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ABSTRACT

Detecting out-of-distribution (OOD) input samples at the time of inference is a key
element in the trustworthy deployment of intelligent models. While there has been
tremendous improvement in various variants of OOD detection in recent years,
detection performance under adversarial settings lags far behind the performance
in the standard setting. In order to bridge this gap, we introduce RODEO, a data-
centric approach that generates effective outliers for robust OOD detection. More
specifically, we first show that targeting the classification of adversarially perturbed
in- and out-of-distribution samples through outlier exposure (OE) could be an effec-
tive strategy for the mentioned purpose, as long as the training outliers meet certain
quality standards. We hypothesize that the outliers in the OE technique should
possess several characteristics simultaneously to be effective in the adversarial
training: diversity, and both conceptual differentiability and analogy to the inlier
samples. These aspects seem to play a more critical role in the adversarial setup
compared to the standard training. propose an adaptive OE method to generate
near-distribution and diverse outliers by incorporating both text and image domain
information. This process helps satisfy the mentioned criteria for the generated
outliers and significantly enhances the performance of the OE technique, partic-
ularly in adversarial settings. Our method demonstrates its effectiveness across
various detection setups, such as novelty detection (ND), Open-Set Recognition
(OSR), and OOD detection. Furthermore, we conduct a comprehensive comparison
of our approach with other OE techniques in adversarial settings to showcase its
effectiveness.

A widespread assumption in model development in machine learning is that the test data is drawn
from the same distribution as the training data, known as the closed-set assumption. However, during
inference, models may encounter a wide variety of anomalous data, significantly deviating from the
in-distribution (1; 2; 3). This phenomenon creates issues in safety-critical applications, which require
the detection and distinct treatment of outliers (4). Detection of such inputs has various flavors, such
as ND, OOD detection, and OSR, and several techniques have been developed for each of these
problem setups (3; 5; 6).

Robustness against adversarial attacks is another important ML safety problem in real-world model
development. Adversarial attacks are the imperceptible input perturbations that are designed to cause
the model to make incorrect predictions (7; 8; 9). Despite the emergence of many promising outlier
detection methods in recent years (10; 11; 12), they often suffer significant performance drops when
subjected to adversarial attacks, which aim to convert inliers into outliers and vice versa. In light of
this, recently, several robust outlier detection methods have been proposed (13; 14; 15; 16; 17; 18;
19; 20). However, their results are still unsatisfactory, sometimes performing even worse than random
detection, and are often focused on simplified cases of outlier detection rather than being broadly
applicable. Motivated by this, we aim to provide a robust and unified solution for outlier detection
that can perform well in both clean and adversarial settings.

Adversarial training, which is the augmentation of the training samples with adversarial perturbations,
is among the best practices for making the models robust. However, this approach is less effective in
outlier detection, as OOD patterns are unknown during training, thus preventing the training of models
with adversarial perturbations associated with these outliers. For this reason, recent robust outlier
detection methods use the Outlier Exposure (OE) technique (21) in combination with adversarial
training to tackle this issue (13; 15; 20). In OE, the auxiliary outlier samples are typically obtained
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Figure 1: In this experiment, we aimed to reproduce the ALOE and ATD methods for OOD detection
on the CIFAR10 vs CIFAR100 task. The original implementations of ALOE and ATD utilize the Tiny
ImageNet dataset as an auxiliary outlier dataset during training to improve robust detection. Without
changing any other component, we replaced the Tiny ImageNet auxiliary outlier set with SVHN,
MNIST, and Gaussian noise and repeated the experiments. This replacement significantly degraded
the OOD detection performance of ALOE and ATD on the cifar10 vs cifar100 task, especially under
adversarial attacks. We attribute this performance drop to the fact that the SVHN, MNIST, and
Gaussian Noise distributions are more distant from CIFAR10 (the inlier distribution here) compared
to Tiny ImageNet. Our results underscore the importance of using an auxiliary outlier dataset with
a distribution closely related to the inlier distribution during adversarial training for robust OOD
detection.

from a random and fixed dataset and are leveraged during training as samples of OOD. It is clear that
these samples should be semantically different from the inlier training set to avoid misleading the
detection.

We assert that in adversarial settings, the OE technique’s performance is highly sensitive to the
distance between the exposed outliers and the inlier training set distributions. As illustrated in Fig. 1,
when two SOTA robust detection methods, ALOE (15) and ATD (13), utilize Tiny ImageNet (22) as
auxiliary outlier samples for the CIFAR10 vs. CIFAR100 OOD detection task, the clean detection
and more significantly adversarial detection performance improves compared to using MNIST (23)
as the auxiliary outlier dataset. This suggests that an OE dataset closer to the in-distribution is
significantly more beneficial than a distant one. This observation aligns with (24), which suggests
that incorporating data near the decision boundary leads to a more adversarially robust model in the
classification task.

Simultaneously, numerous studies (25; 26) have demonstrated that adversarial training demands a
greater level of sample complexity relative to clean settings. Thus, several pioneering efforts have
been made to enrich the data diversity, either by incorporating synthetic data (27; 28; 29; 30; 31; 32),
or utilizing augmentation techniques (33; 34; 35; 36; 37; 38) to enhance the adversarial robustness.
These observations prompt us to propose the following: For adversarial training to be effective in
robust OOD detection, the set of outliers in OE methods needs to be diverse,” near-distribution,” and

“conceptually distinguishable” from the inlier samples.

By ’near-distribution outliers,’ we refer to data that possess semantically and stylistically related
characteristics to those of the inlier dataset. If the outliers are not near-distribution, the classification
boundary would be misplaced in the input space, causing a distribution shift on the adversarial
perturbations of the outlier samples compared to those of the real anomalies. We have conducted
numerous extensive ablation studies (sec. 5), and provided theoretical insights (sec. 2, 10) to
offer evidence for these claims. Driven by the mentioned insights, we propose Robust Out-of-
Distribution Detection via Exposing adaptive Outliers (RODEO), a method that leverages an adaptive
OE strategy. This strategy is a data generation technique that conditions the generation process based
on information from the in-distribution samples.

Although some previous works (13; 20; 39; 40) have proposed conditional generation techniques for
crafting more adaptable auxiliary outliers compared to traditional methods using random outlier
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datasets, these efforts have not yielded satisfactory results. Our hypothesis is that this can be
attributed to their limited consideration of information solely in the image domain for conditioning.
In contrast, we leveraged all available information in the in-distribution, including both images and
text for this purpose. Our ablation studies (sec. 5) demonstrate that excluding any of this information
leads to a decrease in performance.

We find that existing representative text-to-image models like Stable Diffusion (41) and DreamBooth
(42) fall short of satisfying our criteria for synthesized OE (sec. 5), despite their high training
complexity. This is likely because these models are optimized for general text-to-image generation
rather than auxiliary outlier generation specifically. To address this limitation, we propose a novel
OE generation pipeline specifically designed to synthesize effective outliers that improve robustness
in OOD detection. In our proposed method, we employ a pre-trained generative diffusion model (43)
and combine it with a CLIP (44) model to generate near-distribution outlier data. To be more precise,
based on the inlier samples label(s) (e.g., “Dog”), we use a simple text encoder to extract words
that are semantically similar to the inlier class labels. Then, we drop the ones that are not distinct
from inlier labels using a threshold that is computed using the validation set. Next, using these
near-OOD words (e.g. "Wolf"), the CLIP model guides the generative diffusion model to generate
near-distribution OOD data, conditioned on the in-distribution images. Finally, we filter generated
images that belong to the in-distribution with another threshold that is computed by the CLIP score
and a validation set.

Our key idea here is that crafting auxiliary outliers is often made more flexible through text guidance.
Through extensive experimentation, we demonstrate that our proposed generation scheme meets
the criteria of diversity, proximity to the in-distribution, and distinctiveness from inlier samples, all
concurrently. This, therefore, facilitates the effective use of adversarial training to achieve robust
detection methods. We summarize the main contributions of this paper as follows:

• We have demonstrated the significance of considering both near and diverse auxiliary OOD
samples to enhance robust outlier detection through theoretical insights and comprehensive
experimental evidence. Furthermore, we have conducted an ablation study to show that our
generated data outperforms alternative OE methods in terms of the mentioned characteristics.

• Our proposed method, RODEO, achieves significant results on various datasets, including
medical and tiny datasets, highlighting the applicability of our work to real-world applica-
tions. Our method achieves competitive results in clean settings and establishes a SOTA
performance in adversarial settings, surpassing existing methods by up to 50% in terms of
AUROC.

• Interestingly, RODEO demonstrates generality in its application to various outlier detection
setups, including ND, OSR, and OOD detection. Notably, previous works have primarily
been limited to specific types of outlier detection setups.

1 BACKGROUND AND RELATED WORK

Baselines Several works have been proposed in outlier detection, with the goal of learning the
distribution of normal samples, some methods such as DeepSVDD (45) and CSI (46) do this with
self-supervised approaches. On the other hand many methods such as DN2 (47), PANDA (48),
MSAD (49), Transformaly (11), ViT-MSP (50) and Patchcore (51) aim to leverage the knowledge
from the pre-trained models. Furthermore, some other works have pursued outlier detection in an
adversarial setting, including APAE (19), PrincipaLS (14), OCSDF (18), and OSAD (17). ATOM
(20), ALOE (15), and ATD (13) achieved relatively better results compared to others by incorporating
OE techniques and adversarial training. However, their performance falls short (as presented in Fig.
1) when the normal set distribution is far from their fixed OE set. For more details about previous
works see Appendix (sec. 11).

Adversarial Attacks For the input x with an associated ground-truth label y, an adversar-
ial example x∗ is generated by adding a small noise to x, maximizing the predictor model loss
ℓ(x∗; y). Projected Gradient Descent (PGD) (52) method is regarded as a standard and effective
attack technique that functions by iteratively maximizing the loss function, through updating the
perturbed input by a step size α in the direction of the gradient sign of ℓ(x∗; y) with respect to
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x: x∗
0 = x, x∗

t+1 = x∗
t + α. sign (∇xℓ (x

∗
t , y)) , where the noise is projected onto the ℓ∞-ball

with a radius of ϵ during each step.

Denoising Diffusion Probabilistic Models (DDPMs) DDPMs (53; 54) are trained to reverse a
parameterized Markovian process that transforms an image to pure noise gradually over time. Begin-
ning with isotropic Gaussian noise samples, they iteratively denoise the image and finally convert it
into an image from the training distribution. In particular a network employed and trained as follows:
pθ(xt−1|xt) = N (µθ(xt, t),Σθ(xt, t)). This network takes the noisy image xt and the embedding
at time step t as input and learns to predict the mean µθ(xt, t) and the covariance Σθ(xt, t). Recent
studies have shown that DDPMs can be utilized for tasks such as generating high-quality images, as
well as for editing and inpainting (43; 55; 56).

2 THEORETICAL INSIGHTS

In this section, we discuss the benefits of using near-distribution outliers over far-distribution outliers
in the adversarial settings. For a better understanding, we consider a simplified example illustrated in
Fig. 2.

Consider a one-dimensional feature space R. The normal class follows U(0, a − ϵ), while the
anomaly class adheres to U(a+ ϵ, b). We aim to construct a robust anomaly detector that can handle
ℓ2 perturbations of norm at most ϵ via OE. Here, we assumed the OE distribution to have a safe
margin from the normal training set, to ensure that a small adversarial training loss is achievable.
That is, we assume OE to follow U(a+ r, c), where r ≥ ϵ.

In this scenario, the optimal threshold k for classification of the normal and the exposed outliers in
the adversarial training scenario satisfies a ≤ k ≤ a+ r − ϵ, when a large sample size is available.
Note that as the OE samples act as a proxy for the anomaly class, and hence could be shifted away to
the right, the threshold tends to be placed to the right, i.e. close to anomalies rather than the normal
samples. For equally weighted normal and anomaly classes, the adversarial test error rate would be:

min(k + ϵ, b)− a− ϵ

b− a− ϵ
(1)

Key observations include:

• For k = a, the adversarial error rate is zero.

• For k > a, the errors manifest in the interval (a+ ϵ,min(k + ϵ, b)).

Our analysis, complemented by Fig. 2, reveals that as the adversarial test error scales with k when
k ̸= a, and hence with r, setting r to its smallest value (i.e. r → ϵ) minimizes the adversarial error
rate. Therefore, using near-distribution outliers in adversarial settings is not only advisable but also
impactful. For a broader and more complete explanation, please refer to the Appendix (sec. 10).

Normal Distribution Anomaly Distribution Exposure Distribution Perfect Boundry Imperfect Boundry

a-eps a+eps

r

Boundry

Standard Training - Standard Testing Adversarial Training - Standard Testing

bc

r

Boundry

a-eps a a+eps

eps

bc

Adversarial Training - Adversarial Testing

r

Boundry

a-eps a a+eps

eps

bc

Figure 2: Effect of the outlier exposure distribution in a one-dimensional feature space in the
adversarial and standard setups. Gray regions indicate feasible thresholds for separating the classes in
the training data, where green represents the normal class and orange represents the outlier exposure.
The parameter r measures the shift in exposed outliers relative to the actual anomalies, and bold
grays indicate thresholds yielding perfect test AUROC values. Left: Standard training scenario with
many perfect thresholds, even with distant outlier exposure. Middle: Adversarial training narrows
the set of perfect thresholds by reducing the feasible options. Right: During adversarial testing, the
set of perfect thresholds contracts to a single point a, highlighting the criticality of near-distribution
exposure in adversarial setups.
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Figure 3: Our proposed adversarially robust outlier detection method is initiated with a Near Distribu-
tion Label Lookup, which finds words analogous to a given input label. These words, combined with
inlier training image data, are employed in the Adaptive Generation stage to create near-OOD data.
This stage is followed by adversarial training using both inlier and generated OE data, utilizing the
cross-entropy loss function. During testing, the model processes the input and computes the OOD
score as the softmax of the OOD class. (The data filtering steps are not shown in this figure)

Motivation To develop a robust outlier detection model, the OE technique appears to be crucial (20),
otherwise, the model would lack information about the adversarial patterns on the outlier data, leaving
it highly vulnerable to the adversarial attacks targeting the OOD data during test time. However,
the vanilla OE technique, which involves leveraging outliers from a presumed dataset, leads to
unsatisfactory results in situations where the outliers deviate significantly from a normal distribution
(see Fig. 2). Motivated by these factors, we aim to propose an adaptive OE technique that attempts to
generate diverse and near-distribution outliers, which can act as a proxy for the real inference-time
outliers. The subsequent sections will provide a detailed description of the primary stages of our
methodology: generation and filtering processes, training, and testing, each with their respective
elements. Our method is outlined in Fig. 3.

Generation Step
Near-OOD (NOOD) Label Extraction Employing a text extractor model and given the class labels
of the inliers, we can identify words closely related to them. We utilize Word2Vec (57), a simple
and popular model, to obtain the embeddings of the inlier labels denoted as ynormal (e.g. “screw”)
and subsequently retrieve their nearest labels (e.g. “nail”). In the next step, we employ ImageNet
labels as the validation set and the CLIP text encoder to compute a threshold and refine the extracted
labels by eliminating those exhibiting semantic equality to the inlier label. We then add some texts
containing negative attributes of the inlier labels to the extracted set (e.g. “broken screw”). The union
of these two sets of labels forms yNOOD , which will guide the image generation process that utilizes
the CLIP model. More details about NOOD label generation and threshold (τLabel) computing are
available in Appendix (sec. 18).

CLIP Guidance The CLIP model is designed to learn joint representations between the text and
image domains, and it comprises a pre-trained text encoder and an image encoder. The CLIP
model operates by embedding both images and text into a shared latent space. This allows the
model to assign a CLIP score, that evaluates the relevance of a caption to the actual content of an
image. In order to extract knowledge effectively from the CLIP in image generation, we propose the
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Lguidance (xgen,yNOOD) loss which aims to minimize the cosine distance between the CLIP space
embeddings of the generated image xgen and the target text yNOOD:

D (x, y) =
x⊤y

∥x∥∥y∥ , Lguidance (xgen , yNOOD) = −D (EI (xgen ) , ET (yNOOD)) (2)

Here, EI and ET represent the embeddings extracted by the CLIP image and text encoders, respectively. During
the conditional diffusion sampling process, the gradients from the Lguidance will be used to guide the normal
samples towards the near outliers.

Conditioning on Image To generate near OOD data with shared semantic and stylistic features resembling
a normal distribution, the generation process should incorporate the normal distribution. Consequently, we
condition the denoising process on the normal images instead of initializing it with random Gaussian noise.
More specifically, we employ a pre-trained diffusion generator and initiate the reverse process from a random
time step t0 ∼ U(0, T ). More precisely, instead of beginning from t0 = T , we start the diffusion process
with the normal data augmented with noise. We then progressively remove the noise with the CLIP guidance
to obtain a denoised result that is out-of-distribution (OOD) and close to a normal distribution: xt−1 ∼
N (µ(xt|yNOOD)+s ·Σ(xt|yNOOD) ·∇xt(Lguidance (xt, yNOOD)) , Σ(xt|yNOOD) ), the scale coefficient s controls
the level of perturbation applied to the model. This type of conditioning leads to the generation of diverse outliers
since, with smaller tinit, normal images would undergo small changes (pixel-level outliers), while relatively
larger t0 values lead to larger changes (semantic-level outliers). Please see Appendix (sec. 12.1) for more details
about the generation step, and refer to Figures 9 for some generated images.

Data Filtering There is a concern that the generated images may still belong to the normal distribution, which can
potentially result in misleading information in the subsequent steps. To mitigate this issue, we have implemented
a method that involves defining a threshold to identify and exclude data that falls within the inlier distribution.
To determine the threshold, we make use of the ImageNet dataset and CLIP score to quantify the mismatch. We
calculate the CLIP score for the synthesized data and its corresponding normal label. If the computed CLIP
score exceeds the threshold, it indicates that the generated data would likely belong to the normal distribution
and should be excluded from the outlier set. Assuming the ImageNet dataset includes M classes and each class
includes N data samples, let X = {x1

1, x
1
2, . . . , x

M
N } be the set of all data samples and Y = {y1, . . . , yM} be

the set of all labels, where xl
k indicates the kth data sample with label yl. The threshold is then defined as:

τImage =

∑N
i=1

∑M
j=1

∑M
r=1,r ̸=j D

(
EI(x

j
i ), ET (yr)

)
MN(M − 1)

(3)

Model Selection During our OE generation process, CLIP encoders get input xt which is a noisy image and the
public CLIP model is trained on noise-free images, this leads to generating low-quality data, as observed in (58).
As a result, we utilize the small CLIP model proposed by (58), which has been trained on noisy image datasets.
It is worth noting this model has been trained on 67 million samples, but is still well-suited for our pipeline and
can generate OOD samples that it has not been trained on during training. See Appendix (sec. 15) for more
details.

Training Step
Adversarial Training During training, we have access to an inlier dataset Din of pairs (xi, yi) where
yi ∈ {1, ...,K}, and we augment it with generated OE Dgen of pairs (xi,K + 1) as outlier exposures
to obtain Dtrain = Din ∪Dgen. Then, we adversarially train a classifier fθ with the standard cross-entropy
loss ℓθ: minθ E(x,y)∼Dtrain

max∥x∗−x∥∞≤ϵ ℓθ(x
∗, y), with the minimization and maximization done re-

spectively by Adam and PGD-10. For evaluation purposes, we utilize a dataset Dtest that consists of both inlier
and outlier samples.

Test Step
Adversarial Testing During test time, we utilize the (K+1)-th logit of fθ as the OOD score, which corresponds
to the class of outliers in the training dataset. For the evaluation of our model, as well as other methods,
we specifically target both in-distribution and OOD samples with several end-to-end adversarial attacks. Our
objective is to cause the detectors to produce erroneous detection results by decreasing OOD scores for the outlier
samples and increasing the OOD scores for the normal samples. We set the value of ϵ to 8

255
for low-resolution

datasets and 2
255

for high-resolution ones. For the PGD attack, we use a single random restart for the attack, with
random initialization within the range of (−ϵ, ϵ) , and perform N = 100 steps. Furthermore, we select the attack
step size as α = 2.5× ϵ

N
. In addition to the PGD attack, we have evaluated the models using AutoAttack (59),

which is a union of a set of strong attacks designed to enhance the robustness evaluation. Furthermore, in the
Appendix (see Table 8), we have evaluated the models under black-box attack (60). For additional information
on the evaluation metrics, datasets, and implementation, please refer to the Appendix (sec. 7).
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4 EXPERIMENTAL RESULTS

In this section, we conduct comprehensive experiments to evaluate previous outlier detection methods, including
both standard and adversarially trained approaches, as well as our own method, under clean and various
adversarial attack scenarios. Our experiments are organized into three categories and are presented in Tables 1,
2, and 3. We provide a brief overview of each category below, and further details can be found in the Appendix
(sec. 19, 20).

Novelty Detection For each dataset containing N distinct classes, we perform N separate experiments and
average the results. In every individual experiment, samples from a single class are used as the normal data,
while instances from the remaining N − 1 classes are considered outliers. Table 1 presents the results of this
setup.

Open-Set Recognition For this task, each dataset was randomly split into a normal set and an outlier set at a
60/40 ratio. This random splitting was repeated 5 times. The model was exclusively trained on the normal set
samples, with average AUROC scores reported. Results are presented in Table 3.

Out-Of-Distribution Detection For the task of OOD detection, we considered CIFAR10 and CIFAR100 datasets
as normal datasets in separate experiments. Following earlier works (15), and (21), we test the model against
several out-of-distribution datasets which are semantically distinct from the in-distribution datasets, including
MNIST, TinyImageNet (22), Places365 (61), LSUN (62), iSUN (63), Birds (64), Flowers (65), COIL-100 (66)
and CIFAR10/CIFAR100 (depending on which is considered the normal dataset). For any given in-distribution
dataset, the results are averaged over the OOD datasets. We have provided the results of this task in Table 2.

Table 1: AUROC (%) performance of ND methods on various datasets in a clean setting and under adversarial
attacks using PGD100 and AutoAttack (AA). Perturbations for attacks are ϵ = 8

255
for low-resolution datasets

and ϵ = 2
255

for high-resolution datasets. The best results are bolded and the second-best results are underlined.

Dataset Attack
Method

DeepSVDD CSI MSAD Transformaly PatchCore PrincipaLS OCSDF APAE RODEO
(Ours)

L
ow

-R
es

CIFAR10 Clean 64.8 94.3 97.2 98.3 68.3 57.7 57.1 55.2 87.4
PGD / AA 23.4 / 9.7 2.8 / 0.0 0.0 / 0.0 0.0 / 0.0 0.3 / 0.0 24.1 / 20.2 22.0 / 15.3 0.1 / 0.0 71.1 / 69.3

CIFAR100 Clean 67.0 89.6 96.4 97.3 66.8 52.0 48.2 51.8 79.6
PGD / AA 14.5 / 5.8 3.2 / 0.0 2.9 / 4.3 4.3 / 2.6 0.0 / 0.0 16.6 / 14.7 15.1 / 12.0 0.0 / 0.0 62.8 / 61.0

MNIST Clean 94.8 93.8 96.0 94.8 83.2 97.3 95.5 92.5 99.4
PGD / AA 11.4 / 9.6 0.3 / 0.4 0.0 / 7.3 10.8 / 6.7 0.0 / 0.0 78.1 / 72.5 62.4 / 58.3 22.9 / 19.8 95.7 / 95.2

Fashion-MNIST Clean 94.5 92.7 94.2 94.4 77.4 91.0 90.6 86.1 95.6
PGD / AA 49.4 / 38.2 4.8 / 3.1 0.0 / 0.0 0.5 / 0.0 0.0 / 0.0 61.3 / 58.2 54.5 / 49.2 11.2 / 7.0 88.1 / 87.6

SVHN Clean 60.3 96.0 63.1 55.4 52.1 63.0 58.1 52.6 78.6
PGD / AA 7.7 / 2.8 1.3 / 0.4 0.6 / 2.5 7.6 / 5.8 3.2 / 0.1 31.4 / 25.0 24.9 / 23.5 17.4 / 19.8 45.4 / 41.2

H
ig

h-
R

es

MVTecAD Clean 67.0 63.6 87.2 87.9 99.6 63.8 58.7 62.1 61.5
PGD / AA 2.6 / 0.0 0.0 / 0.0 0.9 / 0.0 0.0 / 0.0 7.2 / 4.8 24.3 / 12.6 5.2 / 0.3 4.7 / 1.8 15.9 / 14.2

Head-CT Clean 62.5 60.9 59.4 78.1 98.5 68.9 62.4 68.1 87.3
PGD / AA 0.0 / 0.0 0.6 / 0.0 0.0 / 0.0 6.4 / 3.2 1.5 / 0.0 27.8 / 16.2 13.1 / 8.5 6.6 / 3.8 70.0 / 68.4

BrainMRI Clean 74.5 93.2 99.9 98.3 91.4 70.2 63.2 55.4 76.3
PGD / AA 4.3 / 2.1 0.0 / 0.0 1.7 / 0.0 5.2 / 1.6 0.0 / 0.4 33.5 / 17.8 20.4 / 12.5 9.7 / 8.3 71.1 / 70.5

Tumor Detection Clean 70.8 85.3 95.1 97.4 92.8 73.5 65.2 64.6 89.0
PGD / AA 1.7 / 0.0 0.0 / 2.2 0.1 / 0.0 7.4 / 5.1 9.3 / 6.1 25.2 / 14.7 17.9 / 10.1 15.8 / 8.3 67.5 / 66.9

Covid19 Clean 61.9 65.1 89.2 91.0 77.7 54.2 46.1 50.7 79.6
PGD / AA 0.0 / 0.0 0.0 / 0.3 4.7 / 1.9 10.6 / 4.4 4.2 / 0.5 15.3 / 9.1 9.0 / 6.5 11.2 / 8.7 59.4 / 58.8

Mean Clean 71.8 83.4 87.8 89.3 80.8 69.2 64.5 63.9 83.4
PGD / AA 11.5 / 6.8 1.3 / 0.6 1.1 / 1.6 5.3 / 2.9 2.6 / 1.2 33.8 / 26.1 24.4 / 19.6 10.0 / 7.7 64.7 / 63.3

Table 2: AUROC (%) performance of OOD detection
methods, where CIFAR-10 and CIFAR-100 are con-
sidered as separate inlier datasets in each experiment.
The union of other datasets are used as OOD data. This
evaluation considers both the PGD-100 attacked and
clean setups. Perturbations for attacks are ϵ = 8

255
.

In-Dataset Attack
Method

ViT-MSP AT∗ ATOM ALOE ATD RODEO

CIFAR10 Clean 99.5 80.5 82.7 97.8 94.3 93.2
PGD 0.0 20.8 25.1 6.0 69.3 70.4

CIFAR100 Clean 95.1 70.0 91.6 79.3 87.7 88.1
PGD 0.0 13.6 5.4 26.4 55.3 66.4

* AT indicates the model was trained without using OE.

Table 3: AUROC (%) performance of OSR methods on
various datasets in a clean setting and under PGD-100
attack.

Dataset Attack
Method

ViT-MSP AT∗ ATOM ALOE ATD RODEO

MNIST Clean 92.4 80.2 74.8 79.5 68.7 97.2
PGD 4.2 36.2 6.3 38.2 56.7 88.8

FMNIST Clean 87.6 72.5 64.3 72.6 59.6 87.7
PGD 3.1 31.7 4.7 29.0 43.0 67.1

CIFAR10 Clean 96.8 65.2 68.3 52.4 49.0 79.6
PGD 2.5 21.0 5.2 25.7 33.6 48.5

CIFAR100 Clean 92.1 61.7 51.4 49.8 50.5 64.1
PGD 0.0 18.3 3.2 18.6 36.6 37.7

* AT indicates the model was trained without using OE.
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As the results indicate, our method demonstrates significant performance in adversarially robust outlier detection,
outperforming others by a large margin under various strong attacks. Notably, in open-world applications
where robustness is crucial, a slight decrease in clean performance is an acceptable trade-off for enhanced
robustness. Our results support this stance, achieving an average of 83.4% in clean settings and 64.7% in
adversarial scenarios across various datasets. This performance surpasses SOTA methods in clean detection
like Transformaly, which, while achieving 89.3% in clean settings, experiences a substantial drop to 5.3% in
adversarial conditions.

Table 4: AUROC (%) of the detector model after adversarial training with outliers generated by different OE
techniques in clean data and under PGD-100 attack evaluation. The results indicate that our adaptive OE method
outperforms other methods in terms of improving robust detection. The experiments were conducted in the ND
setting (clean/PGD-100).

Exposure Technique Target Dataset Mean
CIFAR10 MNIST FMNIST MVTec-ad Head-CT Covid19

Gaussian Noise 54.4 / 11.3 56.1 / 12.4 52.7 / 15.7 47.9 / 0.1 49.0 / 0.8 50.7 / 0.0 51.8 / 7.4

Vanilla OE (ImageNet) 87.3 / 70.0 90.0 / 43.0 93.0 / 82.0 64.6 / 0.5 61.8 / 2.1 62.7 / 24.5 75.6 / 34.6

Mixup with ImageNet 59.4 / 31.5 59.6 / 1.7 74.2 / 48.8 58.5 / 1.4 54.4 21.4 69.2 / 50.8 62.8 / 27.6

Fake Image Generation 29.5 / 16.2 76.0 / 51.3 52.2 / 31.1 43.5 / 7.3 63.7 / 6.9 42.7 / 13.0 51.2 / 22.5

Stable Diffusion Prompt 62.4 / 35.6 84.3 / 62.5 63.7 / 48.5 54.9 / 12.6 71.5 / 3.6 37.1 / 0.0 60.1 / 23.5

Adaptive OE (Ours) 87.4 / 71.1 99.4 / 95.7 95.6 / 88.1 61.5 / 15.9 87.3 / 70.0 79.6 / 59.4 84.0 / 66.8

Table 5: Comparison of generated outliers by different OE techniques using the FDC metric. A higher value
indicates that the generated outliers have more diversity and are closer to the corresponding normal dataset
(target dataset). The experiments were conducted in the ND setting.

Exposure Technique Target Dataset Mean
CIFAR10 MNIST FMNIST MVTec-ad Head-CT Covid19

Gaussian Noise 0.822 0.704 0.810 0.793 0.735 0.674 0.756

Vanilla OE (ImageNet) 7.647 0.795 2.444 1.858 3.120 3.906 3.295

Mixup with ImageNet 2.185 0.577 0.985 1.866 1.587 2.078 1.547

Fake Image Generation 0.987 0.649 0.907 1.562 0.881 0.896 0.980

Stable Diffusion Prompt 1.359 1.790 1.399 1.982 1.097 0.654 1.381

Adaptive OE (Ours) 8.504 11.395 3.819 1.948 12.016 5.965 6.687

5 ABLATION STUDIES

In this section, we present two quantitative approaches to compare our adaptive OE method with alternative
techniques. Also, to provide more intuition, we provided a qualitative evaluation presented in Fig. 4. Firstly, to
demonstrate the superiority of our adaptive OE method in terms of improving robust detection, we conducted
an experiment where we replaced the outliers generated by our method with outliers generated using other
techniques. We then trained the detector model from scratch and re-evaluated the model. The results of this
comparison are presented in Table 4, clearly indicating the significant effectiveness of our method.

Secondly, we introduce another quantitative approach that highlights the superiority of our generated outlier
data in terms of diversity and its proximity to the normal sample distribution using common benchmarks in the
image generation field. Specifically, we employed the Fréchet Inception Distance (FID) metric (67) to measure
the distance between the generated outliers and the normal distribution. Additionally, we used the Density and
Coverage metrics, proposed by (68), to evaluate the diversity of the generated data. For more details on the FID,
Density, and Coverage metrics used in our analysis, refer to Appendix (sec. 16). For a unified comparison of
outlier exposure methods in terms of proximity and diversity, we defined FDC ∝ log(Density)+log(Coverage)

log(FID)

for each generated outlier set and its corresponding normal set. Higher FID values indicate a greater distance to
the normal distribution, and a higher Density & Convergence metric indicates more diversity. As a result, a higher
FDC value indicates that the generated outliers have more diversity and are closer to the normal distribution.
The results of this experiment are presented in Table 5, indicating our adaptive OE method results in near and
diverse OOD. More detailed results of this experiment are in Appendix (see Table 9). In the following, we will
briefly explain alternative OE methods that we considered in our ablation study.

Alternative OE Methods Vanilla OE refers to experiments where we utilize a fixed dataset, e.g. ImageNet,
to provide the OE. ‘Mixup with ImageNet’ is referred to as a more adaptive OE technique, wherein instead of
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Figure 4: This figure provides an overview of outlier data from different OE techniques. The second
and third rows present methods that consider either text or image domain information exclusively.
In contrast, our proposed method, RODEO, shown in the last row, incorporates information from
both domains simultaneously. RODEO demonstrates the ability to alter semantic content while
maintaining visual similarity between the original and edited images. To provide further intuition
about the importance of diversity and the distance of OE from the normal distribution, we compute
features for normal and generated outlier data via a pretrained ViT model (72), and apply t-SNE (73)
to reduce the features to 2D. We then find decision boundaries of the data with SVM (74) and present
them on the right side of each generated OE example.

using ImageNet data as OE, it combines ImageNet samples with normal samples through mixup to generate
OE samples that are closer to the normal distribution, as proposed in (69). Fake Image Generation’ proposed in
(39) refers to a technique for generating outliers that conditions a generative diffusion model on images without
any text conditioning. This method utilizes a diffusion generator trained on the normal training set, but early
stopped in the training, to generate synthetic images that resemble normal samples but have obvious distinctions
from them. These are then treated as OE. In the ‘Stable Diffusion Prompt’ scenario, we utilize our near-OOD
extracted text prompts and use them as prompts for the Stable Diffusion model to generate OE.

Limitaion of SOTA Text-to-Image Diffusion Models In our pipeline, conditioning the generator on images
enables the synthesis of diverse OE data, including both pixel- and semantic-level OE. In contrast, SOTA
text-to-image diffusion models, such as Stable Diffusion, operate on latent embeddings to reduce inference
complexity. This makes them inappropriate for our goal, as it prevents us from generating pixel-level OE.
Moreover, despite billions of training samples, these models exhibit biases (70) inherited from their training data
(i.e. LAION (71)), which are ill-suited for our pipeline because our task involves applying it to datasets far from
their training distribution, like medical imaging. On the other hand, our pipeline with just 67 million training
samples is applicable to various datasets owing to its specific design. Qualitative images and more details can be
found in the Appendix (sec. 15).

6 CONCLUSION

The combination of OE and adversarial training shows promising results in the robust OOD detection, however
encounters significant performance drops in the case that OE dataset is far from the normal distribution. In light of
these limitations, we introduce RODEO, a novel approach that addresses this challenge by focusing on improving
the quality of outlier exposures. RODEO establishes a pipeline for generating diverse and near-distribution OOD
synthetic samples through leveraging text descriptions of the potential OOD concepts and guiding diffusion
model using these texts. These synthetic samples are then utilized as OE during the adversarial training of a
discriminator. Through extensive evaluation, our approach outperforms existing methods, particularly excelling
in the highly challenging task of Robust Novelty Detection. Notably, our approach maintains high OOD detection
performance in both standard and adversarial settings across various detection scenarios, including medical and
industrial datasets, demonstrating its high applicability in real-world contexts.
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Appendix

Prompt: Train

Perturb with diffusion Reverse diffusion

Inlier

Outlier

Inlier

Outlier

Figure 5: The figure illustrates a text-guided diffusion process. A yellow dot, representing an inlier
data point within the green inlier distribution, is progressively transformed towards the red outlier
distribution, driven by CLIP guidance. This showcases the model’s ability to guide the transformation
from inlier to outlier data via textual instructions.

7 EVALUATION METRICS & DATASETS & IMPLEMENTATION DETAILS

Evaluation Metrics AUROC is used as a well-known classification criterion. The AUROC value is in the range
[0, 1], and the closer it is to 1, the better the classifier performance.

Datasets For the low-resolution datasets, we included CIFAR10(75), CIFAR100(75), MNIST(23), and
FashionMNIST(76). Furthermore, we performed experiments on medical and industrial high-resolution datasets,
namely Head-CT(77), MVTec-ad(78), Brain-MRI(79), Covid19(80), and Tumor Detection(81). The results are
available in Table 1.

Implementation Details We use ResNet-18(82) as the architecture of our neural network for the high-resolution
datasets and for the low-resolution datasets, we used Wide ResNet(83). Furthermore, RODEO is trained 100
epochs with Adam(84) optimizer with a learning rate of 0.001 for each experiment.

8 ALGORITHM

This algorithm presents the complete approach, including all components that are integral to it.
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Algorithm 1: RODEO: Adv. Training with Adaptive Exposure Dataset

Input: Din, Dval, enctext, µDiffusion, ΣDiffusion, Eclip
I , Eclip

T , fθ , K, T0, T ; // T0 ∈ [0.3T, 0.6T ]

Output: f̂θ
// Near-Distribution OOD Prompt Search

τlabel-val = Avg(Dist(Eclip
T (yi), E

clip
T (yj))) ∀(yi, yj) ∈ Y(Dval)

for (i, label) ∈ Y do
Prompts[i]← enctext.KNN(label)
Prompts[i]← Prompts[i].Remove(enctext.MinDist(Prompt, Y \ label) < τlabel-val)
Prompts[i]← Prompts[i] ∪Append(NegativeAdjectives[label], label)

end
// Adaptive Exposure Generation

τimage-val = Avg(Dist(Eclip
I (xi), E

clip
T (y))) ∀(xi, yi) ∈ Dval∀y ̸= yi

for (xi, yi) ∈ Din do
c ∼ U(Prompts[yi])
tinit ∼ U([T0, ..., T ]
x̂tinit = xi

for t = tinit, ..., 0 do
µ̂(x̂t|c) = µDiffusion(x̂t|c) + s · ΣDiffusion(x̂t|c) · ∇x̂t(E

clip
I (x̂t) · Eclip

T (c))
x̂t−1 ∼ N ( µ̂(x̂t|c) , ΣDiffusion(x̂t|c) )

end
// Discarding too Similar Samples

if Dist(Eclip
I (x̂0), E

clip
T (yi)) < τimage-val then

Dexposure ← Dexposure ∪ {(x̂0,K + 1)}
end

end
Dtrain ← Din ∪ Dexposure

f̂θ ← Adversarial-Training(fθ,Dtrain)

9 ND, OSR AND OOD DETECTION

As we have reported the results of our method on the most common settings for OOD detection, in this section,
we provide a brief explanation for each setting to provide further clarification. In OSR, a model is trained on
K classes from an N -class training dataset. During testing, the model encounters N distinct classes, where
N −K of these classes were not present during the training phase. ND is a type of open-set recognition that is
considered an extreme case, specifically when k is equal to 1. Some works refer to ND as one-class classification.
OOD detection shares similarities with OSR; however, the key distinction is that the open-set and closed-set
classes originate from two separate datasets. (6; 39)

10 A MORE THOROUGH THEORETICAL EXPLANATION

Let’s assume that the inlier data is coming from N(0, I) and the anomaly is distributed according to N(a, I).
Furthermore, let N(a′, I) be the outlier exposure data. We assume that the OE is farther away from the inlier
class than the anomaly data, i.e. ∥a′∥ ≥ ∥a∥. Assuming access to large training set of inlier and exposure
samples, the optimal classifier would be y = a′⊤

∥a′∥ (x−
a′

2
) = a′⊤

∥a′∥x−
∥a′∥
2

, for an adversary that has a budget
of at most ϵ perturbation in ℓ2 norm (25). Now, applying this classifier on the inlier and anomaly classes at the
test time, we get:

a′⊤x

∥a′∥ ∼ N(0, I), (4)

for a inlier x, and also:
a′⊤x

∥a′∥ ∼ N(
a⊤a′

∥a′∥ , I), (5)

for an anomalous x. Therefore, using the trained classifier y to discriminate the inlier and anomaly classes, the
error rate would be:

(1− Φ(
∥a′∥
2
− ϵ)) + (1− Φ(

a⊤a′

∥a′∥ −
∥a′∥
2
− ϵ)), (6)

where Φ(.) is the CDF for the inlier distribution N(0, 1).
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Let δ = a′ − a, and note that:

a⊤a′

∥a′∥ −
∥a′∥
2

=
(a′ − δ)⊤a′

∥a′∥ − ∥a
′∥
2

(7)

=
∥a′∥
2
− δ⊤a′

∥a′∥ . (8)

But note that:

δ⊤a′ = a′⊤a′ − a⊤a′ (9)

= ∥a′∥2 − ∥a∥∥a′∥ cos(θ) (10)

= ∥a′∥(∥a′∥ − ∥a∥ cos(θ)) (11)

≥ ∥a′∥(∥a′∥ − ∥a∥) ≥ 0, (12)

because we have previously assumed ∥a′∥ ≥ ∥a∥ to reflect that the OE could be far-distribution. Hence, note
that the error rate can be written as:

(1− Φ

(
∥a′∥
2
− ϵ

)
) + (1− Φ

(
∥a′∥
2
− δ⊤a′

∥a′∥ − ϵ

)
) (13)

= (1− Φ

(
∥a′∥
2
− ϵ

)
) + (1− Φ

(
∥a′∥
2
− c− ϵ

)
), (14)

where c ≥ 0. Note that for a fixed ∥a′∥, by making cos(θ) small, the error increases, as Φ is an increasing
function. Also, note that for the case that θ = 0, i.e. smallest possible error among fixed ∥a′∥, the error can be
rewritten as:

(1− Φ

(
∥a∥
2

+
(∥a′∥ − ∥a∥)

2
− ϵ

)
) + (1− Φ

(
∥a∥
2
− (∥a′∥ − ∥a∥)

2
− ϵ

)
) (15)

= (1− Φ

(
∥a∥
2

+ d− ϵ

)
) + (1− Φ

(
∥a∥
2
− d− ϵ

)
), (16)

with d = (∥a′∥−∥a∥)
2

≥ 0. Note that if d is close to zero, i.e. near-distribution OE, the error converges to that of
the adversarial Bayes optimal. But as d grows large, the error becomes larger. Therefore, the more OE is away
from the inlier distribution, the larger the error rate becomes.

Now, let’s assume that the OE follows a less diverse distribution, i.e. N(a′, σ2I), with σ < 1. In this case, the
intercept of the optimal line that separates the two class gets biased towards the OE distribution, increasing the
error rate of classifying normal vs. anomaly. Again, to make this error small, one has to increase σ2 to a limit
that matches the original anomaly distribution σ2 = 1.

11 DETAILED BASELINES

Some works introduced the OE technique for OOD detection tasks, which utilizes auxiliary random images
known to be anomalous (21). Many top-performing OOD detection methods incorporate OE to enhance their
performance in both classic and adversarial OOD detection evaluation tasks (40; 10; 39). The most direct
approach to utilizing outliers involves incorporating them into the training set, with labels uniformly selected
from the label space of typical samples. In an effort to improve the adversarial robustness of OOD detection,
some methods have attempted to make OE more adaptive. For example, ATD (13) employs a generator to craft
fake features instead of images. Another approach, ALOE (20), mines low anomaly score data from an auxiliary
OOD dataset for training, thereby enhancing the robustness of OOD detection.

Furthermore, some other works have pursued outlier detection in an adversarial setting which includes APAE
(19), PrincipaLS (14) and OCSDF (18) and OSAD (17) ATOM(20) ALOE (15) and ATD (13), between these
robust outlier detection methods, ATOM, ALOE and ATD achieved relatively better results by incorporating
OE and adversarial training, however, their performance falls short in case that normal set distribution is far
from their fixed OE set. For instance, APAE (19) suggested enhancing adversarial robustness through the
utilization of approximate projection and feature weighting. PrincipaLS (14) proposed Principal Latent Space as
a defense strategy to perform adversarially robust ND. OCSDF (18) aimed to achieve robustness in One-Class
Classification (OCC) by learning a signed distance function to the boundary of the support of the normal
distribution, which can be interpreted as the normality score. Through making the distance function ℓ1 Lipschitz,
one could guarantee robustness against ℓ2 bounded perturbations. OSAD (17) augmented the model architecture
with dual-attentive denoising layers, and integrated the adversarial training loss with an auto-encoder loss. The
auto-encoder loss was designed to reconstruct the original image from its adversarial counterpart.
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In the context of adversarial OOD scenarios, certain studies focused on utilizing the insights gained from the
pre-trained models based on Vision Transformers (ViT) (50; 72). Some other works incorporated OE to enhance
their performance in both clean and adversarial OOD detection evaluation tasks (20; 40; 10; 39). The most direct
approach to utilizing outliers involved incorporating them into the training set, with labels uniformly selected
from the label space of typical samples. In an effort to improve the adversarial robustness of the detection
models, some methods have attempted to make OE more adaptive. For example, ATD (13) employed a generator
to craft fake features instead of images, and applied adversarial training on OE and normal real samples to make
the discriminator robust. Another approach, ATOM (20), mined low anomaly score data from an auxiliary OOD
dataset for training, thereby enhancing the robustness of OOD detection through adversarial training on the
mined samples.

12 DETAILS ABOUT EVALUATION AND GENERATION

In this section, we will provide more details about our evaluation methodology and Generation Step.

12.1 GENERATION STEP

In our proposed generation method, we perturb the in-distribution(ID) images with Gaussian noise and utilize a
diffusion model with guidance from the extracted candidate near-OOD labels to shift the ID data to OOD data.
This is possible because it has been shown that the reverse process can be solved not only from t0 = 1 but also
from any intermediate time (0, 1). We randomly choose an initial step for each data between 0 and 0.6, which is
a common choice based on previous related works. (85; 86)

If we have k classes in the normal dataset, with each class containing N samples, we generate N OOD samples
to extend the dataset to k+1 classes. However, if N is a small number (e.g. N<100), we may generate up to 3000
OOD samples to prevent overfitting.

12.2 ADVERSARIAL ATTACK ON OOD DETECTORS

Suppose we have a test dataset containing a data sample x that belongs to either the OOD class (-1) or the ID
class (1). We can also assume the existence of a trained OOD detector Oθ : Rd → R, which can evaluate an
OOD score for each data sample. Depending on the label y, we can generate adversarial examples using the
l∞-norm. This involves perturbing the input l∞ in such a way that modifies its OOD score either upwards or
downwards:

x∗
0 = x, xt+1 = xt + α · sgn(∇x(y.Oθ(x

t))) (17)

where y = 1 for in-distribution samples and y = −1 for OOD samples. We performed various strong attacks
including PGD-1000 with 10 random restarts, Auto Attack and Adaptive Auto Attack (87). The latter is a
recently introduced attack that has demonstrated considerable strength. The detailed experiments on these attacks
is reported in Tables 11-13. It is also noteworthy that for Auto Attack, it was not possible to adapt the DLR(59)
loss based attacks due to their presumption that the output of the model has at least 3 elements, which does not
hold in OOD detection tasks.

12.3 COMPUTATIONAL COST

Experiments were conducted on RTX 3090 GPUs. Generating approximately 10,000 low-resolution and 1,000
high-resolution OOD (out-of-distribution) data required 1 hour. For the one-class anomaly detection, training
each class of low-resolution datasets took about 100 minutes (see Figure 6 for detailed analysis). The OOD
detection task required around 16 hours of training, and each experiment in the OSR (open-set-recognition)
setting took approximately 9 hours.

13 USING IMAGE LABELS AS DESCRIPTORS

Novelty detection, also known as one-class classification, involves identifying instances that do not fit the pattern
of a given class in a training set. Traditionally, methods for this task have been proposed without using the labels
of the training data. For example, they did not take into account the fact that the normal set includes the semantic
"dog". In the case of OOD detection (which is a multi-class setting), methods commonly extract features and
define supervised algorithms using the labels of the normal set. However, they do not fully utilize the semantic
information contained in these labels. Specifically, they only consider class labels as indexes for their defined
task, such as classification.

Recently, there has been a growing interest in leveraging pre-trained multimodal models to enhance OOD
detection performance, both in one-class and multi-class scenarios. Unlike prior works, these approaches utilize
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Figure 6: Comparative analysis of computational time for data generation and adversarial training
across various datasets in one-class anomaly detection setting. The time is measured in minutes and is
split into two components: data generation (golden segment) and the subsequent adversarial training
phase (purple segment). The datasets range from standard image benchmarks like CIFAR-10 and
MNIST to specialized medical and anomaly detection datasets such as MVTecAD, BrainMRI, and
Covid-19.

the semantic information embedded within the labels of the normal set. This is akin to treating labels as image
descriptors rather than just as indices. For example, (10) used CLIP in the novelty detection setting and utilized
both pairs of normal images and their labels (e.g., a photo of x) to extract maximum information from the normal
set. Similarly, (88) applied CLIP for zero-shot OOD detection and used both the image and semantic content of
their respective labels to achieve the same goal. Motivated by these works, our study utilizes image labels as
descriptors in all reported settings (ND, OSR, OOD). In fact, we utilized a simple language model to predict
candidate unseen labels for OOD classes located near the boundary, leveraging these image labels.

Discussion Although some recent works have used labels as descriptors, there may be concerns that this
approach could provide unfair guidance since it is not commonly used in traditional literature. However, it
is important to note that the OOD detection problem is a line of research with many practical applications in
industries such as medicine autonomous driving cars and industry. In such cases, knowing the training data
labels and semantics, such as "healthy CT scan images", is possible and we do not need more details about
normal data classes except for their names.

Moreover, previous adversarially robust OOD detector models have reported almost no improvement over
random results in real-world datasets, especially in the case of ND settings. Therefore, our use of the normal
class label as an alternative solution is reasonable. Our approach outperforms previous models by up to 50% in
the robust ND scenario and this superiority continues in multi-class modes where data labels are available and
we only use the class names to improve the model. Given the applicability of the task addressed in this article
and the progress of multi-domain models, our approach has potential for practical use

14 LEVERAGING PRE-TRAINED MODELS FOR OOD DETECTION

It has been demonstrated that leveraging pre-trained models can significantly improve the performance and
practical applicability of downstream tasks (89; 90), including OOD detection, which has been extensively
studied.

Various works (47; 48; 49; 11; 51; 91) have utilized pre-trained models’ features or transfer learning techniques
to improve detection results and efficiency, particularly in OOD detection under harder constraints. For example,
(88) used a pre-trained CLIP model trained on 400 million data for Zero-Shot OOD Detection, (92) proposed
using a pre-trained ViT (72) model trained on 22 million data for near-distribution OOD detection, and (93)
utilized a pre-trained BERT (94) model trained on billions of data for OOD detection in the text domain. In
our work, we addressed the highly challenging task of developing an adversarially robust OOD detector model,
which is unexplored for real-world datasets such as medical datasets. To accomplish this, we utilized the CLIP
and diffusion model as our generator backbone, which was trained on 67 million data.
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15 WHY OUR DIFFUSION MODEL IS THE BEST FIT FOR NEAR-OOD
GENERATION

Working in Pixel Space In Section 18.1, we discussed how OOD data can be divided into two categories
(i.e. pixel- and semantic-level). Our need for diverse OOD data motivates our preference for generative models
that can create both pixel-level and semantic-level OOD data. Our generative model is a suitable choice as it uses
a diffusion model applied at the pixel-level to generate images from texts. This allows the model to generate
OOD samples that differ in their local appearance, which is particularly important for pixel-level OOD detection.
Compared to other SOTA text-to-image models that mostly work at the embedding level, our generative model’s
ability to generate images at the pixel-level makes it a better choice for our purposes.

Comparing with DreamBooth As our pipeline’s generator model involves image editing, we explored the
literature on image manipulating and tested a common methods used for image editing. Numerous algorithms
have been proposed for generating new images conditioned on input images among these, we have chosen
DreamBooth as one of the SOTA algorithms for specifying image details in text-to-image models. we evaluated
the DreamBooth algorithm for changing image details in various datasets. Our experiment showed that, despite
DreamBooth’s good performance for natural images and human faces, the algorithm had poor results for
datasets with different distributions, such as MNIST and FashionMNIST. One possible explanation for the
poor performance of these algorithms is their bias towards the distribution of the training datasets, such as
LAION, which typically consists of natural images and portraits. Consequently, these algorithms may not yield
satisfactory results for datasets with different distributions.
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Inliers Generated with Stable Diffusion + DreamBooth

Figure 7: generated images using the DreamBooth algorithm and StableDiffusion model, which
shows a very large shift between ID- and generated OOD data. This demonstrates the superiority of
our pipeline as a near OOD generator.

16 DETAILED ANALYSIS AND INSIGHTS OF ABLATION STUDY

FID, Density and Coverage Fréchet Inception Distance (FID) metric (67) measures the distance between
feature vectors of real and generated images and calculates the distance them, has been shown to match with
human judgments. The diversity of generative models can be evaluated using two metrics: Density and Coverage
(68). By utilizing a manifold estimation procedure code, the distance between two sets of images can be
measured. To calculate these metrics, features from a pre-trained model are utilized, specifically those before the
final classification layer. The mathematical expression for these metrics is as follows:

Density (Xs,Xt, F, k) =
1

kM

M∑
j=1

N∑
i=1

I (ft,j ∈ B (fs,i,NNk (F (Xs) ,fs,i, k))) , (18)

Coverage (Xs,Xt, F, k) =
1

N

N∑
i=1

I (∃j s.t. ft,j ∈ B (fs,i,NNk (F (Xs) ,fs,i, k))) . (19)

where F is a feature extractor, f is a collection of features from F ,

Xs = {xs,1, . . . ,xs,N} denotes real images, Xt = {xt,1, . . . ,xt,M} denotes generated images, B(f , r) is
the n-dimensional sphere in which f = F (x) ∈ Rn is the center and r is the radius, NNkf(F,f , k) is the
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distance from f to the k-th nearest embedding in F , and I(·) is a indicator function. We use the standard
InceptionV3 features, which are also used to compute the FID. The measures are computed using the official
code (68).
The definition of the FDC metric introduced in the paper is as below:

FDC =
log(FID−1)

log(Density) + log(Coverage)
(20)

17 THE SIGNIFICANCE OF CONDITIONING ON BOTH IMAGES AND TEXT
FROM THE NORMAL DISTRIBUTION

In order to have an accurate OOD detector, it’s important to generate diverse and realistic samples that are
close to the distribution of the normal data. In our study, we tackle this challenge by leveraging the information
contained in the normal data. Specifically, we extract the labels of classes that are close to the normal set and use
them as guidance for generation. Additionally, we initialize the reverse process generation of a diffusion model
with normal images, so the generation of OOD data in our pipeline is conditioned on both the images and the
text of the normal set. This enables us to generate adaptive OOD samples.

In the Ablation Study (sec. 5), we demonstrate the importance of using both image and text information for
generating OOD data. We compare our approach with two other methods that condition on only one type of
information and ignore the other. The first technique generates fake images based on the normal set, while
the other generates OOD data using only the extracted text from normal labels. The results show that both
techniques are less effective than our adaptive exposure technique, which conditions the generation process on
both text and image. This confirms that using both sources of information is mandatory and highly beneficial.

17.1 SAMPLES GENERATED SOLELY BASED ON TEXT CONDITIONING

In this section, we compare normal images with images generated by our pipline using only text in Fig. 8
(without conditioning on the images). Our results, illustrated by the plotted samples, demonstrate that there is
a significant difference in distribution between these generated images and normal images. This difference is
likely the reason for the ineffectiveness of the OOD samples generated with this technique.

18 LABEL GENERATION

18.1 PIXEL-LEVEL AND SEMANTIC-LEVEL OOD DETECTION

OOD samples can be categorized into two types: pixel-level and semantic-level. In pixel-level OOD detection, ID
and OOD samples differ in their local appearance, while remaining semantically identical. For instance, a broken
glass could be considered an OOD sample compared to an intact glass due to its different local appearance. In
contrast, semantic-level OOD samples differ at the semantic level, meaning that they have different meanings or
concepts than the ID samples. For example, a cat is an OOD sample when we consider dog semantics as ID
because they represent different concepts.

18.2 OUR METHOD OF GENERATING LABELS

A reliable and generalized approach for anomaly detection must have the capability to detect both semantic-level
and pixel-wise anomalies, as discussed in the previous section. To this end, our proposed method constructs
NOOD labels by combining two sets of words: near-distribution labels and negative adjectives derived from a
normal label name. We hypothesize that the former set can detect semantic-level anomalies, while the latter set
is effective in detecting pixel-wise anomalies. Additionally, we include an extra labels, marked as ’others’, in the
labels list to augment the diversity of exposures.

To generate negative adjectives, we employ a set of constant texts that are listed below and used across all
experimental settings (X is the normal label name):

• A photo of X with a crack

• A photo of a broken X

• A photo of X with a defect

• A photo of X with damage

• A photo of X with a scratch

• A photo of X with a hole
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• A photo of X torn

• A photo of X cut

• A photo of X with contamination

• A photo of X with a fracture

• A photo of a damaged X

• A photo of a fractured X

• A photo of X with destruction

• A photo of X with a mark

For NOOD labels, we utilize Word2Vec to search for semantically meaningful word embeddings after normaliz-
ing the words through a process of lemmatization. First, we obtain the embedding of the normal class label and
then search among the corpus to identify the 1000 nearest neighbors of the normal class label.
In the subsequent phase, we employ the combination of Imagenet labels and CLIP to effectively identify and
eliminate labels that demonstrate semantic equivalence to the normal label. Initially, we leverage CLIP to derive
meaningful representations of the Imagenet labels. Then, we calculate the norm of the pairwise differences
among these obtained representations. By computing the average of these values, a threshold is established,
serving as a determinant of the degree of semantic similarity between candidate labels and the normal label. The
threshold is defined as:

τlabel =

∑M
i=1,i ̸=j

∑M
j=1 |ET (yi)− ET (yj)|
M(M − 1)

(21)

In which, M is the number of Imagenet labels, and yis are the Imagenet labels.
Consequently, we filter out labels whose CLIP output exhibits a discrepancy from the normal class that falls
below the threshold.

We then sample NOOD labels from the obtained words based on the similarity factor of the neighbors to the
normal class label. The selection probability of the NOOD labels is proportional to their similarity to the normal
class label. Finally, we compile a list of NOOD labels to serve as near OOD labels.

19 OSR EXPERIMENTS DETAILS

In order to evaluate earlier works in OSR setting, we first select desired number of classes, say K and rename
the labels of samples to be in the range 0 to K − 1. Then following the guideline of the method, we evaluate it
in both clean and adversarial settings and repeat each experiment 5 times and report the average.

20 OOD EXPERIMENTS DETAILS

Table 2 yielded results that are now presented in Table 7 for a more comprehensive overview. We designated
multiple datasets as out-of-distribution during the testing phase and reported the outcomes in Table 7. Adversarial
and clean out-of-distribution scenarios have also been examined by other approaches. Prominent methods in
the clean setting encompass the ViT architecture and OpenGAN. Regarding image classification, AT and HAT
have been recognized as highly effective defenses. AOE, ALOE, and OSAD are regarded as state-of-the-art
methods for out-of-distribution detection, and ATD in robust OOD detection. These OOD methods (excluding
OpenGAN and ATD) have undergone evaluation with various detection techniques, including MSP (95)(96),
MD (97), Relative MD (98), and OpenMax (99). The results reported for each OOD method correspond
to the best-performing detection method. Notably, our approach has surpassed the state-of-the-art in robust
out-of-distribution setting (ATD) for nearly all datasets.
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In addition, to use RMD, one has to fit a N (µ0,Σ0) to the whole in-distribution. Next, the distances and
anomaly score for the input x′ with pre-logits z′ are computed as:
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Table 6: The detailed AUROC scores of the class-specific experiments for (One-Class) Novelty
Detection setting in CIFAR10, CIFAR100, MNIST, Fashion-MNIST datasets.

(a) CIFAR10

Method Attack Class Average

0 1 2 3 4 5 6 7 8 9

Ours

Clean 91.7 97.3 77.4 74.0 82.6 81.2 91.5 92.8 94.0 91.7 87.4
BlackBox 89.9 95.8 75.5 72.1 81.6 79.1 89.1 91.2 92.4 89.6 85.6
PGD-100 78.0 82.1 59.9 55.3 65.4 67.5 74.3 70.2 80.2 77.8 71.1
AutoAttack 75.7 80.0 58.7 53.6 64.2 65.1 72.1 68.8 78.9 76.0 69.3

(b) CIFAR100

Method Attack Class Average

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Ours

Clean 79.0 78.6 95.5 78.1 89.2 69.4 76.2 82.6 77.9 87.4 92.7 73.1 77.6 65.0 83.9 65.5 72.1 93.6 83.5 72.0 79.6
BlackBox 76.9 77.0 93.2 75.4 87.6 67.3 74.0 79.6 75.7 85.1 89.9 71.3 74.7 62.9 81.0 63.4 69.7 91.8 81.8 70.1 77.4
PGD-100 59.9 61.2 83.2 62.5 74.2 53.9 61.6 63.0 59.2 76.9 78.4 51.7 61.3 49.0 61.0 45.0 54.3 79.3 61.5 59.2 62.8
AutoAttack 56.8 59.4 80.4 60.9 73.9 51.2 61.3 61.7 58.3 75.9 75.7 51.7 59.9 45.7 59.2 44.4 50.6 76.1 60.5 57.1 61.0

(c) MNIST

Method Attack Class Average

0 1 2 3 4 5 6 7 8 9

Ours

Clean 99.8 99.4 99.3 99.2 99.6 99.4 99.8 98.9 99.4 98.8 99.4
BlackBox 98.7 99.0 98.2 98.8 98.3 98.9 99.4 97.8 98.5 98.2 98.6
PGD-100 97.4 96.4 97.0 92.9 97.5 96.6 98.4 93.2 95.4 92.6 95.7
AutoAttack 96.9 96.1 96.3 92.0 96.7 96.3 98.1 92.5 95.2 92.0 95.2

(d) Fashion-MNIST

Method Attack Class Average

0 1 2 3 4 5 6 7 8 9

Ours

Clean 95.8 99.7 93.9 93.4 92.9 98.3 86.5 98.6 98.5 98.8 95.6
BlackBox 94.4 98.6 92.7 92.6 91.2 96.9 85.1 97.1 97.5 97.1 94.3
PGD-100 90.0 98.5 83.8 81.1 77.5 95.3 72.7 95.1 92.5 94.5 88.1
AutoAttack 89.7 98.1 83.0 80.9 76.5 95.1 72.6 94.2 92.4 94.1 87.6
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Table 7: OOD detailed results

(a) CIFAR10

Out-Dataset Attack Method

OpenGAN ViT (RMD) ATOM AT (OpenMax) OSAD (OpenMax) ALOE (MSP) ATD RODEO

MNIST Clean 99.4 98.7 98.4 80.4 86.2 74.6 98.8 96.9
PGD-100 30.3 3.5 0.0 39.6 55.3 22.7 90.2 84.0

TiImgNet Clean 95.3 95.2 97.2 81.0 81.9 82.1 88.0 85.1
PGD-100 15.2 2.3 4.3 16.5 19.3 21.6 47.0 47.2

Places Clean 95.0 98.3 98.7 82.5 83.3 85.1 92.5 96.2
PGD-100 17.3 3.1 6.5 18.9 21.2 22.8 60.7 71.1

LSUN Clean 96.5 98.4 99.1 85.0 86.4 98.7 96.0 99.0
PGD-100 24.0 2.0 1.9 19.6 20.7 51.6 69.0 86.0

iSUN Clean 96.3 98.6 99.5 83.9 84.0 98.3 94.8 97.7
PGD-100 23.0 2.1 3.4 19.5 20.3 50.4 66.8 79.6

Birds Clean 98.3 76.0 95.8 75.1 76.5 79.9 93.6 97.8
PGD-100 34.5 0.6 6.1 14.7 19.1 21.8 69.0 76.9

Flower Clean 98.3 99.6 99.8 85.5 88.6 79.0 99.7 99.5
PGD-100 30.1 2.6 19.9 20.9 26.6 19.6 93.7 89.6

COIL Clean 98.1 95.9 97.3 70.3 75.0 76.8 90.8 91.1
PGD-100 38.5 3.9 9.5 16.6 18.7 19.3 58.1 60.4

CIFAR100 Clean 95.0 97.3 94.2 79.6 79.9 78.8 82.0 75.6
PGD-100 10.1 1.70 2.5 16.0 18.1 17.0 38.0 38.7

Avg. Clean 97.1 95.1 97.8 80.5 82.7 84.3 94.3 93.2
PGD-100 26.6 2.5 6.0 20.8 25.1 28.7 69.3 70.4

(b) CIFAR100

Out-Dataset Attack Method

OpenGAN ViT (RMD) ATOM AT (RMD) OSAD (MD) ALOE(MD) ATD RODEO

MNIST Clean 99.0 83.8 90.4 41.1 95.9 96.6 97.3 99.7
PGD-100 14.6 1.7 0.0 14.2 82.0 73.1 86.3 97.7

TiImgNet Clean 88.3 90.1 85.1 72.3 48.3 58.1 73.7 72.9
PGD-100 3.9 3.1 1.8 12.0 9.9 6.3 26.0 39.0

Places Clean 94.5 92.3 94.8 73.1 55.7 75.0 83.3 93.0
PGD-100 4.9 3.7 4.7 12.7 12.1 14.1 41.7 68.3

LSUN Clean 97.1 91.6 96.6 76.0 55.6 83.1 89.2 98.1
PGD-100 7.3 0.6 3.2 12.9 10.4 20.7 49.4 84.8

iSUN Clean 96.4 91.4 96.4 72.5 54.8 80.1 86.5 95.1
PGD-100 7.5 0.9 3.1 11.9 10.6 22.1 47.3 77.3

Birds Clean 96.6 97.8 95.1 73.1 54.5 78.4 93.4 96.8
PGD-100 7.4 10.5 14.2 13.4 11.0 23.7 66.2 75.9

Flower Clean 96.8 96.6 98.9 77.6 69.6 85.1 97.2 97.2
PGD-100 9.3 5.5 17.2 15.7 22.9 31.8 80.1 78.9

COIL Clean 97.7 88.1 79.5 74.4 57.5 77.9 80.6 78.6
PGD-100 15.7 3.5 0.8 16.3 14.0 19.2 45.3 44.8

CIFAR10 Clean 92.9 94.8 87.5 67.5 50.3 43.6 57.5 61.5
PGD-100 9.1 5.8 3.7 10.7 10.3 3.0 13.8 30.7

Avg. Clean 95.8 91.5 91.6 70.0 61.5 79.3 87.7 88.1
PGD-100 8.8 3.7 5.4 13.6 21.6 26.4 55.3 66.4
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Table 8: AUROC scores for (One-Class) Novelty Detection under three different adversarial attacks
with (a) ϵ = 8

255 and (b) ϵ = 2
255 . The best and second-best results are highlighted in bold and

underlined format respectively in each row.

Dataset Attack
Method

DeepSVDD CSI DN2 PANDA MSAD Transformaly PatchCore PrincipaLS OCSDF APAE RODEO

L
ow

-R
es

CIFAR10

Clean 64.8 94.3 92.5 96.2 97.2 98.3 68.3 57.7 57.1 55.2 87.4
BlackBox 54.6 43.1 31.8 45.3 38.4 62.9 18.1 33.3 48.4 27.6 85.6
PGD-100 23.4 2.8 0.0 0.0 0.0 0.0 0.3 24.1 22.0 0.1 71.1
AutoAttack 9.7 0.0 0.5 0.0 0.0 0.0 0.0 20.2 15.3 0.0 69.3

CIFAR100

Clean 67.0 89.6 89.3 94.1 96.4 97.3 66.8 52.0 48.2 51.8 79.6
BlackBox 55.3 34.7 28.5 42.6 51.8 64.0 23.6 29.4 36.9 16.3 77.4
PGD-100 14.5 3.2 0.0 1.6 2.9 4.3 0.0 16.6 15.1 0.0 62.8
AutoAttack 5.8 0.0 0.0 0.0 4.3 2.6 0.0 14.7 12.0 0.0 61.0

MNIST

Clean 94.8 93.8 95.7 98.0 96.0 94.8 83.2 97.3 95.5 92.5 99.4
BlackBox 65.7 72.3 56.4 62.2 58.1 73.5 46.9 80.6 75.7 73.0 98.6
PGD-100 11.4 0.3 0.0 5.3 0.0 10.8 0.0 78.1 62.4 22.9 95.7
AutoAttack 9.6 0.4 0.0 0.6 7.3 6.7 0.0 72.5 58.3 19.8 95.2

Fashion-MNIST

Clean 94.5 92.7 94.4 95.6 94.2 94.4 77.4 91.0 90.6 86.1 95.6
BlackBox 66.8 64.2 42.5 53.1 73.8 79.6 58.2 71.1 67.0 24.3 94.3
PGD-100 49.4 4.8 0.0 0.0 0.0 0.5 0.0 61.3 54.5 11.2 88.1
AutoAttack 38.2 3.1 0.0 4.9 0.0 0.0 0.0 58.2 49.2 7.0 87.6

H
ig

h-
R

es

MVTecAD

Clean 67.0 63.6 81.4 86.5 87.2 87.9 99.6 63.8 58.7 62.1 61.5
BlackBox 36.0 37.7 48.5 46.9 41.3 56.0 58.3 45.2 33.4 35.9 60.0
PGD-100 2.6 0.0 0.0 5.8 0.9 0.0 7.2 24.3 5.2 4.7 15.9
AutoAttack 0.0 0.0 0.0 0.7 0.0 0.0 4.8 12.6 0.3 1.8 14.2

Head-CT

Clean 62.5 60.9 64.0 64.5 59.4 78.1 98.5 68.9 62.4 68.1 87.3
BlackBox 44.1 50.3 52.1 48.7 42.6 65.0 80.7 54.3 40.2 45.2 85.6
PGD-100 0.0 0.6 0.7 0.0 0.0 6.4 1.5 27.8 13.1 6.6 70.0
AutoAttack 0.0 0.0 0.0 0.5 0.0 3.2 0.0 16.2 8.5 3.8 68.4

BrainMRI

Clean 74.5 93.2 67.6 72.5 99.9 98.3 91.4 70.2 63.2 55.4 76.3
BlackBox 52.7 61.0 14.7 8.1 64.2 71.6 72.5 56.9 48.0 27.1 75.8
PGD-100 4.3 0.0 2.9 0.0 1.7 5.2 0.0 33.5 20.4 9.7 71.1
AutoAttack 2.1 0.0 0.0 0.0 0.0 1.6 0.4 17.8 12.5 8.3 70.5

Tumor Detection

Clean 70.8 85.3 71.1 75.3 95.1 97.4 92.8 73.5 65.2 64.6 89.0
BlackBox 42.0 60.9 54.7 58.2 67.7 78.6 67.2 56.4 35.0 43.1 87.2
PGD-100 1.7 0.0 0.4 0.0 0.1 7.4 9.3 25.2 17.9 15.8 67.5
AutoAttack 0.0 2.2 0.0 0.3 0.0 5.1 6.1 14.7 10.1 8.3 66.9

Covid19

Clean 61.9 65.1 88.5 76.4 89.2 91.0 77.7 54.2 46.1 50.7 79.6
BlackBox 32.4 25.7 43.2 30.0 53.6 70.7 56.3 43.8 28.5 26.1 75.0
PGD-100 0.0 0.0 0.6 1.5 4.7 10.6 4.2 15.3 9.0 11.2 59.4
AutoAttack 0.0 0.3 0.0 0.2 1.9 4.4 0.5 9.1 6.5 8.7 58.8
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Table 9: Detailed comparison of different exposure techniques and our introduced method of Adaptive
Exposure over different datasets.

(a) AUROC(%) for different exposure techniques

Exposure Technique
Target Dataset Attack CIFAR10 CIFAR100 MNIST Fashion-MNIST MVTec-ad Head-CT Brain-MRI Tumor Detection Covid19

Gaussian Noise Clean 64.4 54.6 60.1 62.7 41.9 59.0 45.3 51.7 40.7
PGD 15.3 12.0 12.4 15.7 0.1 0.8 0.1 1.4 0.0

ImageNet (Fixed OE Dataset) Clean 87.3 79.6 90.0 93.0 64.6 61.8 69.3 71.8 62.7
PGD 70.0 64.8 43.0 82.0 0.5 2.1 1.1 23.0 24.5

Mixup with ImageNet Clean 59.4 56.1 59.6 74.2 58.5 54.4 57.3 76.4 69.2
PGD 31.5 27.3 1.7 48.8 1.4 21.4 12.1 53.5 50.8

Fake Image Generation Clean 29.5 23.0 76.0 52.2 43.5 63.7 65.2 65.2 42.7
PGD 16.2 14.8 51.3 31.1 7.3 6.9 28.8 32.7 13.0

Stable Diffusion Prompt Clean 62.4 54.8 84.3 63.7 54.9 71.5 66.7 45.8 37.1
PGD 35.6 35.7 62.5 48.5 12.6 3.6 7.4 5.6 0.0

Adaptive Exposure Clean 87.4 79.6 99.4 95.6 61.5 87.3 76.3 89.0 79.6
PGD 71.1 62.8 95.7 88.1 15.9 70.0 71.1 67.5 59.4

(b) FID, Density, and Coverage metrics for different exposure techniques

Exposure Technique
Target Dataset Metric CIFAR10 CIFAR100 MNIST Fashion-MNIST MVTec-ad Head-CT Brain-MRI Tumor Detection Covid19

Gaussian Noise FID 340 326 407 399 493 510 503 498 501
D / C 0.04 / 0.02 0.03 / 0.02 0.01 / 0.02 0.03 / 0.02 0.04 / 0.01 0.02 / 0.01 0.03 / 0.01 0.05 / 0.03 0.01 / 0.01

ImageNet (Fixed OE Dataset) FID 210 236 365 337 362 330 395 320 460
D / C 0.71 / 0.70 0.71 / 0.64 0.02 / 0.30 0.44 / 0.21 0.21 / 0.23 0.36 / 0.43 0.22 / 0.08 0.32 / 0.17 0.43 / 0.48

Mixup with ImageNet FID 57 59 161 110.9 295 204 275 225 360
D / C 0.37 / 0.42 0.44 / 0.39 0.01 / 0.05 0.08 / 0.11 0.27 / 0.17 0.27 / 0.13 0.15 / 0.28 0.23 / 0.34 0.31 / 0.19

Fake Image Generation FID 98 105 193 256 448 432 294 358 415
D / C 0.08 / 0.12 0.06 / 0.14 0.01 / 0.03 0.01 / 0.17 0.13 / 0.20 0.02 / 0.06 0.29 / 0.16 0.25 / 0.18 0.04 / 0.03

Stable Diffusion Prompt FID 212 138 228 272 395 349 240 211 368
D / C 0.34 / 0.05 0.29 / 0.10 0.28 / 0.17 0.11 / 0.18 0.37 / 0.14 0.08 / 0.06 0.07 / 0.41 0.25 / 0.07 0.01 / 0.04

Adaptive Exposure FID 145 156 133 134 263 204 165 186 201
D / C 0.87 / 0.64 0.63 / 0.62 0.75 / 0.86 0.61 / 0.44 0.64 / 0.09 0.77 / 0.83 0.69 / 0.61 0.57 / 0.37 0.51 / 0.80

Table 10: The detailed AUROC scores of RODEO for (One-Class) Novelty Detection setting under
the different adversarial attacks.

Attack
Dataset

CIFAR10 CIFAR100 MNIST FashionMNIST SVHN MVTecAD Head-CT BrainMRI Tumor Detection Covid19

Clean 87.4 79.6 99.4 95.6 75.2 61.5 87.3 76.3 89.0 79.6
BlackBox 85.6 77.4 98.6 94.3 74.7 60.0 85.6 75.8 87.2 75.0
PGD-100 71.1 62.8 95.7 88.1 35.4 15.9 70.0 71.1 67.5 59.4
PGD-1000 ∗ 70.2 62.1 94.6 87.2 33.8 14.9 68.6 68.4 67.0 58.3
AutoAttack 69.3 61.0 95.2 87.6 33.2 14.2 68.4 70.5 66.9 58.8
Adaptive Auto Attack 70.5 61.3 94.0 87.0 31.8 13.4 68.1 67.7 65.6 57.6

Table 11: The detailed AUROC scores of Open-Set Recognition (OSR) setting under the different
adversarial attacks.

Attack
Dataset

CIFAR10 CIFAR100 MNIST FashionMNIST

Clean 97.2 88.8 79.6 48.5
PGD-100 87.7 67.1 64.1 37.7
PGD-1000 85.0 65.3 62.7 35.3
AutoAttack 86.4 66.8 63.5 36.9
AdaptiveAutoAttack 84.1 62.9 63.0 35.4
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Table 12: The detailed AUROC scores of RODEO for OOD Detection setting under the different
adversarial attacks.

Dataset Attack

Clean PGD-100 PGD-1000 AutoAttack Adaptive Auto Attack

CIFAR10 93.2 70.4 69.5 69.0 68.8
CIFAR100 88.1 66.4 64.7 65.3 63.2

Table 13: The detailed AUROC scores of the experiments for ND, OSR, and OOD settings under
different training modes.

(a) ND

Method Training Mode Attack Dataset

CIFAR10 CIFAR100 MNIST FashionMNIST Head-CT Covid19

Ours Non-Adversarial Clean / PGD-100 93.1 / 0.0 86.6 / 0.0 98.4 / 0.0 94.8 / 0.0 96.1 / 0.0 89.2 / 0.0
Adversarial Clean / PGD-100 87.4 / 71.1 79.6 / 62.8 99.4 / 95.7 95.6 / 88.1 87.3 / 70.0 79.6 / 59.4

(b) OSR

Method Training Mode Attack Dataset

CIFAR10 CIFAR100 MNIST FashionMNIST

Ours Non-Adversarial Clean / PGD-100 84.3 / 0.0 69.0 / 0.0 99.1 / 0.0 91.9 / 0.0
Adversarial Clean / PGD-100 79.6 / 48.5 64.1 / 37.7 97.2 / 88.8 87.7 / 67.1

(c) OOD

Method Training Mode Attack Dataset

CIFAR10 vs CIFAR100 CIFAR100 vs CIFAR10

Ours Non-Adversarial Clean / PGD-100 83.0 / 0.0 71.2 / 0.0
Adversarial Clean / PGD-100 75.6 / 38.7 61.5 / 30.7
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Figure 8: Examples of text-conditioned generation (excluding image conditioning) produced using
our pipeline, showcasing the importance of simultaneous image and text conditioning in generating
near OOD data.
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Figure 9: BrainMRI: Examples of generated auxiliary outliers on Dataset BrainMRI Conditioned on
Negative Adjectives and inlier Images. The first row depicts inlier images, while subsequent rows
demonstrate generated auxiliary outliers corresponding to the negative adjectives written on the left
of each row.
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Figure 10: Head-CT: Examples of generated auxiliary outliers on Dataset Head-CT Conditioned on
Negative Adjectives and inlier Images. The first row depicts inlier images, while subsequent rows
demonstrate generated auxiliary outliers corresponding to the negative adjectives written on the left
of each row.
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Figure 11: Covid19: Examples of generated auxiliary outliers on Dataset Covid19 Conditioned on
Negative Adjectives and inlier Images. The first row depicts inlier images, while subsequent rows
demonstrate generated auxiliary outliers corresponding to the negative adjectives written on the left
of each row.
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Figure 12: Tumor Detection: Examples of generated auxiliary outliers on Tumor Detection Condi-
tioned on Negative Adjectives and inlier Images. The first row depicts inlier images, while subsequent
rows demonstrate generated auxiliary outliers corresponding to the negative adjectives written on the
left of each row.
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Figure 13: MVTec-AD: Examples of generated auxiliary outliers on Dataset MVTec-AD Conditioned
on Negative Adjectives and inlier Images. The first row depicts inlier images, while subsequent rows
demonstrate generated auxiliary outliers corresponding to the negative adjectives written on the left
of each row.
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Figure 14: MNIST Adaptive Exposures Grid: This figure illustrates a grid of adaptive exposures
of handwritten digits created using the our pipeline with the MNIST dataset, accompanied by their
corresponding labels. By utilizing the original data and text prompts, our pipeline generates a
variety of exposures that adaptively capture the distribution of the dataset while incorporating outlier
elements.
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T-shirt/top Trouser Pullover Dress Coat Sandal Shirt Sneaker Bag Ankle boot

Figure 15: FashionMNIST Adaptive Exposures Grid: This figure showcases a grid of adaptive
exposures of fashion items produced by our pipeline with the FashionMNIST dataset, along with
their corresponding labels. By leveraging the original data and text prompts, our pipeline generates a
range of diverse exposures that closely align with the distribution of the dataset while incorporating
outlier elements.
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