
Published as a Tiny Paper at ICLR 2023

UNSUPERVISED DETECTION OF CELL ASSEMBLIES
WITH GRAPH NEURAL NETWORKS

Roman Koshkin
Neural Coding and Brain Computing Unit
Okinawa Institute of Science and Technology
Okinawa, Japan
roman.koshkin@oist.jp

Tomoki Fukai
Neural Coding and Brain Computing Unit
Okinawa Institute of Science and Technology
Okinawa, Japan
tomoki.fukai@oist.jp

ABSTRACT

Cell assemblies, putative units of neural computation, manifest themselves as re-
peating and temporally coordinated activity of neurons. However, understanding
of their role in brain function is hampered by a lack of scalable methods for their
unsupervised detection. We propose using a graph neural network for embedding
spike data into a sequence of fixed size vectors and clustering them based on their
self-similarity across time. We validate our method on synthetic data and real
neural recordings.

1 INTRODUCTION

Cell assemblies (Hebb, 1949) are observed as patterns of neural activity that repeat themselves
with a high degree of similarity across time. However, their intrinsic variability (inexact relative
timing, deletions or additions of spikes) makes it challenging to detect them without a behavioral
reference (such as the position of the animal in space). While popular methods like PCA and ICA
are certainly useful, they only capture temporally correlated activity of large groups of neurons but
disregard the relative order of spikes. Attempting to overcome this limitation, a variety of meth-
ods have been proposed ranging from edit similarity-based template matching (Watanabe et al.,
2019) and transport-based clustering (Grossberger et al., 2018) to convolutional non-negative ma-
trix factorization (Mackevicius et al., 2019; Peter et al., 2016) and point process models (Williams
et al., 2020). Unique from previous approaches, here we treat neural data as a sequence of directed
weighted graphs, each of which is transformed with a graph neural network into fixed-size em-
beddings and clustered using a standard clustering algorithm. By representing data as graphs, our
method leverages the natural sparsity of neural activity, and should scale well to very large datasets.
We demonstrate the performance of the method on synthetic and real data.

2 METHOD

Data preparation. We start with a recording of N neurons for T time steps, X ∈ {0, 1}N×T , such
that Xn,t = 1 if there is a spike at time t on the n-th neuron and Xn,t = 0 otherwise. This matrix is
then segmented into M overlapping windows G(t) = X:,t:t+w, t ∈ {0, k, 2k, . . . ,M},M = T//k,
w = 200 is the window length in samples and k = 4 is the number of time steps between two
adjacent windows. Each of the windows is converted into a weighted directed graph G(t), in which
the nodes represent spikes, and the edge weights from the i-th to the j-th neuron are a function of
time difference ∆t between two consecutive spikes on those neurons. In this paper we calculated
edge weights as e−∆t/τ , with τ = 25, to emphasize the contribution of spikes that occur in close
temporal proximity. For any two spikes on neurons i and j, the edge weight is non-zero if ti < tj . If
more than two spikes occur between the same pair of neurons, the weight of the edge between them
is the sum of the contributions of all the spikes within that window. The nodes (neuron indices) are
encoded as integers {0, . . . , N − 1}.

Model. We use a stack of 3 graph convolution layers (Kipf & Welling, 2016) with output dimensions
of 10, 10 and 6, respectively, each followed by an ELU non-linearity. Neuron indices are converted

1



Published as a Tiny Paper at ICLR 2023

to 10-D vectors using an embedding layer. Since each window of the original data contains a varying
number of spikes (hence a different number of nodes in the corresponding graph), we use a global
average pooling layer on top of the GCN stack to obtain a fixed size embedding for each graph.

Training. We fit the model using the AdamW optimizer with default parameters to minimize
the following loss function: L(θ) = XE(Z,y) + βTV (Z), where XE(Z,y) is the cross-
entropy loss between the embeddings and their cluster assignments (recalculated at the begin-
ning of each epoch using K-means (K = 6) as in (Caron et al., 2018; Hsu et al., 2021)) and
TV (Z) =

∑6
i=1

∑M−1
t=1 (Zt,i − Zt+1,i)

2 is the total variation of the embeddings over time, which
encourages temporal consistency of the class labels. Using K-means cluster assignments as targets
guides the optimization towards a representation in which similar patterns are close, while different
ones are well separated. We set β to 0.1 and continue training until the cross-entropy loss plateaus.

3 RESULTS

Synthetic data. To facilitate fair comparison of the model’s performance on real and synthetic data,
the synthetic dataset was made to match the properties of the real CA1 recording we consider in the
next subsection. We embedded 3 artificial spike patterns into a binary matrix of background activity
X ∈ {0, 1}N×T (N=452, T=18137) obtained by permuting inter-spike intervals of the CA1 dataset
(ensuring that the synthetic and real datasets had approximately the same spike statistics). Each of
the artificial patterns was a temporally jittered (std=10 time steps) sequence of 100 spikes: one spike
per neuron per time step. The patterns were pruned by dropping spikes with a probability of 0.2.

0 500 1000 1500 2000 2500 3000 3500 4000

Time step

0

100

200

300

400

N
eu

ro
n

ID
s

A

0 500 1000 1500 2000 2500 3000 3500 4000

Time step

B

0.2 0.4 0.6

spike dropout prob.

[]

C

20 40

spike jitter

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

A
U

C

D

K-means cluster IDs

0

1

2

3

4

5
K

m
ea

n
s

cl
u

st
er

ID
s

Figure 1: The presence of self-consistent clusters (colored dots) indicates statistically significant
patterns. The detections roughly correspond to patterns in synthetic data (A) and similar portions
of place cell sequences in real CA1 data (B). The detections appear earlier than the corresponding
patterns because Gt is computed from X:,t:t+w. For details on significance testing, see Appendix
A. The neurons are sorted to reveal the patterns, but this is not required for the method to work.
(B) and (C) show the models performance as a function of temporal spike jitter and spike dropout,
respectively.

Real data. We used data from (Rubin et al., 2019) recorded from the area CA1 of a mouse running
on a linear track to collect water rewards. With the same hyperparameters as for the synthetic data,
the model was able to distinguish sequential activity of place cells (Fig 1A) with similar spatial
tuning (although with a lower accuracy, which is likely due to the animal’s non-constant speed on
the track).

4 CONCLUSIONS AND FUTURE DIRECTIONS

We proposed a method for unsupervised detection of patterned neural activity, which rep-
resents spike data as a sequence of directed weighted graphs. Given the natural sparsity
of cortical neurons, this approach might offer superior performance and enhanced sensitiv-
ity compared to other methods. However, establishing whether that is the case requires
rigorous speed benchmarking, which we leave to future work. The code is available at
https://github.com/RomanKoshkin/GraphEx.

2



Published as a Tiny Paper at ICLR 2023

URM STATEMENT

The authors acknowledge that at least one of the authors of this work meets the URM criteria of
ICLR 2023 Tiny Papers Track.

REFERENCES

Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering for un-
supervised learning of visual features. In Proceedings of the European conference on computer
vision (ECCV), pp. 132–149, 2018.

Lukas Grossberger, Francesco P Battaglia, and Martin Vinck. Unsupervised clustering of tempo-
ral patterns in high-dimensional neuronal ensembles using a novel dissimilarity measure. PLoS
computational biology, 14(7):e1006283, 2018.

Donald O Hebb. The first stage of perception: growth of the assembly. The Organization of Behav-
ior, 4(60):78–60, 1949.

Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov,
and Abdelrahman Mohamed. Hubert: Self-supervised speech representation learning by masked
prediction of hidden units. IEEE/ACM Transactions on Audio, Speech, and Language Processing,
29:3451–3460, 2021.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Emily L Mackevicius, Andrew H Bahle, Alex H Williams, Shijie Gu, Natalia I Denisenko, Mark S
Goldman, and Michale S Fee. Unsupervised discovery of temporal sequences in high-dimensional
datasets, with applications to neuroscience. Elife, 8:e38471, 2019.

Sven Peter, Daniel Durstewitz, Ferran Diego, and Fred A Hamprecht. Sparse convolutional coding
for neuronal ensemble identification. arXiv preprint arXiv:1606.07029, 2016.

Alon Rubin, Liron Sheintuch, Noa Brande-Eilat, Or Pinchasof, Yoav Rechavi, Nitzan Geva, and
Yaniv Ziv. Revealing neural correlates of behavior without behavioral measurements. Nature
communications, 10(1):4745, 2019.

Keita Watanabe, Tatsuya Haga, Masami Tatsuno, David R Euston, and Tomoki Fukai. Unsupervised
detection of cell-assembly sequences by similarity-based clustering. Frontiers in Neuroinformat-
ics, pp. 39, 2019.

Alex Williams, Anthony Degleris, Yixin Wang, and Scott Linderman. Point process models for
sequence detection in high-dimensional neural spike trains. Advances in neural information pro-
cessing systems, 33:14350–14361, 2020.

A STATISTICAL TESTING

Statistical testing. We consider a pattern as statistically significant if it is self-consistent across 90
% of model instantiations (each of which initialized with the same hyperparameters, but different
weights and cluster centroids, and trained for the same number of epochs on the same data) (Fig.
2, 3 and 4). The self-consistency here means that strong patterns will produce very similar cluster
transitions over time (although their integer labels are not guaranteed to be the same). To clarify
this further, consider the case with one expected pattern (we set K = 2 to allow one extra cluster
for background activity). We train the model several times, and for each training run we obtain
a sequence embeddings {et} ∈ R2 and their corresponding cluster assignments {ct} ∈ {0, 1},
t ∈ {1, . . . , T}. Then, using one of the embedding vectors from the first run as a reference, we select
embedding vectors that have the highest correlation with the reference one. Finally, we stack the
vectors of cluster assignments corresponding to the embedding vectors selected before and average
them over the model runs. The resulting average vector provides a measure of consistency of patterns
detected in different model runs (Fig. 4, 3). Conveniently, the model’s relatively small size (4842

3



Published as a Tiny Paper at ICLR 2023

0

5

10

15

In
st

an
ti

at
io

n
ID

0 50 100 150 200 250 300 350 400

Time step

0

1

S
el

f-
co

n
si

st
en

cy

Figure 2: Schematic illustration of the procedure to test pattern significance. Top: binary matrix
each row of which indicates the time steps at which the model assigned the corresponding graph to
the cluster that happened to have the highest similarity with the reference (top row, red). The average
over the rows of that matrix (bottom) provides a measure of self-consistency of the reference pattern.
Dotted line marks the significance criterion.

parameters) enables training dozens of its instantiations quite quickly on a modern GPU (training
for 150 epochs, which is sufficient for convergence, epochs takes about 40 s on an NVIDIA RTX
A6000). The self-consistency criterion we enforce in this paper (90 %) can be relaxed depending on
the nature of data and the level of confidence desired.

0

2

4

6

8

M
o
d

el
ru

n
s

0

1

0 5000 10000 15000

Time step

0

100

200

300

400

N
eu

ro
n

ID
s

0.0

0.2

0.4

0.6

0.8

1.0

C
on

si
st

en
cy

of
cl

u
st

er
as

si
gn

m
en

ts
ac

ro
ss

m
o
d

el
ru

n
s

Clust. consistency

Significant clusters

significance thresh.

Figure 3: Illustration of the statistical testing procedure. Top: final cluster assignments in 10 model
instantiations. Reference cluster assignments (Run 0) are in the top row. Bottom: training spike
data, average cluster assignments over model runs and statistical significance threshold (horizontal
dashed line). Significant pattern detections are marked with blue round markers.

B DETECTING PATTERNS IN SONGBIRD DATA

Additionally we tested our method on the songbird HVC dataset from Williams et al. (2020), and
for comparison we also provide the same results obtained with PP-Seq (Fig. 7) and seqNMF (Fig.
6).

C SPEED COMPARISONS

We compared run times of our model to those of two other models (Table 1). Our model was fit
for 150 epochs on a dataset of 452 neurons and 18137 timesteps with sequences of 100 neurons
embedded every 450 timesteps (with a jitter of 10 timesteps and a spike dropout probability of 0.2).
The seqNMF and PP-seq were fit with default parameters on the same data. For all the three models
we used the same machine (Xeon Gold 6226R CPU @ 2.90GHz with 32 cores, 96GB of RAM).

4



Published as a Tiny Paper at ICLR 2023

0

2

4

6

8

M
o
d

el
ru

n
s

0

1

0 5000 10000 15000

Time step

0

100

200

300

400

N
eu

ro
n

ID
s

0.2

0.4

0.6

0.8

1.0

C
on

si
st

en
cy

of
cl

u
st

er
as

si
gn

m
en

ts
ac

ro
ss

m
o
d

el
ru

n
s

Clust. consistency

Significant clusters

significance thresh.

Figure 4: Same as above, but with null data (i. e. containing no patterns). Notice the two spurious
pattern detections suggesting that the significance threshold of 90% should be increased.

0

10

20

30

40

50

60

70

N
eu

ro
n

ID
s

0.0

0.5

1.0

P
ro

x
im

it
y

to
ce

n
tr

oi
d

0

6000 8000 10000 12000 14000

Time step

0.0

0.5

1.0

P
ro

x
im

it
y

to
ce

n
tr

oi
d

1

0.0

0.5

1.0

1.5

2.0

K
m

ea
n

s
cl

u
st

er
ID

sK-means cluster IDs

Figure 5: The songbird dataset contains two patterns. Our model was able to determine the times at
which the patters were expressed.

Table 1: Speed comparisons. Standard deviations over 10 runs are in brackets.

Method Run time

Ours 39.3 (0.32) s
PP-Seq (Williams et al., 2020) 39.3 (0.14) s
seqNMF (Mackevicius et al., 2019) 1058 (9.8) s

5



Published as a Tiny Paper at ICLR 2023

0

10

20

30

40

50

60

70

N
eu

ro
n

ID
s

0.0

0.1

H
(0

)

6000 8000 10000 12000 14000

Time step

0.0

0.2

H
(1

)

Figure 6: Same as Fig. 5, seqNMF. Bottom panels: temporal loadings of the two patterns.

6000 8000 10000 12000 14000

Time step

0

10

20

30

40

50

60

70

N
eu

ro
n

ID
s

Figure 7: Same as Fig. 5, PP-Seq. Colors indicate pattern assignments.

6


	Introduction
	Method
	Results
	Conclusions and Future Directions
	Statistical testing
	Detecting patterns in songbird data
	Speed comparisons

