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Abstract

This white paper presents PORT, a Perception-Oriented image compression framework with
Real-Time decoding. PORT is our approach for the image compression track at CLIC 2025.
To enhance perceptual quality, we incorporate both semantic and patch-wise adversarial
losses to generate realistic textures, and employ a region-of-interest (ROI) mask to guide bit
allocation across different regions. To accelerate decoding, PORT builds upon the DCVC-
RT architecture, while introducing more advanced entropy models to capture long-range
correlations. Our team is PKUSZ-AliMerlin.

1 Introduction

Learned image compression [1] has become an active research area in recent years.
Several models [2–7] have already outperformed the latest non-learned codec, VVC.
However, most existing methods primarily focus on optimizing non-perceptual distor-
tion metrics. To improve perceptual quality, some approaches [8–10] employ Genera-
tive Adversarial Networks (GANs) [11] to synthesize perceptually convincing textures.
In addition, learned perceptual metrics such as VGG-based [12] or LPIPS [13] losses
are often used to stabilize training and improve convergence.

Since subjective quality standards vary across users, content-sensitive images (e.g.,
faces and documents) require authenticity preservation rather than the generation of
vivid yet unrealistic details. To this end, building upon the generative compres-
sion framework of [9], we propose PORT: Perception-Oriented Image Compression
with Real-Time Decoding, developed for the CLIC 2025 Image Track. PORT em-
ploys semantic- and patch-wise discriminators to guide texture synthesis, thereby
enhancing semantic and spatial consistency between generated and reference images.
Furthermore, a region-of-interest (ROI) mask is used to adaptively control pixel-level
distortion weights, enabling flexible rate allocation.

For efficient decoding, PORT adopts the architecture of DCVC-RT, while incor-
porating a more advanced entropy model to capture long-range correlations. Finally,
to meet specific bit-rate constraints, our model is trained with a variable-rate com-
pression strategy inspired by [14]. Our team is PKUSZ-AliMerlin.
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2 Method

2.1 Overview

In this section, we briefly introduce our solution PORT to the CLIC 2025 Image
Track. The overall architecture of PORT follows DCVC-RT [15] and Ma et al. [16],
while the gain and inverse gain units [14] are adopted for variable-rate control.

The optimization process consists of two stages. In the first stage, the model
is trained with a mean squared error (MSE) objective, together with the gain and
inverse gain units. In the second stage, the model is further optimized for perceptual
quality.

For perceptual optimization, we employ both patch-wise and semantic adversarial
losses [11] to guide the decoder in generating realistic textures at low bitrates. To
preserve sharpness, we additionally use the Charbonnier loss. The LPIPS loss [13]
and style loss [17] are incorporated to enhance perceptual fidelity, while the Laplacian
loss [18] is used to mitigate color variations. Following [16], a region-of-interest (ROI)
mask is introduced to allocate more bits to semantically important regions.

The overall loss function is formulated as

L = λr ×R+ λmse × (δ ⊙Dmse) + λROI
L1 × (δ ⊙DL1)+

λnon−ROI
L1 × [(1− δ)⊙DL1] + λlpips ×Dlpips+

λsty ×Dsty + λlap ×Dlap + λadv ×Dadv,

(1)

where R is the rate, Dmse is the MSE distortion, DL1 is the L1 distortion, Dlpips is
the VGG-16 [12] Lpips [13] distortion, Dsty is the style loss [17], Dlap is the Laplician
distortion [18], Dadv is the BCE adversarial distortion, δ is the ROI map. We use
{λr, λmse, λ

ROI
L1 , λnon−ROI

L1 , λlpips, λsty, λlap, λadv} to adjust the weight of each loss.

2.2 ROI-Weighted Distortion and Bit Allocation

In our method, following Ma et al. [16], we employ a saliency map as the ROI mask,
since saliency detection naturally separates an image into focused regions and back-
ground, which aligns well with our allocation strategy. Specifically, we adopt RM-
former [19] to generate ROI maps. The RMformer is kept fixed during both training
and testing. The ROI detection process is formulated as

Mask2D = sigmoid(RMformer(x)), (2)

where x is the input image, and Mask2D is the detected ROI map.
To further smooth boundaries and facilitate gradual bit allocation, the ROI map

is processed with average pooling:

RM2D = AvgPool(Mask2D), (3)

where RM2D denotes the smoothed ROI map. Additionally, a scaling factor α is
introduced to control the relative importance of ROI regions during rate allocation.



To avoid background texture degradation, a fixed number of channels are reserved to
retain sufficient information for non-ROI regions.

Finally, bit allocation is performed on the encoder side as follows:

y = ga(x), ỹ = y ⊙ RM2D + α

1 + α
, y = y0-63, |, ỹ64-320, ŷ = Q(y), x̂ = gs(ŷ),

(4)
where ga and gs denote the analysis and synthesis transforms, respectively. Since
L1 and MSE losses are pixel-wise, we directly use the ROI map to weight pixel-level
distortions, thereby guiding the model to allocate more bits to ROI regions.

2.3 Adversial Training

To generate realistic textures, we optimize the model with adversarial losses, which
include both semantic-level and patch-wise components. Following prior works [9, 16],
we employ the binary cross-entropy (BCE) loss for adversarial training.

For the semantic adversarial loss, we leverage CLIP [20] to extract semantic priors
s from the input image, which are used as conditional inputs for discrimination:

Ds
adv = E

[
− log(Ds(x̂ | s))

]
, Ds

disc = E
[
− log(1−Ds(x̂ | s))

]
+ E

[
− log(Ds(x | s))

]
,

(5)
where x̂ denotes the reconstructed image and x the original image.

For patch-wise discrimination, the loss function is defined as:

Dp
adv = E

[
− log(Dp(x̂ | ŷ))

]
, Dp

disc = E
[
− log(1−Dp(x̂ | ŷ))

]
+ E

[
− log(Dp(x | ŷ))

]
,

(6)
where ŷ denotes the latent representation. Here, Ds and Dp denote the semantic
and patch-wise discriminators, respectively. The discriminator objectives are Ds

disc

and Dp
disc, while the generator is optimized with the corresponding adversarial losses

Ds
adv and Dp

adv. The overall adversarial loss is defined as the weighted sum of the two
terms:

Dadv = λs
advDs

adv + λp
advD

p
adv, (7)

where λs
adv and λp

adv are hyperparameters that balance the contributions of the se-
mantic and patch-wise adversarial objectives.

2.4 Variable Rate Adaptation

The gain units and inverse gain units are employed for continuous rate adaptation.
Specifically, the model is trained to support n target bitrates. The gain units, denoted
as MG ∈ Rc×n, adjust the quantization step of each channel, where c is the number
of channels. The inverse gain is implemented as 1/MG in our model.



With gain adaptation, the process in Equation 4 is modified as follows:

y = ga(x),

ỹ = y ⊙ RM2D + α

1 + α
,

y = y0−47||ỹch48−191,

ŷ = Q(y ⊙MG),

x̂ = gs(ŷ ⊙ 1

MG

),

(8)

where ga and gs denote the analysis and synthesis transforms, respectively, Q is
the quantization operation, and ⊙ represents element-wise multiplication. The gain
units MG scale the latent representation before quantization, while the inverse gain
compensates the scaling during synthesis to reconstruct the image at the desired
bitrate.

2.5 Entropy Model

The entropy model is equipped with a quadtree context module [21], a global context
module, and a hyperprior module. For each subtree in the quadtree context, we
employ a depth-wise convolutional block [15] to capture local context, and an efficient
attention block [5, 22] to extract global context.

3 Conclusion

In this white paper, we have presented PORT, a Perception-Oriented Image Com-
pression framework with Real-Time Decoding for the CLIC 2025 Image Track. PORT
integrates semantic- and patch-wise adversarial learning, ROI-guided bit allocation,
variable-rate gain units, and an advanced entropy model with quadtree and global
context modules. Extensive design choices, including model architecture, perceptual
and reconstruction losses, ensure both high perceptual quality and efficient decoding.
Our approach demonstrates the effectiveness of combining perceptual optimization
with real-time performance, providing a practical solution for content-aware image
compression.
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[1] Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin Hwang, and Nick Johnston,
“Variational image compression with a scale hyperprior,” in Int. Conf. on Learning
Representations, 2018.

[2] Zhengxue Cheng, Heming Sun, Masaru Takeuchi, and Jiro Katto, “Learned image
compression with discretized gaussian mixture likelihoods and attention modules,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR), June 2020.

[3] Dailan He, Ziming Yang, Weikun Peng, Rui Ma, Hongwei Qin, and Yan Wang, “Elic:
Efficient learned image compression with unevenly grouped space-channel contextual
adaptive coding,” arXiv preprint arXiv:2203.10886, 2022.



[4] Wei Jiang, Jiayu Yang, Yongqi Zhai, Peirong Ning, Feng Gao, and Ronggang Wang,
“Mlic: Multi-reference entropy model for learned image compression,” in Proceedings
of the 31st ACM International Conference on Multimedia, 2023, pp. 7618–7627.

[5] Wei Jiang and Ronggang Wang, “Mlic++: Linear complexity multi-reference entropy
modeling for learned image compression,” arXiv preprint arXiv:2307.15421, 2023.

[6] Wei Jiang, Peirong Ning, and Ronggang Wang, “Slic: Self-conditioned adaptive trans-
form with large-scale receptive fields for learned image compression,” arXiv preprint
arXiv:2304.09571, 2023.

[7] Wei Jiang, Yongqi Zhai, Jiayu Yang, Feng Gao, and Ronggang Wang, “Mlicv2:
Enhanced multi-reference entropy modeling for learned image compression,” arXiv
preprint arXiv:2504.19119, 2025.

[8] Eirikur Agustsson, Michael Tschannen, Fabian Mentzer, Radu Timofte, and Luc Van
Gool, “Generative adversarial networks for extreme learned image compression,” in
Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019,
pp. 221–231.

[9] Fabian Mentzer, George D Toderici, Michael Tschannen, and Eirikur Agustsson,
“High-fidelity generative image compression,” Advances in Neural Information Pro-
cessing Systems, vol. 33, pp. 11913–11924, 2020.

[10] Eirikur Agustsson, David Minnen, George Toderici, and Fabian Mentzer, “Multi-
realism image compression with a conditional generator,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 22324–
22333.

[11] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio, “Generative adversarial nets,”
Advances in neural information processing systems, vol. 27, 2014.

[12] Karen Simonyan and Andrew Zisserman, “Very deep convolutional networks for large-
scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[13] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang, “The
unreasonable effectiveness of deep features as a perceptual metric,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2018, pp. 586–595.

[14] Ze Cui, Jing Wang, Shangyin Gao, Tiansheng Guo, Yihui Feng, and Bo Bai, “Asym-
metric gained deep image compression with continuous rate adaptation,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp.
10532–10541.

[15] Zhaoyang Jia, Bin Li, Jiahao Li, Wenxuan Xie, Linfeng Qi, Houqiang Li, and Yan
Lu, “Towards practical real-time neural video compression,” in Proceedings of the
Computer Vision and Pattern Recognition Conference, 2025, pp. 12543–12552.

[16] Yi Ma, Yongqi Zhai, Chunhui Yang, Jiayu Yang, Ruofan Wang, Jing Zhou, Kai Li,
Ying Chen, and Ronggang Wang, “Variable rate roi image compression optimized for
visual quality,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops, 2021, pp. 1936–1940.

[17] Leon A Gatys, Alexander S Ecker, and Matthias Bethge, “Image style transfer using
convolutional neural networks,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 2414–2423.

[18] Simon Niklaus and Feng Liu, “Context-aware synthesis for video frame interpolation,”
in Proceedings of the IEEE conference on computer vision and pattern recognition,
2018, pp. 1701–1710.

[19] Xinhao Deng, Pingping Zhang, Wei Liu, and Huchuan Lu, “Recurrent multi-scale
transformer for high-resolution salient object detection,” in Proceedings of the 31st
ACM International Conference on Multimedia, 2023, pp. 7413–7423.



[20] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini
Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al., “Learn-
ing transferable visual models from natural language supervision,” in International
conference on machine learning. PmLR, 2021, pp. 8748–8763.

[21] Jiahao Li, Bin Li, and Yan Lu, “Neural video compression with diverse contexts,” in
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
2023, pp. 22616–22626.

[22] Zhuoran Shen, Mingyuan Zhang, Haiyu Zhao, Shuai Yi, and Hongsheng Li, “Efficient
attention: Attention with linear complexities,” in Proceedings of the IEEE/CVF winter
conference on applications of computer vision, 2021, pp. 3531–3539.


