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Zoop it! Efficient Zero-Order Optimization with Output Perturbation

Anonymous Authors1

Abstract
Zero-order gradient methods offer a promising
alternative for finetuning large models with con-
strained computational resources by estimating
the gradient without full backpropagation. Re-
cent approaches employ an efficient finite differ-
ence method that uses random noise perturbations
across all model weights for gradient estimation.
However, this approach suffers from high vari-
ance and slow convergence, as the number of pa-
rameters can be enormous. In a deep network
that consists of a cascade of layers, instead of
perturbing the entire model weights with random
noises, one can alternatively only perturb the acti-
vation to compute a gradient estimation only for
that activation layer, and backprop from there on
to get a gradient estimation for the entire layer.
This method reduces variance with the increase of
batch sizes. Despite the potential advantages, effi-
cient implementation of this technique for large
model training remains unexplored. We introduce
a new method, called Zero-order Optimization
with Output Perturbation (Zoop), which can be
easily integrated into existing network architec-
tures. Zoop enables selective perturbation control
to balance memory efficiency and gradient accu-
racy. We evaluated Zoop on autoregressive and
masked language models up to 66 billion param-
eters across various tasks such as classification,
multiple-choice, and text generation. Our find-
ings show that Zoop effectively fine-tunes large
language models with fewer updates than current
methods, demonstrating its efficiency and effec-
tiveness in model optimization.

1. Introduction
Efficiently fine-tuning large language models (LLMs) poses
substantial challenges due to the high memory requirements

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.
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on Machine Learning (ICML). Do not distribute.

associated with their size. For instance, applying gradient
descent with AdamW (Loshchilov & Hutter, 2017) demands
GPU memory approximately three times the model’s weight
parameters plus the layer-wise activations necessary for
backpropagation.1

To address the memory constraints, Parameter-Efficient
Fine-Tuning Methods (PEFT), such as prefix-tuning (Li
& Liang, 2021) and LoRA (Hu et al., 2021), freeze most
parameters of a pretrained model and fine-tune only a sub-
set to reduce GPU memory usage. However, this con-
straint on parameter updates limits their fine-tuning perfor-
mance. Zeroth-order gradient methods offer an alternative
by enabling full model fine-tuning through estimating gradi-
ents without backpropagation (Malladi et al., 2024; Zhang
et al., 2024), thus bypassing the need to store layer activa-
tions. Recent advancements in zeroth-order methods have
reduced memory requirements to allow fine-tuning of mod-
els with up to 30 billion parameters on a single Nvidia A100
GPU (Malladi et al., 2024; Zhang et al., 2024).

Despite these benefits, zeroth-order methods face high vari-
ance in gradient estimation, which leads to slow conver-
gence. These methods are often based on the Simultane-
ous Perturbation Stochastic Approximation (SPSA) (Spall,
1992), which estimates the true gradients by applying ran-
dom noise perturbations to weights, resulting in gradient
variance that scales with the number of parameters.

This work introduces an alternative zeroth-order method,
Zeroth-order Optimization with Output Perturbation (Zoop),
which perturbs the activation instead of the model
weights (Ren et al., 2022; Le Cun et al., 1988). The general
intuition is that the gradient of any linear layer is structured,
as it is the outer product of the output gradient and the input
activation. Hence, by perturbing only the activations, Zoop
can reduces the variance of the gradient estimate.

In practice, we implement Zoop in a minimal, memory-
efficient, and model-agnostic way, by introducing a novel
noise layer (the Zoop layer) between every consecutive layer
(See Algorithm 2). As a result, the Zoop layer acts as a plug-
in module for any pretrained large models. We evaluate

1While gradient checkpointing can alleviate some of this mem-
ory burden by reducing the stored activations to O(

√
L), where L

is the number of layers, this approach remains resource-intensive
as L grows.
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Algorithm 1: Zoop: Efficient Activation Perturbation

Require: Model parameters θ = {θl}Ll=1, Layer-wise
function Φ = {ϕl}Ll=1, batch size B, loss function L,
number of training steps T , perturbation scale ϵ, step
size {ηt}Tt=1.

for t = 1 to T do
Sample a batch (x,y) ⊂ D of size B and random
seed s

y+← PerturbActivation(x, ϵ, s, θ, Φ)
y− ← PerturbActivation(x, −ϵ, s, θ, Φ)
α←

(
L(y+,y)− L(y−,y)

)
/ (2ϵ)

▷ Gradient scaling factor
Reset random number generator with seed s.
for l = 1 to L do

xl ← ϕl(xl−1;θl)
ul ← α⊙ (xl ⊙ zl), where zl ∼ N (0, I)
ul.sum().backward() ▷ Local
backpropagation
gl ← get_grad(θl) ▷ Retrieve
gradient for parameter
gl ← gl/∥gl∥ ▷ Normalize gradient
θl ← θl − ηt × gl

Subroutine PerturbActivation(x0, ϵ, s, θ, Φ)
Reset random number generator with seed s.
for l = 1 to L do

xl ← ϕl(xl−1;θl)
xl ← xl + ϵzl, where zl ∼ N (0, I)

return xL

Zoop on both autoregressive and masked language models
with up to 66 billion parameters across a range of tasks, in-
cluding classification, multiple-choice, and text generation,
demonstrating that Zoop fine-tunes models more efficiently
than prior methods. Our contributions are as follows:

• We introduce Zoop, a low-variance fine-tuning ap-
proach with activation perturbations.

• We provide a minimal and efficient implementation
of Zoop as a modular, memory-efficient optimization
layer, which can be seamlessly integrated into any pre-
trained model.

• We demonstrate Zoop’s effectiveness across various
model types, tasks, and scales, and demonstrated Zoop
can achieve faster finetuning of LLM compared to
existing approaches.

2. Background
When training models parameterized by θ, we need to com-
pute the gradients∇L(θ) of a loss function L(θ) to perform

Algorithm 2: Noise Layer Implementation in PyTorch-
like Pseudocode.
# Activation perturbation
def perturb_activations(self, seed, epsilon):

# seed: int
# epsilon: float
x + epsilon * torch.randn(x.size())
return x

# Update with estimated gradient
def update_gradients(self, seed, epsilon, alpha,
model, optimizer):

# seed: int
# epsilon: float
# alpha: (batch,)
# 1. Local backward propagation
loss = ((x * torch.randn(x.size()) *

alpha).sum()
loss.backward()
# 1. Update parameters with estimated gradients
for param in model.parameters():

param.grad = param.grad /
torch.norm(param.grad)

return x

optimization. While backpropagation computes this gradi-
ent exactly, we sometimes need methods that work without
access to the exact derivatives, relying only on evaluations
of the loss function L(θ). These are known as zeroth-order
optimization methods.

A prominent example is the Simultaneous Perturbation
Stochastic Approximation (SPSA) method. It estimates the
gradient using random directional smoothing, which is de-
fined as:

ĝSP
ϵ,m(θ) :=

1

m

m∑
i=1

L(θ + ϵξi)− L(θ − ϵξi)

2ϵ
ξi,

where {ξi}ni=1 are independent random direction vectors
that has the same size as the model parameter θ (e.g., stan-
dard Gaussian N (0, Id)), ϵ > 0 is a parameter controlling
the perturbation strength, and m is the number of noises sam-
pled. The loss L is typically evaluated on a mini-batch nbatch
of data. This method requires 2m evaluations of the loss
function L to compute a single gradient estimate. Increasing
m generally improves accuracy but increases computational
cost. Many applications use m = 1 for efficiency (Malladi
et al., 2024; Zhang et al., 2024).

A significant challenge with SPSA, especially for models
with a large number of parameters (high dimension d), is
the high variance of its gradient estimate. We provide the
following theorem formally quantifies the Mean Squared
Error (MSE) between the SPSA estimate ĝSP

ϵ,m(θ) and the
true gradient ∇L(θ):
Theorem 2.1. Let g = ∇L(θ) be the true gradient of di-
mension d. Then:

E[||ĝSP
ϵ,m − g||2] = d+ 1

m
||g||2,
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Figure 1: Comparison of Activation Perturbation and Weight Perturbation Methods. Left: We introduce the Noise
Layers applies noise zl directly to the activations xl. The advantage of this method is that it operates in a smaller dimensional
space (activations) compared to weight space, potentially leading to lower variance and higher accuracy in gradient
estimation. Right: Weight perturbation methods applies noise to the weights θl.

and E[cos2(ĝSP
ϵ,m, g)] ≥ m

d+m+ 1

Please refer to Appendix A.2 for the proof. This shows
that the error scales proportionally to the model’s dimension
d and inversely with m, the number of random directions
sampled. Such scaling leads to a curse of dimensionality:
as d grows, achieving a desired accuracy requires a pro-
hibitively large m (and thus 2m function evaluations per
estimate), rendering the method inefficient for very large
models. The problem is particularly acute when m = 1 is
used for efficiency, as the error then scales linearly with d.

3. Zero-Order Gradient Estimation via
Activation Perturbation for LLMs

Perturbing activations instead of weights presents a com-
pelling strategy for zero-order (ZO) gradient estimation in
deep neural networks. This idea, first explored by LeCun
et al. (LeCun, 1985), can reduce gradient estimation vari-
ance. Our method builds on this by introducing independent
random perturbations to activations (instead of weights) for
each data point within a mini-batch , yielding gradient esti-
mates whose precision scales favorably with batch size, a
crucial aspect for training LLMs.

Layer-wise Gradient Estimation with Activation Pertur-
bation. Consider an LLM composed of L transformer
blocks. For the l-th block, parameterized by θl, the forward
computation is xl+1 = ϕl(xl; θl), where xl ∈ Rdl

in is the
input and xl+1 ∈ Rdl

out is the output. The overall objective is
to minimize a loss function J (θ) = 1

nbatch

∑nbatch

i=1 L(xL
i ),

where xL
i is the final output for the i-th data sample.

The gradient of the total loss with respect to the parameters
θl of an intermediate layer l can be expressed using the
chain rule:

∇θlJ (θ) =
1

nbatch

nbatch∑
i=1

∇
xl+1
i

L(xl+1
i )

(
∂ϕl(xl

i; θ
l)

∂θl

)⊤

(1)

Let J l
i =

∂ϕl(xl
i;θ

l)
∂θl denote the Jacobian of the l-th layer’s

output xl+1
i with respect to its parameters θl. This J l

i (a
dlout × d(θl) matrix) can be computed efficiently within
the layer module, for example, using forward-mode auto-
matic differentiation or local backpropagation. Let hl

i =
∇xl+1

i
L(xl+1

i ) be the gradient of the downstream loss with

respect to the l-th layer’s output xl+1
i (a dlout × 1 column

vector). The primary challenge in ZO optimization is to es-
timate hl

i without explicit backpropagation from subsequent
layers.

We estimate hl
i using a random perturbation approach, simi-

lar to those used in SPSA approaches (Malladi et al., 2024;
Zhang et al., 2024). For each data sample xi and its cor-
responding layer output xl+1

i , we generate an independent
random perturbation vector ξi ∈ Rdl

out , typically drawn from
N (0, I). The ZO estimator for hl

i is then:

ĥl
i = αiξi, (2)

where αi is an estimate of the projection of hl
i onto ξi.

Specifically, αi ≈ (hl
i)

⊤ξi, and is computed using a finite
difference scheme:

αi =
L(xl+1

i + ϵξi)− L(xl+1
i − ϵξi)

2ϵ
, (3)

where ϵ > 0 is a small smoothing parameter. This requires
two forward passes from layer l + 1 using the perturbed
activations. Substituting ĥl

i into Eq. (1), the ZO gradient
estimator for θl is:

ĝθl =
1

nbatch

nbatch∑
i=1

(J l
i )

⊤ĥl
i. (4)

Efficient Activation Perturbation with a Noise Layer.
In practice, for LLMs composed of stacked transformer
blocks, our method perturbs intermediate activations xl

i at
any chosen layer l (for l ∈ {1, . . . , L}) to estimate the corre-
sponding block’s gradient∇θlJ (θ). For each data sample
xi in a mini-batch and each targeted layer l, an indepen-
dent noise vector ξli is applied to its output activation xl+1

i .
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The coefficient αl
i ≈ ((hl

i)
⊤ξli), required for scaling the

noise vector (as per Eq. (2) and Eq. (3)), is estimated using
a standard finite difference scheme; this involves two for-
ward passes from layer l+ 1 using the perturbed activations
xl+1
i ± ϵξli. A key aspect of this approach is that by employ-

ing nbatch independent perturbations across the samples in
a mini-batch, we effectively leverage nbatch diverse direc-
tional queries for constructing the gradient estimate. As will
be discussed in the theoretical analysis, this significantly
contributes to variance reduction.

Our activation perturbation method, integrated as a concep-
tual "Noise Layer," is designed for minimal memory over-
head and computational efficiency, detailed in Algorithm 1
and Algorithm 2 (which provides PyTorch-like pseudocode
for the noise injection and ZO estimation step). The local
Jacobians J l

i =
∂ϕl(xl

i;θ
l)

∂θl are computed via localized auto-
matic differentiation (forward or reverse mode) confined to
each module. This is computationally inexpensive as indi-
vidual modules are typically much smaller than the entire
network for a memory usage analysis). This modularity
is particularly advantageous for LLMs. Following prac-
tices like those in (Malladi et al., 2024), random seeds for
generating perturbations ξli can be managed to ensure repro-
ducibility or minimize generation overhead. Our approach
thus aims for memory efficiency comparable to leading ZO
methods like MeZO, while benefiting from the variance
reduction inherent in activation perturbation.

Theoretical Analysis of Variance Reduction. A key the-
oretical advantage of activation perturbation is the reduced
dimensionality dependence of the gradient estimator’s vari-
ance. As detailed in Appendix A.3 (and summarized in
Lemma A.3), the Mean Squared Error (MSE) of the esti-
mated layer gradient ĝθl scales as O(dlout/nbatch), where
dlout is the dimension of the perturbed activation at the output
of layer l. This contrasts favorably with conventional weight
perturbation methods, where the MSE typically scales with
d(θl), the number of parameters in layer l. This MSE scal-
ing highlights a significant benefit: the variance of our gradi-
ent estimator decreases proportionally to 1/nbatch, i.e., as
the batch size nbatch increases. This property is particularly
valuable for training large models on large datasets, allowing
for more stable and reliable gradient estimates with larger
batch sizes. We provide detailed analysis in Appendix.

4. Related Work
Zero-Order Optimization for LLMs Fine-Tuning Zero-
order optimization bypasses backpropagation, significantly
reducing memory costs, which is beneficial for fine-tuning
LLMs (Malladi et al., 2024; Zhang et al., 2024). Methods
like MeZO (Malladi et al., 2024) use SPSA to introduce
noise and improve efficiency, while Zero sign-based SGD
estimates gradients without full backpropagation, demon-

strating the adaptability of zero-order methods in various
contexts (Zhang et al., 2024).

Forward Gradient and Perturbation Learning Forward
gradient methods estimate gradients without backpropaga-
tion, offering memory efficiency and biological plausibil-
ity (Ren et al., 2022; Baydin et al., 2022).

Recent research has extended these ideas by combining
activity-perturbed forward gradient methods with forward-
mode AD (Ren et al., 2022; Singhal et al., 2023; Fournier
et al., 2023). For example, Ren et al. (Ren et al., 2022)
employs multiple local greedy loss functions to stabilize
the forward gradient, demonstrating effectiveness in im-
age classification tasks. Similarly, Singhal et al. (Singhal
et al., 2023) reduces gradient variance using the sparsity of
ReLU activations in image classification contexts. Jiang et
al. (Jiang et al., 2023) introduces the Unified Likelihood
Ratio Method, which injects noise across different layers to
facilitate more parallelizable backpropagation processes.

Activation perturbation methods for training neural net-
works were first explored by LeCun (1985), with more
recent advancements studied in Ren et al. (2022); Singhal
et al. (2023). While these methods have been successfully
applied to image classification tasks (Ren et al., 2022; Sing-
hal et al., 2023), their application to the training of large
language models (LLMs) remains largely unexplored.

5. Experiments
We conducted experiments on several language models, in-
cluding RoBERTa-Large, OPT (specifically, OPT-13B, 30B,
and 66B) and GPT-2 following the experimental settings
outlined in MeZO (Malladi et al., 2024) and ZO-LLM bench-
marks (Liu et al., 2018). The downstream tasks involved
fine-tuning with prompts. Detailed experimental settings
are provided in the Appendix A.1. Our experiments in-
clude BERT-style models and autoregressive models, and
evaluated various tuning strategies, including full-parameter
tuning, LoRA, and prefix-tuning.

The results show that Zoop achieves superior performance
with fewer training steps compared to MeZO, the most
state-of-the-art zero-order tuning methods. Additionally,
Zoop’s memory usage is comparable to MeZO, with less
computational overhead compared to PEFT methods such
as LoRA or prefix-tuning.

5.1. BERT-style Language Model Finetuning

We performed experiments on RoBERTa-Large, following
protocols used in previous works (Malladi et al., 2024; Gao
et al., 2020; Malladi et al., 2023). Our experiments focused
on tasks such as sentiment classification, natural language
inference, and topic classification. We used a sampling
strategy where k = 512 examples per class were selected.
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Task SST-2 SST-5 SNLI MNLI RTE TREC
Type —— sentiment —— —— natural language inference —— — topic —

Zero-shot 79.0 35.5 50.2 48.8 51.4 32.0
LP 91.3 (0.5) 51.7 (0.5) 80.9 (1.0) 71.5 (1.1) 73.1 (1.5) 89.4 (0.5)

Gradient estimation methods

MeZO 90.7 (0.6) 43.5 (0.8) 65.2 (1.2) 54.8 (0.9) 62.6 (2.5) 47.4 (1.8)
MeZO (LoRA) 85.0 (0.5) 41.2 (0.7) 55.4 (2.3) 53.7 (2.0) 64.0 (1.4) 43.4 (2.7)
MeZO (Prefix) 86.3 (0.5) 41.4 (1.3) 60.9 (0.6) 53.5 (1.1) 56.5 (1.8) 49.3 (3.2)
MeZO-Adam 90.6 (0.4) 44.0 (1.7) 64.2 (1.4) 55.2 (0.7) 63.9 (1.2) 47.1 (2.8)

Zoop 91.4 (0.5) 51.5 (2.3) 80.8 (1.7) 70.2 (2.1) 72.8 (1.4) 96.0 (0.5)
Zoop (Prefix) 90.6 (1.1) 47.4 (2.1) 75.4 (0.8) 68.9 (0.7) 71.8 (1.3) 89.2 (1.5)
Zoop (LoRA) 89.9 (1.9) 49.7 (2.8) 71.0 (4.7) 65.0 (2.2) 66.6 (4.6) 90.6 (4.6)
Zoop-Adam 91.5 (0.9) 49.7 (1.1) 80.8 (0.9) 70.4 (1.2) 74.6 (1.3) 95.6 (0.7)

Exact gradient method

FT 93.9 (0.7) 55.9 (0.9) 88.7 (0.8) 84.4 (0.8) 82.7 (1.4) 97.3 (0.2)
FT (LoRA) 94.2 (0.2) 55.3 (0.7) 88.3 (0.5) 83.9 (0.6) 83.2 (1.3) 97.0 (0.3)
FT (prefix) 93.7 (0.3) 54.6 (0.7) 88.3 (0.7) 83.3 (0.5) 82.5 (0.8) 97.4 (0.2)

Table 1: Table shows the average accuracy (with standard deviation) for RoBERTa-Large (350M parameters) across various
tuning methods: MeZO, MeZO using LoRA and prefix-tuning, Zoop, Zoop with LoRA, and Zoop with prefix-tuning,
alongside traditional fine-tuning with Adam (FT) and linear probing (LP). All methods used the same number of update
steps (1,000). Zoop outperforms MeZO and closely approaches FT performance with significantly lower memory usage.

We compared the performance of MeZO, Zoop and fine-
tuning with backpropagation over 1,000 steps. The results
are summarized in Table 1.

Zoop outperforms MeZO in language model tuning with
comparable memory usage. Our results indicate that Zoop,
especially the versions employing Adam (Loshchilov &
Hutter, 2017) optimizer, achieves competitive performance
close to that of full model fine-tuning while requiring signif-
icantly less memory than fine-tuning with exact gradients.
This demonstrates the potential of gradient estimation opti-
mization methods like Zoop in effectively tuning large-scale
language models with reduced resource requirements. Com-
pared to previous state-of-the-art method MeZO, Zoop and
its variants generally outperform MeZO across all tasks.
The results underscore that while MeZO provides a solid
baseline, Zoop presents a more robust perfromance within
both limited computational resources and training time.

Zoop’s lower variance in gradient estimation leads to
faster convergence. As discussed earlier, Zoop’s gradient
estimation has lower variance, which contributes to its faster
convergence rate compared to MeZO. In Figure 2, we illus-
trate this by comparing the training losses and validation
accuracies of both methods. Zoop converges significantly
faster than MeZO, achieving a stable training loss and ac-
curacy in fewer update steps. Further, Table 2 provides a
comprehensive comparison of these methods over extended
training periods of 10K update steps. Zoop maintains com-
petitive performance at 10K steps, closely approaching the
results of full model fine-tuning.

Step Step Step

Lo
ss

Lo
ss

A
cc

ur
ac

y

Training Loss Validation Loss Validation Accuracy

Figure 2: Comparison of training losses, validation loss, and
validation accuracy for Zoop and MeZO over 100K update
steps on TREC task. The figure illustrates the faster conver-
gence rate of Zoop relative to MeZO, with Zoop reaching
stable training loss and higher validation accuracy more
quickly. Each curve represents the mean performance across
multiple runs, with shaded areas indicating the standard
deviation, demonstrating Zoop’s consistent performance ad-
vantage in both training and validation phases.

5.2. Autoregressive Language Model Finetuning

We present the experimental results on the OPT-13B (Table
3), focusing on a range of natural language processing tasks.
For each task, we sample 1000 examples for fine-tuning. In
Table 3, we compares several fine-tuning approaches includ-
ing Zero-shot, In-context Learning (ICL), Linear Probing
(LP), various configurations of MeZO, Zoop, and full fine-
tuning (FT). In Table 4, we compare the performance on
OPT-30B and OPT-66B model with MeZO and Zoop in their
variant with prefix fine-tuning. Notably, Zoop displayed bet-
ter performance than that of MeZO.

Our results aligns with previous finding in masked language
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Task Update SST-2 SST-5 SNLI MNLI RTE TREC
Type Steps —— sentiment —— —— natural language inference —— — topic —

Zero-shot - 79.0 35.5 50.2 48.8 51.4 32.0

MeZO 10K 92.5 (0.6) 49.8 (1.9) 80.4 (0.8) 69.1 (1.5) 75.1 (1.1) 89.0 (0.6)
Zoop 10K 91.7 (0.6) 51.7 (1.7) 81.2 (0.8) 70.5 (1.7) 72.7 (1.2) 96.8 (0.4)

Table 2: Table shows average accuracy (with standard deviation) for RoBERTa-Large (350M parameters) using different
tuning methods and update steps (10K). Results indicate that both Zoop and MeZO achieve similar levels of performance
once a sufficient number of update steps is reached.

Task SST-2 RTE CB BoolQ WSC WIC MultiRC COPA ReCoRD
Task type ——————— classification ——————— – multiple choice –

Zero-shot 58.8 59.6 46.4 59.0 38.5 55.0 46.9 80.0 81.2
ICL 87.0 62.1 57.1 66.9 39.4 50.5 53.1 87.0 82.5
MeZO 85.8 61.0 67.9 64.4 60.6 53.8 55.5 84.0 81.3
MeZO (prefix) 75.7 56.3 62.5 63.6 62.5 53.6 52.4 80.0 80.6
MeZO (LoRA) 73.7 60.3 53.4 62.5 43.2 54.5 47.1 81.0 81.2
Zoop 87.8 62.5 67.9 64.8 59.6 61.3 60.3 80.0 81.7
Zoop (prefix) 83.9 59.2 64.3 64.2 65.4 58.3 58.2 78.0 80.6
Zoop (LoRA) 84.6 60.3 67.8 64.7 61.5 54.4 55.4 83.0 81.6

LP 93.4 68.6 67.9 59.3 63.5 60.2 63.5 55.0 27.1
FT (12x memory) 92.0 70.8 83.9 77.1 63.5 70.1 71.1 79.0 74.1

Table 3: Experiments on OPT-13B (with 1000 examples).
ICL: in-context learning; LP: linear probing; FT: full fine-
tuning with Adam.

Task SST-2 RTE BoolQ WSC WIC

30B zero-shot 56.7 52.0 39.1 38.5 50.2
30B MeZO (prefix) 76.9 59.6 49.6 47.1 55.6
30B Zoop (prefix) 80.7 64.3 63.4 59.2 58.2

66B zero-shot 57.5 67.2 66.8 43.3 50.6
66B MeZO (prefix) 79.4 60.3 50.5 49.1 55.1
66B Zoop (prefix) 84.7 62.3 61.8 62.4 58.6

Table 4: Experiments on OPT-30B and OPT-66B (with
1000 examples). We see that on most tasks Zoop effectively
optimizes up to 66B models and outperforms zero-shot,
MeZO and ICL.

models, show the effectiveness of Zoop in fine-tuning large
language models. Compared to traditional methods such
as full fine-tuning and MeZO, Zoop provides a balanced
approach, offering substantial reductions in memory usage
and faster convergence speed without compromising on
the task performance. This makes it particularly suited for
environments where computational resources are limited.

5.3. Memory Efficiency Analysis.

As detailed in Figure 3, we profiled the memory usage across
different methods. The results show that Zoop achieved
comparable memory efficiency with MeZO. Compared to
full fine-tuning with exact gradient, Zoop requires approx-
imately 12 times less memory. This efficiency highlights
Zoop’s capability to optimize large-scale models effectively
under constrained resource settings.

Figure 3: GPU memory
consumption with different
OPT models on SST-2.

Weights Forward Perturbation Optimization

Figure 4: Memory con-
sumption of fine-tuning a
RoBERTa-large model on
a single device.

In addition, we present the memory breakdown of fine-
tuning a RoBERTa-large model on a single device in Fig-
ure 4. Compared to a pure forward pass, MeZO perturbs
weight matrix, incurring an additional memory cost as large
as the largest weight matrix (the word embedding matrix).
In contrast, Zoop consumes additional space only as large as
the activations, which is significantly smaller—by approxi-
mately 20x times—than that used by MeZO. Furthermore,
Zoop consume additional memory usage due to local back-
propagation, which remains minimal because of the small
module size. These factors result in Zoop ultimately con-
sume memory comparable to that of MeZO.

6. Limitation
One limitation of Zoop concerns the universality of its accel-
erated convergence. While Zoop is engineered to converge
faster than methods like MeZO, leveraging activation per-
turbations for improved variance reduction especially with
larger batch sizes or sequence lengths, this enhanced con-
vergence speed does not uniformly translate to superior
performance across all tasks within a fixed iteration budget
(e.g., 100,000 update steps). In some instances, Zoop may
offer only marginal improvements or not surpass MeZO, in-
dicating that its convergence benefits and resulting efficacy
can be task-dependent. This shows that while Zoop presents
a promising avenue for faster zeroth-order optimization,
further exploration may be needed to fully delineate the
specific conditions or task characteristics under which its
convergence advantages are more important.
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A. Appendix
A.1. Experiment details and hyperparameters setting.

We provide the hyperparameters used for the experiments on the RoBERTa and OPT models in Table 1.1 and Table 1.2
respectively.

Experiment Hyperparameters Zoop MeZO FT

Standard Batch size 32 64 {2, 4, 8}
Learning rate {1e−3, 3e−3, 5e−3} {1e−7, 1e−6, 1e−5} {1e−4, 5e−4, 1e−3, 5e−3, 1e−2}

ϵ 1e−3 1e−3 -
Weight Decay 0 0 0

Prefix Batch size 64 64 {8, 16, 32}
Learning rate {1e−1, 3e−1, 5e−1} {1e−2, 5e−3, 1e−3} {1e−2, 3e−2, 5e−2}

ϵ 1e−3 1e−1 -
Weight Decay 0 0 0

# prefix tokens 5 5 5

LoRA Batch size 64 64 {4, 8, 16}
Learning rate {5e−3, 8e−3, 1e−2} {1e−5, 5e−5, 1e−4} {1e−4, 3e−4, 5e−4}

ϵ 1e−3 1e−3 -
Weight Decay 0.1 0.1 0

(r, α) (8, 16) (8, 16) (8, 16)

Adam Batch size 64 64 {8, 16, 32}
Learning rate {5e−7, 1e−6, 3e−6, 5e−6, 1e−5} {1e−6, 5e−5, 1e−4, 5e−4, 1e−3} {1e−5, 3e−5, 5e−5}

ϵ 1e−3 1e−3 -
Weight Decay 0 0 0

Table 1.1: The hyperparameter grids for RoBERTa-Large experiments.

Experiment Hyperparameters Zoop MeZO FT

Standard Batch size 8 16 8
Learning rate {3e−3, 5e−3, 1e−2} {1e−6, 5e−7, 1e−7} {1e−5, 5e−5, 8e−5}

ϵ 1e−3 1e−3 -
Weight Decay 0 0 0

Prefix Batch size 8 16 8
Learning rate {3e−1, 5e−1, 5e−2} {5e−2, 1e−2, 5e−3} {1e−5, 5e−5, 8e−5}

ϵ 1e−3 1e−1 -
Weight Decay 0 0 0

# prefix tokens 5 5 5

LoRA Batch size 8 16 8
Learning rate {3e−3, 5e−3, 1e−2} {1e−4, 5e−5, 1e−5} {1e−5, 5e−5, 8e−5}

ϵ 1e−3 1e−2 -
Weight Decay 0.1 0.1 0

(r, α) (8, 16) (8, 16) (8, 16)

Table 1.2: The hyperparameter grids for OPT experiments.
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A.2. Statistical Properties and Limitations of the Weight Perturbation Gradient Estimator

Analysis of the SPSA estimator ĝ. To better understand the behavior of ĝ, consider its reformulation:

ĝSP
n =

1

n

n∑
i=1

(ξiξ
⊤
i )g =

1

n
Wg, W :=

n∑
i=1

(ξiξ
⊤
i ),

where scatter matrix W is known to follow the Wishart distribution W ∼ W(n, Idpara), with well-known analytical
properties. Then we have the following proposition. In the following, for simplicity, we will use ĝ to denote ĝSP

n .

Proposition A.1. ĝ is an unbiased estimator of g ∈ Rdpara , with

E[ĝ] = g, E[∥ĝ − g∥2] = dpara + 1

n
∥g∥2 . (5)

Moreover, the inner product ĝ⊤g satisfies,

E[ĝ⊤g] = ∥g∥2 , var(ĝ⊤g) =
2

n
∥g∥4 .

The cosine similarity between ĝn and g satisfies

E
[
cos(ĝ, g)2

]
:= E

[(
ĝ⊤g

∥g∥ ∥ĝ∥

)2
]

(6)

≥ n

dpara + n+ 1
. (7)

Proof. 1) Note that ĝn = 1
nWg. Let ĝ(i)n be the i-th element of ĝn. We can write ĝ

(i)
n = 1

ne
⊤
i Wg. We get

var(ĝ(i)n ) =
1

n

(
∥ei∥2 ∥g∥2 + (e⊤i g)

2
)
=

1

n

(
∥g∥2 + (g(i))2

)
.

Hence, the MSE is

E[∥ĝn − g∥2] =
dpara∑
i=1

var(ĝ(i)n ) =
1

n
(d+ 1) ∥g∥2 .

2) Write ĝ⊤n g = 1
n2 g

⊤Wg = vec(g⊤Wg). We get

var(ĝ⊤n g) =
1

n2
var(g⊤Wg) =

1

n
(∥g∥4 + ∥g∥4) = 2

n
∥g∥4 .

3) For any scalar α ∈ R, consider

ϕ(α, ĝn, g) =
∥αĝn − g∥2

∥g∥2

Minimizing α yields α∗ = ĝ⊤n g/ ∥ĝn∥
2, and

inf
α

ϕ(α, ĝn, g) = 1− (g⊤n g)
2

∥ĝ∥2 ∥g∥2
= 1− cos(ĝn, g)

2.
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Therefore, for any α ∈ R, we have

E[1− cos(ĝn, g)
2] = E[inf

α
ϕ(α, ĝn, g)]

≤ inf
α

E[ϕ(α, ĝn, g)]

= inf
α

1

∥g∥2
(
var(αĝn) + E[(αĝn − g)]2

)
//Bias variance decomposition

= inf
α

1

∥g∥2
(
α2var(ĝn) + (1− α)2 ∥g∥2

)
=

var(ĝn)

var(ĝn) + ∥g∥2

=
dpara + 1

dpara + 1 + n
,

where we used, for x, y ≥ 0, infα α2x+ (1− α)2y = y2x+x2y
(x+y)2 = xy

x+y .

(5) illustrates that the mean squared error of ĝ increases linearly with the dimension dpara of the parameter vector, and the
cosine similarity decreases as dpara increases. Practically, to achieve estimation accuracy comparable to first-order methods,
we would need n ≳ dpara, which is often impractical. This underscores the limitations of using ĝ for training large models.

A.3. Influence of Effective Dimension on Gradient Estimator Accuracy under Gaussian Noise

In this section, we explore the estimation accuracy of gradient estimators under Gaussian noise, emphasizing the influence
of the effective dimension deff on their performance. We present theoretical results that quantify the mean squared error
(MSE) and variance of mini-batch gradient estimators

Theorem A.2. Assume ξi are iid Gaussian noise, and g is a mini-batch gradient estimation of a population gradient g∗,

with E[g] = g∗ and var(g) =
σ2
g

nbatch
. Assume deff = supx

∥J(x)∥2
F ∥h(x)∥2

∥g(x)∥2 . We have

MSE(ĝn,nbatch , g) =

1

nbatch

(
σ2
g +

1

n
(deff + 1)(σ2

g + ∥g∗∥
2
)

)

Proof. Assume g is a mini-batch gradient estimation of a population gradient g∗, with E[g] = g∗ and var(g) =
σ2
g

nbatch
,

E[∥ĝn(x)− g∗∥2] = var(ĝn(x))

=
1

n
var(ĝn(x))

= var(E[ĝn(x) | x]) + E[var(ĝn(x) | x)]
= var(g(x)) + E[var(ĝn | g)]

= σ2
g +

1

n
E[(deff (θ) + 1) ∥g(x)∥2]

≤ σ2
g +

1

n
(deff

∗ + 1)(σ2
g + ∥g∗∥

2
),

where we assume that deff = supalldata
∥J∥2

F ∥h∥2

∥J⊤h∥2 . Hence, consider the mini batch estimation,

ĝn,nbatch =
1

nbatch

nbatch∑
k=1

ĝn(xk).
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In this case, we have

MSE(ĝn,nbatch , g) =

1

nbatch

(
σ2
g +

1

n
(deff

∗ + 1)(σ2
g + ∥g∗∥

2
)

)

Lemma A.3. Let g̃(x) = J(x)⊤ξξh(x) be the estimator of g(x) = ∇L(θ, x) of each data point. We have

E[g̃(x)] = g(x),

E
[
∥g̃(x)− g(x)∥2

]
= (deff (x) + 1) ∥g(x)∥2 ,

where the deff (x) is an effective dimension defined as

deff (x) =
∥J(x)∥2F ∥h(x)∥

2

∥J(x)⊤h(x)∥2
.

In addition,

E
[
cos(g̃(x), g(x))2

]
:= E

[(
g̃(x)⊤g(x)

∥g(x)∥ ∥g̃(x)∥

)2
]

(8)

≥ 1

deff + 2
. (9)

Remark Assume each element of J, h, and g = J⊤h is in the order of 1, we have ∥A∥2F ≍ d × dh, ∥h∥2 ≍ dh and
∥g∥2 =

∥∥A⊤h
∥∥2 ≍ d, and hence deff ≍ dhid.

A.4. Proof of MSE Reduction Using Activation Perturbation Estimator in Transformer Models

Proof. Write J = [a1, . . . , adpara ], we have g̃
(i)
n = 1

na
⊤
i Wg.

var(g̃(i)n ) =
1

n
(∥ai∥2 ∥h∥2 + (a⊤i h)

2), ∀i ∈ [dpara].

Hence,

E[∥g̃n − g∥2] =
dpara∑
i=1

var(g̃(i)n )

=

dpara∑
i=1

1

n
(∥ai∥2 ∥h∥2 + (a⊤i h)

2)

=
1

n
(∥J∥2F ∥h∥

2
+
∥∥J⊤h

∥∥2)
=

1

n
(deff + 1) ∥g∥2 //g = J⊤h.

The result on the cosine similarity follows the same procedure as the proof of Theorem ??.

A.5. Activation Perturbation for Linear Layers

Let us start with considering a linear layer, where the loss function can be written into a form of

L(W ) =
1

N

N∑
i=1

ℓ(Wxi),
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where W is the weight matrix, and {xi}Ni=1 is the dataset. The gradient of L(W ) is

∇L(W ) =
1

N

N∑
i=1

hix
⊤
i , hi = ∇ℓ(Wxi), (10)

where each data point contributes a rank-one component hix
⊤
i to the gradient. Since the input xi is given or calculated

during the forward pass, the main difficult reduces to calculating hi = ∇ℓ(Wxi), which is the signal passed from the output
in the backward pass.

To leverage the structure of∇L(W ) in Eq. (10), we can use a random perturbation estimator to estimate hi for each data
point, rather than directly estimating the overall gradient. In particular, let us use a single random vector ξi to estimate each
hi for data point xi in (10), yielding

ĝ =
1

nbatch

nbatch∑
i=1

ĥix
⊤
i ,

with ĥi = αiξi, and αi = h⊤
i ξi,

where αi can be calculated with either forward mode AD or finite difference:

αi = ∇ϵL(Wxi + ξi)
∣∣
ϵ=0

=
L(Wxi + ϵξi)− L(Wxi − ϵξi)

2ϵ
+O

(
ϵ2
)
.

Compared with the standard method, the random perturbation is introduced on the intermediate state z = Wxi ∈ Rdout ,
rather than the parameter space (which is W ∈ Rdout×din in this case). This yields two key advantages that remediates
the challenges of weight perturbation. The general intuition is that activation perturbation allows us to 1) introducing
lower dimensional random perturbation, and 2) a larger number of independent perturbations. These two aspects together
improves the performance.
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