
BERT Lost Patience
Won’t Be Robust to Adversarial Slowdown

Zachary Coalson, Gabriel Ritter, Rakesh Bobba, and Sanghyun Hong
Oregon State University

{coalsonz, ritterg, bobbar, hongsa}@oregonstate.edu

Abstract

In this paper, we systematically evaluate the robustness of multi-exit language mod-
els against adversarial slowdown. To audit their robustness, we design a slowdown
attack that generates natural adversarial text bypassing early-exit points. We use
the resulting WAFFLE attack as a vehicle to conduct a comprehensive evaluation of
three multi-exit mechanisms with the GLUE benchmark against adversarial slow-
down. We then show our attack significantly reduces the computational savings
provided by the three methods in both white-box and black-box settings. The more
complex a mechanism is, the more vulnerable it is to adversarial slowdown. We
also perform a linguistic analysis of the perturbed text inputs, identifying common
perturbation patterns that our attack generates, and comparing them with standard
adversarial text attacks. Moreover, we show that adversarial training is ineffective
in defeating our slowdown attack, but input sanitization with a conversational
model, e.g., ChatGPT, can remove perturbations effectively. This result suggests
that future work is needed for developing efficient yet robust multi-exit models.
Our code is available at: https://github.com/ztcoalson/WAFFLE

1 Introduction

A key factor behind the recent advances in natural language processing is the scale of language
models pre-trained on a large corpus of data. Compared to BERT [5] with 110 million parameters that
achieves the GLUE benchmark score [36] of 81% from three years ago, T5 [29] improves the score
to 90% with 100× more parameters. However, pre-trained language models with this scale typically
require large memory and high computational costs to run inferences, making them challenging in
scenarios where latency and computations are limited.

To address this issue, input-adaptive multi-exit mechanisms [32, 41, 45, 40, 42, 48, 21, 44] have been
proposed. By attaching internal classifiers (or early exits) to each intermediate layer of a pre-trained
language model, the resulting multi-exit language model utilizes these exits to stop its forward pass
preemptively, when the model is confident about its prediction at any exit point. This prevents models
from spending excessive computation for “easy” inputs, where shallow models are sufficient for
correct predictions, and therefore reduces the post-training workloads while preserving accuracy.

In this work, we study the robustness of multi-exit language models to adversarial slowdown. Recent
work [10] showed that, against multi-exit models developed for computer vision tasks, an adversary
can craft human-imperceptible input perturbations to offset their computational savings. However, it
has not yet been shown that the input-adaptive methods proposed in language domains are susceptible
to such input perturbations. It is also unknown why these perturbations cause slowdown and how
similar they are to those generated by standard adversarial attacks. Moreover, it is unclear if existing
defenses, e.g., adversarial training [43], proposed in the community can mitigate slowdown attacks.

Our contributions. To bridge this gap, we first develop WAFFLE, a slowdown attack that generates
natural adversarial text that bypasses early-exits. We illustrate how our attack works in Figure 1.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/ztcoalson/WAFFLE


Based on our finding that existing adversarial text attacks [16, 43] fail to cause significant slowdown,
we design a novel objective function that pushes a multi-exit model’s predictions at its early-exits
toward the uniform distribution. WAFFLE integrates this objective into existing attack algorithms.

Layer 1

Layer 6

Layer 12

“He can not have 
been working”

Layer 1

Layer 6

Layer 12

“Her can not have 
been working”

IC

Acceptable!

…
…

…
…

…
…

…
…

IC IC

ICUnacceptable

WAFFLE

Figure 1: Illustrating adversarial slowdown. Re-
placing the word “He” with “Her” makes the result-
ing text input bypass all 11 ICs (internal classifiers)
and leads to misclassification. The text is chosen
from the Corpus of Linguistic Acceptability.

Second, we systematically evaluate the robust-
ness of three early-exit mechanisms [41, 45, 21]
on the GLUE benchmark against adversarial
slowdown. We find that WAFFLE significantly
offsets the computational savings provided by
the mechanisms when each text input is indi-
vidually subject to perturbations. We also show
that methods offering more aggressive computa-
tional savings are more vulnerable to our attack.

Third, we show that WAFFLE can be effective
in black-box scenarios. We demonstrate that
our attack transfers, i.e., the adversarial texts
crafted with limited knowledge about the vic-
tim cause slowdown across different models and
multi-exit mechanisms. We are also able to find
universal slowdown triggers, i.e., input-agnostic
sequences of words that reduces the computa-
tional savings of multi-exit language models when attached to any text input from a dataset.

Fourth, we conduct a linguistic analysis of the adversarial texts WAFFLE crafts. We find that the
effectiveness of the attack is not due to the amount of perturbations made on the input text, but rather
how perturbations are made. Specifically, we find two critical characteristics present in a vast majority
of successful samples: (1) subject-predicate disagreement, meaning that a subject and corresponding
verb within a sentence do not match, and (2) the changing of named entities. These characteristics are
highlighted in [31], where it was shown that BERT takes both into account when making predictions.

Fifth, we test the effectiveness of potential countermeasures against adversarial slowdown. We find
that adversarial training [12, 43] is ineffective against WAFFLE. The defended multi-exit models
lose efficacy, or they lose significant amounts of accuracy in exchange for aggressive computational
savings. In contrast, we show that input sanitization can be an effective countermeasure. This result
suggests that future work is needed to develop robust yet effective multi-exit language models.

2 Related Work

Adversarial text attacks on language models. Szegedy et al. [34] showed that neural network
predictions can be fool-ed by human-imperceptible input perturbations and called such perturbed
inputs adversarial examples. While earlier work in this direction studied these adversarial attacks on
computer vision models [2, 25], there has been a growing body of work on searching for adversarial
examples in language domains as a result of language models gaining more traction. However,
adversarial texts are much harder to craft due to the discrete nature of natural language. Attacks
on images leverage perturbations derived from computing gradients, as they are composed of
pixel values forming a near-continuous space, but applying them to texts where each word is in a
discrete space is not straightforward. As a result, diverse mechanisms for crafting natural adversarial
texts [7, 30, 20, 16, 8, 9, 19] have been proposed. In this work, we show that an adversary can
exploit the language model’s sensitivity to input text perturbations to achieve a completely different
attack objective, i.e., adversarial slowdown. A standard countermeasure against the adversarial
input perturbation is adversarial training that augments the training data with natural adversarial
texts [13, 47, 15, 23, 43]. We also show that adversarial training and its adaptation to our slowdown
attacks are ineffective in mitigating the vulnerability to adversarial slowdown.

Input-adaptive efficient neural network inference. Neural networks are, while accurate, computa-
tionally demanding in their post-training operations. Kaya et al. [17] showed that overthinking is one
problem—these models use all their internal layers for making predictions on every single input even
for the “easy” samples where a few initial layers would be sufficient. Prior work [35, 17, 11] pro-
posed multi-exit architectures to mitigate the wasteful effect of overthinking. They introduce multiple
internal classifiers (i.e., early exits) to a pre-trained model and fine-tune them on the training data to

2



make correct predictions. During the inference on an input, these early-exits enable input-adaptive
inference, i.e., a model stops running forward if the prediction confidence is sufficient at an exit.

Recent work [32, 41, 45, 40, 42, 48, 21, 44] adapted the multi-exit architectures to language models,
e.g., BERT [5], to save their computations at inference. DeeBERT [41] and FastBERT [22] have been
proposed, both straightforward adaptations of multi-exit architectures to language models. Zhou et al.
[45] proposed patience-based early exits (PABEE) and showed that one could achieve efficiency,
accuracy, and robustness against natural adversarial texts. Liao et al. [21] presented PastFuture that
makes predictions from a global perspective, considering past and future predictions from all the exits.
However, no prior work studied the robustness of the computational savings that these mechanisms
offer to adversarial slowdown [10]. We design a slowdown attack to audit their robustness. More
comparisons of our work to the work done in computer vision domains are in Appendix A.

3 Our Auditing Method: WAFFLE Attack

3.1 Threat Model

We consider an adversary who aims to reduce the computational savings provided by a victim
multi-exit language model. To achieve this goal, the attacker performs perturbations to a natural
test-time text input x ∈ S . The resulting adversarial text x′ needs more layers to process for making
a prediction. This attack potentially violates the computational guarantees made by real-time systems
harnessing multi-exit language models. For example, the attacker can increase the operational costs
of the victim model or push the response time of such systems outside the expected range.

Just like language models deployed in the real-world that accept any user input, we assume that the
attacker has the ability to query the victim model with perturbed inputs. We focus on the word-level
perturbations as they are well studied and efficient to perform with word embeddings [28]. But it is
straightforward to extend our attack to character-level or sentence-level attacks by incorporating the
slowdown objective we design in Sec 3.2 into their adversarial example-crafting algorithms.

To assess the slowdown vulnerability, we comprehensively consider both white-box and black-box
settings. The white-box adversary knows all the details of the victim model, such as the training data
and the model parameters, while the black-box attacker has limited knowledge of the victim model.

3.2 The Slowdown Objective

Most adversarial text-crafting algorithms iteratively apply perturbations to a text input until the
resulting text x′ achieves a pre-defined goal. The goal here for the standard adversarial attacks is
the untargeted misclassification of x′, i.e., fθ(x′) 6= y. Existing adversarial text attacks design an
objective (or a score) function that quantifies how the perturbation of a word (e.g., substitution or
removal) helps the perturbed sample achieve the goal. At each iteration t, the attacker considers all
feasible perturbations and chooses one that minimizes the objective the most.

We design our score function to quantify how close a perturbed sample x′ is to causing the worst-case
slowdown. The worst-case we consider here is that x′ bypasses all the early exits, and the victim
model classifies x′ at the final layer. We formulate our score function s(x′, fθ) as follows:

s(x′, fθ) =
∑

0<i≤K

(
1− 1

N − 1
L
(
Fi(x

′), ŷ
))

Here, the score function takes x′ as the perturbed text and fθ as the victim model. It computes the loss
L between the softmax output of an i-th internal classifier Fi and the uniform probability distribution
ŷ over classes. We use `1 loss. K is the number of early-exits, and N is the number of classes.

The score function s returns a value in [0, 1]. It becomes one if all Fi is close to the uniform
distribution ŷ; otherwise, it will be zero. Unlike conventional adversarial attacks, our score function
over iterations pushes all Fi to ŷ (i.e., the lowest confidence case). Most early-exit mechanisms stop
forward pass if Fi’s prediction confidence is higher than a pre-defined threshold T ; thus, x′ that
achieves the lowest confidence bypasses all the exit points.

3



3.3 The WAFFLE Attack

We finally implement WAFFLE by incorporating the slowdown objective we design into existing
adversarial text attacks. In this work, we adapt two existing attacks: TextFooler [16] and A2T [43].
TextFooler is by far the strongest black-box attack [38], and A2T is a gradient-based white-box attack.
In particular, A2T can craft natural adversarial texts much faster than black-box attacks; thus, it
facilitates adversarial training of language models. We discuss the effectiveness of this in Sec 7.

We describe how we adapt TextFooler for auditing the slowdown risk in Algorithm 1 (see Appendix
for our adaptation of A2T). We highlighted our adaptation to the original Textfooler in blue.

Algorithm 1 WAFFLE (based on TextFooler)
Input: a text input x = {w1, w2, ..., wn}, its label y, the
victim model fθ, its early exits Fi, sentence similarity
function Sim(·), its threshold ε, word embeddings E over
the vocabulary V , and the attack success threshold α.
Output: a natural adversarial text x′

1: x′ ← x
2: for each word wi in x do
3: Compute the importance Iwi

4: end for
5: Compose a set W of all words wi ∈ x sorted by the

descending order of their importance
6: Remove the stop words from the set W
7: for each word wi in W do
8: Initiate the set of substitute candidates C by com-

puting the top N synonyms; we compute the
cosine similarity between Ewi

and Ew′ , where
w′ ∈ V

9: C ← POSFiler(C)
10: Cfinal ← {}
11: for ck in C do
12: xtemp ← Replace wj with ck in x′
13: if Sim(xtemp, x′) > ε then
14: Add ck to Cfinal
15: sk ← fθ(x

temp)
16: end if
17: end for
18: if ∃ck whose score is sk ≥ α then
19: Keep the candidates ck ∈ Cfinal
20: c∗ ← argmaxc∈Cfinal

Sim(x, xtempwj→c)

21: x′ ← Replace wj with c∗ in x′
22: return x′
23: else if sk(x′) > min sk then
24: c∗ ← argmaxck∈Cfinal

sk
25: x′ ← Replace wj with c∗ in x′
26: end if
27: end for
28: return x′

(line 1–6) Compute word importance.
We first compute the importance of each
word wi in a text input x. TextFooler re-
moves each word from x and computes
their influence on the final prediction
result. It then ranks the words based
on their influence. In contrast, we rank
the words based on the increase in the
slowdown objective after each removal.
By perturbing only a few words, we can
minimize the alterations to x and keep
the semantic similarity between x′ and
x. Following the original study, we filter
out stop words, e.g., ‘the’ or ‘when’, to
minimize sentence structure destruction.

(line 7–9) Choose the set of candidate
words for substitution. The attack
then works by replacing a set of words
in x with the candidates carefully cho-
sen from V . For each word wi ∈ x, the
attack collects the set ofC candidates by
computing the top N synonyms from V
(line 8). It computes the cosine similar-
ity between the embeddings of the word
wi and the word w′ ∈ V . We use the
same embeddings [28] that the original
study uses. TextFooler only keeps the
candidate words with the same part-of-
speech (POS) as wi to minimize gram-
mar destruction (line 9).

(line 10–28) Craft a natural slow-
down text. We then iterate over the
remaining candidates and substitute wi
with ck. If the text after this substitu-
tion xtemp is sufficiently similar to the
text before it, x′, we store the candidate
ck into Cfinal and compute the slow-
down score sk. In the end, we have a
perturbed text input x′ that is similar to

the original input within the ε similarity and the slowdown score sk (line 10–17). To compute the
semantic similarity, we use Universal Sentence Encoder that the original study uses [3].

In line 20–26, if there exists any candidate ck that already increases the slowdown score sk over the
threshold α we choose the word with the highest semantic similarity among these winning candidates.
However, when there is no such candidate, we pick the candidate with the highest slowdown score,
substitute the candidate with wi, and repeat the same procedure with the next word wi+1. At the end
(line 28), TextFooler does not return any adversarial example if it fails to flip the prediction. However,
as our goal is causing slowdown, we use this adversarial text even when the score is sk ≤ α.

4



4 Auditing the Robustness to Adversarial Slowdown

We now utilize our WAFFLE attack as a vehicle to evaluate the robustness of the computational
savings provided by multi-exit language models. Our adaptations of two adversarial text attacks,
TextFooler and A2T, represent the black-box and white-box settings, respectively.

Tasks. We evaluate the multi-exit language models trained on seven classification tasks chosen from
the GLUE benchmark [36]: RTE, MRPC, MNLI, QNLI, QQP, SST-2, and CoLA.

Multi-exit mechanisms. We consider three early-exit mechanisms recently proposed for language
models: DeeBERT [41], PABEE [45], and Past-Future [21]. In DeeBERT, we take the pre-trained
BERT and fine-tune it on the GLUE tasks. We use the pre-trained ALBERT [18] for PABEE and
Past-Future. To implement these mechanisms, we use the source code from the original studies. We
describe all the implementation details, e.g., the hyper-parameter choices, in Appendix.

Metrics. We employ two metrics: classification accuracy and efficacy proposed by Hong et al. [10].
We compute both the metrics on the test-set S or the adversarial texts crafted on S. Efficacy is a
standardized metric that quantifies a model’s ability to use its early exits. It is close to one when a
higher percentage of inputs exit at an early layer; otherwise, it is 0. To quantify the robustness, we
report the changes in accuracy and efficacy of a clean test-set S and S perturbed using WAFFLE.

4.1 Multi-exit Language Models Are Not Robust to Adversarial Slowdown

Attack Metric GLUE Task
RTE MNLI MRPC QNLI QQP SST-2 CoLA

DeeBERT (BERT-base)

TF Acc. 63→ 48 - 82→ 75 88→ 78 92→ 67 - 79→ 57
Eff. 0.34→ 0.32 - 0.35→ 0.32 0.35→ 0.33 0.36→ 0.40 - 0.34→ 0.20

A2T Acc. 63→ 52 - 82→ 75 88→81 92→ 74 - 79→ 66
Eff. 0.34→ 0.32 - 0.35→ 0.33 0.35→ 0.35 0.36→ 0.41 - 0.34→ 0.29

WAFFLE (TF) Acc. 63→ 51 - 82→ 61 88→ 62 92→ 69 - 79→ 70
Eff. 0.34→ 0.11 - 0.35→ 0.09 0.35→ 0.10 0.36→ 0.22 - 0.34→ 0.13

WAFFLE (A2T) Acc. 63→ 57 - 82→ 75 88→ 78 92→ 83 - 79→ 73
Eff. 0.34→ 0.19 - 0.35→ 0.17 0.35→ 0.19 0.36→ 0.30 - 0.34→ 0.24

PABEE (ALBERT-base)

TF Acc. 79→ 34 83→ 25 87→ 37 91→ 33 92→ 31 93→ 22 82→ 5
Eff. 0.24→ 0.22 0.28→ 0.17 0.32→ 0.21 0.31→ 0.18 0.37→ 0.27 0.37→ 0.26 0.32→ 0.23

A2T Acc. 79→ 57 83→ 52 87→ 63 91→ 71 92→ 61 93→ 76 82→ 38
Eff. 0.24→ 0.22 0.28→ 0.21 0.32→ 0.26 0.31→ 0.27 0.37→ 0.31 0.37→ 0.32 0.32→ 0.23

WAFFLE (TF) Acc. 79→ 57 83→ 38 87→ 47 91→ 51 92→ 67 93→ 50 82→ 48
Eff. 0.24→ 0.09 0.28→ 0.05 0.32→ 0.08 0.31→ 0.06 0.37→ 0.17 0.37→ 0.08 0.32→ 0.08

WAFFLE (A2T) Acc. 79→ 72 83→ 69 87→ 73 91→ 82 92→ 79 93→ 85 82→ 60
Eff. 0.24→ 0.17 0.28→ 0.18 0.32→ 0.21 0.32→ 0.23 0.37→ 0.27 0.37→ 0.29 0.32→ 0.19

PastFuture (ALBERT-base)

TF Acc. 74→ 41 86→ 42 88→ 36 92→ 52 92→ 50 - -
Eff. 0.52→ 0.46 0.50→ 0.24 0.50→ 0.24 0.50→ 0.19 0.52→ 0.35 - -

A2T Acc. 74→ 58 86→ 59 88→ 58 92→ 74 92→ 64 - -
Eff. 0.52→ 0.49 0.50→ 0.32 0.50→ 0.31 0.50→ 0.35 0.52→ 0.43 - -

WAFFLE (TF) Acc. 74→ 51 86→ 45 88→ 42 92→ 58 92→ 64 - -
Eff. 0.51→ 0.17 0.50→ 0.05 0.50→ 0.15 0.50→ 0.07 0.52→ 0.25 - -

WAFFLE (A2T) Acc. 74→ 64 86→ 67 88→ 72 92→ 83 92→ 79 - -
Eff. 0.52→ 0.36 0.50→ 0.26 0.50→ 0.29 0.50→ 0.33 0.52→ 0.39 - -

Table 1: Robustness of multi-exit language models to our slowdown attacks. WAFFLE signifi-
cantly reduces the computational savings offered by DeeBERT, PABEE, and PastFuture. In each cell,
we report the accuracy (acc.) and efficacy (eff.) on a clean test set and its corresponding adversarial
texts generated by the four attacks (→ denotes going from the clean test set to the adversarial texts).

Table 1 shows our evaluation results. Following the original studies, we set the early-exit threshold,
i.e., entropy or patience, so that multi-exit language models have 0.33–0.5 efficacy on the clean test
set (see Appendix for more details). We use four adversarial attacks: two standard adversarial attacks,
TextFooler (TF) and A2T, and their adaptations: WAFFLE (TF) and WAFFLE (A2T). We perform

5



these attacks on the entire test-set and report the changes in accuracy and efficacy. In each cell, we
include their flat changes and the values computed on the clean and adversarial data in parenthesis.

Standard adversarial attacks are ineffective in auditing slowdown. We observe that the standard
attacks (TF and A2T) are ineffective in causing a significant slowdown. In DeeBERT, those attacks
cause negligible changes in efficacy (-0.05–0.14), while they inflict a large accuracy drop (7%–25%).
Against PABEE and PastFuture, we find that the changes are slightly higher than those observed from
DeeBERT (i.e., 0.02–0.13 and 0.03–0.31). We can observe slowdowns in PastFuture, but this is not
because the standard attacks are effective in causing slowdowns. This indicates the mechanism is
more sensitive to input changes, which may lead to greater vulnerability to adversarial slowdown.

WAFFLE is an effective auditing tool for assessing the slowdown risk. We show that our slowdown
attack can inflict significant changes in efficacy. In DeeBERT and PABEE, the attacks reduce the
efficacy 0.06–0.26 and 0.07–0.29, respectively. In PastFuture, we observe more reduction in efficacy
0.13–0.45. These multi-exit language models are designed to achieve an efficacy of 0.33–0.5; thus its
reduction up to 0.29–0.45 means a complete offset of their computational savings.

The more complex a mechanism is, the more vulnerable it is to adversarial slowdown. WAFFLE
causes the most significant slowdown on PastFuture, followed by PABEE and DeeBERT. PastFuture
stops forwarding based on the predictions from past exits and the estimated predictions from future
exits. PABEE also uses patience, i.e., how often we observe the same decision over early-exits. They
enable more aggressive efficacy compared to DeeBERT, which only uses entropy. However, this
aggressiveness can be exploited by our attacks, e.g., introducing inconsistencies over exit points; thus,
PABEE needs more layers to make a prediction.

4.2 Sensitivity to Attack Hyperparameter

Figure 2: The impact of α on accuracy and effi-
cacy. Taking each model’s results on QNLI, as α
is increased, the accuracy and efficacy decrease.

The key hyperparameter of our attack, the attack
success threshold (α), determines the magni-
tude of the scores pursued by WAFFLE while
crafting adversarials. The score measures how
uniform all output distributions of Fi are. A
higher α pushes WAFFLE to have a higher slow-
down score before returning a perturbed sample.
Figure 2 shows the accuracy and efficacy of all
three mechanisms on QNLI against α in [0.1,
1]. We show that as α increases, the slowdown
(represented as a decrease in efficacy) increases,
and the accuracy decreases.

In addition, as α increases, the rate of decrease
in accuracy and efficacy decreases. Note that
in PastFuture, when α≥ 0.4 the rate at which
efficacy decreases drops by a large margin. The
same applies to accuracy, and when α≥0.8, accuracy surprisingly increases, a potentially undesirable
outcome. Moreover, when α≥0.8 efficacy does not decrease any further, which potentially wastes
computational resources as the time required to craft samples increases greatly as α is increased.

5 Practical Exploitation of WAFFLE in Black-box Settings

In Sec 4, we show in the worst-case scenarios, multi-exit language models are not robust to adversarial
slowdown. We now turn our attention to black-box settings where an adversary does not have full
knowledge of the victim’s system. We consider two attack scenarios: (1) Transfer-based attacks
where an adversary who has the knowledge of the training data trains surrogate models to craft
adversarial texts and use them to attack the victim models. (2) Universal attacks where an attacker
finds a set of trigger words that can inflict slowdown when attached to any test-time inputs. We run
these experiments across various GLUE tasks and show the results from the RTE and QQP datasets.
We include all our results on different datasets and victim-surrogate combinations in the Appendix.

Transferability of WAFFLE. We first test if our attack is transferable in three different scenarios: (1)
Cross-seed; (2) Cross-architecture; and (3) Cross-mechanism. Table 2 summarizes our results.

6



Model Arch. Mechanism Scenario Type RTE QQP
Acc. Eff. Acc. Eff.

S BERT PastFuture Cross-seed S→S 66→ 52 0.47→ 0.11 91→ 72 0.50→ 0.26
V BERT PastFuture S→V 66→ 55 0.50→ 0.25 91→ 72 0.51→ 0.33

S BERT PABEE Cross-arch. S→S 66→ 49 0.22→ 0.08 91→ 69 0.35→ 0.16
V ALBERT PABEE S→V 77→ 55 0.22→ 0.21 91→ 74 0.36→ 0.34

S BERT PABEE Cross-mech. S→S 66→ 49 0.22→ 0.08 91→ 69 0.35→ 0.16
V BERT PastFuture S→V 66→ 55 0.50→ 0.29 91→ 74 0.51→ 0.38

S = Surrogate model; V = Victim model

Table 2: Transfer-based attack results. Results from the cross-seed, cross-mechanism, and cross-
architecture experiments on RTE and QQP. In all experiments, we craft adversarial texts on the
surrogate model (S) and then evaluated on both the surrogate (S→S) and victim (S→V) models.

Cross-seed. Both the model architecture and early-exit mechanism are identical for the surrogate and
the victim models. In RTE and QQP, our transfer attack (S→V) demonstrates a significant slowdown
on the victim model, resulting in a reduction in efficacy of 0.25 and 0.18, respectively. In comparison
to the white-box scenarios (S→S), these attacks achieve approximately 50% effectiveness.

Cross-architecture. We vary the model architecture, using either BERT or ALBERT, while keeping
the early-exit mechanism (PABEE) the same. Across the board, we achieve the lowest transferability
among the three attacking scenarios, with a reduction in efficacy of 0.01 in RTE and 0.02 in QQP,
respectively. This indicates that when conducting transfer-based attacks, the matching of the victim
and surrogate models’ architectures has a greater impact than the early-exit mechanism.

Cross-mechanism. We now vary the early-exit mechanism used by the victim and surrogate models
while the architecture (BERT) remains consistent. In QQP and RTE, we cause significant slowdown
to the victim model (a reduction in efficacy of 0.21 and 0.13, respectively), even when considering
the relational speed-up offered by different mechanisms (e.g., PastFuture offers more computational
savings than PABEE and DeeBERT). The slowdown is comparable to the white-box cases (S→S).

Universal slowdown triggers. If the attacker is unable to train surrogate models, they can find a few
words (i.e., a trigger) that causes slowdown to any test-time inputs when attached. Searching for such
a trigger does not require the knowledge of the training data. To demonstrate the practicality of this
attack, we select 1000 random words from BERT’s vocabulary and compute the total slowdown across
10% of the SST-2 test dataset by appending each vocab word to the beginning of every sentence.
We then choose the word that induces the highest slowdown and evaluate it against the entire test
dataset. We find that the most effective word, ”unable”, reduces efficacy by 9% and accuracy by 14%
when appended to the beginning of all sentences once. When appended three times successively (i.e.
”unable unable unable . . . ”), the trigger reduces efficacy by 18% and accuracy by 3%.

6 Lingusitic Analysis of Our Adversarial Texts

To qualitatively analyze the text generated by WAFFLE, we first consider how the number of perturba-
tions applied to an input text affects the slowdown it induces. We choose samples crafted against
PastFuture [21], due to it being the most vulnerable to our attack. We select the datasets that induce
the most and least slowdown, MNLI and QQP, respectively, in order to conduct a well-rounded
analysis. Using 100 samples randomly drawn from both datasets, we record the percentage of words
perturbed by WAFFLE and the consequent increase in exit layer. In Figure 3, we find that there is no
relationship between the percentage of words perturbed and the increase in exit layer. It is not the
number of perturbations made that affects slowdown, but rather how perturbations are made.

In an effort to find another explanation for why samples crafted by WAFFLE induce slowdown on
multi-exit models, we look to analyze the inner workings of BERT. Through the qualitative analysis
performed by Rogers et al. [31], we find particular interest in two characteristics deemed of high
importance to BERT when it makes predictions: (1) subject-predicate agreement and (2) the changing
of named entities. In our experiment, these characteristics are incredibly prevalent in successful
attacks. Particularly, we find that the score assigned by WAFFLE is much higher when the subject
and predicate of a sentence do not match, or a named entity is changed. In addition, WAFFLE

7



Task Original Text Perturbed Text Change

RTE Sentence1: Mount Olympus towers up from the center of the earth.
Sentence2: Mount Olympus is in the center of the earth.

Sentence1: Install Olympus towers up from the facilities of the planet.
Sentence2: Mount Olympus is in the center of the earth. 8→12

MNLI Premise: I’ll twist him, sir.
Hypothesis: I’ll make him straight

Premise: I’ll bending him, sir.
Hypothesis: I’ll implement him consecutive. 8→12

MRPC Sentence1: Ms Stewart, the chief executive, was not expected to attend.
Sentence2: Ms Stewart, 61, ..., did not attend.

Sentence1: Lena Stewart, the chief execute, was not scheduled to help.
Sentence2: Ms Stewart, 61, ..., did not attend. 7→12

QNLI Question: Where did the Exposition take place?
Sentence: This World’s Fair devoted a building to electrical exhibits.

Question: Whereby did the Shows takes place?
Sentence: This World’s Fair devoting a building to electrical exhibits. 7→12

QQP Question1: Why do we need to philosophize?
Question2: Why do we need to philosophize with others?

Question1: Why do we need to philosophize?
Question2: Why got we needing to philosophize with others? 10→12

SST-2 it’s a cookie-cutter movie, a cut-and-paste job. it’s a cookie-cutter cinematography, a cut-and-paste worked. 7→12

CoLA I’ll work on it if I can. I’ll task on it if me can. 7→12

Table 3: Adversarial texts generated by WAFFLE. An example of text perturbed by WAFFLE from
each dataset, using samples crafted for PABEE. They show how subject-predicate disagreement and
the changing of named entities can push previously early-exited samples to the final output layer.

often changes non-verbs into verbs or removes verbs entirely, causing further subject-predicate
discrepancies. Table 3 shows an example of these characteristics across all the GLUE tasks. Note
that subject-predicate agreement appears much more often.

Figure 3: Visualizing the relationship be-
tween words perturbed and adversarial
slowdown induced. Taking 100 random
samples from MNLI and QQP (crafted
against the PastFuture model), the percent-
age of words that WAFFLE perturbed and the
resulting increase in exit layer is plotted (a
greater increase in exit layer indicates greater
slowdown). The figure shows that the per-
centage of words perturbed has no influence
over a sample’s ability to induce slowdown.

To quantify the prevalence of these characteristics,
we analyze 100 adversarial texts, from QQP crafted
on DeeBert, most effective in inducing slowdowns
and count the number of samples containing subject-
predicate disagreement or a changed named entity.
Of the 100 samples, 84% had a subject-predicate dis-
agreement and 31% a changed named entity. An im-
portant note is that we see smaller percentage points
in a changed named entity than in a subject-predicate
disagreement, as not all samples have a named entity.

We believe that these two characteristics induce a high
amount of slowdown because they can push samples
toward out-of-distribution. BERT was trained to have
an acute understanding of language and its nuances.
It is therefore not expected to have the disagreement
between the subject and predicate of a sentence in its
training data (unless that is the task it is trained for e.g.
CoLA). Also, according to Rogers et al. [31], BERT
likely lacks a general idea of named entities, providing
an explanation as to why the model is less confident
in an answer when a named entity is changed.

Moreover, we analyze samples produced by the base
attacks (TF and A2T), and compare them with samples
produced by WAFFLE. Surprisingly, we find a great deal of similarity, particularly with regard to the
usage of the two characteristics detailed above, despite the base attacks inducing negligible slowdown.
A potential explanation for this is that both types of attacks construct out-of-distribution samples, but
change a model’s confidence to varying extents. The base attacks likely increase confidence in the
wrong answer to a much larger degree than WAFFLE, encouraging early-exits with mispredictions in
a majority of cases. In contrast, WAFFLE works by reducing confidence across all of the classes.

7 Potential Countermeasures

We now test the effectiveness of potential countermeasures against adversarial slowdown. We first
evaluate adversarial training (AT), a standard countermeasure that reduces the sensitivity of a model
to adversarial input perturbations. We then discuss a way to sanitize the perturbations applied to
inputs by running off-the-shelf tools, such as a grammar-checking tool, to remove attack artifacts.

To evaluate, we use the AT proposed by Yoo and Qi [43]. This AT requires significantly fewer
computational resources; thus, it is better suited for adversarially training large language models. We

8



run AT with two different natural adversarial texts, those crafted by A2T and by WAFFLE (adapted
from A2T). During training, we attack 20% of the total samples in each batch. We run our experiments
with PABEE trained on RTE and SST-2. We first set the patience to 6 (consistent with the rest of
our experiments), but we set it to 2 for the models trained with WAFFLE (A2T). Once trained, we
examine the defended models with attacks stronger than A2T: TextFooler (TF) and WAFFLE (Ours).

AT P Attack RTE SST-2
Acc. Eff. Acc. Eff.

A2T
6 TF 81→ 8 0.04→ 0.04 92→ 5 0.04→ 0.04

Ours 81→ 60 0.04→ 0.04 92→ 59 0.04→ 0.04

2 TF 72→ 24 0.13→ 0.13 89→ 10 0.08→ 0.07
Ours 72→ 59 0.13→ 0.14 89→ 56 0.08→ 0.07

A2T
(Ours)

6 TF 78→ 7 0.04→ 0.04 92→ 6 0.04→ 0.04
Ours 78→ 56 0.04→ 0.04 92→ 61 0.04→ 0.04

2 TF 53→ 53 0.65→ 0.65 90→ 7 0.05→ 0.04
Ours 53→ 53 0.65→ 0.65 90→ 57 0.05→ 0.04

Table 4: Effectiveness of AT. AT is ineffective against WAF-
FLE. The defended models completely lose the computa-
tional efficiency (i.e., they have ∼0 efficacy), even with the
aggressive setting with the patience of 2. P is the patience.

AT is ineffective against our slow-
down attacks. Table 4 shows that AT
significantly reduces the efficacy of a
model. Compared to the undefended
models, the defended models achieve
∼0 efficacy. As these models do not
utilize early exits, they seem robust
to our attacks. But certainly, it is not
desirable. It is noticeable that the de-
fended models still suffer from a large
accuracy drop. We then decided to set
the patience to two, i.e., the multi-exit
language models use early-exits more
aggressively. The defended models
have either very low efficacy or accu-
racy, and our attacks can reduce both.
This result highlights a trade-off between being robust against adversarial slowdown and being
efficient. We leave further explorations as future work.

Input sanitization can be a defense against adversarial slowdown. Our linguistic analysis in Sec 6
shows that the subject-predicate discrepancy is one of the root causes of the slowdown. Building
on this insight, we test if sanitizing the perturbed input before feeding it into the models can be a
countermeasure against our slowdown attacks. We evaluate this hypothesis with two approaches.

We first use OpenAI’s ChatGPT1, a conversational model where we can ask questions and get answers.
We manually query the model with natural adversarial texts generated by WAFFLE (TF) and collect
the revised texts. Our query starts with the prompt “Can you fix all of these?” followed by perturbed
texts in the subsequent lines. We evaluate with the MNLI and QQP datasets, on 50 perturbed test-set
samples randomly chosen from each. We compute the changes in accuracy and average exit number
on the perturbed samples and their sanitized versions. We compute them on the PastFuture models
trained on the datasets. Surprisingly, we find that the inputs sanitized by ChatGPT greatly recovers
both accuracy and efficacy. In MNLI, we recover the accuracy by 12 percentage points (54%→66%)
and reduce the average exit number by 4 (11.5→7.5). In QQP, the accuracy is increased by 24
percentage points (56%→80%), and the average exit number is reduced by 2.5 (9.6→7.1).

We also test the effectiveness of additional grammar-checking tools, such as Grammarly2 and
language tool python3, in defeating our slowdown attacks. We run this evaluation using the same
settings as mentioned above. We feed the adversarial texts generated by our attack into Grammarly
and have it correct them. Note that we only take the Grammarly recommendations for the correctness
and disregard any other recommendations, such as for clarity. We find that the inputs sanitized by
Grammarly still suffer from a significant accuracy loss and slowdown. In MNLI, both the accuracy
and the average exit number stay the same 56%→58% and 9.6→9.5, respectively. In QQP, we observe
that there is almost no change in accuracy (54%→58%) or the average exit number (11.5→11.5).

8 Conclusion

This work shows that the computational savings that input-adaptive multi-exit language models offer
are not robust against adversarial slowdown. To evaluate, we propose WAFFLE, an adversarial text-
crafting algorithm with the objective of bypassing early-exit points. WAFFLE significantly reduces
the computational savings offered by those models. More sophisticated input-adaptive mechanisms
suited for higher efficacy become more vulnerable to slowdown attacks. Our linguistic analysis

1ChatGPT: https://openai.com/blog/chatgpt/
2Grammarly: https://www.grammarly.com/
3Language Tool (Python): https://github.com/jxmorris12/language tool python

9

https://openai.com/blog/chatgpt/
https://www.grammarly.com/
https://github.com/jxmorris12/language_tool_python


exposes that it is not about the magnitude of perturbations but because pushing an input outside the
distribution on which a model is trained is easy. We also show the limits of adversarial training in
defeating our attacks and the effectiveness of input sanitization as a defense. Our results suggest that
future research is required to develop efficient yet robust input-adaptive multi-exit inference.

9 Limitations, Societal Impacts, and Future Work

As shown in our work, word-level perturbations carefully calibrated by WAFFLE make the resulting
natural adversarial texts offset the computational savings multi-exit language models provide. How-
ever, there have been other types of text perturbations, e.g., character-level [6, 1] or sentence-level
perturbations [37]. We have not tested whether an adversary can adapt them to cause slowdowns. If
these new attacks are successful, we can hypothesize that some other attributes of language models
contribute to lowering the confidence of the predictions made by internal classifiers (early-exit points).
It may also render potential countermeasures, such as input sanitization, ineffective. Future work is
needed to investigate attacks exploiting different perturbations to cause adversarial slowdown.

To foster future research, we developed WAFFLE in an open-source adversarial attack framework,
TextAttack [27]. This will make our attacks more accessible to the community. A concern is that
a potential adversary can use those attacks to push the behaviors of systems that harness multi-exit
mechanisms outside the expectations. But we believe that our offensive measures will be adopted
broadly by practitioners and have them audit such systems before they are publicly available.

We have also shown that using state-of-the-art conversational models, such as ChatGPT, to sanitize
perturbed inputs can be an effective defense against adversarial slowdown. But it is unclear what
attributes of those models were able to remove the artifacts (i.e., perturbations) our attack induces.
Moreover, the fact that this defense heavily relies on the referencing model’s capability that the victim
cannot control may give room for an adversary to develop stronger attacks in the future.

It is also possible that when using conversational models online as a potential countermeasure,
there will be risks of data leakage. However, our proposal does not mean to use ChatGPT as-is.
Instead, since other input sanitation (Grammarly) failed, we used it as an accessible tool for input
sanitization via a conversational model as a proof-of-concept that it may have effectiveness as a
defense. Alternatively, a defender can compose input sanitization as a completely in-house solution
by leveraging off-the-shelf models like Vicuna-13B [4]. We leave this exploration as future work.

An interesting question is to what extent models like ChatGPT offer robustness to the conventional
adversarial attacks that aim to reduce a model’s utility in the inference time. But this is not the scope
of our work. While the conversational models we use offer some robustness to our slowdown attacks
with fewer side-effects, it does not mean that this direction is bulletproof against all adversarial
attacks and/or adaptive adversaries in the future. Recent work shows two opposite views about the
robustness of conversational models [39, 49]. We envision more future work on this topic.

We find that the runtime of the potential countermeasures we explore in Sec 7 is higher than the
average inference time of undefended multi-exit language models. This would make them useless
from a pure runtime standpoint. However, we reason that the purpose of using these defenses was
primarily exploratory, aiming to understand further why specific text causes more slowdown and
how modifying such text can revert this slowdown. Moreover, input sanitization is already used
in commercial models. Claude-24, a conversational model similar to ChatGPT, already employs
input-filtering techniques, which we believe, when combined together, is a promising future work
direction. Defenses with less computational overheads must be an important area for future work.

Overall, this work raises an open-question to the community about the feasibility of input-adaptive
efficient inference on large language models. We believe future work is necessary to evaluate this
feasibility and develop a mechanism that kills two birds (efficacy and robustness) with one method.

4https://claude.ai

10

https://claude.ai


Acknowledgements

We thank the anonymous reviewers for their constructive feedback. Zachary Coalson and Sanghyun
Hong are partially supported by the Google Faculty Research Award and the Samsung Global
Research Outreach (GRO) program. Gabriel Ritter and Rakesh Bobba are partially supported by
the U.S. Department of Transportation. The findings and conclusions in this work are those of the
author(s) and do not necessarily represent the views of the funding agency.

References
[1] N. Boucher, I. Shumailov, R. Anderson, and N. Papernot. Bad characters: Imperceptible nlp

attacks. In 2022 IEEE Symposium on Security and Privacy (SP), pages 1987–2004. IEEE, 2022.

[2] N. Carlini and D. Wagner. Towards evaluating the robustness of neural networks. In 2017 IEEE
Symposium on Security and Privacy (SP), pages 39–57, 2017. doi: 10.1109/SP.2017.49.

[3] D. Cer, Y. Yang, S.-y. Kong, N. Hua, N. Limtiaco, R. St. John, N. Constant, M. Guajardo-
Cespedes, S. Yuan, C. Tar, B. Strope, and R. Kurzweil. Universal sentence encoder for
English. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, pages 169–174, Brussels, Belgium, Nov. 2018. Association
for Computational Linguistics. doi: 10.18653/v1/D18-2029. URL https://aclanthology.
org/D18-2029.

[4] W.-L. Chiang, Z. Li, Z. Lin, Y. Sheng, Z. Wu, H. Zhang, L. Zheng, S. Zhuang, Y. Zhuang, J. E.
Gonzalez, et al. Vicuna: An open-source chatbot impressing gpt-4 with 90%* chatgpt quality.
See https://vicuna. lmsys. org (accessed 14 April 2023), 2023.

[5] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding, 2019.

[6] J. Ebrahimi, D. Lowd, and D. Dou. On adversarial examples for character-level neural machine
translation. CoRR, abs/1806.09030, 2018. URL http://arxiv.org/abs/1806.09030.

[7] J. Ebrahimi, A. Rao, D. Lowd, and D. Dou. HotFlip: White-box adversarial examples
for text classification. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), pages 31–36, Melbourne, Australia,
July 2018. Association for Computational Linguistics. doi: 10.18653/v1/P18-2006. URL
https://aclanthology.org/P18-2006.

[8] S. Garg and G. Ramakrishnan. Bae: Bert-based adversarial examples for text classification,
2020.

[9] C. Guo, A. Sablayrolles, H. Jégou, and D. Kiela. Gradient-based adversarial attacks against
text transformers. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pages 5747–5757, Online and Punta Cana, Dominican Republic, Nov.
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.464.
URL https://aclanthology.org/2021.emnlp-main.464.

[10] S. Hong, Y. Kaya, I.-V. Modoranu, and T. Dumitras. A panda? no, it’s a sloth: Slowdown
attacks on adaptive multi-exit neural network inference. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=9xC2tWEwBD.

[11] G. Huang, D. Chen, T. Li, F. Wu, L. Van Der Maaten, and K. Q. Weinberger. Multi-scale dense
networks for resource efficient image classification. arXiv preprint arXiv:1703.09844, 2017.

[12] M. Ivgi and J. Berant. Achieving model robustness through discrete adversarial training. arXiv
preprint arXiv:2104.05062, 2021.

[13] R. Jia, A. Raghunathan, K. Göksel, and P. Liang. Certified robustness to adversarial word substi-
tutions. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pages 4129–4142, Hong Kong, China, Nov. 2019. Association for Computational
Linguistics. doi: 10.18653/v1/D19-1423. URL https://aclanthology.org/D19-1423.

11

https://aclanthology.org/D18-2029
https://aclanthology.org/D18-2029
http://arxiv.org/abs/1806.09030
https://aclanthology.org/P18-2006
https://aclanthology.org/2021.emnlp-main.464
https://openreview.net/forum?id=9xC2tWEwBD
https://aclanthology.org/D19-1423


[14] H. Jiang, P. He, W. Chen, X. Liu, J. Gao, and T. Zhao. Smart: Robust and efficient fine-tuning
for pre-trained natural language models through principled regularized optimization. arXiv
preprint arXiv:1911.03437, 2019.

[15] H. Jiang, P. He, W. Chen, X. Liu, J. Gao, and T. Zhao. SMART: Robust and efficient fine-
tuning for pre-trained natural language models through principled regularized optimization. In
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages
2177–2190, Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/
2020.acl-main.197. URL https://aclanthology.org/2020.acl-main.197.

[16] D. Jin, Z. Jin, J. T. Zhou, and P. Szolovits. Is bert really robust? a strong baseline for natural
language attack on text classification and entailment, 2020.

[17] Y. Kaya, S. Hong, and T. Dumitras. Shallow-deep networks: Understanding and mitigating
network overthinking. In International conference on machine learning, pages 3301–3310.
PMLR, 2019.

[18] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut. Albert: A lite bert for
self-supervised learning of language representations. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=H1eA7AEtvS.

[19] D. Li, Y. Zhang, H. Peng, L. Chen, C. Brockett, M.-T. Sun, and B. Dolan. Contextualized
perturbation for textual adversarial attack. In Proceedings of the 2021 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pages 5053–5069, Online, June 2021. Association for Computational Linguis-
tics. doi: 10.18653/v1/2021.naacl-main.400. URL https://aclanthology.org/2021.
naacl-main.400.

[20] J. Li, S. Ji, T. Du, B. Li, and T. Wang. Textbugger: Generating adversarial text
against real-world applications. In 26th Annual Network and Distributed System Se-
curity Symposium, NDSS 2019, San Diego, California, USA, February 24-27, 2019.
The Internet Society, 2019. URL https://www.ndss-symposium.org/ndss-paper/
textbugger-generating-adversarial-text-against-real-world-applications/.

[21] K. Liao, Y. Zhang, X. Ren, Q. Su, X. Sun, and B. He. A global past-future early exit method for
accelerating inference of pre-trained language models. In Proceedings of the 2021 Conference
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pages 2013–2023, Online, June 2021. Association for Computational
Linguistics. doi: 10.18653/v1/2021.naacl-main.162. URL https://aclanthology.org/
2021.naacl-main.162.

[22] W. Liu, P. Zhou, Z. Wang, Z. Zhao, H. Deng, and Q. Ju. FastBERT: a self-distilling BERT
with adaptive inference time. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 6035–6044, Online, July 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.acl-main.537. URL https://aclanthology.org/
2020.acl-main.537.

[23] X. Liu, H. Cheng, P. He, W. Chen, Y. Wang, H. Poon, and J. Gao. Adversarial training for large
neural language models, 2020. URL https://arxiv.org/abs/2004.08994.

[24] X. Liu, H. Cheng, P. He, W. Chen, Y. Wang, H. Poon, and J. Gao. Adversarial training for large
neural language models. arXiv preprint arXiv:2004.08994, 2020.

[25] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep learning models
resistant to adversarial attacks. In International Conference on Learning Representations, 2018.
URL https://openreview.net/forum?id=rJzIBfZAb.

[26] T. Miyato, A. M. Dai, and I. Goodfellow. Adversarial training methods for semi-supervised
text classification. In International Conference on Learning Representations, 2017. URL
https://openreview.net/forum?id=r1X3g2_xl.

12

https://aclanthology.org/2020.acl-main.197
https://openreview.net/forum?id=H1eA7AEtvS
https://aclanthology.org/2021.naacl-main.400
https://aclanthology.org/2021.naacl-main.400
https://www.ndss-symposium.org/ndss-paper/textbugger-generating-adversarial-text-against-real-world-applications/
https://www.ndss-symposium.org/ndss-paper/textbugger-generating-adversarial-text-against-real-world-applications/
https://aclanthology.org/2021.naacl-main.162
https://aclanthology.org/2021.naacl-main.162
https://aclanthology.org/2020.acl-main.537
https://aclanthology.org/2020.acl-main.537
https://arxiv.org/abs/2004.08994
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=r1X3g2_xl


[27] J. Morris, E. Lifland, J. Y. Yoo, J. Grigsby, D. Jin, and Y. Qi. Textattack: A framework
for adversarial attacks, data augmentation, and adversarial training in nlp. In Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing: System
Demonstrations, pages 119–126, 2020.

[28] N. Mrkšić, D. Ó Séaghdha, B. Thomson, M. Gašić, L. M. Rojas-Barahona, P.-H. Su, D. Vandyke,
T.-H. Wen, and S. Young. Counter-fitting word vectors to linguistic constraints. In Proceedings
of the 2016 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 142–148, San Diego, California, June
2016. Association for Computational Linguistics. doi: 10.18653/v1/N16-1018. URL https:
//aclanthology.org/N16-1018.

[29] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J.
Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of
Machine Learning Research, 21(140):1–67, 2020. URL http://jmlr.org/papers/v21/
20-074.html.

[30] S. Ren, Y. Deng, K. He, and W. Che. Generating natural language adversarial examples
through probability weighted word saliency. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics, pages 1085–1097, Florence, Italy, July
2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1103. URL https:
//aclanthology.org/P19-1103.

[31] A. Rogers, O. Kovaleva, and A. Rumshisky. A primer in bertology: What we know about how
bert works. Transactions of the Association for Computational Linguistics, 8:842–866, 2020.

[32] R. Schwartz, G. Stanovsky, S. Swayamdipta, J. Dodge, and N. A. Smith. The right tool
for the job: Matching model and instance complexities. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pages 6640–6651, Online, July
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.593. URL
https://aclanthology.org/2020.acl-main.593.

[33] I. Shumailov, Y. Zhao, D. Bates, N. Papernot, R. Mullins, and R. Anderson. Sponge examples:
Energy-latency attacks on neural networks, 2021.

[34] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J. Goodfellow, and R. Fergus.
Intriguing properties of neural networks. In Y. Bengio and Y. LeCun, editors, 2nd International
Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014,
Conference Track Proceedings, 2014. URL http://arxiv.org/abs/1312.6199.

[35] S. Teerapittayanon, B. McDanel, and H.-T. Kung. Branchynet: Fast inference via early exiting
from deep neural networks. In 2016 23rd International Conference on Pattern Recognition
(ICPR), pages 2464–2469. IEEE, 2016.

[36] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman. GLUE: A multi-task
benchmark and analysis platform for natural language understanding. In International Con-
ference on Learning Representations, 2019. URL https://openreview.net/forum?id=
rJ4km2R5t7.

[37] B. Wang, H. Pei, B. Pan, Q. Chen, S. Wang, and B. Li. T3: Tree-autoencoder constrained
adversarial text generation for targeted attack. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pages 6134–6150, Online, Nov.
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.495.
URL https://aclanthology.org/2020.emnlp-main.495.

[38] B. Wang, C. Xu, S. Wang, Z. Gan, Y. Cheng, J. Gao, A. H. Awadallah, and B. Li. Adversarial
GLUE: A multi-task benchmark for robustness evaluation of language models. In Thirty-fifth
Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round
2), 2021. URL https://openreview.net/forum?id=GF9cSKI3A_q.

[39] J. Wang, X. Hu, W. Hou, H. Chen, R. Zheng, Y. Wang, L. Yang, H. Huang, W. Ye, X. Geng,
et al. On the robustness of chatgpt: An adversarial and out-of-distribution perspective. arXiv
preprint arXiv:2302.12095, 2023.

13

https://aclanthology.org/N16-1018
https://aclanthology.org/N16-1018
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://aclanthology.org/P19-1103
https://aclanthology.org/P19-1103
https://aclanthology.org/2020.acl-main.593
http://arxiv.org/abs/1312.6199
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://aclanthology.org/2020.emnlp-main.495
https://openreview.net/forum?id=GF9cSKI3A_q


[40] K. Xie, S. Lu, M. Wang, and Z. Wang. Elbert: Fast albert with confidence-window based early
exit. In ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 7713–7717, 2021. doi: 10.1109/ICASSP39728.2021.9414572.

[41] J. Xin, R. Tang, J. Lee, Y. Yu, and J. Lin. DeeBERT: Dynamic early exiting for accelerating
BERT inference. In Proceedings of the 58th Annual Meeting of the Association for Com-
putational Linguistics, pages 2246–2251, Online, July 2020. Association for Computational
Linguistics. URL https://www.aclweb.org/anthology/2020.acl-main.204.

[42] J. Xin, R. Tang, Y. Yu, and J. Lin. BERxiT: Early exiting for BERT with better fine-tuning
and extension to regression. In Proceedings of the 16th Conference of the European Chapter
of the Association for Computational Linguistics: Main Volume, pages 91–104, Online, Apr.
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.eacl-main.8. URL
https://aclanthology.org/2021.eacl-main.8.

[43] J. Y. Yoo and Y. Qi. Towards improving adversarial training of NLP models. In Findings of
the Association for Computational Linguistics: EMNLP 2021, pages 945–956, Punta Cana,
Dominican Republic, Nov. 2021. Association for Computational Linguistics. doi: 10.18653/
v1/2021.findings-emnlp.81. URL https://aclanthology.org/2021.findings-emnlp.
81.

[44] Z. Zhang, W. Zhu, J. Zhang, P. Wang, R. Jin, and T.-S. Chung. PCEE-BERT: Accelerating
BERT inference via patient and confident early exiting. In Findings of the Association for
Computational Linguistics: NAACL 2022, pages 327–338, Seattle, United States, July 2022.
Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-naacl.25. URL
https://aclanthology.org/2022.findings-naacl.25.

[45] W. Zhou, C. Xu, T. Ge, J. McAuley, K. Xu, and F. Wei. Bert loses patience: Fast and robust
inference with early exit. In Advances in Neural Information Processing Systems, volume 33,
pages 18330–18341. Curran Associates, Inc., 2020. URL https://proceedings.neurips.
cc/paper/2020/file/d4dd111a4fd973394238aca5c05bebe3-Paper.pdf.

[46] C. Zhu, Y. Cheng, Z. Gan, S. Sun, T. Goldstein, and J. Liu. Freelb: Enhanced adversarial
training for natural language understanding. arXiv preprint arXiv:1909.11764, 2019.

[47] C. Zhu, Y. Cheng, Z. Gan, S. Sun, T. Goldstein, and J. Liu. Freelb: Enhanced adversarial training
for natural language understanding. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=BygzbyHFvB.

[48] W. Zhu. LeeBERT: Learned early exit for BERT with cross-level optimization. In Proceedings
of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pages 2968–2980, Online, Aug. 2021. Association for Computational Linguistics. doi: 10.
18653/v1/2021.acl-long.231. URL https://aclanthology.org/2021.acl-long.231.

[49] A. Zou, Z. Wang, J. Z. Kolter, and M. Fredrikson. Universal and transferable adversarial attacks
on aligned language models. arXiv preprint arXiv:2307.15043, 2023.

14

https://www.aclweb.org/anthology/2020.acl-main.204
https://aclanthology.org/2021.eacl-main.8
https://aclanthology.org/2021.findings-emnlp.81
https://aclanthology.org/2021.findings-emnlp.81
https://aclanthology.org/2022.findings-naacl.25
https://proceedings.neurips.cc/paper/2020/file/d4dd111a4fd973394238aca5c05bebe3-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/d4dd111a4fd973394238aca5c05bebe3-Paper.pdf
https://openreview.net/forum?id=BygzbyHFvB
https://aclanthology.org/2021.acl-long.231


A Comparison to Related Attacks in Prior Work

Here, we expand upon our discussion in Sec 2 and discuss the novelty of our slowdown attack
compared to the attacks developed in prior work [1, 33, 10].

Prior work [1, 33] has shown that an adversary can increase the energy consumption of language
models in modern computing hardware via “sponge” examples. These inputs exploit computational
properties of hardware or tokenization, e.g., input dimensionality and/or activation sparsity, to increase
the inference runtime. In contrast, our attack is hardware-agnostic and targets multi-exit language
models, a new algorithm for efficient language model computations. No prior work has been done on
adversarial slowdowns in the context of multi-exit language models, and our attack is the first that
generates natural adversarial text that bypasses the early-exit layers of multi-exit models.

Compared to the slowdown attacks in the computer vision domain [10], we also highlight the unique
challenges we address: (1) Against language models, we often do not have access to input gradients
(which is straightforward in attacks against computer vision models). We thus need to design a new
slowdown objective compatible with non-gradient-based attacks. (2) We must bound the values of
our slowdown objective within [0, 1]. The objective used in the prior work [10] is unbounded to [0,
∞]; thus, a straightforward adaptation of this objective for adversarial text-attack algorithms leads to
unbounded perturbations, and the resulting text completely differs from the original one. (3) The
attack against language models works with discrete text inputs; not all embedding-level perturbations
we compute exist as words, and small changes to input (word, characters) can result in large logit
changes. We must search for candidate words (or word combinations) for substitution.

B Experimental Setup in Detail

Here, we describe our experimental setup in detail. We implement all the multi-exit mechanisms
and our attacks using Python v3.95 and PyTorch v1.106 that supports CUDA 11.7 for accelerating
computations by using GPUs. We take the pre-trained language models (i.e., BERT and ALBERT)
from Hugging Face7 and fine-tune them on GLUE benchmarks. Our experiments run on a machine
equipped with Intel Xeon Processor with 48 cores, 64GB memory and 8 Nvidia A40 GPUs.

Multi-exit language models. All the early-exit mechanisms we employ, i.e., DeeBERT, PABEE, and
PastFuture, takes a pre-trained language model, attaches an internal classifier (i.e., an early-exit) to
each internal layer, and fine-tune the entire model on a task. We choose the pre-trained BERT (‘bert-
base-uncased’) and ALBERT (‘albert-base-v2’) from Hugging Face. We fine-tune them on seven
different GLUE tasks for five epochs. We choose a batch-size from 32, 64, 128 and a learning rate
from 1e-5, 2e-5, 3e-5, 4e-5, 5e-5. We perform hyper-parameter sweeping over all the combinations
and select the models that provide the best accuracy for each task. We select the early-exit thresholds
based on the values in the original studies. In DeeBERT [41], we pick the entropy that offers 1.5×
computational speedup. In PABEE [45], we choose the patience value of 6. In PastFuture [21], we
set the entropy values where we achieve 2× speedup.

Choice of the slowdown metric. Prior work on early-exit mechanisms uses two metrics: wall-clock
time and speedup. DeeBERT uses wall-clock time, but it is not a desirable metric as the metric
depends on the choice of hardware or software libraries, such as deep learning frameworks. PABEE
and PastFuture propose speedup, a ratio between the total number of layers and the number of layers
required to make a prediction. They compute this ratio over the entire test-set samples and report
the average value. However, it is also not an accurate estimation of the computational savings, as
depending on model architectures, the number of parameters in a layer and the way it computes the
inputs could be different. As a result, we employ efficacy that counts the number of floating-point
computations. Note that BERT and ALBERT are both stacks of Transformer layers; this, luckily, the
speedup is the inverse of the efficacy.

C The WAFFLE Attack Based on A2T

5Python: https://www.python.org
6PyTorch: https://pytorch.org
7Hugging Face: https://huggingface.co

15

https://www.python.org
https://pytorch.org
https://huggingface.co


Algorithm 2 WAFFLE (based on A2T)
Input: a text input x = {w1, w2, ..., wn}; the victim
model fθ; a transformation module T (x, i) that per-
turbs x by replacing wi; and the success threshold α.
Output: a natural adversarial text x∗

1: Calculate I(wi) for all words wi by making one
forward and backward pass.

2: R← ranking r1, r2, ..., rn of words w1, ..., wn by
descending importance

3: x∗ ← x
4: for i = r1, r2, ..., rn in R do
5: Xcand ← T (x∗, i)
6: if Xcand 6= ∅ then
7: x∗ ← argmaxxt∈Xcand

si(x
t, fθ)

8: if si ≥ α then
9: return x∗

10: end if
11: end if
12: end for
13: return x∗

We show how we adapt A2T [43] for audit-
ing the slowdown risk in Algorithm 2. We
highlighted our adaptation to A2T in blue.

(line 1–2) Compute word importance.
We first compute the importance of each
word wi in a text input x. The procedure is
the same as shown in Sec 3.3; we remove
each word from x and compute the influence
on the slowdown objective. We then rank
the words based on how much each removal
increases the slowdown score si. We also
filter out stop words, e.g., ‘the’ or ‘when’.

(line 3–13) Craft a natural adversarial
text. The attack then works by replacing
a set of words in x with the candidates care-
fully chosen by T (x∗, i). The transforma-
tion function T selects the top 20 synonyms
that has the similar embeddings [28], based
on the cosine similarity. We only keep the
candidates with the same part-of-speech as
wi to minimize grammar destruction.

We then substitute wi with the candidate that maximizes the slowdown score si(xt, fθ) after the
substitution. If the text after this substitution x∗ increases the slowdown score over the threshold
α, we return x∗. However, when there is no such candidate, we pick the candidate with the highest
slowdown score, substitute the candidate with wi, and repeat the same procedure with the next word
wi+1. In the end, we return x∗ even when the slowdown score does not meet the threshold α.

D Data and Code Availability

As a part of the reproducible research practice, we release our data and source code along with our
submission. Our WAFFLE attacks are implemented using TextAttack [27], a Python framework for
testing a model’s robustness to adversarial attacks. We also include our attacks on the TextAttack
repo8. This will encourage practitioners and AI-system engineers developing (or employing) input-
adaptive efficient inference mechanisms to test their robustness to adversarial slowdown.

E More Results on Transferability of WAFFLE

Here we provide further results from our transferability experiments in Sec 5. For the cross-seed and
cross-mechanism attacks, we show all victim-surrogate combinations involving all three early-exit
mechanisms. For the cross-architecture attack, we show our results on all seven GLUE tasks.

Table 5 shows the entire results from the cross-seed transfer-based attacks. Examining all the three
early-exit mechanisms, attacking the victim model using the adversarial texts crafted on the surrogate
models causes approximately 50% of the slowdown induced when attacking the surrogate directly.

Table 6 shows all results from the cross-mechanism attack scenario. In a majority of victim-surrogate
combinations, we observe the slowdown similar to the cross-seed scenario. This makes sense, as
only the early-exit mechanisms differ which account for a small number of parameters relative to
the entire model. The result also imply that even if an attacker does not know the specific early-exit
mechanism of the target model, high slowdown can still be induced.

Table 7 shows all results from the cross-architecture attack. We run our experiments with the entire
GLUE tasks. Compared to the previous two attacks, the cross-architecture attack is less effective. This
implies that knowing the target’s architecture is a critical when exploiting adversarial transferability.
If architecture is known, a strong attack can still be launched even if the early-exit mechanism and
parameter values remain unknown to the attacker.

8TextAttack: https://github.com/QData/TextAttack

16

https://github.com/QData/TextAttack


Model Arch. Mechanism Type RTE QQP
Acc. Eff. Acc. Eff.

S BERT DeeBERT S→ S 67→ 55 0.32→ 0.11 91→ 76 0.32→ 0.18
V BERT DeeBERT S→ V 64→ 52 0.36→ 0.23 91→ 77 0.35→ 0.30

S BERT PABEE S→ S 66→ 49 0.22→ 0.08 91→ 69 0.35→ 0.16
V BERT PABEE S→ V 65→ 61 0.22→ 0.14 91→ 71 0.35→ 0.26

S BERT PastFuture S→ S 66→ 52 0.47→ 0.11 91→ 72 0.50→ 0.26
V BERT PastFuture S→ V 66→ 55 0.50→ 0.25 91→ 72 0.51→ 0.33

S = Surrogate model; V = Victim model

Table 5: Cross-seed attack results. In all cases, the efficacy of the white-box attacks (S→S) is
significantly reduced while the efficacy of the transfer attacks (S→V) comparatively drops.

Model Arch. Mechanism Type RTE QQP
Acc. Eff. Acc. Eff.

S BERT PastFuture S→ S 66→ 52 0.47→ 0.11 91→ 72 0.50→ 0.26
V BERT DeeBERT S→ V 64→ 51 0.36→ 0.26 91→ 70 0.35→ 0.28

S BERT PABEE S→ S 66→ 49 0.22→ 0.08 91→ 69 0.35→ 0.16
V BERT DeeBERT S→ V 64→ 50 0.36→ 0.28 91→ 73 0.35→ 0.31

S BERT DeeBERT S→ S 67→ 55 0.32→ 0.11 91→ 76 0.32→ 0.18
V BERT PABEE S→ V 65→ 53 0.22→ 0.19 91→ 67 0.35→ 0.26

S BERT PastFuture S→ S 66→ 52 0.47→ 0.11 91→ 72 0.50→ 0.26
V BERT PABEE S→ V 65→ 57 0.22→ 0.18 91→ 76 0.35→ 0.31

S BERT DeeBERT S→ S 67→ 55 0.32→ 0.11 91→ 76 0.32→ 0.18
V BERT PastFuture S→ V 66→ 54 0.50→ 0.40 91→ 76 0.51→ 0.46

S BERT PABEE S→ S 66→ 49 0.22→ 0.08 91→ 69 0.35→ 0.16
V BERT PastFuture S→ V 66→ 55 0.50→ 0.29 91→ 74 0.51→ 0.38

S = Surrogate model; V = Victim model

Table 6: Cross-mechanism attack results. While not as effective as the cross-seed attack, marginal
efficacy drops are seen for most victim-surrogate pairs.

F More Discussion on Our Linguistic Analysis Results

Here, we provide further insights regarding our linguistic analysis performed in Sec 6. Conventional
wisdom from studies in computer vision suggests that if an adversary leverages larger input pertur-
bations (e.g., the perturbations are bounded to 16 pixels), their attack will be stronger than attacks
with smaller input perturbations (e.g., 8 pixels). In other words, if a model is robust against attacks
perturbing 16 pixels at most, the model is also robust to the 8-pixel bounded perturbations.

However, we find that this is not true for our slowdown attacks. Investigating the adversarial texts
generated from our “unbounded” slowdown attacks, we could not find the correlation between the
attack strength and the number of word-level perturbations. This result questions the effectiveness of
adversarial training (AT), a standard defense that trains a model with bounded adversarial texts [26,
46, 14, 24, 43]. In Sec 7, we show that vanilla AT is an ineffective countermeasure (and also causes
undesirable consequences, e.g., the utility and efficacy loss of a model).

We also offer an alternative insight for developing future defenses. In Sec 6, we show that an
adversary can exploit the subject-predicate mismatch to make a model less confident about the
perturbed sample’s prediction. This misalignment, while easier for humans to identify, is difficult for
a target model to do so. Thus, in Sec 7, we propose to leverage models able to correct grammatical
errors, including the subject-predicate mismatches, for sanitizing inputs before being fed to the target

17



Model Arch. Type Metric RTE MNLI MRPC QNLI QQP SST-2 CoLA

S ALBERT S→ S Acc. 77→ 55 85→ 30 88→ 49 90→ 55 91→ 71 92→ 56 81→ 49
Eff. 0.25→ 0.12 0.28→ 0.06 0.33→ 0.11 0.32→ 0.07 0.36→ 0.19 0.36→ 0.07 0.32→ 0.08

V BERT S→ V Acc. 65→ 51 83→ 24 82→ 43 89→ 69 91→ 78 91→ 71 82→ 59
Eff. 0.22→ 0.20 0.24→ 0.16 0.34→ 0.10 0.29→ 0.24 0.35→ 0.34 0.32→ 0.21 0.34→ 0.24

S BERT S→ S Acc. 66→ 49 82→ 30 81→ 54 89→ 57 91→ 69 91→ 55 77→ 63
Eff. 22→ 0.08 0.24→ 0.06 0.33→ 0.14 0.29→ 0.08 0.35→ 0.16 0.32→ 0.07 0.37→ 0.26

V ALBERT S→ V Acc. 77→ 63 85→ 22 86→ 81 91→ 74 91→ 74 92→ 68 81→ 47
Eff. 0.22→ 0.21 0.28→ 0.16 0.32→ 0.22 0.32→ 0.22 0.36→ 0.34 0.36→ 0.28 0.22→ 0.22

S = Surrogate model; V = Victim model

Table 7: Cross-architecture attack results. With PABEE as the early-exit mechanism, we attack
BERT-based models with an ALBERT-based surrogate and vice-versa on all GLUE tasks.

multi-exit models. But we find that such models are either far too slow to be practical or do not offer
enough benefits. The result suggests future work in input sanitization for fast and effective methods.

G Impact of WAFFLE on Runtime

We provide results on the impact of our attacks on runtime and compare it with the efficacy metric
we use. Table 8 shows our results on DeeBERT across multiple datasets.

Metric QQP RTE QNLI MRPC CoLA
Clean WAFFLE Clean WAFFLE Clean WAFFLE Clean WAFFLE Clean WAFFLE

Efficacy 0.36 0.22 0.34 0.12 0.35 0.09 0.35 0.10 0.34 0.13
Runtime 7.50s 9.09s 2.75s 3.41s 3.73s 4.68s 7.78s 10.70s 7.84s 10.04s

Table 8: Impact of WAFFLE on runtime. With DeeBERT as the victim’s mechanism, we report the
runtime (in seconds) and efficacy of clean and perturbed samples on five GLUE tasks. We run our
experiments on a single Tesla V100 GPU. These results indicate that WAFFLE increases the actual
runtime of multi-exit language models and that runtime is inversely correlated to efficacy.

The results show that WAFFLE increases the actual runtime of multi-exit language models, i.e., our
slowdown results apply to real-world scenarios. Additionally, a reduction in efficacy is correlated
with an increase in runtime. We choose efficacy as a metric to quantify the slowdown (as opposed to
runtime) because the metric is hardware agnostic. The exit layer number we use to compute efficacy
will not change between models run on different hardware configurations.

18


	Introduction
	Related Work
	Our Auditing Method: Waffle Attack
	Threat Model
	The Slowdown Objective
	The Waffle Attack

	Auditing the Robustness to Adversarial Slowdown
	Multi-exit Language Models Are Not Robust to Adversarial Slowdown
	Sensitivity to Attack Hyperparameter

	Practical Exploitation of Waffle in Black-box Settings
	Lingusitic Analysis of Our Adversarial Texts
	Potential Countermeasures
	Conclusion
	Limitations, Societal Impacts, and Future Work
	Comparison to Related Attacks in Prior Work
	Experimental Setup in Detail
	The Waffle Attack Based on A2T
	Data and Code Availability
	More Results on Transferability of Waffle
	More Discussion on Our Linguistic Analysis Results
	Impact of Waffle on Runtime

