reviewers: Making the paper reproducible is important, regardless of666

whether the code and data are provided or not.667

• If the contribution is a dataset and/or model, the authors should describe the steps taken668

to make their results reproducible or verifiable.669

• Depending on the contribution, reproducibility can be accomplished in various ways.670

For example, if the contribution is a novel architecture, describing the architecture fully671

might suffice, or if the contribution is a specific model and empirical evaluation, it may672

be necessary to either make it possible for others to replicate the model with the same673

dataset, or provide access to the model. In general. releasing code and data is often674

one good way to accomplish this, but reproducibility can also be provided via detailed675

instructions for how to replicate the results, access to a hosted model (e.g., in the case676

of a large language model), releasing of a model checkpoint, or other means that are677

appropriate to the research performed.678

• While NeurIPS does not require releasing code, the conference does require all submis-679

sions to provide some reasonable avenue for reproducibility, which may depend on the680

nature of the contribution. For example681

(a) If the contribution is primarily a new algorithm, the paper should make it clear how682

to reproduce that algorithm.683

(b) If the contribution is primarily a new model architecture, the paper should describe684

the architecture clearly and fully.685

(c) If the contribution is a new model (e.g., a large language model), then there should686

either be a way to access this model for reproducing the results or a way to reproduce687

the model (e.g., with an open-source dataset or instructions for how to construct688

the dataset).689

(d) We recognize that reproducibility may be tricky in some cases, in which case690

authors are welcome to describe the particular way they provide for reproducibility.691

In the case of closed-source models, it may be that access to the model is limited in692

some way (e.g., to registered users), but it should be possible for other researchers693

to have some path to reproducing or verifying the results.694

5. Open access to data and code695

Question: Does the paper provide open access to the data and code, with sufficient instruc-696

tions to faithfully reproduce the main experimental results, as described in supplemental697

material?698

23



Answer: [Yes]699

Justification: The paper uses open-source datasets, detailed in Appendix A.1, and the code700

repository is included in the supplementary materials.701

Guidelines:702

• The answer NA means that paper does not include experiments requiring code.703

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/704

public/guides/CodeSubmissionPolicy) for more details.705

• While we encourage the release of code and data, we understand that this might not be706

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not707

including code, unless this is central to the contribution (e.g., for a new open-source708

benchmark).709

• The instructions should contain the exact command and environment needed to run to710

reproduce the results. See the NeurIPS code and data submission guidelines (https:711

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.712

• The authors should provide instructions on data access and preparation, including how713

to access the raw data, preprocessed data, intermediate data, and generated data, etc.714

• The authors should provide scripts to reproduce all experimental results for the new715

proposed method and baselines. If only a subset of experiments are reproducible, they716

should state which ones are omitted from the script and why.717

• At submission time, to preserve anonymity, the authors should release anonymized718

versions (if applicable).719

• Providing as much information as possible in supplemental material (appended to the720

paper) is recommended, but including URLs to data and code is permitted.721

6. Experimental Setting/Details722

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-723

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the724

results?725

Answer: [Yes]726

Justification: Experiment settings have been clearly stated in section 4 and Appendix A.727

Guidelines:728

• The answer NA means that the paper does not include experiments.729

• The experimental setting should be presented in the core of the paper to a level of detail730

that is necessary to appreciate the results and make sense of them.731

• The full details can be provided either with the code, in appendix, or as supplemental732

material.733

7. Experiment Statistical Significance734

Question: Does the paper report error bars suitably and correctly defined or other appropriate735

information about the statistical significance of the experiments?736

Answer: [Yes]737

Justification: The paper reports error bars for all experiment results.738

Guidelines:739

• The answer NA means that the paper does not include experiments.740

• The authors should answer "Yes" if the results are accompanied by error bars, confi-741

dence intervals, or statistical significance tests, at least for the experiments that support742

the main claims of the paper.743

• The factors of variability that the error bars are capturing should be clearly stated (for744

example, train/test split, initialization, random drawing of some parameter, or overall745

run with given experimental conditions).746

• The method for calculating the error bars should be explained (closed form formula,747

call to a library function, bootstrap, etc.)748

• The assumptions made should be given (e.g., Normally distributed errors).749
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• It should be clear whether the error bar is the standard deviation or the standard error750

of the mean.751

• It is OK to report 1-sigma error bars, but one should state it. The authors should752

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis753

of Normality of errors is not verified.754

• For asymmetric distributions, the authors should be careful not to show in tables or755

figures symmetric error bars that would yield results that are out of range (e.g. negative756

error rates).757

• If error bars are reported in tables or plots, The authors should explain in the text how758

they were calculated and reference the corresponding figures or tables in the text.759

8. Experiments Compute Resources760

Question: For each experiment, does the paper provide sufficient information on the com-761

puter resources (type of compute workers, memory, time of execution) needed to reproduce762

the experiments?763

Answer: [Yes]764

Justification: The paper provides information on computer resources in section 4.765

Guidelines:766

• The answer NA means that the paper does not include experiments.767

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,768

or cloud provider, including relevant memory and storage.769

• The paper should provide the amount of compute required for each of the individual770

experimental runs as well as estimate the total compute.771

• The paper should disclose whether the full research project required more compute772

than the experiments reported in the paper (e.g., preliminary or failed experiments that773

didn’t make it into the paper).774

9. Code Of Ethics775

Question: Does the research conducted in the paper conform, in every respect, with the776

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?777

Answer: [Yes]778

Justification: The research conducted in the paper fully adheres to the NeurIPS Code of779

Ethics as outlined in the provided guidelines.780

Guidelines:781

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.782

• If the authors answer No, they should explain the special circumstances that require a783

deviation from the Code of Ethics.784

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-785

eration due to laws or regulations in their jurisdiction).786

10. Broader Impacts787

Question: Does the paper discuss both potential positive societal impacts and negative788

societal impacts of the work performed?789

Answer: [NA]790

Justification: There is no societal impact of the work performed.791

Guidelines:792

• The answer NA means that there is no societal impact of the work performed.793

• If the authors answer NA or No, they should explain why their work has no societal794

impact or why the paper does not address societal impact.795

• Examples of negative societal impacts include potential malicious or unintended uses796

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations797

(e.g., deployment of technologies that could make decisions that unfairly impact specific798

groups), privacy considerations, and security considerations.799
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• The conference expects that many papers will be foundational research and not tied800

to particular applications, let alone deployments. However, if there is a direct path to801

any negative applications, the authors should point it out. For example, it is legitimate802

to point out that an improvement in the quality of generative models could be used to803

generate deepfakes for disinformation. On the other hand, it is not needed to point out804

that a generic algorithm for optimizing neural networks could enable people to train805

models that generate Deepfakes faster.806

• The authors should consider possible harms that could arise when the technology is807

being used as intended and functioning correctly, harms that could arise when the808

technology is being used as intended but gives incorrect results, and harms following809

from (intentional or unintentional) misuse of the technology.810

• If there are negative societal impacts, the authors could also discuss possible mitigation811

strategies (e.g., gated release of models, providing defenses in addition to attacks,812

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from813

feedback over time, improving the efficiency and accessibility of ML).814

11. Safeguards815

Question: Does the paper describe safeguards that have been put in place for responsible816

release of data or models that have a high risk for misuse (e.g., pretrained language models,817

image generators, or scraped datasets)?818

Answer: [NA]819

Justification: The paper poses no such risks.820

Guidelines:821

• The answer NA means that the paper poses no such risks.822

• Released models that have a high risk for misuse or dual-use should be released with823

necessary safeguards to allow for controlled use of the model, for example by requiring824

that users adhere to usage guidelines or restrictions to access the model or implementing825

safety filters.826

• Datasets that have been scraped from the Internet could pose safety risks. The authors827

should describe how they avoided releasing unsafe images.828

• We recognize that providing effective safeguards is challenging, and many papers do829

not require this, but we encourage authors to take this into account and make a best830

faith effort.831

12. Licenses for existing assets832

Question: Are the creators or original owners of assets (e.g., code, data, models), used in833

the paper, properly credited and are the license and terms of use explicitly mentioned and834

properly respected?835

Answer: [Yes]836

Justification: Please refer to Appendix A for dataset citations.837

Guidelines:838

• The answer NA means that the paper does not use existing assets.839

• The authors should cite the original paper that produced the code package or dataset.840

• The authors should state which version of the asset is used and, if possible, include a841

URL.842

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.843

• For scraped data from a particular source (e.g., website), the copyright and terms of844

service of that source should be provided.845

• If assets are released, the license, copyright information, and terms of use in the846

package should be provided. For popular datasets, paperswithcode.com/datasets847

has curated licenses for some datasets. Their licensing guide can help determine the848

license of a dataset.849

• For existing datasets that are re-packaged, both the original license and the license of850

the derived asset (if it has changed) should be provided.851
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• If this information is not available online, the authors are encouraged to reach out to852

the asset’s creators.853

13. New Assets854

Question: Are new assets introduced in the paper well documented and is the documentation855

provided alongside the assets?856

Answer: [NA]857

Justification: The paper does not release new assets.858

Guidelines:859

• The answer NA means that the paper does not release new assets.860

• Researchers should communicate the details of the dataset/code/model as part of their861

submissions via structured templates. This includes details about training, license,862

limitations, etc.863

• The paper should discuss whether and how consent was obtained from people whose864

asset is used.865

• At submission time, remember to anonymize your assets (if applicable). You can either866

create an anonymized URL or include an anonymized zip file.867

14. Crowdsourcing and Research with Human Subjects868

Question: For crowdsourcing experiments and research with human subjects, does the paper869

include the full text of instructions given to participants and screenshots, if applicable, as870

well as details about compensation (if any)?871

Answer: [NA]872

Justification: The paper does not involve crowdsourcing nor research with human subjects.873

Guidelines:874

• The answer NA means that the paper does not involve crowdsourcing nor research with875

human subjects.876

• Including this information in the supplemental material is fine, but if the main contribu-877

tion of the paper involves human subjects, then as much detail as possible should be878

included in the main paper.879

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,880

or other labor should be paid at least the minimum wage in the country of the data881

collector.882

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human883

Subjects884

Question: Does the paper describe potential risks incurred by study participants, whether885

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)886

approvals (or an equivalent approval/review based on the requirements of your country or887

institution) were obtained?888

Answer: [NA]889

Justification: The paper does not involve crowdsourcing nor research with human subjects.890

Guidelines:891

• The answer NA means that the paper does not involve crowdsourcing nor research with892

human subjects.893

• Depending on the country in which research is conducted, IRB approval (or equivalent)894

may be required for any human subjects research. If you obtained IRB approval, you895

should clearly state this in the paper.896

• We recognize that the procedures for this may vary significantly between institutions897

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the898

guidelines for their institution.899

• For initial submissions, do not include any information that would break anonymity (if900

applicable), such as the institution conducting the review.901
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