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Abstract001

Mitigation of biases, such as language mod-002
els’ reliance on gender stereotypes, is a crucial003
endeavor required for the creation of reliable004
and useful language technology. The crucial005
aspect of debiasing is to ensure that the models006
preserve their versatile capabilities, including007
their ability to solve language tasks and equi-008
tably represent various genders. To address009
these issues, we introduce Dual Dabiasing Al-010
gorithm through Model Adaptation (2DAMA).011
Novel Dual Debiasing enables robust reduc-012
tion of stereotypical bias while preserving de-013
sired factual gender information encoded by014
language models. We show that 2DAMA effec-015
tively reduces gender bias in language models016
for English and is one of the first approaches017
facilitating the mitigation of their stereotypi-018
cal tendencies in translation. The proposed019
method’s key advantage is the preservation of020
factual gender cues, which are useful in a wide021
range of natural language processing tasks.1022

1 Introduction023

Gender representation in large language models024

(LLMs) has been the topic of significant research025

effort (Stanczak and Augenstein, 2021; Kotek et al.,026

2023). Past studies have predominantly focused on027

such representation to identify and mitigate social028

biases. Admittedly, biases are a challenging issue029

limiting the reliability of LLMs in real-world ap-030

plications. Yet, we argue that preserving particular031

types of gender representation is crucial for fairness032

and knowledge acquisition in language models.033

To provide a more detailed perspective, we draw034

examples of both unwanted and beneficial types of035

gender signals in LLMs. Undesirable biases are036

typically inherited from stereotypes and imbalances037

in the training corpora and tend to be further ampli-038

fied during the model training (Van Der Wal et al.,039

2022; Gallegos et al., 2024). Biases are manifested040

1We will release the code upon publication.

the hairdresser Marie Curie

she

the nurse die Ärztin

he

the scientist der Arzt

they

the doctor the doctor

Figure 1: Dual character of gender signals encoded in
language models: stereotypical cues are shown on the
left, and factual cues are shown on the right-hand side.
“Die Ärztin” and “der Arzt” are respectively female and
male German translation for “the doctor”.

in multiple ways, including unequal representa- 041

tion (models are more likely to generate mentions 042

of a specific overrepresented gender), stereotypi- 043

cal associations (particular contexts are associated 044

with one gender based on stereotypical cues, e.g., 045

“politics and business are male domains”, while 046

“family is a female domain”). It has been shown 047

that, due to bias, LLMs struggle with high-stakes 048

decision-making and are prone to produce discrim- 049

inatory predictions. Examples of such a sensitive 050

application are the automatic evaluation of CVs 051

and biographical notes (De-Arteaga et al., 2019), 052

where some professions are stereotypically associ- 053

ated with a specific gender. Therefore, individuals 054

of another gender could face an unfair disadvantage 055

when assessed by an LLM-based evaluator. 056

Nevertheless, LLMs should understand and rep- 057

resent gender signals. For instance, chatbots should 058

be persistent in addressing the user with their pre- 059

ferred gender pronouns after they are revealed 060

(Limisiewicz and Mareček, 2022). Adequate rep- 061

resentation of gender is also required for knowl- 062

edge acquisition, for example, in question answer- 063

ing (QA), to correctly answer “Maria Skłodowska- 064

Curie” to the question “Who was the first woman 065

to win a Nobel Prize?”. Gender sensitivity is even 066
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more critical in morphologically rich languages,067

where gender mentions are much more ubiquitous,068

e.g., through morphological markings (as in Ger-069

man, Czech, or Russian) (Hellinger and Bußmann,070

2002). Examples of dual characters (stereotypi-071

cal vs. factual) of gender encoding are shown in072

Figure 1.073

To address these intricate ways gender signals074

are present in natural language, we introduce a075

new method, 2DAMA, that post-hoc modifies pre-076

trained language models to represent gender in an077

equitable way, i.e., without stereotypical bias but078

with factual gender information. As the core con-079

tribution, we introduce the novel method of Dual080

Debiasing that aims at our core problem of de-081

creasing bias while keeping equitable factual082

gender representation. Specifically, we aim to re-083

duce the models’ reliance on stereotypes in predic-084

tions, e.g., given a stereotypical prompt as the one085

in Figure 2: “The salesperson laughed because”,086

we intend to coerce equitable probabilities of pos-087

sible gender predictions manifested by pronouns088

“he”, “she”, or “them”. On the contrary, when con-089

sidering a prompt containing factual gender infor-090

mation: “The king laughed because” the desired091

output distribution would assign a high probability092

to the male pronoun.093

2 Methodology and Theoretical094

Background095

In this section, we formally introduce Dual De-096

baising Algorithm through Model Adaptation097

(2DAMA), a new dual debiasing method, and pro-098

vide theoretical backing for the presented approach.099

Appendix A contains the proofs and further termi-100

nological explanations.101

2.1 Background and Novel Methods102

In 2DAMA, we introduce novel Dual Debiasing and103

incorporates it into the framework taking that com-104

prises previously established algorithms (DAMA,105

LEACE). We provide a clear distinction between106

previous and novel approaches described in this107

paper:108

Background Methods: DAMA Debiasing Al-109

gorithm through Model Adaptation (Limisiewicz110

et al., 2024) is a method for adapting parameters111

of language models to mitigate the encoding of112

harmful biases without affecting their general per-113

formance. The method employs model editing114

techniques (Meng et al., 2022) to disassociate spe-115

cific signals provided in a prompt with the model 116

outputs, i.e., stereotypes in prompts and gendered 117

output. LEACE LEAst-squares Concept Erarsuer 118

(Belrose et al., 2023) is a method of concept erasure 119

(such as bias signal) in latent representation. 120

Novel Methods: DAMA-LEACE (Section 2.2) 121

The first innovation is streamlining the base debias- 122

ing algorithm DAMA. We achieve it by replacing 123

the Partial Least Squares concept erasure used in 124

DAMA with LEACE, which doesn’t require pre- 125

defining the dimensionality of erased signals. The 126

core novelty of this work is 2D Dual Debiasing, a 127

new algorithm that we formally introduce in Sec- 128

tion 2.3. The method uses covariance matrix de- 129

composition to identify correlates related to bias 130

and protected feature signals. A concept erasure al- 131

gorithm is modified to erase bias while preserving 132

protected features, such as factual gender. 133

2.2 DAMA-LEACE 134

LEACE guarantees erasing a specific concept’s in- 135

fluence on a latent vector. In a neural network, we 136

can consider a latent vector U to be an output of 137

one of the intermediate layers. LEACE aims to 138

de-correlate latent vectors with an unwanted sig- 139

nal (e.g., gender bias), whose distribution is repre- 140

sented as another vector Z. 141

In model editing, we are interested in how a 142

model’s layer maps its input vector U to output 143

vector V (unlike LEACE, which focuses on stand- 144

alone latent vector U ). We are specifically inter- 145

ested in a transformation that minimizes the dis- 146

tance between the input (keys: U ) and the predicted 147

variables (values: V ). Such U can be a latent vec- 148

tor obtained by feeding into a model a gendered 149

prompt, while Z is a vector corresponding to stereo- 150

typical output. 151

We reasonably assume that dense layers of 152

trained neural networks (e.g., feed-forward layers 153

in Transformer) fulfill this purpose, i.e.: 154

V = SU − ϵ, (1) 155

where S is a linear transformation and ϵ a vector of 156

errors. Due to gradient optimization in the model’s 157

pre-training, we assume that the feed-forward layer 158

approximates the least solution, i.e., FF ≈ S. 159

Taking this assumption, we can present a 160

theorem guaranteeing concept erasure (based 161

on LEACE) in the model adaptation algorithm 162

(DAMA): 163
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Theorem 1 (DAMA-LEACE). We consider ran-164

dom vectors: U taking values in Rm, V and Z165

taking values in Rn, where m ≥ n. Under as-166

sumptions that: A) random vectors U , V , Z are167

centered, and each of them has finite moment; B)168

the regression relation between U and V fulfill the169

assumption of ordinary least squares, and there170

exist least squares estimator V = SU − ϵ.171

Then the objective:172

argmin
P∈Rn×m

E
[
||PU − V ||2

]
,173

subject to:174

Cov(PU,Z) = 0175

is solved by:176

P ∗ =
(
I−W∔PWΣW

)
S,177

where W is the whitening transformation178

(Σ
1/2
SU,SU )

∔; PWΣ is an orthogonal projection179

matrix onto colspace of WΣSU,Z; S is a least180

squares estimator of V given U : S = ΣU,V Σ
−1
U,U .2181

Based on the theorem and the assumption that182

FF ≈ S applying projections would break the cor-183

relation between stereotypical keys and gendered184

values with minimal impact on other correlations185

stored by the feed-forward layer. We call the algo-186

rithm realizing such adaptation in a neural network:187

DAMA-LEACE.188

2.3 Dual Debiasing189

In Dual Debiasing, we extend the concept erasure190

problem by considering two type signals and cor-191

responding random variables: Zb bias to be erased192

and Zf feature to be preserved. We posit that:193

Theorem 2 (DUAL-DEBIASING). We consider194

random vectors X , Zb, and Zf in Rn. Under the195

assumptions that: A) Zb and Zf Zb ⊥ Zf |X , i.e.,196

Zb and Zf are conditionally independent, given X;197

B) ΣX,Zb
ΣT

X,Zf
= 0, i.e., the variable X is corre-198

lated with Zf and Zb through mutually orthogonal199

subspaces of Rn. The solution of the objective:200

argmin
P∈Rn×n

E
[
||PX −X||2

]
,201

subject to:202

Cov(PX,Zb) = 0,203

satisfies:204

Cov(PX,Zf ) = Cov(X,Zf ).205
2Notation: ∔ denotes Moonrose-Penrose psuedoinverse.

For brevity, we use ΣV,Z for covariance matrix Cov(V,Z).
The complete terminological note can be found in Appendix A

The theorem shows that the correlation with the 206

conditionally independent features is left intact by 207

applying LEACE erasure to a bias signal. How- 208

ever, the assumption of conditional independence 209

is strong and unlikely to hold when considering 210

the actual signals encoded in the model. Thus, for 211

practical applications, we need to relax the require- 212

ments. 213

In Dual Debiasing, we relax the assumption of 214

the theorem in order to consider bias and feature 215

signals that can be conditionally correlated. In con- 216

structing the debiasing projection (P ∗), we must 217

decide whether specific dimensions should be nul- 218

lified or preserved. We propose to nullify dimen- 219

sions of X with t times higher correlation with Zf 220

than Zb, where the threshold t (later referred to 221

as bias-to-feature threshold) is empirically chosen. 222

To analyze the correlations we consider correla- 223

tion matrix WΣX,[Zf ,Zb]. By using singular value 224

decomposition, we can identify the share of vari- 225

ance in each column’s first n rows (associated with 226

Zf ) and the latter n rows (associated with Zb). In 227

modified colspace projection P̃WΣ, we only con- 228

sider the column with t times higher variance with 229

Zf than with Zb. Thus the final Dual Debiasing 230

LEACE projection P̃ ∗ =
(
I−W∔P̃WΣW

)
will 231

to large extent preserve the protected feature while 232

reliably erasing bias. In Section 4.2, we experimen- 233

tally study the impact of feature-to-bias threshold 234

t. 235

3 Experimental Setting 236

This section presents an empirical setting to ex- 237

amine the practical application of model editing 238

methods. We describe models, data, and evaluation 239

metrics for gender bias and general performance. 240

3.1 Models 241

In experiments, we focus on Llama family models 242

(Touvron et al., 2023; Dubey et al., 2024), which 243

are robust and publically available language mod- 244

els developed by Meta AI. We analyze Llama 2 245

models of sizes 7 and 13 billion parameters and 246

Llama 3 with 8 billion parameters. In multilingual 247

experiments, we use ALMA-R 13 billion parame- 248

ter model (Xu et al., 2024). ALMA-R is based on 249

an instance of Llama 2 model that was fine-tuned 250

to translate using Contrastive Preference Optimiza- 251

tion. ALMA-R covers translation between English 252

and five languages (German, Czech, Russian, Ice- 253

landic, and Chinese). 254
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EN: “The salesperson laughed because” { he | she }
EN: “The saleseperson is not working today.” → DE: { Der | Die }
EN: “That saleseperson is not working today.” → CS: { Ten | Ta }

Figure 2: Sterotypical prompts with possible gendered outputs (in brackets) in three languages. We use prompts to
obtain stereotypical key vector U , the possible outputs are used to approximate gendered values vector V .

In model editing experiments, we adapt the lay-255

ers starting from the one found in the two-thirds of256

the layer stack counted from the input to the output.257

It is the 26th layer for 13 billion parameter models258

and the 21st layer for smaller models. For example,259

the adaptation of 11 mid-upper layers in the 13B260

model modifies the layers from 26th through 37th.261

3.2 Data for Dual Debiasing262

Following Limisiewicz et al. (2024), we feed263

prompts to the model in order to obtain the la-264

tent embeddings in the input of intermediate lay-265

ers. We treat these embeddings as key vectors (U )266

containing stereotypical or factual gender signals.267

To obtain the gendered value vectors (V ), we find268

the layer’s output vector that would maximize the269

probability of predicting tokens corresponding to270

gender.271

Language Modeling Prompts For debiasing lan-272

guage models, we use solely English prompts.273

We design 11 prompt templates, such as “The X274

laughed because ___”, where “X” should be re-275

placed by profession name. This prompt construc-276

tion provokes the model to predict one of the gen-277

dered pronouns (“he”, “she”, or “them”). To dis-278

tinguish stereotypical signals for debiasing, we use279

219 professions without factual gender that were280

annotated as stereotypically associated with one of281

the genders by Bolukbasi et al. (2016).282

Multilingual Prompts For debiasing machine283

translation, we use prompts instructing the model to284

translate sentences containing the same set of 219285

professions to a target language that has the gram-286

matical marking of gender, e.g., “English: The X is287

there. German: ___”. The translation model would288

naturally predict one of the German determiners,289

which denotes gender (“Der” for male or “Die” for290

female). For each model, we adjust the template291

to include instructions suggested by the ALMA au-292

thors. We construct the translation prompts for two293

target languages, Czech and German, proposing 11294

templates for each.295

Factual Prompts Dual debiasing requires using296

factual prompts to identify the signal to be pre-297

served. For that purpose, we use the same prompt 298

templates as defined above (both English and mul- 299

tilingual) with the distinction of entities used to 300

populate them. For that purpose, we propose 13 301

pairs of factually male and female entities, e.g., 302

“king” – “queen”, “chairman” – “chairwoman”. 303

The examples of language modeling and multi- 304

lingual prompts are given in Figure 2. We list all 305

of the prompt templates in Appendix B 306

3.3 Bias Evaluation 307

Language Modeling We assess the bias in lan- 308

guage generation following the methodology of 309

Limisiewicz et al. (2024). From the dataset of 310

Bolukbasi et al. (2016), we select the held-out 311

set of professions that were not included in the 312

219 used for debiasing. For each of these pro- 313

fessions, annotators had assigned two scores: fac- 314

tual score xf and stereotypical score xs. The 315

scores define how strongly a word (or a prompt) 316

is connected with the male or female gender, re- 317

spectively, through factual or stereotypical cues. 318

By convention, scores range from −1 for female- 319

associated words to 1 for male ones. We measure 320

the probabilities for gendered prediction for a given 321

prompt PM (o|X). For that purpose, we use pro- 322

nouns o+ = “he” and o− = “she”, as they are 323

probable continuations for given prompts. Subse- 324

quently for each prompt, we compute empirical 325

score y = PM (o+|X)− PM (o−|X). We estimate 326

the linear relationship between scores: 327

y = as · xs + af · xf + b0 (2) 328

The linear fit coefficients have the following in- 329

terpretations: as is an impact of stereotypical sig- 330

nal on the model’s predictions; af is an impact 331

of the factual gender of the word. Noticeably, y, 332

xs, and xf take the values in the same range. The 333

slope coefficient tells how shifts in annotated scores 334

across professions impact the difference in predic- 335

tion probabilities of male and female pronouns. 336

The intercept b0 measures how much more proba- 337

ble the male pronouns are than the female pronouns 338

when we marginalize the subject. 339
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Bias in LM WinoBias

↓ as ↑ af ↓ b ↓ ∆S ↓∆G

Llama 2 7B 0.234 0.311 0.090 33.6 7.3
DAMA 0.144 0.205 0.032 27.3 6.8
DAMA+LEACE 0.118 0.171 0.028 22.9 5.4
2DAMA 0.128 0.187 0.042 22.9 5.7

Llama 2 13B 0.244 0.322 0.097 35.0 0.3
DAMA 0.099 0.160 0.030 26.4 2.4
DAMA+LEACE 0.098 0.159 0.026 26.5 2.4
2DAMA 0.119 0.206 0.023 27.0 1.9

Llama 3 8B 0.262 0.333 0.082 36.8 2.7
DAMA 0.069 0.090 0.144 20.3 4.2
DAMA+LEACE 0.084 0.157 0.082 18.8 2.7
2DAMA 0.140 0.209 0.051 18.7 2.4

Table 1: Bias evaluation for the Llama family models,
and their adaptation with different debiasing algorithms
(DAMA, DAMA with LEACE, and 2DAMA). The debi-
asing adaptation was applied to 12 mid-upper layers for
the 13B model and 9 mid-upper layers for the smaller
ones. In 2DAMA, we set bias-to-feature threshold to
t = 0.05.

Other Bias Manifestations in English We eval-340

uate the bias in coreference resolution based on341

WinoBias dataset (Zhao et al., 2018). We use342

metrics ∆G and ∆S to evaluate representational343

and stereotypical bias, respectively. ∆G measures344

the difference in coreference identification correct-345

ness (accuracy) between masculine and feminine346

entities; similarly, ∆S measures the difference347

in accuracy between pro-stereotypical and anti-348

stereotypical instances of gender role assignments.349

Translation Stanovsky et al. (2019) proposed350

using Winograd Challenge sentences for evaluat-351

ing bias in translation from English into eight lan-352

guages with morphological marking of gender (e.g.,353

German, Spanish, Russian, Hebrew). In WinoMT,354

the correctness of the translation is computed by355

the F1 score of correctly generating gender inflec-356

tion of profession words in the target language.357

The evaluation of gender bias is analogical, as in358

WinoBias. ∆G and ∆S measure the difference359

in F1 scores: male vs. female and pro- vs. anti-360

stereotypical sets of professions, respectively. The361

more recent BUG (Levy et al., 2021) dataset is362

based on the same principle of bias evaluation,363

with the distinction that it contains naturally oc-364

curring sentences instead of generic templates used365

in WinoMT.366

3.4 General Performance Evaluation367

Language Modeling We evaluate perplexity on368

general domain texts from Wikipedia-103 corpus369

LM ARC

↓ ppl ↑ acc (C) ↑ acc (E)

Llama 2 7B 21.28 70.2 42.5
DAMA 21.51 69.8 42.8
DAMA+LEACE 23.81 68.3 41.2
2DAMA 23.66 67.5 42.0

Llama 2 13B 19.68 72.6 46.8
DAMA 18.94 71.6 45.0
DAMA+LEACE 19.67 71.3 46.4
2DAMA 19.90 71.2 46.1

Llama 3 8B - 67.1 39.9
DAMA - 64.6 38.1
DAMA+LEACE - 63.0 39.8
2DAMA - 63.5 37.9

Table 2: General performance in language modeling
and reasoning on ARC Chalange and Easy subset. We
present results for Llama family models, and their
adaptation with different debiasing algorithms (DAMA,
DAMA with LEACE, and 2DAMA). We do not present
perplexity for Llama 3 because the model has a differ-
ent vocabulary, and the results are not comparable. The
hyperparameters are the same as in Table 1
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Figure 3: Visualization of dimensions and their vari-
ances related to stereotypical and factual gender signals
identified by Dual Debiasing algorithm in 26th layer of
Llama 2 13B. The red dots denote the bias-to-feature
threshold t = 0.05. In 2DAMA, the dimension is pre-
served if stereotypical covariance is below the threshold.

(Merity et al., 2016). 370

Reasoning Endtask To assess the models’ rea- 371

soning capabilities, we compute accuracy on AI2 372

Reasoning Challenge (ARC) (Clark et al., 2018) 373

in both easy and challenging subsets. 374

Translation To monitor the effect of debias- 375

ing on translation quality, we evaluate models on 376

WMT-22 (Kocmi et al., 2020) parallel corpora with 377

German, Czech, and Russian sentences and their 378

translations in English. We estimate the quality 379

by two automatic metrics: COMET-22 (Rei et al., 380

2022) and chrf (Popović, 2015). 381

4 Debiasing Language Models 382

In the first batch of the experiments, we evaluate 383

the effectiveness of debiasing language models. In 384

these experiments, we solely focus on tasks in En- 385
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Layer Bias Dimesnions Variance Erased

Erased Preserved Bias Factual

26 712 12 99.6% 69.4%
27 774 18 99.4% 64.0%
28 782 22 99.0% 62.4%
29 750 17 99.5% 65.4%
30 713 19 99.5% 64.0%
31 304 12 99.3% 57.6%
32 387 16 99.2% 57.0%
33 469 17 99.2% 60.1%
34 716 21 99.2% 61.3%
35 621 18 99.2% 62.2%
36 406 20 98.9% 54.0%
37 409 18 99.1% 57.2%

Table 3: Number of erased and preserved orthogonal di-
mensions with 2DAMA in each feed-forward layer. We
call a dimension “biased” when it belongs to col-space
spanned by covariance matrix between latent represen-
tation and bias signal (WΣSU,Z). We present the per-
centage of erased covariance with stereotypical bias and
factual gender as the result of the intervention in the lay-
ers. The bias-to-feature threshold was set at t = 0.05.

glish. We specifically analyze three model editing386

approaches: DAMA as a baseline; DAMA in combi-387

nation with LEACE; and 2DAMA, which employs388

Dual Debiasing to preserve factual gender informa-389

tion.390

4.1 Main Results391

Model editing reduces bias and preserves the392

model’s performance. All of the considered393

methods reduce gender bias both in language mod-394

eling and coreference resolution (Table 1). Re-395

markably, we observe that the model’s overall per-396

formance, i.e., unrelated to gender, is not signifi-397

cantly affected, as demonstrated by perplexity and398

question-answering results (Table 2). Relatively399

worse performance preservation was observed for400

Llama 3, which could be caused by intervening in401

too many layers.402

Streamlining the approach with LEACE. We403

observe that DAMA-LEACE reduces bias to a larger404

extent than baseline DAMA. The more substantial405

debiasing effect comes in pair with a slightly higher406

drop in general performance, as shown in Table 2.407

Yet, the deterioration is still small compared to408

the original models’ scores. The crucial benefit409

of DAMA-LEACE is that projection dimensionality410

does not need to be pre-defined because it is learned411

implicitly (details in Section 2.2).3 That motivates412

3In baseline DAMA, the projection dimensionality is pre-
set to d = 256 for the 7B model and d = 512 for the 13B

us to use DAMA-LEACE in further experiments. 413

Preserving factual gender with Dual Debiasing. 414

The coefficients as and af from Table 1 indicate 415

how much the models’ prediction is affected by 416

gender present through stereotypical and factual 417

cues, respectively. We see that 2DAMA enables, 418

to a significant extent, preserving factual gender 419

information (as indicated by higher af coefficient) 420

with a slight increase in susceptibility to gender 421

bias. 422

4.2 Relationship between Seterotypical and 423

Factual Signals 424

With Dual Debiasing, we can analyze the covari- 425

ance of embedding space orthogonal dimensions in 426

the model’s feed-forward layers with the stereotyp- 427

ical and factual signals (as detailed in Section 2.3). 428

In Figure 3, we plot these covariances for each di- 429

mension. The visualization reveals that the factual 430

gender is represented by relatively few dimensions 431

with high covariance. In contrast, stereotypical 432

bias is encoded in more-dimensional subspaces, 433

yet each dimension has low covariance. 434

This observation suggests that in debiasing, we 435

need to exempt just a small subset of dimensions 436

encoding factual gender. Accordingly, further anal- 437

ysis (shown in Table 3) shows that 2DAMA obtains 438

a reasonable threshold with low bias-to-feature 439

threshold t = 0.05. Such a setting preserves only a 440

few dimensions responsible for stereotypical bias 441

in each layer. Such intervention in the model erases 442

≈ 99% of covariance with a stereotypical signal 443

while keeping over 30% of covariance with a fac- 444

tual gender signal. 445

4.3 Choice of Hyperparameters 446

We present the impact of two parameters on the 447

effectiveness of 2DAMA in Figure 4. The first is 448

the bias-to-feature threshold t. We observe that its 449

choice controls the trade-off between mitigating 450

bias and preserving factual information. We set it a 451

low value of 0.05 because our primary objective is 452

the reduction of bias. The second hyperparameter 453

is the number of layers that should be edited. We 454

confirm the findings of Limisiewicz et al. (2024) 455

that adaptation should applied to approximately 456

one-third of the midd-upper layers. Notably, the 457

top two layers (38th and 39th) should be left out. 458

models.
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Figure 4: The hyperparameter analysis for 2DAMA applied to Llama 2 13B model on performance and bias in
language modeling. We measured bias on gendered prompts by linear coefficients: as and af , the language modeling
capabilities are measured by perplexity. Stars mark the performance of the best setting. The dashed line corresponds
to the scores of the original model.

5 Beyond English: Multilingual Debiasing459

In a multilingual setting, we debias a model fine-460

tuned for translation: ALMA-R 13B (Xu et al.,461

2024) by employing the collection of the new mul-462

tilingual debiasing prompts. We specifically focus463

on gender bias and quality of translation between464

English and Czech, German, and Russian.465

5.1 Main Results466

Model editing generalizes to the multilingual set-467

tings. Analogically to experiments for English,468

we show that model editing reduces bias in trans-469

lation and has a small impact on the translation470

quality (as shown in Table 4). We observe some471

differences in results between the two analyzed472

languages. Overall, the scores after debiasing are473

better for German than Czech, indicating that Ger-474

man prompts are of better quality.475

Dual Debiasing is required to mitigate repre-476

sentational bias. Our methods are more effec-477

tive for the stereotypical manifestation of bias ∆S478

than the representational one ∆G. In the repre-479

sentational bias, we sometimes observe bias in-480

crease after model editing. To remedy that, we481

use 2DAMA with higher values of feature-to-bias482

threshold (t = 1.00 instead of t = 0.05), which483

tends to preserve more factual signal. Factual gen-484

der understanding is especially essential for equi-485

table representation of factual gender in morpholog-486

ically rich languages, as evidenced by ∆G scores487

for t = 1.00 setting. This finding emphasizes the488

utility of 2DAMA in a multilingual setting. 4489

4The extended study of hyperparameters in translation
debiasing is presented in Appendix C.

5.2 Cross-lingual Debiasing 490

An intriguing question of multilingual bias is 491

whether its encoding is shared across languages 492

(Gonen et al., 2022). We test this hypothesis by 493

editing models with prompts in one or multiple lan- 494

guages and testing on another language. The results 495

show evidence of effectiveness in cross-lingual mit- 496

igation of stereotypical gender bias. In Table 5b, 497

we observe that some languages are more effec- 498

tive in debiasing than others, e.g., German prompts 499

offer the strongest ∆S reduction for both Czech 500

and German. Whereas to control representational 501

bias mitigation (∆G), it is recommended to use in- 502

language prompts, as indicated by Czech, German, 503

and Russian results in Table 5a. 504

6 Related Work 505

6.1 Model Editing and Concept Erasure 506

Model editing is a method of applying targeted 507

changes to the parameters of the models to mod- 508

ify information encoded in them. Notable exam- 509

ples of model editing include targeted changes in 510

the model’s weight (Mitchell et al., 2022; Meng 511

et al., 2023, 2022) or adaptation with added mod- 512

ules (adapters) (Houlsby et al., 2019; Hu et al., 513

2022). The technique showed promising results as 514

the tool to erase specific information (Patil et al., 515

2024). 516

In the literature, bias mitigation was perceived 517

as a theoretically interesting and practical appli- 518

cation for concept erasure. Ravfogel et al. (2020, 519

2022); Belrose et al. (2023) proposed effective lin- 520

ear methods of erasing gender bias from the la- 521

tent representation of language models. Other ap- 522
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Language Translation to English Translation from English WinoMT BUG

↑ comet ↑ chrf ↑ comet ↑ chrf ↓ ∆S ↓∆G ↓ ∆S ↓∆G

German

ALMA-R 13B 85.0 57.0 86.7 58.1 30.5 3.7 7.8 32.5
DAMA+LEACE 85.0 56.7 85.3 55.4 20.5 10.0 5.4 33.6
2DAMA (t = 0.05) 84.9 56.7 85.1 54.8 22.6 3.3 4.4 27.8
2DAMA (t = 1.00) 84.9 56.6 85.4 55.4 22.1 -10.1 7.7 28.4

Czech

ALMA-R 13B 87.0 68.6 89.7 53.8 26.3 2.1 11.7 9.2
DAMA+LEACE 86.9 68.2 88.6 50.1 21.6 17.7 10.4 18.0
2DAMA (t = 0.05) 86.9 68.1 88.5 49.9 18.0 14.6 4.5 11.0
2DAMA (t = 1.00) 86.9 68.1 88.8 50.4 22.4 7.2 8.6 9.8

Table 4: Evaluation of gender bias and quality of translation. In all the methods, ALMA-R was used as the base
model. Adaptations were applied to 11 mid-upper feed-forward layers. Translation quality was evaluated on the
WMT-22 dataset.

Prompt Lang. ↓ German Czech Russian

∅ 3.7 2.1 25.7
English 11.1 7.9 31.4
German 3.3 21.6 31.3
Czech 6.2 14.6 32.0

All Above 8.1 23.2 33.4

(a) Representational bias (∆G)

Prompt Lang. ↓ German Czech Russian

∅ 30.5 26.3 10.2
English 28.5 21.2 7.0
German 14.4 15.1 4.0
Czech 24.3 17.2 3.9

All Above 24.0 18.7 1.3

(b) Stereotypical bias (∆S)

Table 5: Bias evaluation based on WinoMT challenge-set. The evaluation language is shown at the top of each
column. Each row corresponds to a set of languages for which prompts were used in model adaptation (∅ denotes
the model without any adaptation). The debiasing adaptation was performed with 2DAMA on 11 mid-upper layers
with the bias-to-feature threshold set to t = 0.05.

proaches aimed to edit pre-trained language models523

to reduce their reliance on stereotypes. They in-524

clude: causal intervention (Vig et al., 2020), model525

adapters (Fu et al., 2022), rate-distortion (Chowd-526

hury and Chaturvedi, 2022), or targeted weight527

editing (Limisiewicz et al., 2024).528

6.2 Debiasing Machine Translation529

Machine translation systems have been shown to530

exhibit gender bias in their predictions (Savoldi531

et al., 2021). The problem is especially severe in532

translation from languages that do not grammati-533

cally mark gender (e.g., English, Finish) to ones534

that do (e.g., German, Czech, Spanish) because535

translation requires predicting gender, which is not536

indicated in the reference (Stanovsky et al., 2019).537

There have been a few past attempts to mitigate538

biases in translation systems (Saunders and Byrne,539

2020; Iluz et al., 2023; Zmigrod et al., 2019). Nev-540

ertheless, these approaches are based on fine-tuning541

for non-stereotypical sentences, which increases542

the model’s specialization but significantly reduces543

usability, e.g., in tasks unrelated to gender (Luo544

et al., 2023).545

One key constraint of multilingual debiasing546

is the scarcity of bias annotations in various lan-547

guages. Notable datasets were introduced by Levy 548

et al. (2021); Névéol et al. (2022). The difficulty 549

of obtaining reliable cross-lingual bias resources 550

stems from the need for deep knowledge of culture 551

in addition to understanding a language. To the 552

best of our knowledge, we are the first to propose a 553

method for debiasing LLM in machine translation 554

tasks. 555

7 Conclusion 556

We highlight the importance of considering the 557

dual character of gender encoding in model edit- 558

ing. The theoretical and empirical results show that 559

our novel model editing methods: 2DAMA effec- 560

tively reduces the impact of stereotypical bias on 561

the predictions while preserving equitable represen- 562

tation of (factual) gender based on grammar and 563

semantics. Maintaining the factual component of 564

gender representation is crucial for debiasing in lan- 565

guages other than English, for which gender mark- 566

ings are ubiquitous. Furthermore, our method does 567

not significantly deteriorate the high performance 568

of LLMs in various evaluation settings unrelated to 569

gender. 570
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Limitaions571

The main drawback of the Dual Debiasing ap-572

proach is the high likelihood of stereotypical and573

factual signals being correlated, as mentioned in574

Section 2.3. We hypothesize that the model at-575

tained this correlation from training data because576

the distinction between factual and stereotypical577

gender cues is often vague and depends on context.578

Nevertheless, we show that with Dual Debiasing579

we can control the tradeoff, and with proper choice580

of hyperparameters, we can keep strong factual581

signals while discarding the majority of bias.582

Another drawback of our method is that we ob-583

serve a small deterioration in non-gender-related584

tasks, such as language modeling and translation.585

Some of the drop may be attributed to the fact that586

test sets may exhibit representational bias. For in-587

stance, there could be a higher frequency of male588

than female mentions, which would unfairly advan-589

tage a biased model in evaluation.590
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David Mareček. 2023. Exploring the impact of train-830
ing data distribution and subword tokenization on831
gender bias in machine translation. In Proceedings832
of the 13th International Joint Conference on Natural833
Language Processing and the 3rd Conference of the834
Asia-Pacific Chapter of the Association for Compu-835
tational Linguistics (Volume 1: Long Papers), pages836
885–896, Nusa Dua, Bali. Association for Computa-837
tional Linguistics.838

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A839
method for stochastic optimization. In 3rd Inter-840
national Conference on Learning Representations,841
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,842
Conference Track Proceedings.843

Tom Kocmi, Tomasz Limisiewicz, and Gabriel844
Stanovsky. 2020. Gender coreference and bias eval-845
uation at WMT 2020. In Proceedings of the Fifth846
Conference on Machine Translation, pages 357–364,847
Online. Association for Computational Linguistics.848

Hadas Kotek, Rikker Dockum, and David Q. Sun. 2023.849
Gender bias and stereotypes in large language mod-850
els. Proceedings of The ACM Collective Intelligence851
Conference.852

Shahar Levy, Koren Lazar, and Gabriel Stanovsky. 2021.853
Collecting a large-scale gender bias dataset for coref-854
erence resolution and machine translation. In Find-855
ings of the Association for Computational Linguis-856
tics: EMNLP 2021, pages 2470–2480, Punta Cana,857
Dominican Republic. Association for Computational858
Linguistics.859

Tomasz Limisiewicz and David Mareček. 2022. Don’t860
forget about pronouns: Removing gender bias in861
language models without losing factual gender infor-862
mation. In Proceedings of the 4th Workshop on Gen-863
der Bias in Natural Language Processing (GeBNLP),864
pages 17–29, Seattle, Washington. Association for865
Computational Linguistics.866

Tomasz Limisiewicz, David Mareček, and Tomáš Musil. 867
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A Proofs1007

A.1 Terminological Note1008

For brevity of theorems and proofs, we adopt the1009

following notation convention:1010

Definition 1 (Moore-Penrose Pseudoinvers). We1011

denote Moore-Penrose pseudoinverse of matrix M1012

as M∔:1013

M∔ = (MTM)−1MT1014

Definition 2 (Matrix Square Root). We denote a1015

positive semi-definite square root of positive semi-1016

definite matrix M as M1/2.1017

Definition 3 (Covariance Matrix). For two ran-1018

dom vectors: X ∈ Rm and Y ∈ Rn. We denote1019

the covariance matrix as:1020

ΣX,Y = Cov(X,Y )1021

A.2 LEACE Theorem1022

For reference, we present the original LEACE theo-1023

rem from Belrose et al. (2023). The proof can be1024

found in ibid..1025

Theorem 3 (LEACE). We consider random vec-1026

tors X and Z taking values in Rn. Both random1027

vectors are centered, each with a finite moment.1028

Then the objective:1029

argmin
P∈Rn×n

E
[
||PX −X||2

]
1030

subject to:1031

Cov(PX,Z) = 01032

is solved by:1033

P ∗ = I−W∔PWΣW ,1034

where W is the whitening transformation (Σ1/2
V,V )

∔;1035

PWΣ is an orthogonal projection matrix onto1036

colspace of WΣV,Z .1037

A.3 Proof for DAMA-LEACE Theorem1038

We formalize the requirements and implications of1039

that assumption in the following theorem:1040

Theorem 4 (Gauss-Markov: Probabilistic Least1041

Squares). We consider random vectors: U taking1042

values in Rm, V , and Z taking values in Rn; both1043

are centered and have finite second moments. We1044

seek the linear regression model given by:1045

V = SU − ϵ,1046

given the following assumptions:1047

A No Multicollinearity: there is no linear re- 1048

lationship among the independent variables, 1049

i.e., matrix ΣU,U is of full rank m. 1050

B Exogeneity: the expected value of error terms 1051

given independent variables E[ϵ|U ] = 0, this 1052

also implies that Cov(ϵ, U) = 0. 1053

C Homoscedasticity: the covariance of the error 1054

terms is constant and does not depend on the 1055

independent variables Cov(ϵ, ϵ|U) = σ I. 1056

Then, the ordinary least squares estimator is 1057

given by the formula: 1058

S∗ = ΣU,V Σ
−1
U,U 1059

Such estimator is best linear unbiased estima- 1060

tor and minimizes the variance of error terms: 1061

Tr(Cov(ϵ, ϵ)). 1062

The proof of the Theorem 4 can be found in the 1063

classical statistics literature. For instance, Eaton 1064

(1983) presents proof for the multivariate case pre- 1065

sented above. 1066

Equipped with the theorems above, we are ready 1067

to present the theorem that is the main theoretical 1068

contribution of this work: 1069

Theorem 1. We consider random vectors: U tak- 1070

ing values in Rm, V and Z taking values in Rn, 1071

where m ≥ n. Under assumptions that: A) random 1072

vectors U , V , Z are centered, and each of them has 1073

finite moment; B) the regression relation between 1074

U and V fulfill the assumption of ordinary least 1075

squares, and there exist least squares estimator 1076

V = SU − ϵ. 1077

Then the objective: 1078

argmin
P∈Rn×m

E
[
||PU − V ||2

]
, 1079

subject to: 1080

Cov(PU,Z) = 0 1081

is solved by: 1082

P ∗ =
(
I−W∔PWΣW

)
S, 1083

where W is the whitening transformation 1084

(Σ
1/2
SU,SU )

∔; PWΣ is an orthogonal projection 1085

matrix onto colspace of WΣSU,Z; S is a least 1086

squares estimator of V given U : S = ΣU,V Σ
−1
U,U . 1087

Proof. For simplicity, we will decompose the prob- 1088

lem into independent optimization objectives cor- 1089

responding to each dimension in Rn. For the ith 1090

dimension, we write the objective as: 1091
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argmin
Pi∈Rn

E
[
P T
i V − Vi

]2
s.t. Cov(PiU,Z) = 0,

(3)1092

where Pi is ith column of matrix P . From the1093

assumption (B) of the theorem, we can represent1094

the linear relation between U and V , as SU =1095

V+ϵ, where ϵ is an error term of regression. We use1096

this property to rewrite the minimization objective1097

from expression 3, as:1098

argmin
P̃i∈Rn,S∈Rm×n

E
[
P̃i

T
SU − Vi

]2
(4)1099

We manipulate the term under argmin to rewrite1100

it as a sum of three terms:1101

E
[
P̃i

T
SU − Vi

]2
= E

[
P̃i

T
(V + ϵ)− Vi

]2
=

= E
[
P̃i

T
(V + ϵ)− (Vi + ϵi) + ϵi

]2
=

= 2E
[(

P̃i
T
(V + ϵ)− (Vi + ϵi)

)
ϵi

]
︸ ︷︷ ︸

I

+

+E[ϵi]2︸ ︷︷ ︸
II

+E
[
P̃i

T
(V + ϵ)− (Vi + ϵi)

]2
︸ ︷︷ ︸

III
(5)

1102

We will now consider each of the three sum-1103

mands one by one to find the solution to the opti-1104

mization objective P ∗ = P̃ ∗S∗.1105

Summand I zeros out. We show that by observ-1106

ing that the summand is doubled covariance5:1107

E
[(

P̃i
T
(V + ϵ)− (Vi + ϵi)

)
ϵi

]
=

= Cov
(
P̃i

T
(V + ϵ)− (Vi + ϵi), ϵi

)
=

=
(
P̃i

T − 1T
i

)
Cov(V − ϵ, ϵ) =

=
(
P̃i

T − 1T
i

)
S Cov(U, ϵ)

(6)1108

From assumption B of Theorem 4 (exogeneity)1109

and, by extension, assumption of this theorem, we1110

have that Cov(U, ϵ) = 0 and thus summand I zeros1111

out.1112

5From the fact that both factors under E are centered.

Summand II by the conclusion of Theorem 4 is 1113

minimized by setting: 1114

S∗ = ΣU,V Σ−1
U,U (7) 1115

We can also set S to S∗ in summand III, as the 1116

variable under E is independent of ϵ, as shown in 1117

the previous paragraph. By finding S∗, we have 1118

solved part of the objective in expression 4. 1119

Summand III we find the matrix P̃ minimizing 1120

the value of the summand under constraines. By 1121

rewriting Cov(PiU), Z) as Cov(P̃i(V + ϵ, Z), we 1122

observe that minimizing the value of summand 1123

III under constraint is analogical to solving the 1124

problem stated in LEACE (Theorem 3): 1125

argmin
P̃i∈Rn

E
[
P̃i

T
(V + ϵ)− (Vi + ϵ)

]2
such that Cov(P̃i(V + ϵ), Z) = 0

(8) 1126

We find the solution based on Theorem 3, where 1127

we substitute X with V + ϵ and find P̃ ∗ = 1128

I−W∔PWΣW , where W is the whitening trans- 1129

formation (Σ
1/2
V+ϵ,V+ϵ)

∔; PWΣ is an orthogonal 1130

projection matrix onto colspace of WΣV+ϵ,Z 1131

Conclusion for summands II and III, we indepen- 1132

dently found the matrices minimizing their values. 1133

We obtain the matrix P ∗ solving our original ob- 1134

jective in expression 3 by multiplying them: 1135

P ∗ = P̃ ∗S∗ =
(
I−W∔PWΣW

)
ΣU,V Σ

−1
U,U

(9) 1136

1137

A.4 Proof for Dual-Debiasing Theorem 1138

Theorem 2. We consider random vectors X , Zb, 1139

and Zf in Rn. Under the assumptions that: A) Zb 1140

and Zf Zb ⊥ Zf |X , i.e., Zb and Zf are condition- 1141

ally independent, given X; B) ΣX,Zb
ΣT

X,Zf
= 0, 1142

i.e., the variable X is correlated with Zf and Zb 1143

through mutually orthogonal subspaces of Rn. The 1144

solution of the objective: 1145

argmin
P∈Rn×n

E
[
||PX −X||2

]
, 1146

subject to: 1147

Cov(PX,Zb) = 0, 1148

satisfies: 1149

Cov(PX,Zf ) = Cov(X,Zf ). 1150

14



Proof. First, we observe that the assumption A)1151

can be generalized to any coordinate system. For1152

an orthogonal matrix W , we have:1153

ΣWX,Zb
ΣT

WX,Zf
= WΣX,Zb

ΣT
X,Zf

W T = 0
(10)1154

This guarantees the orthogonality of spaces1155

spanned by columns of two orthogonality matri-1156

ces. The property will be useful for the second part1157

of the proof:1158

Col(ΣWX,Zb
) ⊥ Col(ΣWX,Zf

) (11)1159

Secondly, we remind the reader that the solution1160

to the objective provided in the theorem (based on1161

Theorem 3) is as follows:1162

P ∗ = I−W∔PWΣW (12)1163

Now, we evaluate the covariance matrix between1164

P ∗X and Zf to check that it is the same as the1165

covariance matrix between X and Zf .1166

Cov(P ∗X,Zf ) = ΣX,Zf
−W∔PWΣWΣX,Zf

=

= ΣX,Zf
−W∔PWΣΣWX,Zf

(13)
1167

we note that PWΣ is the projection matrix onto1168

the column space of ΣWX,Zf
. From that fact and1169

Equation 11, we have:1170

PWΣΣWX,Zf
= 0 (14)1171

Thus the last component in Equation 13 nullifies1172

and we conclude that:1173

Cov(P ∗X,Zf ) = ΣX,Zf
= Cov(X,Zf ) (15)1174

1175

B Prompts1176

B.1 Monolingual Prompts1177

The list of 11 prompt templates is given in1178

Table 6. The term <profession> is substi-1179

tuted by 219 professions without factual gender1180

(from Bolukbasi et al., 2016) and 26 gendered1181

entities (“man”, “boy”, “gentleman”, “father”,1182

“son”, “brother”, “husband”, “king”, “prince”,1183

“uncle”, “nephew”, “groom”, “duke”, “grandfa-1184

ther”, “widower”, “hero”, “wizard”, “baron”,1185

“emperor”, “anchorman”, “clergyman”, “chair-1186

man”, “alumnus”, “woman”, “girl”, “lady”,1187

“mother”, “daughter”, “sister”, “wife”, “queen”,1188

“princess”, “aunt”, “niece”, “bride”, “duchess”, 1189

“grandmother”, “widow”, “heroine”, “witch”, 1190

“baroness”, “empress”, “anchorwoman”, “clergy- 1191

women”, “chairwomen”, “alumna”) which makes 1192

2409 stereotypical and 286 factual prompts in total 1193

used for Dual Debiasing. 1194

B.2 Multilingual Prompts 1195

For debiasing the translation models, we use 11 1196

English-German and 11 English-Czech prompt 1197

templates shown in Table 7. These prompts were 1198

designed to be as general as possible, and so that 1199

the target language prefix does not include any gen- 1200

der information, while the proposed completions, 1201

which are always one-token words, do specify the 1202

gender. In German, these completions may be de- 1203

terminers. Czech does not use determiners, but gen- 1204

der is included, for example, in the past form of the 1205

verb “to be”. We use the same sets of professions, 1206

and therefore, we generate additional data of equal 1207

size for each language. To match the intended use, 1208

we wrap them into ALMA-R translation prompt 1209

template: 1210

Translate this from {src_lang} to {tgt_lang}: 1211

{src_lang}: <English source> 1212

{tgt_lang}: <Target prefix> 1213

1214

English prompt Completions

The <profession> wanted that [he, she, they]
The <profession> laughed because [he, she, they]
The <profession> went home because [he, she, they]
The <profession> desired that [he, she, they]
The <profession> wished that [he, she, they]
The <profession> cried because [he, she, they]
The <profession> ate because [he, she, they]
The <profession> said that [he, she, they]
The <profession> ran because [he, she, they]
The <profession> stayed up because [he, she, they]
The <profession> whispered that [he, she, they]

Table 6: Monolingual English prompt templates.

C Additional Results 1215

C.1 Stereotypical and Factual Signals across 1216

Layers 1217

In Figure 6, we observe the variances with stereo- 1218

typical and factual gender signals in subsequent 1219

layers. We see that the number of biased dimen- 1220

sions differs across layers. Nevertheless, we ob- 1221

serve the same pattern in each layer: stereotypical 1222

signal is encoded in a relatively small number of 1223
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English source German prefix Completions

This is the <profession>. Das ist ___ [der, die]
There is the <profession>. Da ist ___ [der, die]
The <profession> is not working today. ___ [Der, Die]
The <profession> was fired. ___ [Der, Die]
The <profession> is busy. ___ [Der, Die]
Do you know the <profession> Kennen Sie ___ [den, die]
I was there with the <profession> Ich war dort mit ___ [dem, der]
I asked the <profession>. Ich fragte ___ [den, die]
We met the <profession>. Wir trafen ___ [den, die]
I answered the <profession>. Ich antwortete ___ [dem, der]
The salary of the <profession> has increased. Das Gehalt ___ [des, der]

English source Czech prefix Completions

This is that <profession>. To je ___ [ten, ta]
There is that <profession>. Tam je ___ [ten, ta]
That <profession> is not working today. ___ [Ten, Ta]
That <profession> was fired. ___ [Ten, Ta]
That <profession> is busy. ___ [Ten, Ta]
I was a <profession> two years ago. Před dvěma lety jsem ___ [byl, byla]
You were a <profession> two years ago. Před dvěma lety jste ___ [byl, byla]
If only I were a <profession>. Kdybych tak ___ [byl, byla]
I was a <profession> at that time. V té době jsem ___ [byl, byla]
You were a <profession> at that time. V té době jsi ___ [byl, byla]
You were a <profession> at that time. V té době jste ___ [byl, byla]

Table 7: Multilingual prompt templates for English-to-German and English-to-Czech translation

dimensions with high variance, while the stereo-1224

typical variance is spread across more dimensions1225

with lower values in each.1226

C.2 Choice of Hyperparameters in1227

Translation1228

Analogically to Section 4.3, we present the im-1229

pact of bias-to-feature threshold t and the number1230

of edited layers on translation to German in Fig-1231

ure 5. We observe that stronger factual regular-1232

ization (high t) helps in reducing representational1233

bias (∆G) yet offers weaker stereotypical bias mit-1234

igation (∆S). Similar to the results in language1235

modeling, the best performance is obtained when1236

editing 12 mid-upper layers with t = 0.05.1237

D Technical Details1238

To find the value representation V , we run gradi-1239

ent optimization for 20 steps with Adam scheduler1240

(Kingma and Ba, 2015) and learning rate: lr = 0.5.1241

We picked the following regularization constants:1242

λ1 = 0.0625 and λ2 = 0.2.1243

The optimization was run on a Nvidia A401244

GPU. For Llama 2 7B, processing one prompt took1245

around 10 seconds.1246
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Figure 5: The hyperparameter analysis for 2DAMA applied to ALMA-R 13B model on performance and bias in
translation to German. We measured bias via WinoMT metrics ∆S and ∆G. The translation quality to Germna is
measured by chrf on WMT-22. Stars mark the performance of the best setting. The dashed line corresponds to the
scores of the original model.
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Figure 6: Visualization of dimensions and their vari-
ances related to stereotypical and factual gender signals
identified by Dual Debiasing algorithm across different
layers of Llama 2 13B.
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