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Abstract. Accurate registration of intraoral scans (I0S) and cone-beam
computed tomography (CBCT) is a critical prerequisite for precise diag-
nosis and treatment planning in dentistry. However, large modality dis-
crepancies and dense point clouds make this task challenging in practice.
In this work, we propose a learning-based framework for CBCT-10S
registration, developed in the context of the MICCAI STSR Task 2
2025 Challenge. Our method leverages dual PointNet+-+ encoders to
extract modality-specific features, followed by a differentiable SVD head
that execute rigid-body constraints in the predicted transformation. To
enhance robustness, we design geometric data augmentation strategies,
while point cloud sampling and simplification are employed to accelerate
inference. Ablation studies demonstrate that augmentation substantially
reduces registration errors, while relaxing CBCT filtering thresholds fur-
ther improves alignment by preserving richer anatomical cues. Overall,
our approach achieves competitive performance, ranking second on the
validation leaderboard, and provides a practical balance between accu-
racy and efficiency.
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1 Introduction

Three-dimensional registration of dental data plays a crucial role in computer-
aided diagnosis, treatment planning, and surgical guidance [3,9]. In clinical prac-
tice, intraoral scans (IOS) provide high-resolution crown geometry, while cone-
beam computed tomography (CBCT) offers comprehensive information on both
crowns and roots [14]. Accurate alignment of these heterogeneous modalities is
essential for integrating complementary anatomical details, thereby enhancing
the precision and reliability of dental treatment [12]. To promote the develop-
ment of robust registration algorithms, the MICCAI STSR 2025 Challenge Task
2 was organized to benchmark algorithms that can effectively handle multi-modal
data discrepancies and to encourage practical solutions that may translate into
real-world clinical applications.
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Despite its importance, CBCT-IOS registration remains a challenging task.
The two modalities differ substantially in terms of resolution, field of view, and
information content [8]. IOS captures only the visible crowns with fine detail
but lacks root structures, whereas CBCT provides full jaw coverage but con-
tains significant noise and redundant information. These discrepancies introduce
difficulties in establishing reliable correspondences and estimating robust trans-
formations. Moreover, limited availability of paired ground-truth annotations
further complicates the training of data-driven approaches.

Recent advances in deep learning have achieved remarkable success across
imaging tasks [11,2,7,10]. Researchers have increasingly applied deep learning
methods to multi-modal 3D registration problems [8]. Such methods alleviate
the need for handcrafted descriptors and have achieved promising results in var-
ious medical imaging domains. However, deep learning-based approaches often
require large annotated datasets [15,4], and their inference pipelines may still suf-
fer from inefficiency due to the high dimensionality of volumetric data and dense
point clouds. Therefore, it remains an open question how to design a framework
that is both accurate and computationally efficient [6,5].

In this work, we propose a learning-based registration framework specifically
designed for CBCT-IOS alignment in the MICCAI STSR 2025 Challenge. Our
method employs PointNet++ encoders to extract modality-specific features from
IOS and CBCT point clouds [13], followed by a transformation head based on
singular value decomposition (SVD) that enforces rigid-body constraints in the
predicted matrix [18]. To enhance robustness, we incorporate extensive data aug-
mentation during training, enabling the model to generalize well across diverse
clinical cases. Additionally, we use point cloud sampling and simplification to ac-
celerate inference, reducing computational overhead and enabling fast inference
without compromising accuracy. As a result, we achieve competitive performance
on the validation leaderboard. Our contributions can be summarized as follows:

e We design data augmentation strategies to improve model robustness and
registration accuracy under diverse clinical conditions.

e We adopt point cloud sampling and simplification techniques to accelerate
inference while maintaining accuracy.

e Our method achieves second place on the validation leaderboard of the STSR
2025 Task 2, demonstrating both effectiveness and efficiency.

2 Method

2.1 Framework Overview

Figure 1 illustrates the overall architecture of our proposed framework for CBCT-
IOS registration. The framework follows a learning-based paradigm that takes
as input two point clouds: one sampled from the IOS mesh and the other from
the CBCT volume. Both point clouds are independently encoded by two Point-
Net+-+ encoders, which are responsible for extracting hierarchical geometric fea-
tures. The extracted features are subsequently aligned through a feature match-
ing module, followed by a SVD head that estimates the rigid transformation
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matrix between the two modalities. This transformation is then used to map
the IOS points into the CBCT coordinate system. During training, multiple loss
terms are employed to jointly supervise the transformation prediction, including
point-based losses, Chamfer distance, and penalties on rotation and translation.
This design ensures that the model captures both global and local geometric
correspondences in a computationally efficient manner.
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Fig. 1. Overview of our registration model. CBCT scans and intraoral scans are sepa-
rately processed by PointNet++-, followed by feature matching and rigid transformation
estimation using SVD. The predicted transformation is applied to align the intraoral
scans with CBCT data.
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2.2 Data Augmentation

To enhance the robustness and generalization of the proposed model, we em-
ployed a series of data augmentation strategies tailored to 3D point clouds.
Specifically, random rigid transformations, including rotations and translations,
were applied independently to both the IOS-derived point sets. These augmen-
tation techniques enrich the diversity of the training dataset and mitigate the
risk of overfitting, particularly in scenarios where annotated data is limited.

To better illustrate the effectiveness of our augmentation strategies, Figure 2
provides a visual example. The first column presents the original CBCT and 10S
pairs prior to augmentation, while the subsequent three columns demonstrate
augmented versions of the same case. These examples highlight how the applied
transformations produce diverse yet clinically plausible variations, enabling the
model to learn invariances that are essential for accurate and robust registration.

Original Augmented Sample A Augmented Sample B Augmented Sample C
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Fig. 2. The visualization of data augmentation strategies. The first column shows the
original CBCT and IOS pairs, while the subsequent columns display augmented ver-
sions of the same case, demonstrating the diverse and clinically plausible variations
produced by the applied transformations.

2.3 Model Training

The training of our framework follows a fully supervised paradigm, where the
objective is to learn accurate rigid transformations between CBCT and 10S
point clouds. A central component of the architecture is the feature extraction
stage, implemented via PointNet++ encoders. PointNet+-+ extends the original
PointNet architecture by introducing hierarchical feature learning, where local
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neighborhood information is progressively aggregated at multiple scales. This de-
sign allows the network to capture both fine-grained geometric details and global
structural context, which is essential for modeling complex dental anatomy. In
our framework, two independent PointNet++ encoders are employed, one for the
CBCT point cloud and the other for the IOS point cloud. These dual encoders
extract modality-specific features while preserving their geometric consistency.

The extracted feature representations are then passed to the transformation
estimation module, referred to as the SVDHead. This module aligns the latent
embeddings of the two modalities by constructing a correspondence matrix and
applying a differentiable SVD. The SVDHead directly estimates the optimal
rigid transformation matrix, decomposed into a rotation matrix and a translation
vector, which maps the I0S point cloud onto the CBCT reference. Compared
with regression-based alternatives, the SVD-based formulation offers improved
stability and guarantees the orthogonality of the predicted rotation matrix.

Optimization is performed using the Adam optimizer. During training, the
network parameters are updated to minimize a composite loss function that
jointly enforces geometric alignment and transformation accuracy, which will be
detailed in the following subsection. This training strategy tries the network to
converge reliably and generalize well to unseen test data.

2.4 Loss Function

To achieve robust and accurate registration, we adopt a composite loss function
that integrates multiple complementary objectives. Each component of the loss
is designed to address a specific aspect of the alignment problem, ensuring both
local geometric consistency and global rigid transformation accuracy.

Point Loss. This term enforces point-wise consistency between the transformed
source point cloud f’src and the ground truth aligned point cloud Pg;. It is for-
mulated as a mean squared error (MSE), directly penalizing local misalignments:

1 N
Epoint = N Z
=1

Chamfer Distance. To capture global shape similarity, we compute the bidi-
rectional Chamfer distance between the predicted source Pg,.. and the target
CBCT Ptgt:

2
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This term encourages the transformed point sets to occupy the same geometric
space.
Rotation Loss. We explicitly constrain the predicted rotation R to be consis-
tent with the ground truth Rg:. This is measured by the geodesic distance on
SO(3):

2
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Lot = arccos (r(gt)> .
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Translation Loss. As translation misalignment often dominates registration
error in clinical practice, we emphasize translation accuracy by computing the
Euclidean distance between the predicted ¢ and ground truth ¢ translation
vectors:

f—tols.

Matrix Regularization. To ensure the predicted transformation matrix re-
mains a valid rigid body transformation, we introduce a regularization term
that penalizes deviations from orthogonality and unit determinant:

‘Ctrans =

i 2
Lonar = |[RTR=1][ .
F
Overall Loss. The total loss integrates all components in a weighted sum:

L= )\p : Lpoint + A(: : Echamfer + )\r : Erot + /\t : Etrans + >\m : Ernaty

Where, the weighting coefficients A, = 0.5, A = 1.0, A\, = 1.0, A\ = 3.0, and
Am = 0.3 are employed. The relatively higher weight assigned to the translation
loss reflects its critical importance for achieving clinically meaningful registration
accuracy.

2.5 Inference Acceleration

To ensure computational efficiency and enable practical deployment, we imple-
mented a point cloud sampling and simplification strategy. During inference,
the original CBCT scans often produce dense point sets, which substantially
increase computational cost without proportionally improving accuracy. To ad-
dress this, we uniformly subsampled the CBCT point clouds to a fixed number
of points, while IOS meshes were converted to point clouds with a comparable
resolution. This design ensures balanced complexity between modalities, reduces
GPU memory consumption, and accelerates inference speed.

Importantly, this balance between efficiency and precision makes the frame-
work more applicable in real-world clinical scenarios, where both accuracy and
time efficiency are crucial.

3 Experiments and Results

3.1 Dataset and Assessment Metrics

The dataset provided by the STSR 2025 challenge comprises paired CBCT vol-
umes and IOS meshes [17,16]. In the training phase, two subsets are available:
a labeled set, where each CBCT-IOS pair is annotated with an affine trans-
formation matrix aligning the upper and lower dentition, and an unlabeled set
containing paired CBCT volumes and IOS meshes. In addition, a validation
set is released without annotations, serving as the benchmark for leaderboard
evaluation.
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For quantitative evaluation, two complementary metrics are used: the mean
translation error, which measures the Euclidean distance between predicted and
ground-truth translation vectors, and the mean rotation error, computed as the
geodesic distance between the predicted and reference rotation matrices. These
metrics directly reflect the fidelity of the registration outcome, with lower values
indicating higher accuracy. Although computational efficiency, such as inference
time and GPU memory usage, is not explicitly scored in the validation phase due
to the limitations of the challenge platform, it remains a practical consideration
when deploying the methods in real clinical workflows.

3.2 Implementation details

Environments and Requirements. All experiments were conducted on a
workstation, and the details of the hardware and software configuration are
summarized in Table 1. The model was trained using the PyTorch framework
for a total of 200 epochs.

Table 1. System Configuration

Ubuntu version Ubuntu 24.04 LTS

CPU Intel(R) Xeon(R) Platinum 8352S CPU @ 2.20GHz
RAM 503 GB

GPU 1 NVIDIA GeForce RTX 4090 (24G)

CUDA version 12.4

Programming language |Python 3.9.19

Deep learning framework|PyTorch (torch 1.12.1, torchvision 0.19.1)

Codes available at https://github.com/duola-wa/MICCAI-2025-STSR-Task-2

3.3 Results and Analysis

To evaluate the effectiveness of our method, we present a series of ablation
studies focusing on different design choices. As shown in Table 2, applying data
augmentation substantially improves registration accuracy. Both translation and
rotation errors are reduced, highlighting the importance of introducing geomet-
ric variability during training. By exposing the model to diverse transformations,
augmentation enhances robustness to unseen cases and prevents overfitting, lead-
ing to a more generalizable registration framework.

Table 2. Effect of data augmentation on registration accuracy.

Setting Mean Translation Error (mm) Mean Rotation Error (°)
w/0o Augmentation 230.80 37.54
w/ Augmentation 165.57 24.00
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As shown in Table 3, incorporating Iterative Closest Point (ICP) refinement
reduces the mean translation error relative to the baseline prediction [1]. How-
ever, given the limited overall gain and additional computational cost, ICP was
not included in our final pipeline.

Table 3. Effect of ICP refinement on registration accuracy.

Method|Mean Translation Error (mm)|Mean Rotation Error (°)
w/o ICP 165.57 24.00
w/ ICP 157.68 43.56

Table 4 further compares the performance under different CBCT filtering
thresholds. The threshold refers to the intensity cutoff applied to CBCT voxels
when extracting point clouds. A higher threshold retains densest regions such
as enamel and cortical bone, while a lower threshold preserves a larger portion
of anatomical structures, including lower-density bone. Relaxing the criterion
from 800 to 600 therefore increases the number of target points available for
alignment, which leads to a modest improvement in both translation and rotation
accuracy. This suggests that incorporating a richer set of structural cues benefits
the registration process.

Table 4. Effect of CBCT filtering threshold on registration accuracy (w/o ICP).

Filtering Condition|Mean Translation Error (mm)|/Mean Rotation Error (°)

CBCT > 800 165.57 24.00
CBCT > 600 164.46 23.71

4 Conclusion

In this paper, we present a learning-based framework for CBCT-IOS registra-
tion, tailored to the MICCAI STSR Task 2 2025 Challenge. The framework
integrates dual PointNet++ encoders with a differentiable SVD head to esti-
mate rigid transformations under orthogonality constraints. By leveraging tai-
lored data augmentation and efficient point cloud sampling, our approach seeks
to balance accuracy and inference speed. Experimental results demonstrate the
effectiveness of the proposed augmentation strategies. Ultimately, our method
achieved second place on the validation leaderboard. These results highlight
the potential of our framework for clinical applications that demand rapid and
reliable responses. In future work, we plan to further explore semi-supervised
strategies to better leverage unlabeled data and to investigate lightweight archi-
tectures that further reduce computational overhead for deployment in clinical
settings.
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