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Abstract

The rapid development of Large Language Models (LLMs) has been pivotal in
advancing AI, with pre-trained LLMs being adaptable to diverse downstream
tasks through fine-tuning. Federated learning (FL) further enhances fine-tuning
in a privacy-aware manner by utilizing clients’ local data through in-situ com-
putation, eliminating the need for data movement. However, fine-tuning LLMs,
given their massive scale of parameters, poses challenges for clients with con-
strained and heterogeneous resources in FL. Previous methods employed low-rank
adaptation (LoRA) for efficient federated fine-tuning but utilized traditional FL
aggregation strategies on LoRA adapters. These approaches led to mathematically
inaccurate aggregation noise, reducing fine-tuning effectiveness and failing to
address heterogeneous LoRAs. In this work, we first highlight the mathemati-
cal incorrectness of LoRA aggregation in existing federated fine-tuning methods.
We introduce a new approach called FLORA that enables federated fine-tuning
on heterogeneous LoRA adapters across clients through a novel stacking-based
aggregation method. Our approach is noise-free and seamlessly supports hetero-
geneous LoRA adapters. Extensive experiments demonstrate FLORA’s superior
performance in both homogeneous and heterogeneous settings, surpassing state-
of-the-art methods. We envision this work as a milestone for efficient, privacy-
preserving, and accurate federated fine-tuning of LLMs. Our code is available at
https://github.com/ATP-1010/FederatedLLM.

1 Introduction

The Large Language Models (LLMs) have shown remarkable performance on various tasks, such as
chatbots [1], virtual assistants [4], search engines [11], and healthcare [20; 18]. However, adapting pre-
trained LLMs (e.g., Llama 2 [22]) to downstream tasks requires tremendous computation resources to
fine-tune all the model parameters. To mitigate this issue, a variety of parameter-efficient fine-tuning
(PEFT) methods have been proposed. One of the most widely used PEFT methods is low-rank
adaptation (LoRA) [10]. As shown in the top of Figure 1, LoRA adds a parallel branch of trainable
adapters A and B to compute the model update ∆W, where the ranks of A and B are much smaller
than the pre-trained model parameter W. When applying LoRA for fine-tuning, only A and B are
updated while the entire W is frozen, thereby significantly reducing the GPU memory consumption.

Fine-tuning LLMs requires ample data for adaptation to specific downstream tasks [13; 7]. Often,
this data is dispersed across a multitude of devices, raising privacy concerns. For instance, aggre-
gating medical data from hospitals for centralized LLM fine-tuning poses significant challenges.
Consequently, to facilitate fine-tuning without compromising private data, federated learning (FL)
becomes essential, enabling LLM fine-tuning across distributed clients while preserving data pri-
vacy [16; 27; 33; 24]. In this work, we focus on federated fine-tuning, enabling distributed clients to
collaboratively fine-tune LLMs for adaptation to downstream tasks while preserving data privacy.
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Prior work, FedIT, proposed a federated fine-tuning method [28], integrating LoRA with FedAvg [16].
In each FL round of FedIT, clients fine-tune LoRA modules using their local data and then send
the fine-tuned modules to the server. The server averages all the local LoRA modules to obtain a
global LoRA. Since only the weights of the LoRA modules are fine-tuned and communicated, FedIT
effectively reduces both computation and communication costs.

However, FedIT faces two key issues. First, the naive averaging of local LoRA modules in
FedIT introduces noise to the global model update. Specifically, FedIT averages local A and B
independently, which introduces mathematical errors to the global LoRA. In short,

The cause of aggregation noise:∑
A×

∑
B︸ ︷︷ ︸

FedIT

̸=
∑

A×B︸ ︷︷ ︸
mathematically correct

.

We will elaborate on this issue in Section 2 with theoretical analysis. Such an inaccurate aggregation
will hinder convergence, leading to higher fine-tuning costs. Second, due to the heterogeneous data
distribution [31; 12] and heterogeneous hardware resources, clients need to adapt LoRA ranks [30]
according to the system and data heterogeneity. However, FedIT cannot aggregate local LoRAs
with heterogeneous ranks.
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Figure 1: The overview of LoRA, FedIT, and our
FLORA. The top row shows how LoRA updates the
model in centralized fine-tuning. The middle and bot-
tom rows show the global model updating strategies in
FedIT and our FLORA respectively.

In this work, we present FLORA,
an aggregation-noise-free federated fine-
tuning method that supports heterogeneous
LoRAs. Specifically, as shown in Figure 2,
we propose to stack the local LoRA mod-
ules Ak and Bk separately to construct the
global LoRA modules A and B, where Ak

and Bk denote the corresponding LoRA
modules on the k-th client. This stack-
ing method is theoretically proven to be
accurate for the aggregation of local LoRA
modules (Section 3.1). Additionally, it
can naturally accommodate heterogeneous
LoRA settings (Section 3.2), since stacking
does not require the local LoRA modules
to have identical ranks across clients. The
noise-free aggregation of FLORA accel-
erates convergence, which will in turn im-
prove the overall computation and commu-
nication efficiency of federated fine-tuning.
Furthermore, FLORA can effectively cater to heterogeneous data and computational resources across
clients, where heterogeneous ranks are applied. Our key contributions are summarized as follows:

• We propose FLORA, a federated fine-tuning algorithm based on LoRA that can perform
noise-free aggregation of local LoRA modules. Theoretical analysis shows that FLORA
eliminates the meaningless intermediate term in the global model update, leading to faster
convergence and improved performance.

• The proposed stacking mechanism for aggregating LoRA modules supports heterogeneous
LoRA ranks across clients, accommodating data and system heterogeneity in realistic
settings. This encourages the broader participation of clients with heterogeneous data and
resources in federated fine-tuning.

• We use FLORA to fine-tune LLaMA, Llama2 [21] and TinyLlama [29] on four benchmarks
for two downstream tasks. Results show that FLORA surpasses state-of-the-art methods for
both homogeneous and heterogeneous settings.

2 Preliminaries

Fine-tuning LLMs with LoRA. LoRA [10] uses two decomposed low-rank matrices to represent
the update of the target module:

W′ = W +∆W = W +BA, (1)
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Figure 2: Module stacking in FLORA is a noise-free aggregation for LoRA, while the module
averaging in FedIT cannot accurately aggregate the local updates.

where W ∈ Rm×n and W′ ∈ Rm×n denote the pre-trained and fine-tuned parameters of target
modules (e.g., attention modules), respectively. A and B are low-rank decomposition of ∆W,
where A ∈ Rr×n,B ∈ Rm×r, such that ∆W = BA with the identical dimensions as W and
W′. The rank of LoRA, denoted by r, is typically significantly smaller than m and n, leading to
dramatic parameter reduction of ∆W. During the fine-tuning phase, LoRA optimizes matrices A
and B instead of directly updating W, thus achieving substantial savings in GPU memory usage.
For example, in the context of the LLaMA-7B [21], the original dimension of attention modules is
W ∈ R4096×4096, setting the LoRA rank to 16 reduces the decomposed matrices to A ∈ R16×4096

and B ∈ R4096×16. This approach decreases the number of trainable parameters to merely 0.78% of
the entire parameter of the pre-trained model, offering a significant GPU memory footprint reduction.

FedIT: Averaging Homogeneous LoRA. The most widely used FL algorithm, i.e., FedAvg [16],
aggregates all the local model updates by weighted averaging to update the global model in each
communication round:

W′ = W +

K∑
k=1

pk∆Wk = W +∆W (2)

where W′ and W denote the global model parameters before and after a communication round.
∆Wk represents the local model update from the k-th client, with pk being the corresponding scaling
factor that is typically weighted by the local data size, and ∆W represents the global model update.

FedIT [28] directly integrates FedAvg with LoRA to enable federated fine-tuning, where each client
fine-tunes LoRA modules with a homogeneous rank. Specifically, the clients download the pre-trained
LLM from the server, locally initialize and fine-tune the LoRA modules, and then send the updated
LoRA modules to the server. The server updates the global LoRA modules A and B by independently
applying weighted averaging across all local modules Ak and Bk:

A =

K∑
k=1

pkAk, B =

K∑
i=0

pkBk. (3)

This aggregation of FedIT is almost the same as FedAvg except that only the LoRA modules are
trained and communicated. However, such a naive aggregation introduces additional issues for
federated fine-tuning. First, each single module A or B is not the model update, and only BA
represents the model update. Thus, averaging Ak and Bk independently to compute the aggregated
gradients will introduce noises to the global model update. Here we use a simple example to explain
how the noise is generated, and we assume that two clients are applying FedIT to perform federated
fine-tuning. In a communication round, the two clients train A0, B0 and A1, B1 respectively. The
local model updates ∆W0 and ∆W1 are the product of corresponding LoRA modules:

∆Wk = BkAk, k ∈ {0, 1}. (4)

According to Equation 2, the expected global model update ∆W can be obtained by weighted
averaging ∆W0 and ∆W1:

∆W = p0∆W0 + p1∆W1 = p0B0A0 + p1B1A1. (5)

However, according to Equation 3, FedIT aggregates A and B independently:

∆W = BA = (p0B0 + p1B1)(p0A0 + p1A1)

= p20B0A0 + p21B1A1 + p0p1(B0A1 +B1A0).
(6)

The global model update in Equation 6 differs from the expected one in Equation 2, mainly due
to the underlined intermediate term that is obtained by the cross-product of LoRA modules from
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different clients. This intermediate term introduces unexpected noise in the model aggregation. As
the number of clients increases, this noisy term becomes much larger than the real global updates,
significantly slowing down the fine-tuning progress. In addition, FedIT applies the scaling factor pk
to both Ak and Bk, resulting in a p2k coefficient for the local model update ∆Wk, exacerbating the
error in LoRA aggregation. As Figure 2 illustrates, the averaging algorithm in FedIT is an inaccurate
aggregation method, leading to slower convergence and higher computation costs.

The other deficiency of FedIT is that it cannot support aggregation on heterogeneous LoRA modules.
The local data in FL may exhibit significant heterogeneity across clients [31; 12]. If a client configures
a higher rank than the actual one required by the local data complexity, this may result in overfitting.
Conversely, if the rank is too small, it may lack the necessary generalization capacity to effectively
learn from the local dataset (Figure 4). Moreover, the heterogeneous computational resource across
clients also requires heterogeneous rank deployment, e.g., clients with smaller memory can only
afford to train LoRA modules with smaller ranks. AdaLoRA [30] has been proposed to adapt LoRA
ranks based on available computation resources. Therefore, deploying heterogeneous ranks across
clients is a pressing requirement for accommodation to data and system heterogeneity. However,
according to Equation 3, FedIT is only able to aggregate LoRA modules with the homogeneous rank.

3 Proposed Method: FLoRA

3.1 Stacking-based Noise-free Aggregation

Motivated by the aforementioned problem, we propose a novel aggregation mechanism that accurately
computes global model update ∆W by aggregating local LoRA modules and effectively supports
the heterogeneous LoRA. According to matrix multiplication principles and the model update rule in
LoRA (i.e., Equation 1), the element at position (x, y) of the model update ∆W is computed as the
sum of the products of corresponding elements from the x-th column of B and the y-th row of A:

δxy =

r∑
i=0

ayibxi, (7)

where δxy represents the element at position (x, y) in ∆W. ayi, bxi are the elements at positions
(y, i) and (x, i) in A and B, respectively. According to Equation 3.1, the model update in LoRA can
be expressed as the sum of the products of the corresponding rows of A and the columns of B.

To illustrate this concept further, let us consider a simplified example where the dimensions of LoRA
modules are given by A ∈ R2×3 and B ∈ R3×2. As described in Equation 8, A and B can be
decomposed to two sub-matrices with rank r = 1, and the product of A and B then are computed as
the sum of the products of two respective sub-matrices:

BA =

[
b00, b01
b10, b11
b20, b21

]
·
[
a00, a10, a20
a01, a11, a21

]
=


b00
b10
b20

·[a00, a10, a20]+


b01
b11
b21

·[a01, a11, a21.] (8)

To address the aggregation challenge from an alternative perspective, let us consider the scenario
where we have multiple pairs of LoRA modules, Ak, Bk, optimized by the clients. Each pair satisfies
the dimensions Ak ∈ Rrk×n and Bk ∈ Rm×rk . Similar to Equation 8, the sum of the products
of these module pairs is the product of the stacked modules, i.e.,

∑K
k=1 BkAk = BA, where B

represents the stacking of all Bk modules aligned through dimension m and A is the stacking of
all Ak aligned through dimension n. Figure 2 visually illustrates this concept, where the orange,
green, and blue rectangles symbolize Ak, Bk, and their respective products. The aggregation of
three products mirrors the product of the stacked B and A from all Bk and Ak pairs trained by
clients. This mechanism demonstrates that, in the context of federated fine-tuning, we can achieve a
noise-free aggregation of local updates by simply stacking the local LoRA modules. This process
also avoids transmitting the full model parameters, thus reducing communication costs.

To facilitate our discussion, we introduce the stacking operation symbolized by “⊕" to denote the
module aggregation as depicted in Figure 2. This operation is mathematically defined as:

A = A0 ⊕A1 ⊕A2, B = B0 ⊕B1 ⊕B2,

Ak ∈ Rrk×n,A ∈ R(r0+r1+r2)×n,Bk ∈ Rm×rk ,B ∈ Rm×(r0+r1+r2).
(9)
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Figure 3: FLORA workflow. The local LoRA modules are initialized and optimized each round, and
stacked by the server to obtain the global LoRA modules. The global modules are then sent back to
clients to update local models.

In Equation 9, "⊕" indicates that for A, each subsequent module is vertically stacked below the
preceding one, whereas for B, each module is horizontally stacked to the right of the one before it.

We can now formalize our conclusion regarding the aggregation of LoRA modules. The sum of the
products of K LoRA module pairs is equivalent to the product of their stacked matrices:

K∑
k=0

BkAk = (B0 ⊕ ...⊕BK)(A0 ⊕ ...⊕AK) (10)

This foundational principle will guide the design of FLORA, as it allows for the efficient and effective
aggregation of local updates without the transmission of entire model parameters.

3.2 FLORA: Stacking-based Federated Fine-tuning for Heterogeneous LoRA

The stacking-based aggregation facilitates not only the accurate aggregation of LoRA modules but
also inherently supports the heterogeneous LoRA ranks. This approach imposes no constraints on the
ranks of each local LoRA module as long as each client fine-tunes the same pre-trained model, i.e.,
they share the same dimension m and n.

By employing the stacking-based aggregation mechanism, we introduce FLORA, an approach
designed to facilitate federated fine-tuning of LLMs with heterogeneous LoRA. Let us use a concrete
example to illustrate the key steps of applying FLORA, where K heterogeneous clients are involved
in fine-tuning an LLM, and the pre-trained parameters are denoted by W.

Initialization. The server first disseminates the pre-trained model parameters W to all K clients.
Then, the clients initialize their local LoRA modules based on the complexity of local data and
available local resources. The adaptation of LoRA ranks is beyond the scope of this paper, but
existing work like AdaLoRA [30] can facilitate the rank adjustment.

Local Fine-tuning. Following initialization, the clients train their local LoRA modules with the
local data for several iterations. Then, the clients send the local LoRA modules back to the server.
Note that the clients initialize local LoRA modules each round before local fine-tuning.

Stacking-based LoRA Aggregation. Upon receiving the heterogeneous LoRA modules from
participating clients, the server proceeds to aggregate them by stacking all Bk and Ak according to
Equation 10, resulting in the global A ∈ R(

∑K
k=0 rk)×n and B ∈ Rm×(

∑K
k=0 rk). The aggregation
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process of FLORA can be described as follows:

A = p0A0 ⊕ p1A1 ⊕ ...⊕ pKAK , B = B0 ⊕B1 ⊕B2 ⊕ ...⊕BK

Ak ∈ Rrk×n,Bk ∈ Rm×rk , A ∈ R(
∑K

k=0 rk)×n,B ∈ Rm×(
∑K

k=0 rk),
(11)

where pk represents the scaling factor for each local update, determined by the relative size of the
local data to the global data:

pk =
len(Dk)

len(
∑K

k=0 Dk)
. (12)

Note that the scaling factor pk should be only applied to one of Ak and Bk to avoid squaring the
factor in the final model update BA. This method ensures a noise-free aggregation mechanism as
described in Equation 10.

Update Local Models. After each round of noise-free aggregation, the server redistributes the
updated global LoRA modules A and B back to the clients. The clients then proceed to update the
local models using BA and continue the fine-tuning. Using the stacking approach, the dimensions of
updated global LoRA modules A and B are larger than those of FedIT, potentially leading to larger
communication overhead in each round. However, empirical observations indicate that federated
fine-tuning typically requires only a limited number of communication rounds to achieve satisfactory
results, as detailed in Section 4. In addition, it is important to note that the LoRA modules A and
B constitute a small fraction of the overall size of the pre-trained model, which is distributed to
clients during the initialization phase. Thus, the additional communication overhead of the stacking
approach is negligible and does not significantly impact the efficiency of federated fine-tuning.

4 Experiments

The key features of FLORA are (i) noise-free aggregation and (ii) support for heterogeneous LoRA
modules. In this section, we verify these key features across various LLM fine-tuning tasks. We
first study the performance of FLoRA and compare it against FedIT under homogeneous settings
to demonstrate the advantages of noise-free aggregation [28]. Then, we examine performance in a
synthetic heterogeneous setup and compare FLORAwith a vanilla zero-padding method. Finally,
we conduct ablation studies on the scaling factor, the heterogeneity of LoRA ranks, and the extra
communication overhead of FLoRA.

4.1 Experiment Setup

Models, Datasets and Experiment Settings. We employ three Llama-based models with different
scales in our experiments: TinyLlama with 1.1 billion parameters [29], and the 7 billion parameter
versions of Llama [21] and Llama2 [22], evaluating FLORA across different model capacities.
Following the configurations in the original LoRA paper [10], the LoRA modules are applied to the
self-attention layers only.

We use the Databricks-dolly-15k [28] instruction dataset, Alpaca dataset [19], and Wizard dataset [14]
for the question-answering (QA) task, and Wizard and ShareGPT for the chat assistant task. We
evaluate the federated fine-tuned models on MMLU [8] for the QA task and MT-bench [32] for the
chat assistant task, respectively. We sample 10 clients uniformly at random following the non-IID
setting in FedIT [28]. The other experimental configurations are elaborated in Appendix A.

Baselines. We compare FLORA with four baselines. (1) FedIT: It is the SOTA federated fine-
tuning method [28] that integrates LoRA with FedAvg. We only apply FedIT to homogeneous LoRA
experiments as it does not support heterogeneous LoRA. (2) Zero-Padding: It is an approach that
enables FedIT to support heterogeneous LoRA [3]. It extends all the heterogeneous local ranks to the
maximum rank among the clients and pads their remaining parts by 0. (3) Centralized Fine-tuning:
we compare FLORA with centralized LoRA with the same hyperparameters and configurations. (4)
Standalone: the client fine-tunes the pre-trained model locally without federations.
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Table 1: Comparison of FLORA with baselines on MMLU and MT-bench. "Homo" represents the
settings with homogeneous LoRA ranks, and "Heter" denotes those with heterogeneous LoRA ranks.

Foundation Strategy Fine-tuning MMLU MT-bench
model algorithm Dolly Alpaca Wizard Wizard ShareGPT

TinyLlama

Centralized LoRA 27.99 28.03 29.13 2.34 2.79

Homo FedIT 16.35 30.02 42.51 2.92 2.55
FLORA 30.80 31.92 43.87 3.13 2.77

Heter Zero-Padding 15.76 29.56 40.79 1.56 1.29
FLORA 18.45 29.69 41.48 3.14 2.71

Llama

Centralized LoRA 35.91 29.18 31.68 4.38 3.99

Homo FedIT 29.67 29.41 33.43 3.07 3.73
FLORA 30.99 29.85 34.26 4.21 3.93

Heter Zero-Padding 26.46 7.97 26.98 3.51 3.26
FLORA 28.50 29.54 27.91 4.14 3.64

4.2 Experiment Results

Homogeneous LoRA. We first evaluate the performance of FLORA with homogeneous LoRA.
Specifically, all the clients share the identical LoRA rank of 16. As Table 1 depicts, FLORA achieves
consistently better performance than FedIT across all the evaluated models and tasks. This is evident
in the MT-bench scores for both TinyLlama and Llama models, where FLORA’s performance
exceeds that of FedIT by at least 0.2. A notable example is the MT-bench score for the Llama
model fine-tuned with Wizard dataset, where FLORA scores 4.21, surpassing FedIT’s 3.07. On
the MMLU test set, FLORA outperforms FedIT in all the settings. For example, considering the
TinyLlama model fine-tuned with Dolly, FLORA nearly doubles the accuracy achieved by FedIT.
While FedIT occasionally matches the performance of FLORA, as observed with the Alpaca dataset
on MMLU, the performance gap is marginal. Interestingly, in several scenarios, the performance
of FLORA not only outpaces FedIT but also exceeds the performance achieved by the centralized
fine-tuning. This phenomenon, observed in the TinyLlama model fine-tuned with the Alpaca and
Wizard datasets, suggests that the smaller data volume on clients for federated fine-tuning may help
mitigate overfitting, thereby enhancing model generalization. The experiment results of the Llama2
model are presented in Appendix A, which reveal the same trend as that in TinyLlama and Llama. The
consistent observations across the three models demonstrate that FLoRA consistently outperforms
FedIT in the homogeneous LoRA setting.

4.0-2
4.02-0.1
4.04-0.5

(a) TinyLlama - Wizard (b) TinyLlama - ShareGPT (c) Llama - Wizard (d) Llama - ShareGPT

Figure 4: Standalone experiment results. The red bars represent the global model performance and
the blue bars represent the local model performance with varying LoRA ranks.

Heterogeneous LoRA. Compared with FedIT, a distinctive strength of FLORA lies in its inherent
capability to accommodate heterogeneous LoRA configurations. In the heterogeneous LoRA settings,
we apply varied local LoRA ranks, i.e., [64, 32, 16, 16, 8, 8, 4, 4, 4, 4], to 10 clients, simulating a
realistic scenario where clients have heterogeneous computational resources. As Table 1 and Table
4 illustrate, FLORA not only adapts to heterogeneous ranks without performance degradation but
also maintains consistency with the results observed in most homogeneous settings. This contrasts
sharply with the performance of FedIT, where the application of zero-padding significantly degrades
its performance on MMLU and MT-bench. It reveals that zero-padding exacerbates FedIT’s inherent
noise issues in the aggregation process, posing significant challenges in managing fine-tuning perfor-
mance. For example, by applying the zero-padding method, the MMLU accuracy of Llama model
fine-tuned with Alpaca dataset dramatically drops to 7.97%. The results demonstrate that FLORA
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not only accommodates heterogeneous LoRA ranks effectively but also sustains robust training
performance compared to baseline methods. It efficiently facilitates the participation of devices with
varied computational capacities in heterogeneous federated fine-tuning tasks. Additionally, FLORA
can be seamlessly integrated with AdaLoRA [30], which dynamically adjusts the LoRA rank on the
clients, the results are presented in Appendix A.

(e) Llama2 - MT-bench

(a) TinyLlama - MMLU (b) Llama - MMLU

(c) TinyLlama - MT-bench (d) Llama - MT-bench

Figure 5: The impact of the scaling factor on
FLORA. The x-axis is the scaling factor, and the
y-axis represents the MMLU accuracy for (a)-(b)
and the MT-bench score for (c)-(d). The results of
Llama2 are in Appendix A.

The Impact of Scaling Factor. The scaling
factor, denoted as pk in Equation 12, plays a piv-
otal role in the efficacy of FL [23]. We conduct
experiments investigating how varying scaling
factors influence the performance of FLORA.
Given that the default scaling factor is set to 0.1
for all clients, assuming 10 clients with equal
local dataset sizes as per Equation 12, we ex-
plored the effects of alternative scaling factors,
namely 0.01, 0.05, and 0.2. The results are sum-
marized in Figure 5. The results do not reveal
a clear pattern or optimal scaling factor for fed-
erated fine-tuning across different settings. The
efficacy of a specific scaling factor appears to
be contingent upon the dataset, task, and model
in use. For example, when fine-tuning TinyL-
lama on the Dolly dataset, a lower scaling fac-
tor of 0.01 yields the highest accuracy, signif-
icantly outperforming the 0.1 and 0.2 scaling
factors. Conversely, the model fine-tuned on
Wizard dataset demonstrates a preference for a
higher scaling factor of 0.2, achieving the best
performance, whereas the lowest scaling factor
of 0.01 was the least effective. In the case of the
Llama model, larger scaling factors consistently
facilitated better fine-tuning performance. Ap-

plying FLORA to Dolly and Alpaca shows the optimal performance with a scaling factor of 0.2.
These observations suggest that the choice of an appropriate scaling factor is highly dependent on
specific datasets and model characteristics, underscoring the necessity for a tailored approach in
federated fine-tuning.

The Impact of Heterogeneous LoRA Ranks. Although the above results demonstrate FLORA
effectively enables the federated fine-tuning with heterogeneous LoRA, it is worth further investigating
how the federated fine-tuning improves the local models with various ranks. Motivated by this, we
evaluate MT-bench scores for local models with LoRA ranks of 64, 32, 16, 8, and 4, presenting
the results in Figure 4. Global model scores are shown in red bars, while local models are in blue,
with deeper shades indicating higher ranks. The results show that the global model outperforms all
local models, except for a case with the TinyLlama model fine-tuned on the Wizard dataset, where
the client with rank 32 slightly exceeds the global model. This demonstrates FLORA’s ability to
synthesize knowledge from diverse clients effectively.

Regarding the LoRA rank’s impact, a rank of 8 consistently yields strong performance across
various models and datasets. However, performance diverges at extreme ranks; for instance, the
TinyLlama model fine-tuned on Wizzard with the LoRA rank of 64 underperforms the ones with
smaller ranks, but the Llama model with the rank of 64 excels the counterparts with smaller ranks.
This also demonstrates the heterogeneous rank deployment across clients is a realistic setting. These
observations suggest a potential positive correlation between optimal LoRA rank and model capacity,
motivating further exploration in future research.

5 Discussion

The Communication Overhead of FLORA. As discussed in Section 3, the server needs to send
global LoRA modules to the clients in FLORA, potentially raising concerns about increased commu-
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nication overhead. To quantify this, we compare the communicated parameters of full fine-tuning,
FedIT, and FLORA over three communication rounds.

Figure 6: The ratio of communicated parameter
numbers to full fine-tuning.

As Figure 6 shows, although FLORA transmits
slightly more parameters than FedIT, it still sig-
nificantly reduces the overhead compared to full
fine-tuning. This is due to the fact that the primary
communication load in federated fine-tuning, es-
pecially with large models, is the initial full model
parameter transmission. Subsequent rounds pri-
marily involve smaller updates (e.g., LoRA ma-
trices). Thus, even though FLoRA introduces
additional communication for these updates, the
overall impact on total communication costs re-
mains marginal, making it comparable to FedIT’s
costs. Despite the minor communication increase
compared to FedIT, FLORA enhances fine-tuning
effectiveness and supports heterogeneous LoRA
ranks, making it a preferable solution in federated
fine-tuning.

The Privacy Preservation of FLORA. The requirement of FLORA to stack the LoRA modules
uploaded by all clients introduces a potential privacy concern, as malicious clients might infer the
LoRA matrices of other clients through the global LoRA modules sent from the server. To address
this issue, we split all the local LoRA modules into sub-modules with rank=1 and then stack the
sub-modules together in random order. This approach prevents malicious clients from recovering
the local LoRA modules from other clients. In addition, FLORA is also compatible with standard
privacy mechanisms such as encryption [2] and differential privacy (DP) [25], aligning it with the
privacy-preserving nature of FL.

6 Related Work

Parameter-efficient Fine-tuning of LLMs. Parameter-efficient fine-tuning (PEFT) aims to reduce
the number of trainable parameters. BitFit [26] fine-tunes only the biases while achieving similar
accuracy with full fine-tuning. Other works such as [9] and [17] apply transfer learning that adds
pre-trained adapter layers between transformer blocks. LoRA [10] adopts the product of two
low-rank matrices to represent the gradient in full fine-tuning, which achieves memory-efficient
fine-tuning. AdaLoRA [30] optimizes LoRA by adaptively allocating the parameter budget, which
enhances the flexibility of LoRA. There are also many works regarding optimizing LoRA in various
aspects [5; 6; 15].

Federated Fine-tuning of LLMs. Federated fine-tuning aims to extract knowledge from multiple on-
device datasets while preserving data privacy. FedIT [28] leverages the FL framework for fine-tuning
LLMs. It uses LoRA as the local fine-tuning strategy. However, concerns related to the deficiency in
supporting heterogeneous LoRA limit its utilization. [3] tries to solve this problem by zero-padding
the local LoRA modules. However, this padding process causes additional computing overhead.
Besides, it separately averages A and B modules, introducing noise to the global model.

7 Conclusion

In this work, we identified the limitations in current federated fine-tuning methods (e.g., FedIT),
and the challenges of applying federated fine-tuning in realistic settings, i.e., the heterogeneous
LoRA ranks across clients. To overcome these practical challenges and broaden the applicability of
federated fine-tuning, we introduced FLORA to enable the accurate aggregation on heterogeneous
LoRA modules using the proposed stack-based LoRA aggregation mechanism. Our extensive
experiments demonstrate that FLORA outperforms the SOTA method in both homogeneous and
heterogeneous LoRA settings. Moreover, our inspiring results provide valuable insights for future
research in the federated fine-tuning of large language models in a lightweight and accurate manner.
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A Additional Experiments and Setup Details

A.1 Environments, Datasets and Metric

Computer Resources. We use a 256GB AMD EPYC 7763 64-Core Processor on Linux v4.18.0 to
run the experiments. For LoRA fine-tuning on all the models, we use 4 NVIDIA RTX A6000 GPUs.

Dolly dataset. The Dolly dataset is an open-source dataset with 15k text samples generated by
Databricks employees. The topics include brainstorming, classification, closed QA, generation,
information extraction, open QA, and summarization [28].

Alpaca dataset. The Alpaca dataset contains 52K instruction-following data used for fine-tuning the
Alpaca model [19]. This dataset is believed to be diverse enough for fine-tuning LLMs.

Wizard dataset. The Wizard dataset we use is the training data of the WizardLM model. It includes
70k pairs of instructions and outputs. The Wizard dataset generally features more complex instructions
compared to the other datasets. Its fine-tuning results are typically better, which has been confirmed
by our experiments, especially those evaluated by the MT-bench scores.

ShareGPT dataset. The ShareGPT dataset is a collection of approximately 52,000 conversations
scraped via the ShareGPT API. The conversations in ShareGPT include both user prompts and re-
sponses from ChatGPT. In our experiments, we split the conversation dataset into question-answering
pairs.

MMLU test set. The MMLU dataset is a widely used question-and-answer dataset in LLM fine-
tuning. It has 14,024 questions in 57 different subjects, which can evaluate the logical reasoning
capabilities of LLMs. We selected 1444 samples from the dataset for a quick and comprehensive
evaluation.

MT-bench evaluation. MT-bench is a set of challenging multi-turn open-ended questions for
evaluating chat assistants [32]. It evaluates the performance of LLMs by using the GPT-4 API to
score the LLM-generated conversations. LLMs that behave more like GPT-4 will receive higher
scores.

A.2 Hyperparameter Details

In all our experiments, the learning rate of fine-tuning is set to 0.0003; the batch size is 128 and
the micro batch size is 16. Due to the large dataset and model sizes selected, federated fine-tuning
consumes significant computational resources and time. Therefore, we opted for fewer fine-tuning
rounds (even just one round) to ensure that we could observe enough data. Additionally, the MMLU
dataset is prone to overfitting on these large datasets, resulting in a decrease in accuracy. Therefore,
fewer training rounds ensure the effectiveness of the observed phenomena. Table 2 shows the
fine-tuning rounds and local epochs we selected.

Table 2: The communication rounds and local epochs on each experiment setting. The Rounds
column represents the number of communication rounds and the Epochs column represents the
number of local fine-tuning epochs in each round.

Foundation Datasets Rounds Epochs

TinyLlama

Dolly 3 1
Alpaca 3 1
Wizard 3 1

ShareGPT 1 1

Llama

Dolly 3 3
Alpaca 3 3
Wizard 1 1

ShareGPT 1 1

Llama2 Wizard 1 1
ShareGPT 1 1
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Table 3: The performance of FLORA + AdaLoRA. AdaLoRA can reduce the rank while preserving
the fine-tuning effectiveness.

Foundation Fine-tuning Sum of MT-bench
model algorithm local ranks score

TinyLlama FLORA 160 3.13
FLORA+AdaLoRA 120 3.14

Llama FLORA 160 4.21
FLORA+AdaLoRA 131 4.10

Llama2 FLORA 160 4.17
FLORA+AdaLoRA 140 4.25

Table 4: Compare FLORA with baselines in Llama2.

Strategy Fine-tuning Wizard ShareGPTalgorithm

Centralized LoRA 4.24 3.99

Homo FedIT 4.03 3.87
FLORA 4.22 3.96

Heter Zero-Padding 4.01 3.70
FLORA 4.17 3.91

A.3 Supplementary Experiment Results

Integrating FLORA with AdaLoRA All the observations about the impact of rank on the model
performance, despite being influenced by data heterogeneity, still manage to reveal the importance of
selecting an appropriate LoRA rank for a specific task. Thus, some algorithms such as AdaLoRA [30]
are designed to adaptively adjust the LoRA rank to optimize the model performance and save
computational resources. With our support for heterogeneous LoRA, we can flexibly utilize AdaLoRA
with adaptive LoRA ranks. We conducted corresponding experiments to demonstrate that we can
use AdaLoRA to further improve the efficiency of federated fine-tuning. We implement AdaLoRA
on each client to adjust LoRA modules during local fine-tuning. The results are shown in Table 3.
The "Sum of local ranks" column means the sum of all local LoRA rank values after fine-tuning.
Since our FLORA does not adjust the rank, its value is 160, the same as the initial value. On the
other hand, AdaLoRA dynamically adjusts the rank to maximize training effectiveness and minimize
rank values to save resources. From Table Table 3, we can see that AdaLoRA on TinyLlama and
Llama reduced the sum of local ranks to 120 and 131 from 160 respectively. We further conclude
that FLORA+AdaLoRA can further reduce the trainable parameter count while ensuring comparable
or even improved performance compared to simply using LoRA on the clients. Our support for such
rank adaptation further demonstrates the effectiveness and applicability of the FLORA approach.

Experiment results of Llama2. Due to the inherently strong performance of Llama2, the im-
provement in the QA dataset is not significant. Therefore, we fine-tuned Llama2 using the Wizard
and ShareGPT datasets. Overall, Llama2 exhibits similar experimental results to Tinyllama and
Llama. Table 4 shows the comparison between FLORA and our baselines. In the homogeneous and
heterogeneous settings, the MT-bench scores of Wizard and ShareGPT all surpass those in FedIT
and Zero-Padding. As for the impact of scaling factors in Figure 7, Llama2 has a similar trend to the
Llama-7b model, in which higher scaling factors exhibit better fine-tuning performance.

B Convergence Analysis

In this section, we demonstrate the convergence of FLORA following the standard convergence
analysis in [12]. The FedAvg algorithm exhibits convergence to the global optimum at a rate of
O(1/T ) for non-IID (independent and identically distributed) data under full client participation.
This convergence is based on four assumptions mentioned in [12]:
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Figure 7: The impact of scaling factor on Llama2 model.

Assumption 1. Each local objective function is L- smooth, that is, for all x and y, Fk(x) ≤
Fk(y) + (x− y)T∇Fk(y) +

L
2 ∥x− y∥22

Assumption 2. Each local objective function is µ - strongly convex that is, for all x and y, Fk(x) ≥
Fk(y) + (x− y)T∇Fk(y) +

µ
2 ∥x− y∥22

Assumption 3. The variance of stochastic gradients in each client is bounded: E∥∇Fk(W
(t)
k , ξ

(t)
k )−

∆W
(t)
k ∥2 ≤ σ2

k for k = 1, ...,K, where ξ
(t)
k is the subset of training data randomly sampled from

k-th client.

Assumption 4. The expected squared norm of stochastic gradients is uniformly bounded:
E∥∇Fk(W

(t)
k , ξ

(t)
k )∥2 ≤ G2 for all k = 1, ...,K and t = 1, ..., T , where ξ

(t)
k is the subset of

training data randomly sampled from k-th client.

For the convergence analysis of FLORA, we introduce an additional assumption 5 tailored to the
specific dynamics of LoRA fine-tuning and its relation to traditional SGD-based full fine-tuning:

Assumption 5. (Unbiased LoRA Gradient). The updates applied to LoRA modules by each client
serve as unbiased estimators of the gradient that would be directly computed on the base model
through SGD: B(t+1)

k A
(t+1)
k − B

(t)
k A

(t)
k = η(t)∇Fk(W

(t)
k |ξ(t)k ). Note that we define the model

parameter in t-th round by W(t).

Theorem 1. Based on Assumptions 1-5, we choose k = L
µ , γ = max{8k,E}. The local learning

rate αk

rk
= 2

µ(γ+t) . Then, we can deduce that the expectation of the fine-tuning error in FLORA can
be bounded by:

δ(T ) ≤ 2k

γ + T
(
M

µ
+ 2L∥W(1) −W∗∥2), (13)

where δ(T ) is the fine-tuning error in T -th round. δ(T ) and M are defined as follows:

δ(T ) = E[F (w(T−1) +B(T )A(T ))]− F ∗,

M =

K∑
k=1

p2kσ
2
k + 6LΓ + 8(E − 1)2G2.

(14)

where L, µ, σk, and G are defined by the assumptions 1-4. Γ is defined by Γ = F ∗ −
∑K

k=1 pkF
∗
k

for quantifying the degree of non-iid. This theorem posits that as the number of rounds T approaches
infinity, the expectation of the fine-tuning error δ(T ) converges to zero. In contrast, FedIT deviates
from the FedAvg model updating rule as depicted in Equation 2, introducing non-gradient noises
through its averaging process. Therefore, it fails to achieve convergence at the rate of O(1/T ) While
this deviation does not invalidate FedIT’s utility in federated fine-tuning, it significantly impairs its
convergence rate and overall effectiveness.

C Limitation

Our approach has the limitation that the server sends the stacked LoRA modules to the client,
thereby increasing the communication costs. We discussed this limitation both theoretically and
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experimentally in Section 3 and Section 4, respectively. We believe that the increase in communication
overhead is acceptable under the premise of improving fine-tuning effectiveness and accelerating
convergence. In addition, due to constraints on computational resources and time, we only utilized
Llama models in the experimental section. We aim to observe experimental phenomena of different
types of LLM federated fine-tuning in future research and derive more general principles.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The paper has a clear abstract and an introduction section.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The Limitation section is presented in the Appendix.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: All proofs are provided.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Experimental settings are provided.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: The code is on GitHub. We already have a discussion with other researchers
about the code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Details are in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The results are reproducible with low errors.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Information on GPUs and resources is in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Conducted.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: It is only a technical paper, which has no social impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: All the models and datasets used are open-sourced.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Models and datasets are cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No human-involved evaluations.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

21


	Introduction
	Preliminaries
	Proposed Method: FLoRA
	Stacking-based Noise-free Aggregation
	FLoRA: Stacking-based Federated Fine-tuning for Heterogeneous LoRA

	Experiments
	Experiment Setup
	Experiment Results

	Discussion
	Related Work
	Conclusion
	Additional Experiments and Setup Details
	Environments, Datasets and Metric
	Hyperparameter Details
	Supplementary Experiment Results

	Convergence Analysis
	Limitation

