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Abstract

In a rapidly evolving job market, skill demand forecasting is crucial as it enables
policymakers and businesses to anticipate and adapt to changes, ensuring that
workforce skills align with market needs, thereby enhancing productivity and
competitiveness. Additionally, by identifying emerging skill requirements, it
directs individuals towards relevant training and education opportunities, promoting
continuous self-learning and development. However, the absence of comprehensive
datasets presents a significant challenge, impeding research and the advancement
of this field. To bridge this gap, we present Job-SDF, a dataset designed to
train and benchmark job-skill demand forecasting models. Based on millions
of public job advertisements collected from online recruitment platforms, this
dataset encompasses monthly recruitment demand. Our dataset uniquely enables
evaluating skill demand forecasting models at various granularities, including
occupation, company, and regional levels. We benchmark a range of models on this
dataset, evaluating their performance in standard scenarios, in predictions focused
on lower value ranges, and in the presence of structural breaks, providing new
insights for further research. Our code and dataset are publicly accessible via the
https://github.com/Job-SDF/benchmark.

1 Introduction

Job skills encompass a range of abilities and competencies essential for performing tasks effec-
tively in the workplace. These skills are broadly categorized into hard skills, such as technical
and analytical abilities, and soft skills, including communication, teamwork, and adaptability [1].
Accurate forecasting of skill demand helps businesses and policymakers anticipate and address skill
shortages and mismatches, and promotes skill development in high-demand areas, thereby supporting
economic growth and stability [2,3]. By identifying emerging skill requirements, individuals are
directed towards relevant training and education opportunities, fostering continuous self-learning
and development to stay competitive in the labor market [4H10]. By tracking skill demand trends,
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employers gain deeper insight into recruits’ priorities, enhancing person-job fit. [11H21]]. Moreover,
forecasting informs educational and training programs, ensuring that curricula align with the labor
market’s evolving needs [22H24]].

Traditionally, skill demand analysis has relied on labor-intensive, survey-based methods limited to
specific companies or occupations [25H27]. However, over the past decade, the rapid evolution of the
internet has spurred the emergence of online recruitment platforms. These platforms have become the
primary channels for job advertisements for numerous enterprises and organizations, accumulating
vast amounts of job advertisement data. By leveraging this data, researchers have formulated
skill demand forecasting as a time series task, utilizing various machine learning models such as
autoregressive integrated moving average (ARIMA) [28]], recurrent neural networks (RNNs) [29],
and dynamic graph autoencoders (DyGAE:s) [30], to predict future skill needs.

A major challenge impeding progress in this field is the lack of comprehensive and publicly accessible
datasets. Existing studies do not provide open-source datasets, making it difficult for researchers
to replicate experimental results and identify bottlenecks in current research. Furthermore, these
datasets primarily focus on predicting skill demand variations across different occupations, with a
notable lack of modeling and prediction at other granularities, such as companies or regions. This
limitation hinders comprehensive comparisons between different models and impedes the exploration
of potential downstream applications, such as human capital strategy development and regional
policy formulation. Additionally, the significant variations in skill demand present further challenges.
Existing studies, which rely on metrics such as Mean Squared Error (MSE), struggle to evaluate the
performance of skill demand forecasting models for low-frequency skill terms. For instance, some
emerging skills, such as large language models (LLMs), may initially show low demand but are
crucial for the job market due to their potential to reshape existing occupations.

To this end, in this paper, we propose Job-SDF, a multi-granularity dataset designed for job skill
demand forecasting research. Specifically, we collected millions of public job advertisements from
online recruitment platforms. By extracting skill terms from job advertisement texts, we quantified
the monthly skill demand at various granularities, including occupations, companies, and regions, to
construct our dataset. This dataset encompasses 2,324 types of skills, 52 occupations, 521 companies,
and 7 regions. We then use the Job-SDF dataset to benchmark a wide range of models for job skill
demand forecasting tasks at various granularities. These models include statistical time series models
(e.g., ARIMA [31]), deep learning-based methods such as RNN-based models [32}30]], Transformer-
based models [33H37]], MLP-based models [38, |39], as well as several state-of-the-art time-series
forecasters [40, 41]. Performance is evaluated using regression metrics such as Mean Absolute Error
(MAE) and Root Mean Squared Error (RMSE). Additionally, we use the Symmetric Mean Absolute
Percentage Error (SMAPE) [42] and Relative Root Mean Squared Error (RRMSE) [43] metrics to
account for the significantly varying nature of skill demand values, which is particularly useful for
evaluating model performance in predicting lower value ranges. Moreover, we further investigate
the impact of structural breaks in job skill demand time series data on model performance. The
Job-SDF dataset, along with data loaders, example codes for different models, and evaluation setup,
are publicly available in our GitHub repository: https://github.com/Job-SDF/benchmarkl.

2 Related Work

Skill demand forecasting can analyze how skills evolve over time, aiding experts in evaluating
technological advancements [44-46]], assessing wage inequality [47-49]], and generating employment
opportunities [50]. Furthermore, the skills required in the 21st-century workplace will differ signifi-
cantly from those in previous eras [S1]]. Predicting skill demands benefits personal career transitions
and corporate management strategies.

Recently, with the rapid accumulation of data and continuous advancements in technology, skill
demand forecasting has demonstrated significant vitality. Das et al. proposed a method for dynamic
task allocation to investigate the evolution of job task requirements over a decade of Al innovation
across different salary levels [28]]. Given the effectiveness of RNN in multi-step prediction, some re-
searchers have integrated skill demand forecasting with RNN algorithms, achieving promising results
[29, 132]]. In addition, considering the supply-demand dynamics of the labor market concurrently,
CHGH designed a joint prediction model based on the encoder-decoder architecture to achieve trend
prediction for both skill supply and demand sides [30]. Moreover, to capture the dynamic information
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of occupations, a pretraining-enhanced dynamic graph autoencoder has been developed to efficiently
forecast skill demand at the occupational granularity [52].

However, the predominance of closed-source datasets has significantly elevated the barrier of re-
searchers and constrained the pace of methodological advancements. While open-source skill-related
datasets such as O*NET [53]] and ESCO [54] provide skill taxonomies, they do not quantify skill
demand. Furthermore, the current research data focuses either on macro-market skill demand predic-
tions or analyses at a specific granularity, neglecting multi-level labor market analysis. This limitation
generally hampers the transferability of the modeling approaches.

3 Job-SDF Dataset

The Job-SDF dataset is built from job advertisements collected on online recruitment platforms, en-
compassing dynamic job skill demand time series data at various granularities, recorded monthly. The
dataset is CC BY-NC-SA 4.0 licensed, accessible via the URL https://github.com/Job-SDF/
benchmark. We summarize the dataset construction process, task description, and dataset analysis
below, with supplementary details provided in the Appendix [{|

3.1 Data Collection and Processing

Job Advertisement Collection. We collected public job advertisements for 52 occupations from 521
companies on online recruitment platforms. We obtained unique records after removing identical
job advertisements posted simultaneously by different companies on various platforms. Each record
contains five types of information: (1) Job Requirement, which is a text segment that outlines the
specific skills required of candidates applying for the job; (2) Company, which identifies the company
that posted the job advertisement; (3) Occupation, which specifies the job advertisement’s category.
Our dataset encompasses 52 detailed occupations (L2-level), such as front-end development engineer
and financial investment analyst. Additionally, these 52 occupations are grouped into 14 broader
categories (L1-level); (4) Region, which indicates the primary geographic divisions in China where
the job postings are located. These regions are classified based on their geographical orientation; (5)
Posting Time, which records the date when the job was posted, including the year, month, and day.

Job SKkill Extraction. After acquiring the job advertisement data, we utilized a Named Entity
Recognition (NER) model, as referenced in [SSH58], to explicitly extract skill requirements from the
Job Requirement of each advertisement. Specifically, we first annotated a dataset for training the NER
model by identifying skill terms within the job requirement texts. To achieve this, we devised a set of
regular expressions tailored to the characteristics of skill descriptions and used these to match skill
words in job advertisements. Subsequently, we merged all matched skill words to formulate a raw
skill dictionary, including their corresponding frequencies across job advertisements. We then filtered
out low-frequency words and manually annotated the raw skill dictionary to create a refined skill
dictionary. Along this line, we excluded unreasonable skill words matched by the regular expressions
that did not appear in the refined skill dictionary, establishing an initial correspondence between the
Job Requirement and the skill requirements.

Based on this annotated data, we trained an NER model to extract required skills from the Job
Requirement section for all job advertisements. Experts then aggregated the skills extracted by the
NER model based on their meaning and content, grouping together those with similar meanings or
repeated expressions. This process resulted in a skill dictionary S of 2,324 standardized skill words,
mapping original skill word descriptions to standardized skill words. The skill dictionary was then
used to filter and map the skill words extracted by the NER model, ultimately obtaining standardized
skill requirements for each job requirement. These standardized requirements were added to the job
advertisement data as a new field, Skill Requirements.

Job Skill Demand Estimation. Generally, the demand for different skills in the job market can be
estimated by the volume of job advertisements listing these specific skills as requirements within
a given time period [30]]. Formally, given job advertisement data P = {Px, ..., P, ..., Pr}, where
each P, represents the job advertisements posted at timestamp ¢, we use D, ; = ZpePt 1(sep)to
estimate the demand for skill s € S at time ¢. s € p indicates that job advertisement p requires skill s.

Along this line, we can calculate skill demand at various granularities, such as occupation and
company levels. We define the sets of L1-level occupations, L2-level occupations, companies, and


https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://github.com/Job-SDF/benchmark
https://github.com/Job-SDF/benchmark

Product Manager Doctor
3000 < Logical Analysis 200

150 Consulting Services
2000 Cooperation

) ) 100 Cooperation
1000 Consulting Services 50 Logical Analysis

LA S || Ml %

(a) The skill demands under two occupations.

Product Manager-Understanding Ability Salesperson-Communication Skill
—— Actual —— Actual
2007 ---- Fitted 2007 ---- Fitted
-- Chow Test -=-- Chow Test 5
100 100
0 0

(b) Appying the Chow test to two skill demand time series.

Figure 1: Data analysis on Job-SDF. (a) illustrates the long-tail phenomenon of skill demands under
the product manager and doctor occupations. (b) illustrates the results under the Chow test for the
absence (left) and presence (right) of structural breaks.

regions as A°', A2, A° and A", respectively. The demands for skill s at time ¢ under granularity
i € {01, 09, ¢, 7} is then defined as follows:

Dz,t = [Di,t,ai]a"EA"'v Di,t,ai = Z 1(5 € p) : 1(a‘i € p)a Y]
PEP:

where a’ € prepresents a job advertisement p containing the attribute a’ under granularity i. Similarly,

we can further define skill demands D} ¥ across multiple granularities {4, j, ..., k} by calculating:
D;iak = Z 1(scp)-1a'epra’ epA..Nd" €p), 2)
PEP:

where @ = {a’,a’, ...,ak}, a’ € Al ad € A, ...,a* € A*, and D;]tk € RIANAL- AT

3.2 Job Skill Demand Forecasting Tasks

We study model performance through job skill demand forecasting tasks at different granularities,
including single and multiple levels. The primary goal of these tasks is to predict future job skill
demands based on historical time series data of various skills. Formally, we have:

Definition 1 (Job Skill Demand Forecasting) Given a granularity or a set of granularities g and
the observed job skill demand series from the previous K timestamps, i.e., {Df b1 Df{ .} the
goal of job skill demand forecasting is to learn a forecasting model M to predict the demand values
for the next H timestamps, denoted by {thH, ceey DgHH}.

Our dataset includes skill demand time series data for L1-level occupations, L2-level occupations,
companies, regions, and their combinations. We follow a standard protocol [59] that categorizes all
time-series data into training, validation, and test sets in chronological order with a ratio of 9:1:2.
In the main text, we demonstrate results with K set to 6 months and consider H as 3 months to
evaluate the performance of different forecasting models. More settings and results can be found
in the Appendix [D]and our project repository. Based on the Job-SDF dataset, other researchers can
easily adjust the parameters to suit their research objectives.

3.3 Dataset Analysis

Varying Nature of Skill Demand. The values of skill demand exhibit significant differences and
generally follow a long-tail distribution. This indicates that, at a specific granularity, only a few skills
have high demand, while a wide range of skills are required by a limited number of jobs. For instance,



Figure [Ta] presents the skill demands under the product manager and doctor occupations in December
2022. The results clearly demonstrate the varying nature of skill demand values. This suggests that
relying solely on metrics like RMSE to evaluate forecasting models’ performance may overlook the
prediction accuracy for low-frequency skills.

Structural Break Phenomenon. As the labor market evolves, job skills that are not widely required
today may become crucial in the future, while those currently in high demand may be supplanted
by others. This dynamic can induce significant changes in the statistical properties of skill demand
time series at various points in time. These changes may be reflected in the mean, variance, trend, or
autocorrelation structure of the series. This phenomenon is known as structural breaks. A common
method for detecting structural breaks is the Chow test, which evaluates whether there are significant
differences in the regression coefficients across different periods [60]. Figure [TB| illustrates the
application of the Chow test in detecting structural breaks in various skill demand time series. The
presence of structural breaks can impact the predictive accuracy of forecasting models. Further
discussion will be provided in the experimental section.

Inter-Series Correlation. Intuitively, the proposed
job skill demand forecasting tasks can be categorized
as multivariate time-series forecasting tasks [[61]. Fig-
ure [2| shows the absolute values of the Pearson corre-
lation coefficients of different skill demand series for
the backend development engineer, salesperson, and
product manager occupations. We found that the time
series data for some skills exhibit significant correla-
tion within the same occupation (i.e., product design
and market analysis in product manager), as well as
for the same skills across different occupations (i.e.,
product design in backend development engineer and
product manager). This demonstrates the necessity of
considering all variables as inputs for job skill demand
forecasting models, as it captures the interrelationships

‘0" denotes occupation (Bac:backend ngineer, , Pro:
product manager) and 'S’ denotes skill (PD:product design, CS:communication skill,
Al:artificial intelligence, TG:training and quiding, MA:market analysis).
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among variables, preventing the loss of critical infor-

. ; ) o . Figure 2: Pearson Correlation Coefficients.
mation when variables are considered in isolation.

Dataset Limitation. Recent studies [62]] suggest that incorporating relationships between different
variants can enhance the performance of multivariate time-series forecasting. However, due to the
lack of prior knowledge, our Job-SDF dataset does not yet include a graph of relationships between
skills, such as predecessor-successor relationships. Instead, we constructed a skill graph based on the
co-occurrence of skills in job advertisements from the training data. This graph is included in our
dataset. For detailed construction methods, please refer to the Appendix [F

4 Benchmark

4.1 Benchmark Models

We evaluated several SOTA time-series learning models using our proposed Job-SDF dataset. These
models are categorized into six groups based on their underlying architectures: statistical time series
models, RNN-based models, Transformer-based models, MLP-based models, Graph-based models,
and Fourier-based models. The implementation details for each model are provided in the Appendix
and the open-source model implementations are available on |our GitHub repository.

Statistical Time Series Model. We first consider two statistical methodologies, namely ARIMA [63]]
and Prophet [64], both of which have been widely used in various contexts. The ARIMA model,
which integrates differencing and moving averages within autoregression, has proven effective
in forecasting occupational task demands [28]]. Prophet decomposes time series data into trend,
seasonality, and holiday components, allowing it to handle both linear and nonlinear trends with
changepoints. However, these models often struggle to capture complex nonlinear relationships and
exhibit suboptimal performance in large-scale data scenarios.

RNN-based Model. RNN-based methods are effective in capturing temporal state transitions through
their recurrent structures, making them widely used in various time series forecasting tasks [65-
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69]. Notably, LSTM have demonstrated their effectiveness in predicting changes in skill shares
over time [29]. However, conventional RNNs often encounter performance degradation when
handling excessively long look-back windows and forecast horizons. To address this challenge,
SegRNN [32] introduces segment-wise iterations, which reduce the recurrence count within RNNs,
thereby significantly enhancing performance in time series forecasting tasks.

Transformer-based Model. Recently, Transformer-based models [70] have gained widespread
recognition in long-term time series forecasting due to their global modeling capabilities. Leveraging
the attention mechanism, Reformer [37] introduces locally sensitive hashing to approximate attention
by grouping similar queries. Informer [33] incorporates low-rank matrices in self-attention mecha-
nisms to accelerate computation. Autoformer[34] employs block decomposition and autocorrelation
mechanisms to more effectively capture the intrinsic features of time series data. FedFormer (36|
utilizes DFT-based frequency-enhanced attention, obtaining attentive weights through the spectrums
of queries and keys and calculating the weighted sum in the frequency domain. To address the chal-
lenges of non-stationary time series, the Non-stationary Transformer (NStransformer) [35]] introduces
a sequence stabilization module and proposes a de-stationary attention mechanism. Additionally,
PatchTST [11]] is a channel-independent patch time series transformer model that features patching
and channel-independence as its key design elements.

MLP-based Model. Multiple Layer Projection (MLP) has been introduced in time series forecasting,
demonstrating superior performance compared to transformer-based models in both accuracy and
efficiency [38]]. Specifically, DLinear [38] uses series decomposition as a pre-processing step before
linear regression. FreTS [72] explores a novel approach by applying MLPs in the frequency domain
for time series forecasting. TSMixer [39] employs MLPMixer blocks, segments input time series into
fixed windows, and applies gated MLP transformations and permutations to enhance accuracy.

Graph-based Models. Graph Neural Networks (GNNs) can learn non-Euclidean relationships,
making them effective for identifying associations in structured data and generating joint represen-
tations from different perspectives [73H76l]. CHGH [30]] uses an adaptive graph enhanced by skill
co-occurrence relationships to link skill supply and demand sequences. This fusion of represen-
tations across views improves the performance of joint skill supply and demand prediction tasks.
Pre-DyGAE [52] targets skill demand prediction from an occupational perspective. It builds an
occupation-skill bipartite graph based on the skill demands of occupations and captures the dynamic
changes in these relationships. This method allows for predicting both potential occupational skills
and skill demands, leveraging a dynamic graph perspective.

Fourier-based Models. By utilizing Fourier projection, FiLM [40] not only captures long-term
time dependencies but also effectively reduces noise in forecasting. To address the challenge of
non-stationary time-series forecasting, Koopa [41] disentangles time-variant and time-invariant
components from complex non-stationary series using a Fourier Filter and designs the Koopman
Predictor to forecast dynamics.

4.2 Evaluation Metrics

To evaluate the performance of various benchmark models in job skill demand forecasting tasks,
we selected two commonly used regression metrics: MAE and RMSE. MAE is calculated over

H observations using the formula: 7 Zfil |y; — 9:|, where y; represents the ground truth value

and ¢; is the predicted value. RMSE is calculated as: \/ + Zfil (y; — ;)°. Both MAE and

RMSE are scale-dependent metrics, which makes them unsuitable for comparison across different
granularities. Additionally, these metrics are less sensitive to prediction errors at lower skill demand
values. Therefore, we additionally applied SMAPE [42]] and RRMSE [77] to assess the performance
of various forecasting models. SMAPE considers both the magnitude and direction of errors, making
it suitable for comparing forecasts across different scales. RRMSE measures the square root of the
average of the squared percentage errors.
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Table 1: Performance comparison on MAE and RMSE.

Model L1-Occupation L2-Occupation Region&L1-O Region&L.2-O Company
ode MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE

ARIMA 2027  256.89 | 6.46 115.79 | 3.98 58.65 1.31 2742 | 1.31 38.88
Prophet 29.15  356.67 | 8.95 161.01 | 5.08 72.21 1.62 33.02 | 1.55 41.19
LSTM 19.05 194.67 | 7.09 116.36 | 3.92 51.59 | 1.29 2331 1.35 26.47
SegRNN 12.28 108.28 | 5.01 68.83 3.14 3426 | 1.05 15.96 1.01 16.03
CHGH 22.09 26149 | 7.09 116.58 | 3.91 5146 | 1.28 2324 | 1.34 26.52
Pre-DyGAE 22.98 187.90 | 7.04 8297 | 4.24 38.62 1.37 17.39 1.24 18.24
Transformer 22.06  215.09 | 7.58 118.21 | 4.01 52.04 | 135 2344 | 1.26 24.99
Autoformer 23.06 186.76 | 8.22 100.02 | 6.45 5777 | 2.41 24.10 | 3.31 38.55
Informer 22.21 205.24 | 7.43 117.38 | 3.88 50.13 1.30 23.07 | 1.26 24.92
Reformer 22.11 204.35 | 7.46 116.60 | 3.91 50.95 1.25 22.81 1.54 27.37

FEDformer 22.87 181.93 | 7.46 88.97 | 4.63 43.21 1.98 21.73 243 26.92
NStransformer | 17.36 149.46 | 5.75 86.24 3.45 37.09 1.15 17.45 2.13 34.83

PatchTST 14.91 141.06 | 5.15 78.86 3.10 35.38 1.04 16.57 1.01 19.09
DLinear 16.61 154.88 | 5.44 81.61 3.24 36.67 1.07 16.79 1.05 18.85
TSMixer 21.34 192.85 | 8.14 106.65 | 5.81 62.14 | 595 68.26 13.96 144.96
FreTS 16.47 167.61 | 6.52 106.39 | 3.65 47.81 1.22 21.92 | 1.26 25.39
FiLM 12.95 117.17 | 5.08 65.65 3.24 29.90 1.14 14.01 1.17 15.87
Koopa 19.91 179.30 | 6.05 91.87 3.53 40.73 1.15 18.71 1.08 20.18

4.3 Benchmark Results

Overall Performance. In Table[I] we present the performance of various models evaluated using two
metrics: MAE and RMSE. The following conclusions can be drawn: (1) The traditional statistical
method, Prophet, demonstrates relatively poor predictive performance. This may be due to seasonal
and holiday factors not being the primary influencers in skill demand prediction. (2) Most Transformer-
based models, including Transformer, Autoformer, Informer, and Reformer, exhibit subpar overall
predictive performance. This is likely because these models are designed to address long-range
temporal dependencies, which are not well-suited for the current shorter time series context. (3) In
contrast, PatchTST, unlike these Transformer-based models that perform point-wise modeling of
time series, segments the time series into patches and inputs them into the Transformer. This
allows the model to focus on more local information. A similar idea is also employed in the
SegRNN. This strategy significantly enhances the performance of these models in predicting job
skill demand. (4) The performance of different linear models on our dataset varies significantly. For
instance, DLinear outperforms most Transformer-based models, while TSMixer performs poorly. This
discrepancy may be due to the tendency of more complex MLP-based models to overfit our dataset. (5)
CHGH and Pre-DyGAE exhibit poor performance in the separate skill demand forecasting scenario,
likely due to a mismatch between their model design and the context of our dataset. Specifically,
CHGH relies on sequential data from the supply side of skills, which is lacking in our dataset.
Conversely, Pre-DyGAE focuses more on predicting whether a skill will be required by an occupation
in the future. (6) Finally, FiLM achieved the best performance in most cases, demonstrating the
robustness of the denoising-based model.

Low-Demand Skill Prediction Performance. Considering the varying nature of skill demand
values, we further employed SMAPE and RRMSE metrics to focus on the predictive performance
of different models for low-demand skills. As shown in Table 2] the experimental results indicate
the following: (1) PatchTST achieved the best SMAPE performance in most cases, validating its
ability to more accurately predict the trends of low-demand skills. (2) Based on scale-independent
metrics, we can compare the performance of models at different granularities. It can be observed
that RRMSE exhibits a significant trend of variation across different granularities; specifically, as
the granularity becomes finer, the RRMSE performance deteriorates. This indicates that predicting
skill demand at finer granularities is more challenging. Additionally, FiLM shows the least variation
across multiple granularities, further validating its ability to provide stable and reliable predictions
under varying granularities and demand value ranges. (3) Although Koopa performs averagely on
MAE and RMSE metrics, it excels in predicting low-demand skills, particularly in terms of SMAPE.
Similarly, NStransformer also performs well in scenarios focusing on low-demand skill predictions.
This success can be attributed to both methods being designed to handle non-stationary time series.
They effectively filter noise from historical sequences and restore intrinsic non-stationary information



Table 2: Performance comparison on SMAPE and RRMSE.

Model L1-Occupation (%) | L2-Occupation (%) | Region&L1-O (%) | Region&L2-O (%) Company (%)
SMAPE RRMSE | SMAPE RRMSE | SMAPE RRMSE | SMAPE RRMSE | SMAPE RRMSE

ARIMA 35.72 47.89 25.00 58.87 23.86 58.07 13.58 73.57 20.17 147.94
Prophet 41.22 67.78 28.35 88.47 26.75 71.60 15.07 93.04 22.31 167.77
LSTM 41.38 57.90 32.85 83.70 31.58 68.40 22.93 87.36 30.26 174.40
SegRNN 39.81 37.58 33.35 50.53 35.30 48.53 23.84 61.90 33.07 86.27

CHGH 40.27 66.05 29.60 84.10 28.11 68.42 17.42 87.45 26.72 176.70
PreDyGAE 49.87 83.67 60.54 83.60 59.32 66.56 72.67 98.09 26.21 145.73
Transformer 55.59 64.25 44.23 84.27 31.15 76.16 33.04 86.87 27.61 164.36
Autoformer 70.28 53.75 74.37 63.40 90.14 65.57 91.51 74.46 107.05  99.60

Informer 56.85 58.18 44.04 88.72 34.75 69.59 29.29 90.15 32.41 164.37
Reformer 56.58 61.35 40.58 83.70 32.21 72.87 20.86 90.85 45.25 169.87
FEDformer 69.30 54.03 69.29 60.00 73.17 52.69 81.73 70.06 94.19 97.97

NStransformer | 38.11 47.19 26.30 60.73 24.98 48.89 14.55 63.29 24.20 100.78
PatchTST 34.70 51.17 24.52 58.80 25.15 44.96 13.50 67.48 19.89 115.34
DLinear 41.84 52.89 34.35 60.22 33.47 51.05 25.77 64.65 30.71 108.66
TSMixer 56.59 61.17 72.29 99.35 82.48 87.29 120.85 96.49 155.20 102.14
FreTS 39.76 54.42 30.18 80.44 28.58 66.11 17.62 85.04 27.24 174.56
FiLM 39.51 37.55 29.65 43.86 28.79 37.66 17.24 47.75 25.72 76.92

Koopa 37.84 58.30 25.72 65.34 24.41 57.81 13.98 74.00 20.43 123.96

Table 3: Performance comparison on data with structural breaks on MAE and RMSE.

Model L1-Occupation L2-Occupation Region&L1-O Region&.2-O Company
ode MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE | MAE RMSE
LSTM 87.30 55446 | 5795  400.22 | 18.99 149.53 | 791 52.38 24.40 159.02
SegRNN 61.92 390.54 | 43.97 276.57 | 15.85 114.04 | 6.56 37.84 17.98 112.13
CHGH 9430  629.32 | 58.06  401.45 | 19.00 149.75 | 7.90 52.50 24.37 159.44

PreGyGAE 7835  493.83 | 48.69 336.15 | 17.49 136.66 | 7.31 38.88 19.76 164.43

Transformer 98.66 580.58 | 61.73  404.17 | 19.37 151.12 | 8.45 55.46 22.41 152.27
Autoformer 107.22  533.06 | 67.66 350.97 | 26.84 156.50 | 12.19 63.04 | 44.10 208.96
Informer 98.89 570.35 | 59.95  402.75 | 19.03 14691 | 7.72 49.15 22.37 151.87
Reformer 98.14  569.83 | 60.71 401.21 | 19.25 14991 | 7.52 49.10 25.65 160.69
FEDformer 10543  532.24 | 62.10 325.10 | 20.49 128.45 | 10.37 55.47 34.09 155.28
NStransformer | 82.43  462.24 | 49.30 318.44 | 16.59 11991 | 6.85 37.56 | 40.05 196.03

PatchTST 77.44  474.86 | 45.02 303.76 | 14.88 111.01 | 6.56 38.60 | 18.03 127.72
DLinear 81.17  485.25 | 46.67 307.34 | 15.94 118.94 | 6.50 3772 | 18.18 124.32
TSMixer 107.47 614.93 | 83.60  479.39 | 29.99 187.08 | 25.83 190.29 | 155.10  766.58
FreTS 82.45 537.12 | 56.54  393.38 | 18.55 148.33 | 7.88 52.87 24.21 160.01
FiLM 62.86  404.82 | 42.63 260.99 | 14.31 101.23 | 6.37 32.28 18.78 110.65
Koopa 9126  516.75 | 50.44  324.15 | 17.43 128.39 | 7.07 41.29 19.04 133.26

into time-dependent relationships, making them more adept at handling the fluctuating nature of
low-demand skill time series data.

Performance on Skill Demand Series with Structural Breaks. As described in Section 3.3, in
the dynamically changing job market, skill demand time series data exhibit structural breaks. To
assess the impact of this phenomenon on different models in the skill demand forecasting task, we
used the Chow test to detect structural breaks in the skill demand time series. The corresponding
predictive performance of different models is presented in Tables [3and[d] We observe the following
phenomena: (1) Compared to the predictive performance on the full dataset, the performance on time
series data with structural breaks is significantly worse. This finding underscores the complexity and
unpredictability of skill trends that experience structural breaks. (2) FILM has achieved results close
to the overall skill demand prediction in terms of SMAPE and RRMSE metrics. This validates that
FiLLM can effectively mitigate the disruptive impact of structural breaks on skill demand forecasting.
(3) Furthermore, while the overall predictive performance of skill demand forecasting at both the
Region&L2-O and Company granularity levels is similar, significant differences emerge when
forecasting skills experiencing structural breaks. This suggests that skills undergoing structural
breaks display more predictable patterns at the Region&L2-O granularity level compared to the
Company level, making them relatively easier to forecast.



Table 4: Performance comparison on data with structural breaks on RRMSE and SMAPE.

Model L1-Occupation (%) | L2-Occupation (%) | Region&L1-O (%) | Region&L2-O (%) Company (%)
SMAPE RRMSE | SMAPE RRMSE | SMAPE RRMSE | SMAPE RRMSE | SMAPE RRMSE

LSTM 43.78 58.05 48.93 84.46 46.64 78.31 42.03 58.48 68.38 187.30
SegRNN 39.22 37.80 43.09 51.14 45.17 54.31 39.41 41.40 57.45 89.65

CHGH 4491 66.31 48.90 84.87 45.43 78.32 39.79 58.89 68.36 189.91
PreDyGAE 52.35 47.15 56.56 59.31 52.06 61.22 44.13 42.31 70.26 106.88
Transformer 50.01 64.47 53.10 84.95 46.50 86.56 47.67 61.23 64.92 177.43
Autoformer 63.46 54.08 68.62 64.14 87.93 68.97 88.95 63.85 115.00 100.60
Informer 51.11 58.40 51.89 89.70 47.81 80.86 44.90 57.55 65.11 177.16
Reformer 50.79 61.59 51.51 84.53 46.86 84.15 40.81 58.59 72.36 181.36
FEDformer 62.83 54.37 64.37 60.84 72.24 58.55 80.03 54.29 103.27  100.65
NStransformer | 45.36 47.46 47.63 61.85 43.04 57.60 36.72 39.72 170.57 113.87
PatchTST 40.89 51.48 43.26 59.69 41.51 51.85 34.74 43.12 55.26 122.56
DLinear 43.14 53.20 45.25 61.13 45.26 58.80 41.15 41.71 57.65 115.24
TSMixer 54.31 61.31 76.08 99.84 85.12 95.81 117.39  93.66 160.55 102.23
FreTS 42.44 54.59 48.24 81.17 45.39 75.43 39.85 57.83 68.39 187.94
FiLM 38.96 37.82 44.23 44.52 44.95 43.06 40.05 30.80 56.37 80.77

Koopa 46.45 58.59 47.13 66.28 42.60 66.20 36.24 47.48 58.98 131.77

5 Conclusion

In this work, we introduced Job-SDF, a dataset designed for training and benchmarking job-skill
demand forecasting models. Compiled from millions of public job advertisements collected from
online recruitment platforms, this dataset includes monthly recruitment demand for 2,324 types
of skills across 52 occupations, 521 companies, and 7 regions. Using this dataset, we validated a
wide range of time-series forecasting approaches, including statistical models, RNN-based models,
Transformer-based models, MLP-based models, Graph-based models, and Fourier-based models.
Furthermore, we conducted extensive experiments to compare the performance of various methods
in predicting skill demand at different granularities. We hope that Job-SDF will facilitate further
research in this field.
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A Ethics Statement

In accordance with the Code of Ethics as outlined by NeurIPS []_1 we present the following discussion
on the ethical considerations and potential societal impact of our research.

Privacy. Our data is collected from online platforms, encompassing job advertisements, which is
public by various companies. This collection method ensures that all information utilized is already
available to the public, having been disclosed by companies for the purpose of recruitment. Conse-
quently, our analysis inherently respects privacy norms, as it involves no proprietary or confidential
data, relying solely on publicly shared statistics and general information.

Consent. We have extensively collected job advertisement data from online platforms where the
information is openly and transparently available. Our analysis is based on the statistical data derived
from these job advertisements, rather than the original textual information, significantly minimizing
the risk of privacy breaches. Therefore, the use of this data is permissible.

Deprecated Datasets. Not applicable.

Copyright and Fair Use. The library used in our research is publicly available and distributed
under the MIT License. We list the used assets along with their licenses as follows:

* PyTorch Geometric Temporal [78]] consists of various dynamic and temporal geometric deep
learning, embedding, and spatio-temporal regression methods from a variety of published
research papers. This library is open-source and available at https://github.com/
benedekrozemberczki/pytorch_geometric_temporal, which is publicly available
and distributed under the MIT License.

 Time Series Library [79]] is an open-source library for deep learning researchers, especially
for deep time series analysis. This library is available at https://github. com/thuml/
Time-Series-Library, which is publicly available and distributed under the MIT License.

Representative Evaluation Practice. Job-SDF has extensively covered skill demand data at
multiple granular levels, including regions, occupations, and companies. The detailed nature of
the data proves invaluable in advancing tasks related to skill demand prediction. It significantly
assists job seekers in identifying employment opportunities, employers in recruiting suitable talent,
and educational institutions in tailoring their curricula to meet market demands. Moreover, this
comprehensive dataset not only facilitates the analysis of skill trends but also serves as a platform for
verifying time-series algorithms within a specialized application domain.

Safety. Our research does not employ technologies that directly inflict harm on individuals.
Security. Since the data sources are all publicly available, there is no risk of security incidents.

Discrimination. Our data is strictly limited to market analysis and does not judge the superiority or
inferiority of skills themselves, thus it does not involve any issues of discrimination.

Deception & Harassment. We firmly believe that our data cannot be used for deceptive practices
or harassment activities.

Human Rights. Not applicable.

Bias and Fairness. Since our data is collected from the public job postings of a subset of companies,
there may be statistical biases in skill demands across different industries or regions. While it may
not represent the entirety, it effectively captures the main trends in skill demands.

"https://neurips.cc/public/EthicsGuidelines
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B Code and Data Availability

The dataset is CC BY-NC-SA 4.0 licensed, accessible via the URL https://github.com/
Job-SDF/benchmark. We also provide a website for the project: https://job-sdf.github.io/
with information on how to use the data and code.

C Computational Resource

Due to inherent design and size constraints of the models combined with varying data sizes at different
granularities, the deployment environments for each model are distinct. The CHGH model, which
requires over 80GB of memory, is exclusively deployed on CPU platforms to accommodate its sub-
stantial resource demands. In contrast, the PreDyGAE model operates solely on GPU infrastructure,
leveraging the computational efficiencies of the NVIDIA A800 GPUs. For other models, deployment
strategies are tailored according to the granularity of the data. Experiments at the labor market,
regions, L1 occupations, L2 occupations, and Region & L1 occupations granularities are conducted
on GPUs, capitalizing on the enhanced processing capabilities of these units for handling moderate
data volumes. However, at the granularities of Region & L2 and company, where data volumes are
significantly larger, deployment shifts to CPUs. Overall, the training time of different models are
shown in Table

Table 5: Training time (minute) of different models for job skill demand forecsting.

Model | Market Region L1-O L2-0 R&L1-O R&L2-O Company
LSTM 0-0.5 0-0.5 0-0.5 0-0.5 0-0.5 377 39.0
SegRNN 0-0.5 0-0.5 0-0.5 0-0.5 0-0.5 342.8 458.2
CHGH 17.7 132.8 170.2 258.3 1300.3 490.6 6604.2
PreDyGAE 1-10 16.5 30.0 48.1 48.1 88.2 126.2
Transformer 0-0.5 0-0.5 0-0.5 0.5-1 0.5-1 128.2 166.5
Autoformer 0-0.5 0-0.5 0-0.5 0-0.5 0.5-1 304.3 325.0
Informer 0-0.5 0-0.5 0-0.5 0-0.5 0-0.5 133.8 171.7
Reformer 0-0.5 0-0.5 0-0.5 0-0.5 0-0.5 36.0 525
FEDformer 0-0.5 0-0.5 0-0.5 0-0.5 0-0.5 193.8 198.5
NStransformer | 0-0.5 0.5-1 0.5-1 0-0.5 0.5-1 128.5 195.7
PatchTST 0-0.5 0-0.5 0-0.5 0-0.5 0.5-1 1202.8 2558.0
DLinear 0-0.5 0-0.5 0.5-1 0-0.5 0-0.5 20.0 39.1
TSMixer 0-0.5 0-0.5 0-0.5 0-0.5 0-0.5 24.0 97.0
FreTS 0-0.5 0-0.5 0-0.5 0-0.5 0-0.5 85.0 200.0
FiLM 0-0.5 0.5-1 0.5-1 1-10 1-10 598.0 1464.7
Koopa 0-0.5 0-0.5 0-0.5 0-0.5 0-0.5 383 68.5

D Additional Experimental Results

Due to page limitations in the main text, we have included additional experimental content in the
appendix. First, we present the results of repeated trials of the benchmark models discussed in the
main text in the first subsection. Subsequently, we focus on the performance of existing benchmark
models in predicting demand for low-frequency skills. Further, we have constructed a co-occurrence
relationship between skills as prior knowledge based on the training set and employed various Graph
Neural Network (GNN)-based multivariate time series forecasting methods in the task of job skill
demand forecasting, demonstrating promising results. Finally, considering that the skill demand
proportion may be more meaningful than the skill demand volume in certain contexts, we have
constructed a dataset for skill demand proportion and showcased the performance of benchmark
models on this task.

D.1 Repeated Experiments on Job Skill Demand Forecasting
To demonstrate the robustness and reliability of our experimental results, we first repeated the

experiments multiple times as described in the main text. Additionally, we extended our analysis to
include experiments across the entire labor market and at various regional granularities.
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Implementment Details. We utilized the Time-series—LibraryE]to implement some of the models.
The hyperparameters were uniformly set as follows: a learning rate of 0.0001, 20 epochs of training,
a hidden layer dimension of 2048, the GELU activation function, and MSE loss as the loss function.
Early stopping was employed to prevent overfitting by terminating training early when necessary.
Data from the first 24 months were used for pre-training, and the model was fine-tuned using the next
6 months to capture trend changes. Finally, the model was used to infer skill demands for the last 6
months. All other hyperparameters were kept consistent with those in the original paper. To ensure
the reliability of our findings, we repeated these experiments four times, using random seeds set to 0,
1, 2, and 3, respectively.

Overall Performance Table[6]displays the mean and standard deviation results of repeated experi-
ments on the benchmark models for the job skill demand forecasting task as presented in the main
text. Initially, we supplement the experimental results at the overall labor market level and regional
granularity, where the RMSE averages over 1000. In cases of coarser granularity, due to the larger
base of demand values, the prediction deviations are significant.

Performance on Skill Demand Series with Structural Breaks Table /| presents the results of
repeated experiments on forecasting skill demand sequences that have undergone structural breaks.
Initially, the overall errors are quite pronounced, underscoring the challenge of accurately predicting
these skills. Moreover, FILM performs well on most metrics, which further verifies its robustness.

D.2 Job Skill Demand Forecasting for Low-Frequency Skills

In multigranular skill demand sequences, a significant number of skills remain inactive or in low
frequency over extended periods. These skills might continue to have low demand in the future (indi-
cating low importance), or they might suddenly gain interest from certain professions or companies,
leading to rapid growth. In this study, we define low-frequency skills as those that appear fewer
than twice in the time slices of the training set. Predicting the demand for these skills is challenging
because their data points are predominantly zero during training, resulting in a lack of effective
observational data. Therefore, we specifically present the demand prediction results of the existing
benchmark models for these low-frequency skills.

Results. We continued to test the demand prediction effect on low-frequency skills using the
benchmark models described in the main text, and the results are shown in Table 8] From this, we
can draw the following conclusions: Firstly, there is a significant increase in the error on the RRMSE
metric, indicating that low-demand skills are difficult to predict accurately. Secondly, Koopa has
the best predictive performance in this scenario. We also found that the performance of SegRNN
significantly decreases, suggesting that SegRNN’s segment learning approach is not suitable for
predicting low-frequency skill demands due to a lack of effective observational data, rendering the
learning segments meaningless.

D.3 Skill Co-occurrence Graph Enhanced Job Skill Demand Forecasting

In the task of job skill demand forecasting, fully leveraging the inter-relationships among different
skills is beneficial for downstream tasks. Therefore, we construct a prior graph with co-occurrence
frequency from the training data to include as a dataset component. Given a set of granularities
i,J,...,k, we constructed the skill co-occurrence graph as G&J+k = (Vidk gidrk) where
Vid-k is the extended skill set under the multiple granularities. The edge weight e, ,» € E4++F
between nodes v and v’ is determined by the co-occurrence frequency of the node pair v, v’ in
the job advertisement data for training P!"%", Specifically, given v = (a’,a’,...,a", s) and
v = (a¥,a’,...,a" s"), e, is calculated as:

Cowr = D 11 1,(z € p). )

pePtrain gef{at,al,...,ak,a? ad’,...,a*"  s,s'}

This information will serve as prior knowledge, reflecting global inter-skill dependency patterns.

*https://github.com/thuml/Time-Series-Library
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Table 6: Overall performance comparisons on repeated experiments.

\ Model Market Region L1-0 L2-0 R&L1-O R&L2-O Company
LSTM 314.54+¢ 57 49.92+¢ ¢ 24.4344 91 8.0440 g7 4.444¢ 47 1.45%¢ 15 1.494+¢.13
SegRNN 190.05%0.37 35.924¢. 47 16.37%3.73 5.8140.73 3.68%0.5 1.32+0 .95 1.23+0.2
CHGH 315.47+¢.04 50.03%0.02 25.62+3 93 8.04%¢ 87 4.43+0.48 1.51+0.7 1.54+0.73
PreDyGAE 189.9540.01 35.84+£¢.09 21.72+1 15 6.81+%¢.21 4.08%¢.15 1.85%0.43 1.85%0 56
Transformer 340.72%0.79 54.9840.13 2743449 8.93%1 .24 4.924 53 1.75%0.36 1.69=£0.39
Autoformer 465.86+4. 78 60.9%0.64 31.97+g.13 9.97+1 6 6.6840.21 2.6+0.17 2.8540 40
Informer 340.76+1 6 55.08+¢.35 27.54+4 87 8.81+1.96 4.87+¢.91 1.7310.39 1.6940.39
E:J Reformer 344.9+5 go 54.83%.2 27.35%4 79 8.8841.3 4.940.9 1.71%0.42 1.8%+0.24
= | FEDformer 469.46£4 50 60.37%0.19 31.87%g. 20 9.5441 9 5.83%1 1 2.4140 39 2.5240.08
NStransformer  208.234-3 43 37.3940.46 19.13%1.61 6.294 5 3.794¢.31 1.26+0.1 1.64+0.44
PatchTST 204.94+12 41 36.33+2.23 18.69+3 45 6.12+¢ .89 3.69+0.54 1.23%0.18 1.21%0.18
DLinear 201.05%1 95 35.45% 56 18.2341 48 5.8940.41 3.5540.28 1.21%0.12 1.18%¢0.11
TSMixer 517.9541 49 67.5611.06  30.83%s.66 10544519 5954012 3.58%s16 6.75%6 55
FreTS 310.62+4 57 49.524073  23.1%¢.05 774411, 4.3%0.59 1414047 1.4540.17
FiLM 201.7424 86 36.18445 29 16.7943. 51 5.9%0.75 3.7%0.42 1.28%+¢.13 1.31%0.12
Koopa 205.12+4 95 35.95+¢ 5 19.9%0.01 6.1940.13 3.68%0.13 1.24+0.05 1.15+0 .06
LSTM 1799.740.49 341.97+¢ 07 308.58+103.99 148.32+99.15 66.87t13.95 30.0144.11 35.35%35.1
SegRNN 941.59+1 08 194.7341 59 154.0244175  78.844914  38.64397 18214005  21.05+4ss
CHGH 1803.564¢.73 344.15%0.11  335.97+g7.99  148.94%t09 54 671241499 19.3%12.73 20.61+14.53
PreDyGAE 925.27+0.01 193.944¢ 04 186.36+; 4 84.55+1 44 40.37+1 6 18.7941 27 22.05%+3 48
Transformer  1820.87+,95  360.87%g13  318.17#es; 1511643005 67.66%1406 30424637  35.124¢05
Autoformer 2177.05ig7_58 313.84:‘:&55 270.26:t76_2;3 122.29:&20_;;;; 62.56ﬂ:4_;58 26.57i2_26 35-47i2.81
o Informer 1854.8143 ¢ 359.97+7 72 314.97+100.17  148.73%2862 67.01%15.41  30.144645 35.1%93
v | Reformer 1890.32413.72 357.61+1 23 314.03£100.12  152.43+32.71  67.58%15.18  30.21%6.76 36.14+5 01
2 | FEDformer 21374445560 321.53+051  268.73%7904 11347400 a7  56.36%100  25.64ts5r  30.9%3.61
NStransformer  1121.07+95.09  236.56+12.38 198.03+4433  103.2+£15.48 45.99+g5.13  21.42+%362 32.8%1.86
PatchTST 1098.82443.54 220.21%+7 5 204.56£57 97 97.9417.38 45.3249 o7 20.8843.94 25.48+5 g3
DLinear 1107.0%28.41 222.14+4 31 211.02+£5; 25 99.81%16.61 46.04+5 55 21.1243 95 25.7%6.25
TSMixer 2578.824+07.97  438.06%t67.68 350.22414366 172.63%60.03 T78.88%1508 48.76%178 82.91+56.64
FreTS 1763.69425.03  336.65%404  289.29%111.07 140.54%31.17  63.72+1452 28.68%+6.17 34.0+7 .56
FiLM 1071.14%993.85 216.77£33928 173.245;1 15 83.31%16.12 39.26%g 54 18.23%3. 385 22.53%t6.08
Koopa 1147.88431 59 228.36+76  227.46%4306 106.03E12.05 49.37+7s9 22534349  27.06-¢.08
LST™M 42.33%0.04 49.78%+¢.03 42.31%0 .85 33.14+¢.27 31.79%0.19  22.67%¢.24 30.42+0.14
SegRNN 39.67+0.26 51.14%¢ 53 42.16%+2 14 34.6241 16 36.0210 65 30.6246.19 32.77%¢ 27
CHGH 42.21%0.01 49.03=%0.03 40.83=£0.51 29.98+¢.35 28.424 28 46.97%9.54 30.69%14.64
PreDyGAE 4214014 64.37+1 24 75.3%23.21 59.69+¢.77 46.51+1169 76.6%t3.58 60.36£31 .18
Transformer 49.86:‘:[145 60.59i[]_02 58.06ﬂ:2_26 52.7:‘:773 47.37ﬂ:14_31 47.03:‘:1277 45.69i1(§_5
_ | Autoformer 73.47%¢.36 79.08%0.19 79.44+35 36 79.16%+4 35 86.16+3 64 86.3214 73 91.12414.54
§ Informer 49.24¢ 5 60.45+0.03 58.59t1 59 52.6147 g0 48.84+1286  45.52414.82 47.61+13.88
E Reformer 48.69+0.17 60.48+¢.17 58.49+1 74 51.26+9.75 47.8%1404  42.15%19.43 52.76+6.85
< | FEDformer 73.57%¢.53 78.11%¢ 55 79.26%9.09 76.98+7 02 78.54%4.9 82.05%0.3 86.29+7 21
E NStransformer  38.88+¢.09 47.74+0.14 38.944 76 27.4941 os 26.43+ 33 15.47%0 .84 23.75%0.41
PatchTST 37.56+2 15 46.52+3 49 37.82+5 55 26.98+5 25 26.7+1 42 15.2+4 55 22.29%5 19
DLinear 37.7:E1_32 49.27:t;3_35 41.79ﬂ:0_(]5 34.65:‘:0_28 34.07ﬂ:0_54 26.6:‘:&75 31-42i0.(55
TSMixer 73.63%1 83 72.27+9 11 61.014+4.04 68.37+3 55 65.19+1578  79.28%37.95 95.62+54.39
FreTS 42.81+0 56 50.46+t0.62 41.53+£1 62 31.2640.08 29.76£1 08 18.894%1.16 28.37+1.03
FiLM 37.7941 75 46.85%£401  41.03%1 15 30264056 29.49%06s  17.65%037  26.1940.40
Koopa 36.26=+0.39 44.7%0.95 36.69=£1.05 25.59%£0.12 24.51%0.09  14.13%0.14 20.62+0.18
LSTM 52.7%0.009 52.87%0.03 73.45%+140 97.42419 50 80.24%+109.81 102.19%31354 210.943332
SegRNN 20.55%0.05 22.49+ 39 32.244.01 41.44+g 3 39.724g 04 49.27+11 53 71.42413 56
CHGH 52.92+0 03 53464002 T7.26%1005  98.13%t12s  80.86%1135 54.98+s79  100.68%06.7s
PreDyGAE 20.07=£¢.0 22.65+0.01 51.16+£29 68 54.87+£96.22 47.52+1738  64.98+£30.23 96.4%45.03
Transformer 52.4940 15 55.57%1 14 75.98%+10.71 98.09%12.61 82.63%59 101.34%13.01  200.07%32.6
| Autoformer 49.81+1 73 38.47+1 72 54.53+0.71 64.59+1 g9 61.0844 1 71.01+3 15 103.89%3.92
& | Informer 54.11+%¢.2 55.59+9.17 T71.42+12.08 97.76+g.25 81.04%10.45 102.15%10.95 198.51+31.17
a Reformer 55.75%0 .54 54.83%0.62 76.12+13.48 98.47+13.48 81.65+3.01 103.29%11.35  206.04%335.02
= | FEDformer 48.25+9 g9 39.48+ 85 56.5245 27 60.81%+0.74 55.93%+2.95 69.07%0.9 102.114%3 73
ﬁ NStransformer  26.75+¢ 76 30.4241 g4 43.64+3.04 59.1541 44 49.08+¢.17 62.42+4 79 107.45%¢.09
PatchTST 26.38+1.12 28.31£1.01 47.51%3.34 56.73+£1.89 47.96+974  64.14%305 108.92+45 g6
DLinear 26.6%1 35 28.58%+1 32 49.04=3 52 58.6941 4 51.47%( 38 64.7240.06 110.8+1 95
TSMixer 74.6945 7 69.241560  86.56%0315  118.56%17514  99.17+1085 100.88+401  136.0%30.01
FreTS 51.01+¢.94 51.53+0.82 69.56+13.82 92.39+10.091 76.55+953  97.37+11.25 200.81=£23.97
FiLM 25.7247 38 27.83%7 19 36.131 29 43.32+0.5 38.93%+1 16 48.51+0.7 79.66%2 5
Koopa 278141 3 29.66%1 55 52.74=%5 o7 62.2945 75 56.414 o8 70.91+5 52 122.3+£1 52

Benchmark Models To fully utilize the prior information from the co-occurency graph, we
introduce several GNN-based methods for multivariate time series prediction. These methods leverage
GNN s to extract the influences between different variables, effectively capturing the relationships
among various time series. The specific models are as follows:

e EvolveGCN [80]: EvolveGCN introduces a recurrent mechanism to update the network
parameters, as GCN parameters, for capturing the dynamism of the graphs. Two methods
are introduced: EvolveGCNH, which learns the weight matrix of the graph at each time
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Table 7: Performance comparisons on skill demand series with structural breaks.

‘ Model Market Region L1-0 L2-0 R&L1-O R&L2-O Company
LSTM 423.99+40 56 109.634¢.04 101.68+13.13 63.39+4 97 21.02+4 g5 8.55+¢.59 26.23+1 67
SegRNN 256.67+0.54 76.09+1 01 68.08%+5 62 44.934¢ 88 16.124¢ 94 7.07+0.47 18.914¢ 85
CHGH 425174004 109.824 ¢ 104.4149 o3 63.54+5 ¢ 18.1141 o3 15.1644 33 19.75413 35
PreDyGAE 296.27+0.01 85.05=+5.06 84.11+g 87 56.28+7 2 16.57+0.84 9.51%¢.19 2294013
Transformer 460.45+5 31 120.624¢ 4 113.11+43.19 69.45+7 05 22449 76 9.424 g8 26.93+4.12
Autoformer 632.294+4 76 131.9241 59 131.01%+91 72 75.4+7 o7 25.82+0.93 11.764¢.39 36.65+¢.3
Informer 462.88+1 99 120.894 68 113.36+13.21 68.13+7 46 222245 91 9.141 96 26.82+4.06
ﬁ Reformer 465.7243 79 120.584¢ .34 112.514+43.12 69.02+7 59 22449 gg 9.0941 44 28.16+5.99
= | FEDformer 645.02+6.45 131.054¢ 27 130.18+95 59 72124914 23.06£2 34 11.01%¢ 59 32.89+4 1
NStransformer  285.18+¢ 1 81.54+4 5 80.245 o3 49.664( 33 16.88+¢.96 7.07%¢2 28.34+10.69
PatchTST 282.34417.19 79.144 .75 80.46+5 76 48.4543 13 16.2941 o9 7.01%0.41 19.65+1 48
DLinear 277.33+2.32 T7.47+0.99 77.64+3 93 46.5+0.16 16.03+¢ .08 6.644¢.12 18.73+¢ 51
TSMixer 698.27+6.79 146.22+93 62 130.91409; 4 88.39+4.38 28.49+4 37 16.46+3g 55 79.02+69.45
FreTS 419.07+6 85 108.63+1 75 98.46+14 62 62.17+5.14 20.54+4 go 8.47+( 54 25.89+1 53
FiLM 277.66434 84 78.58+t6.24 69.56+6.12 45.37+5 5 15.264¢ 87 6.79+¢ .39 19.86+¢.98
Koopa 282.85+6.89 78.75+1 42 83.25+7 31 48.7541 55 16.924 47 6.93+0.13 19.1640.11
LSTM 2148.33+¢.79 534.61+¢ 67 704.41+13689 466.2146004 178.294+9605 58.54+5 60 192.72+30.76
SegRNN 1130.194+¢.81 304.244 7 387.1+3.14 264.53410.99 110.27+3 44 36.38+1 34 120.84+7 95
CHGH 2153.77+¢ 87 537.97+0.18 735.74%97 15 468.27+61 0 1791749685 41.0%2876 203.784+g7 33
PreDyGAE 1510.41+¢.01 403.02+¢.06 529.39+55 83 388.54443 46 159.45+1571  36.48+45.19 162.0420 48
Transformer 2154.53430.61 562.07%12.46 717.6241951 474.06+63.8 179.2495 64 61.55+5 56 191.91+36.18
Autoformer 2566.07+102.19  489.69410 56 621.06+350.33 387.57+33.41  155.94+( 51 5814451 187.41+19.68
m Informer 2212.8345 36 559.86411 51 71512413216 467.05+58.69 178.4149575 57.53+t765 191.85+36.5
v2 | Reformer 2248.94415 68 558.75+¢ 8 713.91%13153 478.6%70.65 179.85+97.33 59.48+9 48 195.6+31 87
E FEDformer 2551.16477.11 501.8444 46 621.78~4g1 74 363.84435 37  149.67+1937 57.89%2.91 166.63+10.36
NStransformer  1337.16+47.86 373.7+20.75 473.97+10.71 3341741436 128.79+g11 39.55+1 g2 176.86+17.5
PatchTST 1328.54+49.95 347.07%11 24 499.82499 78 3211641580 125.31+3305 39.74+4 04 144.13+14.08
DLinear 1341.55432 44 350.8+6.091 506.06=+18.99 325.15%16.25 130.09+10.18  38.99+4 16 144.53+15.45
TSMixer 3040.93+56.91 678.15+10571  816.57+184.07 582.2493. 85 2119849273 115.88+¢7.03 436.64+301.19
FreTS 2105.11431 62 526.0%6.74 679.7+130.16 451.97+53.49 173.3449283 57.7644.47 188.29+95 82
FiLM 1298.06+265.50 341.89+60.42 426.14419 46 276.0£13.7 111.46+9 34 34.32+4 g6 128.54+16.33
Koopa 1386.85+35.21 360.64411 92 532.64+14 5 338.26+1288 138.63+9 35 41.3940.09 152.48+17 55
LSTM 37.23%0.05 45.67+0.02 45.9541 99 50.34+4 98 47.36%0.66 424740 4 70.15+ 62
SegRNN 32.88+0.2 43.35%0.39 41.5445 12 46.4643 03 471144 77 44.294 45 59.48+4 g5
CHGH 37.21+0.01 45.55=%0.03 46.2941 96 50.3%1 o8 46.224¢ 72 45.92491 79 T7.34%37.44
PreDyGAE 32.0%0.02 43.25+¢.18 49.33+2.76 51.024+5.06 50.59+4 35 63.24+17.41 70.72+0 40
Transformer 441840711 53.31%0.19 53.13+5.85 56.88+3 45 55.61+g 32 55.47+7 .12 73.21%757
_ | Autoformer 67.46+0 27 68.4+0 .03 70.67+6.58 71.924+3 02 83.21+4.31 83.71+4.79 99.62+14.04
§ Informer 43.4+0.31 53.28%+¢.16 53.54+5 99 56.424+4 14 56.23£7.69 54.33+5.61 73.34+7 50
E Reformer 43.1+0.01 53.09+0.1 53.424+9 4 56.23+4.31 55.84+g9 52.75+10.9 76.27+3 57
< | FEDformer 68.14¢.29 67.4+0 48 70.57+7.06 70.35+5.46 76.14+3 56 79.91+0.11 95.19+7 37
E NStransformer  32.85+¢.14 42.35%0.05 441741 08 47.324¢ 99 44.2341 o3 38.15+1 31 103.89+60.87
PatchTST 31.96+2 ¢ 41.1445.99 42.63+1 59 45.79495 31 43.83+2.11 37.55+9.57 58.04+5 54
DLinear 31.38+1 08 40.56+1 37 41.84+1 23 44.8340 38 45.4240 14 41.6140 42 58.224+0 52
TSMixer 68.55+1 22 67.06£11 47 61.44¢ 47 75.25+0.75 72.63%11.4 83.29+31 13 109.31+46.77
FreTS 37.47+0 7 46.124¢.91 45.36+2 66 50.03+1 63 46.8244 3 41.2541 o8 70.041 47
FiLM 32.01+0.16 41.26+¢. 46 411244 97 45.5641 21 45.994¢ 95 40.914¢.79 58.02+1 51
Koopa 31.0140.05 30924015 42.9545, 45334165 4188406 3591405 5719416
LSTM 53.94+0 .16 53.9+0.12 73.77+14.35 98.43+12.75 93.46+13 83 65.39+6 3 227.07+36.31
SegRNN 21.23+0.03 22.984+¢.43 32.33+4.99 41.844¢ 49 44.1849 25 34.49+6 .31 73.51%14.73
CHGH 54.2140.03 54.5%0.02 77.63%10.33 99.15413.03  93.96t1407  53.56%3226  105.96%t104.02
PreDyGAE 30.72+0.01 33.15+0.01 46.5949 64 55.32+19 77 57.56+12 47 45.5346.19 91.47+93.0
Transformer 52.69+0.67 56.3+1 62 76.3+10.8 99.08+12.9 94.57+7 .31 67.56+5 78 215.96+35 18
| Autoformer 51.07+0.19 39.444+4 34 54.75+0 61 65.4%+1 15 64.75+3 85 54.46+g 57 106.51+5 39
§ Informer 55.424+0.04 56.22+45 17 71.74+12.14 98.81+5.31 93.294+11 35 64.246 o7 213.07+32.78
(LF) Reformer 56.91+0 64 55.93+0.41 76.53+13.64 99.47+13.64 95.12+10.02 67.05+7.72 221.45+366
= | FEDformer 49.3544 5 40.994+1 28 56.842 20 61.57+0.66 63.27+4.31 54.5+¢.19 105.93+4 g2
22 NStransformer — 27.47+; o3 31.55+2.92 43.943 95 60.16+1 54 56.5+1 o 39.75+0.02 116.26+2 18
PatchTST 27.53+1 1 293144 9 47.824334 57.57+1 93 55.03+2.9 40.9641 97 114.76+7 12
DLinear 27.83+1 38 29.66+1 35 49.37+35 59.59+7 4 59.48+0 62 40.744 89 116.83+1 45
TSMixer 76.26+6.24 69.83+15.63 86.8423 27 1191741764  113.4341608  77.61+1465 141.79+36.12
FreTS 52.23+1 04 52.51%0.92 69.87+13.95 93.32+11.09 88.52+11 95 63.64+5 3 215.64425 29
FiLM 26.91+7 65 28.84+7 .48 36.38+1 32 43.93%0 54 44.4441 o6 31.45%06 83.15+4.17
Koopa 28.98+1 97 30.77+1 6 53.084t505  03.24%0qr  65.24kt0sr  4d1dkbz0q  129.3640.

step as a hidden state, and EvolveGCNO, which directly employs the weight evolution as a
hidden state output, decoupled from node embedding.

¢ GConvGRU [81]]: This model integrates convolutional neural networks (CNNs) on graphs to
identify spatial structures and recurrent neural networks (RNNs) to detect dynamic patterns.
Two architectures, GConvGRU and GConvLSTM, are explored for the Graph Convolutional
Recurrent Network (GCRN).

e TGCN [82]: The temporal graph convolutional network (T-GCN) model, which is in
combination with the graph convolutional network (GCN) and gated recurrent unit (GRU).
Specifically, the GCN is used to learn complex topological structures to capture spatial
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Table 8: Performance comparisons on skill demand series with low-frequency.

RRMSE(%)

‘ Model Market Region L1-O L2-0 R&L1-O R&L2-O Company
LSTM 33.6940.44 26.88%+0.05 16.494¢.01 12114004 12.28+¢ 02 8.924 12.6+0.02
SegRNN 51.5%¢ .57 46.12+¢ 08 25.65+0.39 18.03+0.03 22.08+1.92 19.143.95 19.37+0 88
CHGH 32.37T%0.0 24.994%0 02 14.240.04 9.32+0.01 9.45% ¢ 67.89%£10.03 77.01=%5 58
PreDyGAE 113.67+173  157.17+186s  343.32%015  64.46%1349  24.16%0.13 60.41455 15  68.89%60.50
Transformer  54.84%199  52.95+0.00 46.140.13 45.47+0.07 45.64£0.02 45.1%0.01 45.43%0.0
Autoformer 132.98+11 42  106.13%1 65 110.06£0.19 97.66+1 23 98.284 46 95.26+1 1 90.2340 .54
Informer 54.42+1 g3 52.76%0.13 46.1%¢.0 45.52+0.01 45.69%0.02 45.07+£0.01 45.47+¢.0
ECJ Reformer 52.724+¢ 3 53.25%0.15 46.19%+0.07 45.58+¢.02 45.65%+0.01 45.08+¢.03 45.49+¢.03
S | FEDformer 133.07=%6.09 101.47+4 47 109.51+, 3 96.43+1 0 95.83%1 .48 94.18+¢ .48 90.71%0.47
NStransformer  57.9641 g3 34.24+¢ 3 17.994¢ 37 10.84=%0.04 11.46=%0.02 6.45+£0.02 11.9%0
PatchTST 47.2546 07 33.21+33 1731+ 85 10.39+1 o3 10.9144 4 6.1%0.67 11444 o3
DLinear 517473, 42.08+5.53 296449 g7 25.18%10. 25.6%10.9 22.53%1172  25.79%10.77
TSMixer 102.23%14.26  64.77+108 51.8949 94 52.6141 14 40.06+£7 .o 34.0245 5 41.324+5 03
FreTS 38.55+0.s3  28.89%0.06 16.640.55 111940 47 11460 51 74440 47 119440 45
FiLM 51.42450.47 34.97+£10.99 18.23%5 69 10.9£3 11 11.47=+3 38 6.43+1 .96 11.95%3 58
Koopa 43.3%4.56 29.66+2 37 15.52+ 38 9.49+4 73 9.9540.82 5.53%0.48 10.35+0 .86
LSTM 99.83%¢.77 306.02+¢.33 168.194¢.01 140.57=+¢. 247.244 02 125.6+0.01 272.77%0.04
SegRNN 141.214¢ 31 452.49+¢ 09 233.37%0.06 146.34=%0.92 216.77%0.01 117.81+¢ .63 227.59+0 o
CHGH 100.44%0.02  306.28%0.01 168.23%0.01 140.54=+¢ ¢ 247.21%¢.01 134.20%0 9 208.01=%17.09
PreDyGAE 160.7641 46 5424240181  T7L.7245015  195.02%1605  218.944065  119.76%10053 188.17%171.77
Transformer ~ 112.3%515 311194143 17674050 150.63L0s53 252940, 137394015 278.45%0.13
Autoformer 249.03+36.15 364.3249 50 231.67+3.95 184.2944 14 266.140 64 172.384+1 84 281.53+¢.17
o | Informer 111594651 312154035 176184019 15046016 252.84%t001  137.07£012  279.56=0.36
» | Reformer 107.11435,02  314.04+4 77 176.73+¢ 57 150.62+¢ 23 252.85%.14 137.02%0.12 279.79%0 .61
2 | FEDformer 233.864505  346.25+1 51 227.64003  182.54k00s 264124060 171434076 280.57+; 13
NStransformer 15941065 320.86t431  182.83%505  136.01%agy  249.63%04s  120.74%56r  255.48%4 76
PatchTST 126.71+17.24  339.92+16.66 182.49+5 g4 134.57+5 89 233.14+ 45 120.9444 7 253.85+3 35
DLinear 109.06+5 5 320.09+2 51 173.5144 67 133.82+4 37 235.23%1 35 123.01%9 84 254.74+1.091
TSMixer 186.01%158.76  359.57+2g 14 199.07=410.44 160.52=+5 4 261.65%6.67 139.7£3.15 296.1541 g3
FreTS 104.43+£; 38 310.94+5 43 170.36£; 47 139.96+¢.74 239.77+4 49 122.58=+4 07 266.82+3 g3
FiLM 1291143508  343.63%£34.15 185.3%16.68 135.8%1 72 235.13%10.73 122.8445 o6 256.54%7 91
Koopa 111.96+g 52 317.8%3.82 171.28+3 93 134.11%0.67 242.79+5 91 124.64+¢ 36 260.87+¢ 46
LSTM 26.14¢ .39 19.43+0.17 15.18%4¢.01 12.88=+¢.07 13.01=%0.02 11.46=+0.17 13.01=%0.03
SegRNN 3371401 29.55%04 22.040.56 18.44+¢ 1 24164 97 248+ 63 19.8341 30
CHGH 23.61%¢. 15.99=+0.04 11.08%0.09 7.8%0.03 7.86%0.01 9.61+1 08 8.07%2.03
PreDyGAE 83.59+0.70  82.33+43s 11425+, 40 48.0%7.33 23.97+0.1 47344300 48.31E44,
Transformer 49.05+1 96 48.23+¢.0 48.68+¢.14 50.78=+0.03 50.924¢.01 52.6+0.01 50.28+¢.¢
_ | Autoformer 80.95+1 5 76.73%0.44 81.69%¢.03 80.14+¢ 55 80.43%¢ .21 81.25+¢.49 76.73%0.25
& | Informer 48.87+¢ 78 48.07+0.25 48.69+.03 50.83%0.01 50.964.02 52.57+¢.01 50.294¢.0
E Reformer 48.32%£1 06 48.33%£0.02 48.76%.08 50.87=%0.03 50.93%0.9 52.59+¢.02 50.28=0.02
< | FEDformer 82.5641 93 75.3240 52 81.88+¢ 57 79.7+0.39 79.55%0 62 80.831¢.21 76.96+0.21
E NStransformer  32.624q 69 18.84+¢ 31 11.5940.02 7.3%0.01 7.81%¢.01 4.76+¢.0 7.76+0.0
PatchTST 29.48+1 53 18.23+1 46 11.1541 04 7.01%0.71 7.51%¢.76 4.56%t 52 7.46% 8
DLinear 4219456 35.1%10s 31.64%1055  30.55%1400  30.93%1405  30.35%1514  30.52%1380
TSMixer 68.79+5 48 51.8446 .45 48.47=+6.43 54.61%0 92 45.87+6.93 43.34%5 84 45.68+1 95
FreTS 29.63+053  19.71%0.62 14.0140 56 10.6%0.64 10.8640.67 8.45+0.75 11.0940.61
FLM 30.7d%1057  18.566.57 114244 06 71940 55 774279 4.6941 60 7.64%2.51
Koopa 28.2745.34 16.67+1 38 10.15+0.9 6.35+0.57 6.7940.63 4.094¢ .39 6.73%0.63
LSTM 432.63%21.64 1364.7%202.93 1057.49%957¢ 1468.93%x1586 2581.13%3365 1485.07%2513 1828.92+33 40
SegRNN 11474001 125974016 126244015  146.8140r3 130234045  130.24%0g7  133.03%0.54
CHGH 452.99+ 65 1662.7£2.11 1394.35%4 08 1824.0%4 1 3436.23+14.46  289.09£1407 406.07+£3.08

PreDyGAE 104.17+0.99  216.23%2 201.73+0.3 220.4444 62 229.424¢ 22 165.21£59.52 272.3%+66.0
Transformer 172.07%30.78  513.13+2931  320.11412.98 269.9743 45 468.0340.41 242.99+4 1 466.5+1 48
Autoformer 89.47+¢ 4 161.16%10.32  136.15%6.04 13491+ 17 195.474+ g8 134.43+1 31 191.17%20

Informer 193.8843000 538.02%3116  316.88t407  275.64%003  A70.15%0.07  246.67t0ge  462.58% 75
Reformer 200.52430.05 536.21%1515  324.86%1100  276.66k014  470.18%q 247.324059  460.862 05
FEDformer 96.72+¢76  176.64+t0s0  136.624160  136.93%t051  199.25+10s  134.8+073 189.29-+ 40
NStransformer  90.14%716  219.1845019  193.48+3691  218.73%06s 40629704 2722045165 259.15+554
PatchTST 95.85+5 ¢ 210.243663  199.1243455  266.55+355  391.36t4653  298.4844101  278.87ssr
DLinear 90.724095 241414144  219.68%17.61  281.05%s757  431.86tsssr  206.1%s050  300.39-E0s 41
TSMixer 125.9949.05  200.394903s  211.03%363s  192.85435.40  418.03k167  275.294 9 293.3840, 47
FreTS 222.554504  A479.4540057  462.19+5556  720.43+510  962.73%4750  T58.24%41 67 809.76%76.00
FiLM 108.0543005 444.72440185 360.89%00505 402.84%097 56  652.TEss6.09  A17.27H0g7.85  364.47H035 05
Koopa 03.834011  287.424s755  264.45+s656  345.86k7o4  582.52+15405  368.66ts0s  345.87+es.s1

dependence and the gated recurrent unit is used to learn dynamic changes of traffic data to
capture temporal dependence.

e GCLSTM [83]): GCLSTM is an end-to-end model integrating a Graph Convolution Network
(GCN) embedded Long Short-Term Memory network (LSTM) for dynamic network link
prediction. The GCN captures local structural properties, while the LSTM learns temporal
features across snapshots of a dynamic network.

e DyGrEncoder [84]: This approach combines a sequence-to-sequence encoder-decoder
model with gated graph neural networks (GGNNs) and long short-term memory networks
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Table 9: Performance comparisons on skill demand series with GNN-based methods.

| Model | Market Region L1-0 L2-0 R&LI-O R&L2-O Company

EvolveGCNH | 1053.18.g804.38 30.07422.97 16.51412.61 5431415 2.9219.93 1.1140.85 0.9640.73
EvolveGCNO | 151.13 411543 27.01420.63 15411176 5.0d13.85 2.9510.25 1.2140.92 0.8910.68

m | GConvGRU 570.31 443558 92.96471.0 46.43 13546 11.4545.75 5474418 1441907 1.0410.79

S | TGCN 741.054565.99 96.43173.65 55.41£42 32 13.21410.09 6.28145 1.6341.24 1114085

Z | GCLSTM 729.481557.15 57.13443.63 25.84419.74 11.4945 78 5.6714.33 1614123 1.0740.82
GConvLSTM | 741.451566.29 93.614715 46.57 13557 11.1945 .55 5.5714.95 14941 14 1.0940.83
DyGrEncoder | 732.53155048  92.21470.43 46.96 445,57 12.26.19 56 5.57 1426 1474113 1.0710.80
EvolveGCNH | 4998.7 1381782 166.34£127.04 178.551136.37 76.144 5815 35.12196.82 16.97+12.096 19.33114.77
EvolveGCNO | 709.19+541.65 143.721109.77 164.16 1125 38 T1.57 15467 33.21495.37 15.044£11.49 17.93113.7

E GConvGRU 2968.7512267.42  579.66+442.72 442.53 1337.99 170.094129.01 81.95462.59 31.75494.25 30.65493.41

= | TGCN 3163.46 12416.13 58149444412 450.791344 29 17213413147 83.33463.64 32.19404.59 30.77193.5

& | GCLSTM 3159.6142413.10 497.974350.33 371.13 498345 170.23 1413001 82.66+63.13 32.25494.63 30.81423.53
GConvLSTM | 3166.41 1041835 581.261443.94  442.72433513 169.43 £129.4 82.38.462.92 32.29424.66 30.88.£23.58
DyGrEncoder | 3161.6142414.72  579.78 4442 81 443.49 133872 1719144313 82.27 16283 32.02494.46 30.76.£23.49
EvolveGCNH | 76.69455.55 41.67131.83 39.77+30.38 33.11425.29 28.99422.14 18.79414.35 28.36421.66

S EvolveGCNO | 45.32434.61 56.75.+43.35 46.34135.39 35.09496.8 29.33.492.4 33.19495.35 25.99419.85

5 | GConvGRU 63.93 148 82 62.41 414767 38.65499 52 31.09493.74 23.67118.08 12.93 1988 20.5115.66

% | TGCN 711345432 51.37439.03 56.23 142,95 37.21428.42 25.83419.73 21.74416.6 23.35417.83

s | GCLSTM 60.494 462 38.68429.54 43.6433.3 28154915 24.34118.59 18.57+14.18 21.74116.6

© | GConvLSTM | 64.79+49.49 44.77 1340 35.94+27.42 26.21420.02 21.67+16.55 13.95+10.66 23.05117.61
DyGrEncoder | 61.55.147.01 44.74 43417 381249911 26.94490.58 26.49400.23 18.42414.07 23.75418.14
EvolveGCNH | 68.68.+52 46 19.57+14.95 32.99495 2 36.53127.9 32.142452 41.01431.32 65.93+50.35

9 EvolveGCNO | 16.21412 38 17.85413.63 28.934922.00 34.6496.43 30.4493.22 32.27124.64 58.07144.35

5 | GConvGRU | 418.841319.89 989.03+755.38  1111.694849.06 70109453546 41417431633  307.07423453  385.694204.58

< | TGCN 3478.6219656.84 1037.134792.12  112164.83485667.3 948.041724.08 501.074382.7  338.75495873 404.51308.94

E GCLSTM 3083.6219355.15 176.531134.83 159.961 19217 721.94551 36 467.491357.05 334.261955.3 425.46 1324 95

& | GConvLSTM | 4479.9:512158  1123.324857.05 1101045100 640.311 45005  449.12 31300 38223400100 451.71 3150
DyGrEncoder | 3386.4942586.47 1010.934772.11  1247.514952.8 1004.624767.29 450.571344.13 331.314953.04 418.674319.77

Table 10: Performance comparisons on skill demand series with structural breaks with GNN-based
methods.

| Model | Market Region L1-0O L2-0 R&LI1-O R&L2-O Company
EvolveGCNH | 1385.241057.96 61.79147.19 58.05444.33 36.04197 53 10.6948.17 5.5614.95 13.25410.12
EvolveGCNO | 195.87 11496 53.86141.14 52.46140.07 32.76125.02 10.854g.28 5.2113.98 12224933
m | GConvGRU 749.831572.69 204.83 415644 189.484144.72 92.29170.49 26.94120.58 9.2317.05 17.261413.18
§ TGCN 990.21 475625 210.71160.92 222.48 £169.92 100.93177.09 29.27 192 36 9.9317.58 17.87113.65
GCLSTM 977.98 4746.94 128.33 19502 102.44 475 24 92.71170.81 27.94191.34 10.2517.53 17.81 11361
GConvLSTM | 993.55,.758.84 207.86+158.76 190.314145.35 90.33+65.99 27.51101.01 9.9317.58 18.0413.75
DyGrEncoder | 982.05-750.06 204.894156.49  191.911146.57 98.78 47544 274119093 9.647.33 175111338
EvolveGCNH | 5799.8124490.68 26183219907 371991080 11 22788217405 87982072 298740050 100.77176.96
EvolveGCNO | 863.114.659.21 226.981173.36  341.341060.7 21399416344  82.25162.82 25.03119.11 93.36171.3
& | GConvGRU 3463.23 10645.0s  890.591650.2 922.56 £704.62 508.614385.46  198.01p151.24  69.96153.43 158.491121.05
S | TGCN 3688.7610817.31  893.171682.17  938.931717.12 514.254:39277  201.034153.50  71.4445456 159.071121.49
& | GCLSTM 3684.3519813.97  768.164586.69 776.424593.0 508.994388.74 199.631152.47 717145477 159.26+121.64
GConvLSTM | 3692.1712819.04 892.93.1681.98 922.93 17049 506.714387.0 198.991151.08  71.93454.04 159.59+121.89
DyGrEncoder | 3686.6512815.72  890.76+680.33  924.49.1706.00 513.771392.4 198.731151.70  70.95454.19 159.011121.44
EvolveGCNH | 77.85459.46 31.5424.06 30.67423.43 33.05495.24 33.43495 54 29.61492.61 38.66429 53
s EvolveGCNO | 31.65+24.17 33.88.105.88 30.29403.14 31.57+24.11 34174061 37.43108. 59 37.69-+28.78
5 | GConvGRU | 49.4.157.73 44.31133.84 44.6.+34.06 38.91499.72 34.25.496.16 27.57121.06 37.43 198 59
% TGCN 71.56+54.65 49.2137.58 120.31+91.89 48.37+£36.94 36.76.£25.08 32.09+24.51 39.02429 8
s | GCLSTM 63.9448.8 31.28,193.89 28.84192.03 39.16129.01 35.03126.76 32.18424.58 37.87128.93
@ | GConvLSTM | 68.73152.49 45.39434.66 44.43133.94 38.47 109 38 33.75105.77 28.62121.86 37.96125.99
DyGrEncoder | 64.224 4905 43.72133.39 44.73134.16 43.73433.4 35.73127.29 30.42193 03 37.41 108 57
EvolveGCNH | 68.88452.61 20.26415.47 33.11495.29 36.88108.17 35.03126.76 26.91190.55 68.99152.69
s EvolveGCNO | 17.01412.99 184711411 28.97192.12 34.88196.64 32.23104.61 201711541 59.82145.69
& | GConvGRU 426.164325.49 107211481884  1215.751908 55 763.661583.25 485.644370.01  255.021104.77  427.84396.74
E TGCN 3708.5540832.45  1159.31 488544 156814.931119760.38 1119.754855.20  621.01474.3 290.69+222.02  451.934345.17
~ | GCLST™M 3210.2719451.88  184.79+141.14  164.56+12568 786.29+600.54  553.67+422.87 29157400069 475.271362.99
& | GConvLSTM | 4672.7143568.84 1217.461009.85 1206.731921 66 695.011530.83  527.581402.05 326.17104912  505.821386.33
DyGrEncoder | 3526.47 269338 1093.03 483481  1365.4711042.9 1110.664845.28  525.054401.02  279.394213.30 465.824355.78

(LSTMs). The encoder captures temporal dynamics in an evolving graph, and the decoder
reconstructs the dynamics using the encoded representation.

We implement these benchmark models using the PyG library E| and demonstrate the effectiveness of
these GNN-based methods in skill demand forecasting.

Results We have implemented a series of graph-based multivariate time series forecasting methods
based on the co-occurrence graph and verified their experimental effects under the three scenarios
discussed above. Firstly, Table[9]presents the overall performance of the methods based on the co-
occurrence graph for skill demand forecasting. It is observed that the prediction accuracy significantly

3https://github.com/benedekrozemberczki/pytorch_geometric_temporal
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Table 11: Performance comparisons on low-frequency skill demand series with GNN-based methods.

| Model | Market Region L1-O L2-0 R&L1-O R&L2-O Company

EvolveGCNH | 35.53427.13 2.2841.74 1471143 0.5540.42 0.3140.23 0.1440.11 0.1940.15
EvolveGCNO | 27.87121.29 3.3542.56 1.6941.29 0.57+0.43 0.31+0.24 0.27+0.21 0174013

m | GConvGRU 63.05448.16 3.0649.34 0.2540.19 0.1840.14 0.1140.09 0.0540.04 0.1140.00

; TGCN 7.3715.63 2.1641.65 0.1340.1 0.6140.46 0.2640.2 0.1540.12 0.1540.11
GCLSTM 0.6210.47 0.4110.32 1.3741.04 0.1540.11 0.1240.09 0.09+0.07 0.1240.09
GConvLSTM | 0.79406 0.4340.33 0.240.15 0.1340.1 0.110.08 0.0640.05 0.1340.1
DyGrEncoder | 1.04+¢.79 0.4710.36 0.2440.18 0.1340.1 0.15+0.11 0.09+0.07 0.1440.11
EvolveGCNH | 144.53111090 11.0845.456  11.65180 5522122 34849 06 17213 1814138
EvolveGCNO | 83.5163.77 10.3647.91 12.8249.79 5.T414.38 3.842.9 1.9541.49 1.6511.26

& | GConvGRU 63.06+48 16 3.6512.79 1.1940.01 0.8710.66 1.5941.22 0.81+0.62 1.7241 31

s | TGCN 21.13416.14 8.89.16.79 1.1340.86 3.1245 .38 2.3241.77 1114085 1.78 4136

& | GCLST™M 1.6341.24 2484189 2.842.14 0.86+0.66 1.6141.23 0.83+0.63 1734132
GConvLSTM | 1.2340.04 21410 1144087 0.8510.65 164192 0.810.02 1744, 53
DyGrEncoder | 1.4941.14 2124162 1.1540.88 0.86-+0.66 1.5941 22 0.8110.62 1.7311.32
EvolveGCNH | 47.39436.19 4225432 97 34.5496.35 25.49119.47 20.27415.48 12.6619.67 21.3+16.27

s EvolveGCNO | 115.04187.56 89.67168.48 48.24 1 36.84 28.83199.02 20.7415.81 29.63 492263 19.09414.58

5 | GConvGRU | 131.134100.15  105.97450.03  26.95420.58 23.0d417.6 13.04.49.96 6.02446 1192494

% | TGCN 83.42463.71 48.87137.32 11.74 45,97 28.63421.87 14.45411.04 16.13412.32 15.27 41167

< | geLs™ 42,835 69 36.7510807 43273505 175711842 140341070 121740 134410 96

@ | GConvLSTM | 53.854141.13 36.93 1982 21.67116.55 14.71411.04 10.07£7.69 7.1545.46 14.91411.39
DyGrEncoder | 62.53447.76  39.844s045  26.2600006  15.6le119o  17.3341505 1271407 16.23 112,99
EvolveGCNH | 66.67+50.92 67.56151.6 66.87151.08 67.29451.39 73.11155.84 73.29455.07 138.14 410551

§ EvolveGCNO 66467i;,0_92 G7~59151.63 66.81151_03 67-22151_34 69‘95i53.43 7157154.66 119<39i91.18

0 GConvGRU 66.46150.76 75.73457.84 122.73493.74 153.141116.06 297914109754 242.771185.40 241.431184.39

E TGCN 66.51450.8 68.02451.95 676.5115167  68.731525 89.88.168.65 92.87+70.93 190.194145.26

2 | GCLSTM 607944645  103.27irgss 701545355 16924410906 359.2520m435 214.34s16a7  272.31007.07

® | GConvLSTM | 65.93150.36 189.034144.38 156.394119.44 166.514197.18  345.764064.08 287.941919.92 285.44917.98
DyGrEncoder | 60.35146.00 171.99413136  167.794128.15  171.61131.06  325.47404858  279.071013.14  269.12400554

declines across the overall labor market. However, as the granularity of the forecast becomes finer,
the model performance improves, and at a finer granularity, the EvolveGCN method outperforms the
state-of-the-art (SOTA) methods mentioned in the main text considerably. We analyze that the finer
the granularity, the more accurately the co-occurrence graph reflects the associations between skills,
while coarser granularity might introduce excessive noise leading to decreased model performance.
The fine-grained co-occurrence graph accurately reflects the interrelationships between skills at
different granularities, which aids in enhancing the model’s prediction accuracy. Secondly, we
find significant differences in the RRMSE metric among these methods, with EvolveGCN showing
superior performance because it can learn the evolution of GCN parameter weights over time, thus
capturing the evolving dependencies among edges. Therefore, based on the provided co-occurrence
graph, it can effectively learn the evolution of skill relationships, which is beneficial for dynamic
prediction of skill demand.

For skill demand forecasting in scenarios involving structural breaks, as shown in Table [T0} the
improvements in the methods based on the co-occurrence graph are greater than those in the overall
skill demand forecasting task. This suggests that skills experiencing structural breaks have strong
interconnections, and the co-occurrence graph helps the model to identify the patterns of skill
demand sequences that are likely to undergo structural breaks, thus further enhancing the prediction
effectiveness for this category of skills.

In the task of predicting low-frequency skills, as shown in Table [TT] methods like GConvLSTM
significantly outperform EvolveGCN. This is due to the sparse observable data for these skills, which
leads to sparse connectivity edges on the co-occurrence graph.

D.4 Job Skill Demand Proportion Forecasting

In the main text, we discussed the issue of skill demand prediction. However, consider a scenario
where the number of skill postings for a particular occupation is very low, leading to a low demand
for that occupational skills. Nevertheless, these skills might constitute a significant portion of the
profession’s core competencies. Therefore, using skill demand alone may not adequately measure the
importance of these skills within the occupation. To address this, we introduce an extended dataset
that includes the skill demand propotion. We define the skill demand proportion as:

i i i ZZJE'Pt 1(8 € p) ' l(al € p)
Rs,t = [Rs,t,ai]aiEAi? s,tal T 1(qt ) (5)
Zpe’Pt (a’ € p)
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Table 12: Performance comparisons on skill demand proportion forecasting.

| Model Market Region L1-O L2-O0 R&L1-O R&L2-O Company
LSTM 0.14 ¢ 0494001 1214003  2.262005 2434003  3.51%00s  2.69%0.03
SegRNN 0.15%0.02 1.25%0.02 2.63%0.11 4.240.04 6.611.12 10.16£2 44 5.5240 53
CHGH 0.1i0.01 019i00 035i00 0.64i0'01 0.7i0.0 0.91i0‘07 1.03i0.01
PreDyGAE 0.08%001  0.09%0¢  0.124002  0.23%002 0.18%00  0.274¢.15 0.2940 16
Transformer 0.6210.02 3.89%0.02 10.87%0.05 20.58%¢.01 22.02+0.01 31.2640.02 23.47%0.01
Autoformer 1.29i0.14 8.84i0.15 24.5i0.22 43.99i0'94 47.53i0,67 66.32i1,02 50~02i0.66
§ Informer 0.55i0_02 383i003 10.86i0‘03 20.6i0‘01 22.04i0‘01 31.23i0A01 2348ﬂ:00
E’ Reformer 0.56:|:0_01 3.85:|:0_01 10.9:|:0_03 20.65:&0,02 22.01i0_01 31-25:|:U_01 2348:‘:0_0
< FEDformer 1.42i0.04 8.58i0.18 25.11i0.59 4415i06 47~07i0.66 6595i025 50‘0:&0,07
= | NStransformer 0.06+¢.9 0.09+¢.9 0.11+¢.9 0.19+¢.9 0.24%¢ 0.344¢ ¢ 0.34%+¢.0
PatchTST 0.06%¢.0 0.09%0.01 0.11%0.02 0.18%+0.04  0.23%0.05 0.33%¢.07 0.33%0.06
DLinear 0.27:|:U_15 1.65:|:1.07 4.63:|:3_09 8.76:|:5.86 9~4i6.26 13.33:|:&39 10~05i6,65
TSMixer 0.85ig‘03 3.15i0.69 7.57i1‘43 18.88i0‘49 15.12ﬂ:3‘85 18.76i2‘85 17.77i1(58
FreTS 0.1240.0 0.31%004 0.69%011  1.26%021 1.37+002  1.944¢30 1.5440 04
FiLM 0.06%0.01 0.09%0.01 0.124¢.01 0.19%0.02 0.25%+0.03  0.35%0.05 0.3440.05
Koopa Ooﬁigo 008i00 009i00 0.15i0'01 O.Zig.(n 0.27i0‘02 0.28i0.01
LSTM 0.61%001  1.7T4%g04  2.89%00s  4.06%000  4.162005  5.21d0 4434005
SCgRNN 1.32:|:0_17 4.98:t0_11 6.49:':[)_22 7.7:|:0_09 11.23i1_78 14.58i3_23 9.18i0_83
CHGH 0.36%0.01 0.49%¢.0 0.7%0.0 1.12+0.02 1.14+0o 2.11%¢.32 2.31%0.07
PreDyGAE 0.23%0.0 0.29%0.9 0.36%0.0 0.85%0.0 0.91%9.9 1.15%1 05 1.29%¢.72
Transformer 6.22i0_12 ]6.65ﬂ:0_08 27.9i0_14 38~45ﬂ:0_03 39.77:|:0_01 47.4ﬂ:0_02 40497ﬂ:0_01
Autoformer 15.11:|:2.51 3894:|:U()1 63.72:|:U.49 8256:&1&; 86.21:&1.22 10099i158 8783:t113
§ Informer 5.63ig.15 16.41ig'13 27.89i0‘o5 38.5ﬂ:0,03 39.79ﬂ:0‘01 47.36i0,01 40.98i0(0
Eu/ Reformer 5.62i0_05 ]6.45i0_05 27.96i0,11 38.58ﬂ:0,02 39.76ﬂ:0_03 47.38:|:0_02 40498ﬂ:0_02
E FEDformer 17.24+063  37.52%t077 64.93E£142 82.85%116 85.38%1.21 100.354034 87.74%01
® | NStransformer 0.21+¢ 0.28+¢.9 0.35+0.0 0.77+0.01 0.86+¢.9 1.694¢.0 1.244¢
PatchTST 0.21%001  0.28%002 0.35%003 0.75%00s  0.84%00s  1.65%01 1.2240.07
DLinear 2.21:|:1_49 6.05:|:4_1 10'27:|:6,97 14.16:&9,59 14.64i9_91 17.51:|:11>77 15.11i10_19
TSMixer 10.5i0.04 14.32i2'43 21.09i3'64 34.92i1.37 25v27i5.66 26.48:t3,26 31‘07i2,82
FreTS 0-47i0,02 0.96i0_07 1.56i0‘12 2.22i0‘17 2.29ig‘17 299i02 2.54j:0A17
FiLM 0.21%¢.0 0.28%.9 0.35%0.02 0.76+0.04  0.85%0.06 1.67+0.11 1.224¢ .05
Koopa 0.21%9.0 0.27+0.0 0.33%0.01  0.72%001  0.79%002  1.57%0.04 1.17%¢.01
LSTM 026i00 0.92i0.02 2.25i0.05 4.21i0'09 4.52i0'o5 6,5i0'11 5.0i0‘o5
SCgRNN 027i003 209i003 455i017 738i00(’, 111i163 1679i354 958i083
CHGH 0.19%¢.01 0.36%0.0 0.69%¢.0 1.24+0 .02 1.36%0.0 1.78%0.01 1.77%0.06
PreDyGAE 0.0giglo O.lgiglo 0.22i0.0 0.28i0,0 0.39i0,0 0.64:t0,27 0.57i0,3
Transformer O.Sli()‘oz 4.78i0_01 13.28ig‘04 251i00 26.89i0,01 38.12i(]‘()1 28471ﬂ:()‘01
—_ Autoformer 1.13:|:0_02 7.42:|:0_05 20.74:&0,1 38.35:&0,38 41.28i0_29 58.08i0_43 43‘84:‘:0_29
§ Informer O.75i0.02 4.74i0.02 1327i005 2512i00 26.9i0.01 38.1i0.01 2872i00
E Reformer 0.75i0101 4.75i0‘01 13.31i0‘02 25.16i0‘02 26,87i0‘01 38.12i0‘01 2872i00
< FEDformer 1.17:|:0_01 7.35:|:0_08 21.02:|:0.24 38.42:|:0_24 41.09i0_28 57.94i0_1 43484:5:0_[)3
E NStransformer 0.11+¢ ¢ 0.17+0.0 0.22+¢9 0.35+0.0 0.45+¢.9 0.61+¢.9 0.63+0.0
PatchTST 0.11i0.01 0.17i0.02 021i005 0.34i0‘09 044i[]1 0.59i[}}14 0.61i0,11
DLinear 0.43i0_19 2.58i1_39 719i40 13.59i7.59 14.59ig_11 20.67:‘:11,52 15462i8_62
TSMixer 0-92:|:U.03 4.05:|:0_67 1003:|:15() 23.97:&1.21 2146i426 276:&35 23.83:‘:1445
FreTS 0.22i0.01 0.59i0.07 1.31i0.21 2.4i0.41 2.63i0‘43 3.69i0‘62 2.95i0,4§
FiLM 0.11%002  0.17%g02  0.224002  0.36%003 0.46%00s 0.63%009  0.64=0.00
Koopa 0.1%0.9 0.15%0.01 0.18%0¢.01 0.28%.01 0.37%0.02 0.49%¢.03 0.5240.03
LSTM 43.76+035 81.48%p¢  85.53%¢64 91.34%035 93.23%¢15 97.48%0.09 96.6%0.07
SCgRNN 72.41i4‘5 96.92ig‘17 96.4i0.21 96.99ﬂ:0‘11 98.79ﬂ:0‘46 99.24j:0‘25 98.15i0(28
CHGH 27.4%07 37.6640.07 37.45%003 53.25%¢58 5H8.32%¢p03 80.91%5 07 70.8942.¢9
PreDyGAE 2064:|:U() 2883:|:UO 4002:|:U()1 4012:|:UO 475:|:UO 769i4231 6668:‘:5549
Transformer 97.99i0‘07 99.73i0,01 99.8ﬂ:0,0 99.89ﬂ:0‘o 99.92ﬂ:0‘0 99.97ﬂ:0,0 99.96:‘:0(0
| Autoformer 99.63+0.12  99.95%00  99.96t00 99.97E£00  99.98%00  99.99%¢,0 99.984.9
¥ | Informer 97.59%t0.12  99.72+09  99.8%0.0 99.89t00  99.92%00  99.97%¢0 99.9610.0
E‘,u) Reformer 97.57i0'03 99.72i0'01 99.81ﬂ:0,0 9989ﬂ:00 99.92ﬂ:0,0 9997j:00 99.96:‘:0,0
E FEDformer 99.75ﬂ:0‘02 99.95ﬂ:0_0 99.96ﬂ:0‘0 99.97ﬂ:g‘0 99.98ﬂ:0‘0 99.99i0A0 99498ﬂ:()‘0
§ NStransformer 16.44:t0,44 22.17:|:0_3] 19.66:&0,16 37~34:t0,26 45.81i0_26 75.98i0_13 61‘84:‘:0_13
PatchTST 16.32i0.88 21.85i1'31 19.5i1.44 36.66i1.59 44.97i1,95 75.59i0,49 6155i134
DLinear 78.33i15,19 95.41ﬂ:3,54 96.69ﬂ:2‘57 97.94ﬂ:1‘58 98.55ﬂ:1‘11 99~37i0,44 98.87ﬂ:0A84
TSMixer 99.29i0,02 99.61:|:0_13 99.64:|20_11 99.86:|:0_02 99.8:|20_11 99.85i0_0 99‘91:5:0_05
FreTS 34.81+143  61.32+303 66.35t308 T77.25%253 8l.dldsszr 92.32+:5 90.0541 64
FiLM 16494039 21.81%g7 19484005 36.444097 44.79%515 75.91t1046 61.27%505
Koopa 16.47:|:0,()4 21.47:|:0_18 18.71:|:0_07 35.58:|:0_07 43.65i0_38 75.85i2_58 61426:5:1_98

where a’ € p represents a job advertisement p containing the attribute a’ under granularity i. Similarly,

we can further define skill demand proportions R;]tk across multiple granularities {i, 7, ..., k} by
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calculating:
gk _ 2pep 15 €P) L' €pnral €pA.. Aa' €p)

— = . - b 6
s,t,a ZpEPt ]_(C(,Z eEpAhal EpA... A ak € p) ( )

where @ = {a’,a’, ...,aF}, a’ € A',a/ € A, ...,a* € A*, and R;th e RIAIATL- AT

Results We continue to utilize the benchmark models described in the main text for this task, and
the results, as shown in Table[T2] lead to the following conclusions: Firstly, the best-performing model
on the task of forecasting the proportion of skill demand is Koopa. This model, integrating time series
decomposition and Fourier transformations, effectively captures the distribution changes in demand
proportions. Secondly, there is a significant variation in performance across models in this task. For
example, models like DLinear perform poorly on this task, though they are reasonably effective
in skill demand forecasting. We analyze that predicting percentages is distinct from forecasting
skill demand, as percentage predictions are also influenced by the demand for other skills at the
same granularity. Therefore, simple linear models are not advantageous for capturing the complex
interrelations and influences among multiple pieces of information.

E Data Structure and Components

Our dataset comprises five components for each granularity level: job skill demand sequences, job
skill demand proportion sequences, ID mapping index, the indexes of skills with structural breaks,
and skill co-occurrence graph. Each component is structured as follows: (1) Job Skill Demand
Sequences: These are presented in tabular files, where each row represents a specific skill, and
each column corresponds to a different time slice (month). Each cell within the table contains a
numerical value that reflects the demand for the respective skill during that month. (ii) Job Skill
Demand Proportion Sequences: This component is also formatted in tabular files similar to the skill
demand sequences. However, each cell in these tables displays a value between 0 and 1, representing
the proportion of demand defined in Eq[6] This provides a normalized view of skill demand across
different granularities. (iii) ID mapping index: In the dataset, various elements such as regions,
occupations, companies, and skills are represented using unique identifiers (IDs) for the convenience
of experimentation and analysis. An index table is provided that maps each ID to the actual names
of regions, occupations, and skills, facilitating clear and effective data interpretation. The names of
companies, however, are withheld due to potential privacy concerns. This selective anonymization
ensures that while company-related data remains confidential, researchers can still access necessary
details about other variables. During the review period, we open part of id-to-entity mappings to
illustrate its use and structure. (iv) Indexes of skills with structural breaks: In the provided dataset,
data concerning skills that have experienced structural breaks are organized in JSON format. Each
granularity level is represented by a separate JSON file, which contains a list of indexes. These
indexes correspond to the skills that have undergone structural breaks and can be directly mapped to
the skill indexes in the skill demand sequences. The purpose of supplying this data is to facilitate
research on the demand trends of skills that have exhibited structural breaks, enabling a detailed
analysis of their demand dynamics over time. (v) Skill Co-occurrence Graph: This data is provided as
a set of triples (skill ID_1, skill ID_2, frequency of co-occurrence), forming a collection that outlines
the co-occurrence relationships between skills. Each triple indicates how frequently two skills are
mentioned or required together within the job advertisements in the training data, serving as a prior
knowledge graph to enhance predictive modeling by capturing relationships between skills.

F Datasheet for Datasets

F.1 Motivation

* For what purpose was the dataset created? The dataset in this paper was created specifi-
cally for the task of skill demand forecasting. The creation of this dataset aims to address
two primary objectives: first, to fill the existing gap in publicly available datasets for skill
demand forecasting; second, to offer a dataset that encompasses multiple levels of gran-
ularity. This diversity in granularity enables the possibility of predicting skill trends at
various levels of detail. By providing such a comprehensive dataset, researchers can gain
a more thorough understanding of and ability to predict changes in skill demand, thereby
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facilitating job seekers in finding suitable positions and aids recruiters in hiring the right
talent. Furthermore, this dataset can support the development of education, training, and
employment policies.

* Who created the dataset (e.g., which team, research group) and on behalf of which
entity (e.g., company, institution, organization)? Our dataset is jointly developed by a
collaborative effort from the following affiliations: University of Science and Technology
of China, Computer Network Information Center, Chinese Academy of Sciences, Institute
of Artificial Intelligence, Beihang University, and Artificial Intelligence Thrust, The Hong
Kong University of Science and Technology (Guangzhou).

* Who funded the creation of the dataset? This work was supported by University of Science
and Technology of China, Computer Network Information Center, Chinese Academy of
Sciences, and The Hong Kong University of Science and Technology (Guangzhou).

F.2 Composition

* What do the instances that comprise the dataset represent (e.g., documents, photos,
people, countries)? See the Section|E]

 How many instances are there in total (of each type, if appropriate)? We collected
millions of public job advertisements, covering 521 companies, 52 occupations, and 7
regions. We further extracted 2335 skills and tracked the monthly demand for these skills,
thus ultimately forming sequences of demand for 2335 skills over 36 months, broken down
by company, occupation, and region.

Does the dataset contain all possible instances or is it a sample (not necessarily random)
of instances from a larger set? Yes, the dataset encompasses an exhaustive collection
of job recruitment demands posted by various companies on online platforms. In the
subsequent data processing stages, we employed rule-based matching and Named Entity
Recognition (NER) models to extract as many relevant skill demands as possible from each
job advertisement. Additionally, we filtered out certain implausible skill terms based on skill
frequency analysis and manual review. Therefore, the dataset includes all possible instances
except for those terms deemed unreasonable and filtered out during the review process.

What data does each instance consist of? See the Subsection 3.1 and Section [El

Is there a label or target associated with each instance? Yes, given that our dataset is a
time series collection, it is structured for unsupervised learning. This means there are no
explicit labels or target variables associated with each instance. Instead, the data is used
to observe and analyze patterns over time, particularly in skill demand and relationships
between skills, without predefined outcomes or classifications.

Is any information missing from individual instances? N/A

Are relationships between individual instances made explicit (e.g., user movie ratings,
social network links)? We supplemented our analysis with a co-occurrence graph to
explicitly represent the relationships between skills based on their co-occurrence in various
contexts.

* Are there recommended data splits (e.g., training, development/validation, testing)?
Yes, we recommended the data split in Subsection 3.2.

* Are there any errors, sources of noise, or redundancies in the dataset? Yes. See the
Subsection 3.1

Is the dataset self-contained, or does it link to or otherwise rely on external resources
(e.g., websites, tweets, other datasets)? The dataset is self-contained for the tasks described
in the paper, which is collected from online websites. a) We can not ensure the linked
resources exist for a long time and consistent. b) There is no official archive related to the
linked resource. c¢) There are no restrictions.

Does the dataset contain data that might be considered confidential (e.g., data that is
protected by legal privilege or by doctor-patient confidentiality, data that includes the
content of individuals’ non-public communications)? No.

Does the dataset contain data that, if viewed directly, might be offensive, insulting,
threatening, or might otherwise cause anxiety? No.
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F.3 Collection Process

* How was the data associated with each instance acquired? See the Section 3.1.
¢ What mechanisms or procedures were used to collect the data? See Section 3.1.

« If the dataset is a sample from a larger set, what was the sampling strategy (e.g.,
deterministic, probabilistic with specific sampling probabilities)? No.

* Who was involved in the data collection process (e.g., students, crowdworkers, con-
tractors) and how were they compensated (e.g., how much were crowdworkers paid)?
We have collaborated with industry experts who have relevant experience to assist in data
annotation for skill dictionary construction. Their participation is voluntary and unpaid.

* Over what timeframe was the data collected? The raw data, consisting of job advertise-
ments, was collected over a period in the past three years.

* Were any ethical review processes conducted (e.g., by an institutional review board)?
No.

F.4 Preprocessing/cleaning/labeling

* Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucket-
ing, tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances,
processing of missing values)? Yes. See the Subsection 3.1.

¢ Was the “raw”’ data saved in addition to the preprocessed/cleaned/labeled data (e.g., to
support unanticipated future uses)? No.

* Is the software that was used to preprocess/clean/label the data available? No.

F.5 Uses

¢ Has the dataset been used for any tasks already? No.

¢ Is there a repository that links to any or all papers or systems that use the dataset? No.
What (other) tasks could the dataset be used for? N/A

¢ Is there anything about the composition of the dataset or the way it was collected and
preprocessed/cleaned/labeled that might impact future uses? N/A.

¢ Are there tasks for which the dataset should not be used? N/A.

F.6 Distribution

* Will the dataset be distributed to third parties outside of the entity (e.g., company,
institution, organization) on behalf of which the dataset was created? No. Our dataset
will be managed and maintained by our research group.

* How will the dataset will be distributed (e.g., tarball on website, API, GitHub)? The
evaluation dataset is released to the public and hosted on GitHub.

* When will the dataset be distributed? It has been released now.

* Will the dataset be distributed under a copyright or other intellectual property (IP)
license, and/or under applicable terms of use (ToU)? Our dataset will be distributed under
the CC BY-SA 4.0 license.

¢ Have any third parties imposed IP-based or other restrictions on the data associated
with the instances? No.

* Do any export controls or other regulatory restrictions apply to the dataset or to
individual instances? No.

F.7 Maintenance

* Who will be supporting/hosting/maintaining the dataset? The authors.

* How can the owner/curator/manager of the dataset be contacted (e.g., email address)?
By the email address.
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¢ Is there an erratum? N/A.

* Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete
instances)? Yes, the dataset is expected to be updated with additional job advertisements
collected over extended periods, potentially on a biannual basis. These updates will focus on
increasing our data volume over time. All updates will be made available and communicated
to dataset consumers via GitHub.

« If the dataset relates to people, are there applicable limits on the retention of the data
associated with the instances (e.g., were the individuals in question told that their data
would be retained for a fixed period of time and then deleted)? N/A.

¢ Will older versions of the dataset continue to be supported/hosted/maintained? We
plan to maintain the newest version only.

* If others want to extend/augment/build on/contribute to the dataset, is there a mecha-
nism for them to do so? Yes. Contact the authors of the paper.

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , , Oor
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

* Did you include the license to the code and datasets? [Yes] See Section X.

* Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] Please refer to the Abstract and Introduction sections.

(b) Did you describe the limitations of your work? [Yes] Please refer to dataset limitation
in Section 3.3.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] Pleas refer
to the Appendix

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes] This work adheres to the NeurIPS Code of Ethics in each respect.

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A ]

3. If you ran experiments (e.g. for benchmarks)...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] All the code,
data, and instructions needed to reproduce the main experimental results can be found
athttps://github.com/Job-SDF/benchmark,

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] We have provided the detailed implementation descriptions in the
Appendix.

(c) Did you report error bars (e.g., with respect to the random seed after running ex-
periments multiple times)? [Yes] Due to the page limit, we report error bars in the
Appendix.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUgs, internal cluster, or cloud provider)? [Yes] The experimental environment is
reported in the Appendix.
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4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] We have cited the
original paper that produced the code package.

(b) Did you mention the license of the assets? [Yes] We have stated the detailed version
and license of each asset. See the Appendix for the details.

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
We have released a new dataset and the codes for the benchmark models.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes] Please refer to the Appendix.

(e) Did you discuss whether the data you are using/curating contains personally identifi-
able information or offensive content? [Yes] The proposed dataset does not contain
personally identifiable information or offensive content. See the Appendix for the
details.

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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