
Optimizing Code Retrieval: High-Quality and Scalable Dataset Annotation
through Large Language Models

Anonymous ACL submission

Abstract

Code retrieval aims to identify code from ex-001
tensive codebases that semantically aligns with002
a given query code snippet. Collecting a broad003
and high-quality set of query and code pairs is004
crucial to the success of this task. However, ex-005
isting data collection methods struggle to effec-006
tively balance scalability and annotation qual-007
ity. In this paper, we first analyze the factors008
influencing the quality of function annotations009
generated by Large Language Models (LLMs).010
We find that the invocation of intra-repository011
functions and third-party APIs plays a signifi-012
cant role. Building on this insight, we propose013
a novel annotation method that enhances the an-014
notation context by incorporating the content of015
functions called within the repository and infor-016
mation on third-party API functionalities. Ad-017
ditionally, we integrate LLMs with a novel sort-018
ing method to address the multi-level function019
call relationships within repositories. Further-020
more, by applying our proposed method across021
a range of repositories, we have developed the022
Query4Code dataset. The quality of this synthe-023
sized dataset is validated through both model024
training and human evaluation, demonstrating025
high-quality annotations. Moreover, cost anal-026
ysis confirms the scalability of our annotation027
method. 1028

1 Introduction029

Code retrieval aims to find the most relevant code030

snippet in a database given a user query, facilitat-031

ing the reuse of programs in the software devel-032

opment process (Bui et al., 2021; Li et al., 2022)033

and driving recent research on retrieval-augmented034

code generation (Parvez et al., 2021; Zhou et al.,035

2022). To ensure good performance in practical036

applications, the key lies in collecting a wide range037

of high-quality, dual-modal pairing data between038

natural language queries and code snippets.039

1Our Code and Dataset is available at https://
anonymous.4open.science/r/Query4Code-D5C0

def export_nb(nb_path):
exporter = PythonExporter()
output, res = exporter.from_filename(nb_path)

if 'outputs' in res:
for filename, content in res['outputs'].items():

savefile(filename, content)

return output

Code

Query
How to export the content of a Jupyter Notebook file.

Docstring
Export content from a Jupyter notebook file.
Parameters: - nb_path : The file path of the
Jupyter notebook to be exported.

Figure 1: Example of code snippet and corresponding
query and docstring.

An efficient approach to collect code retrieval 040

datasets involves directly gathering code data from 041

online repositories (e.g., GitHub2) and processing 042

it to extract code snippets along with their cor- 043

responding docstrings. As depicted in Figure 1, 044

since the docstring serves as a description of the 045

function code, it can be utilized as a query. How- 046

ever, a significant difference exists between the doc- 047

string and the user’s query, resulting in a deviation 048

from queries encountered in real-world scenarios. 049

To bridge this gap and obtain queries that closely 050

resemble those of actual users, some researchers 051

(Heyman and Van Cutsem, 2020; Yin et al., 2018; 052

Yao et al., 2018) tend to collect user questions and 053

the corresponding code snippets from program- 054

ming communities such as Stack Overflow3. An- 055

other approach explored by researchers (Rao et al., 056

2021; Huang et al., 2021) involves gathering user 057

search queries from browser logs and subsequently 058

enlisting experts to annotate corresponding code 059

snippets based on these queries. Regrettably, the 060

former approach often produces code snippets of in- 061

ferior quality because of the presence of block and 062

statement-level code within the community. On 063

the other hand, the latter approach allows for the 064

2https://github.com
3https://stackoverflow.com

1

https://anonymous.4open.science/r/Query4Code-D5C0
https://anonymous.4open.science/r/Query4Code-D5C0
https://github.com
https://stackoverflow.com

acquisition of a high-quality dataset but proves to065

be cost-prohibitive and challenging to scale. There-066

fore, we pose a question: Can a more efficient,067

low-cost method be developed to obtain a high-068

quality code retrieval dataset?069

The formidable capabilities of Large Language070

Models (LLMs) present a remarkable opportunity.071

Firstly, previous research (Rodriguez-Cardenas072

et al., 2023) has demonstrated the profound code073

comprehension ability of LLMs in various code074

understanding tasks, such as code summarization075

(Geng et al., 2023). Secondly, existing LLMs, em-076

ploying preference alignment techniques (Ouyang077

et al., 2022; Geng et al., 2023), can generate content078

that aligns with human preferences. In the domain079

of search, some studies (Bonifacio et al., 2022; Dai080

et al., 2022) have proposed generating the query081

from the documents, yielding highly promising out-082

comes. Hence, a straightforward approach is to em-083

ploy LLMs to generate user-like queries from the084

code snippets. However, there are some differences085

between code snippets and traditional documents.086

For instance, intra-repository function calls refer087

to the calls between different functions within a088

repository project, as depicted in Figure 1. Func-089

tion export_nb calls function savefile, which090

makes it challenging for LLMs to comprehend091

function export_nb if only provided as input, with-092

out considering the function savefile it calls. Ad-093

ditionally, third-party API calls involve invoking094

functions from external APIs, as shown in Fig-095

ure 1. Function export_nb calls the third-party096

API PythonExporter.from_filename, and LLM097

needs to understand the functionality of this API098

for a better understanding of the function.099

In this paper, we first analyze the main factors100

affecting the quality of annotations for functions in101

repositories. Through preliminary experiments on102

a development set from 100 selected repositories,103

we observe that the presence of intra-repository104

function calls exerts a substantial influence on the105

quality of annotations, with a greater number of106

call relationships resulting in a heightened degree107

of impact. Additionally, we uncover that infrequent108

third-party calls have the greatest impact on annota-109

tion quality. This observation may be attributed to110

the limited pretraining knowledge of LLMs regard-111

ing these external libraries. Based on these findings,112

we propose an annotation algorithm aimed at using113

LLMs for high-quality code retrieval query anno-114

tations. We start by parsing the relationships of115

intra-repository function calls and use a topologi-116

cal sorting approach to guide the LLM annotation 117

sequence. For third-party function calls, we se- 118

lect third-party functions based on popularity and 119

use web scraping to annotate features of unpopular 120

third-party functions, adding this information to 121

the annotation context. 122

To substantiate the efficacy of our annotation ap- 123

proach, we initially employed our method to obtain 124

a large-scale code retrieval dataset Query4Code, 125

which includes 237.2K queries and code pairs from 126

12.3K repositories. We use Query4Code a pretrain- 127

ing corpus for various code retrieval models. Sub- 128

sequently, comprehensive evaluations on multiple 129

real-world benchmarks confirmed that our method 130

significantly enhances the performance of code re- 131

trieval models in real scenarios. 132

2 Related Work 133

2.1 Code Retrieval Datasets 134

The previous methods (Sedykh et al., 2023) of 135

code retrieval data collection can be summarized 136

into three categories: 1). Some researchers (Wang 137

et al., 2023c) parse functions and corresponding 138

docstrings from online repositories to form pairs. 139

For example, Husain et al. (2019) collected 2.1M 140

paired data of 6 programming languages from an 141

open-source repository on GitHub, constituting the 142

CodeSearchNet. 2). Others (Yin et al., 2018) gather 143

questions posted by users on Stack Overflow along 144

with the accepted code snippets to create datasets 145

suitable for code searching. Heyman and Van Cut- 146

sem (2020) attempts this by collecting the most 147

popular dataset posts on Stack Overflow and gath- 148

ering code snippets from highly upvoted responses. 149

3). The use of manual annotation methods: Huang 150

et al. (2021) initially collects human queries used 151

in code searches from search engines and then man- 152

ually gathers relevant code snippets from GitHub 153

to match these queries. 154

However, these methods present a trade-off be- 155

tween data quality and scalability. Therefore, we 156

propose a low-cost and scalable annotation method. 157

2.2 Code Retrieval Models 158

In token-level pre-training methods, CodeBERT 159

(Feng et al., 2020) attempts to leverage the exten- 160

sive programming and natural language bimodal 161

data within repositories for pre-training. Building 162

upon this, GraphCodeBERT (Guo et al., 2021) en- 163

deavors to incorporate data flow graph signals to 164

devise new pre-training tasks, thereby enhancing 165

2

Calls Intra-repo Third-party APIs
Max nums 137 120
Mean nums 5.11 3.24
Proportion 46.5% 53.5%

Table 1: Statistics on the number and proportion of calls
to intra-repository and third-party library APIs.

the understanding of code semantics. UniXcoder166

(Guo et al., 2022) introduces a unified cross-modal167

pre-training model specifically designed for pro-168

gramming languages. Recently, some studies have169

explored the use of contrastive learning approaches170

to augment code search tasks. ContraCode (Jain171

et al., 2021) and Corder (Bui et al., 2021) employ172

semantic-preserving variation techniques for data173

augmentation and utilize contrastive learning ob-174

jectives to distinguish between similar and dissimi-175

lar code snippets. CodeRetriever (Li et al., 2022)176

attempts to combine unimodal and bimodal con-177

trastive learning to train code search models.178

2.3 LLM in Data Annotation179

Given the strong generalization capabilities exhib-180

ited by Large Language Models (LLMs), they ap-181

ply across multiple domains (Samuel et al., 2023;182

Wang et al., 2023a) for data synthesis, facilitat-183

ing the transfer of rich knowledge from larger184

models to smaller ones. In Unnatural Instructions185

(Honovich et al., 2023) and Self-Instruct (Wang186

et al., 2023b), LLMs utilize to generate the in-187

structional datasets required during the fine-tuning188

phase. Samuel et al. (2023) utilize a minimal set of189

original data to guide LLMs in generating datasets190

required for reading comprehension tasks. West191

et al. (2022) propose a two-step process for sym-192

bolic knowledge distillation rather than the creation193

of content-related datasets. In the field of infor-194

mation retrieval, Zhang et al. (2023) and Wang195

et al. (2023a) utilize LLMs to generate positive196

and negative samples during the training process197

of contrastive learning.198

This paper is the first to use LLMs to annotate199

code retrieval dataset, focusing on the key factors200

that affect LLMs in generating queries: library calls201

and third-party API calls.202

3 Preliminary Analysis203

The direct use of LLMs for annotating functions of-204

ten results in a lack of contextual information about205

the annotated functions. Therefore, This section206

attempts to analyze the impact of intra-repository207

calls and third-party API calls on LLM annotated 208

queries. Experiments are conducted using the GPT- 209

3.5-turbo (Achiam et al., 2023) and CodeLlama- 210

Instruct 7B (Roziere et al., 2023) models, with all 211

prompts and detailed information being provided 212

in Appendix A. 213

3.1 Setup 214

Based on the selection of high-quality repositories 215

identified from prior research (Husain et al., 2019), 216

we randomly chose 100 repositories to form our 217

development set. Subsequently, we employ the tree- 218

sitter4 library to parse code files within these repos- 219

itories, acquiring all function-level code snippets 220

and their invocation relationships. These relation- 221

ships are further categorized into intra-repository 222

calls and third-party API calls. 223

[1,5] [6,20] [21, 80] [81, 137]
Call Count

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Av
er

ag
e

Sc
or

e
GPT-3.5-turbo

Original
w/ Context

[1,5] [6,20] [21, 80] [81, 137]
Call Count

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Av
er

ag
e

Sc
or

e

Code Llama-Instruct 7B
Original
w/ Context

Figure 2: The impact of calls within repositories of
varying quantities on the quality of query annotations.

3.2 Impact of Intra-Repository Function Calls 224

Due to the existence of multiple functions in the 225

repository, these functions are usually involved in 226

complex call relationships. After parsing, from Ta- 227

ble 1, we can observe the proportion of functions 228

with call relationships, as well as the average and 229

maximum call frequencies. We observe that 46.5% 230

of the code has call relationships, and the maxi- 231

mum number of calls can reach 137 times. This 232

highlights the widespread use of function calls in 233

the repository. Subsequently, we analyze the im- 234

pact of these call relationships on the quality of 235

final query annotations generated by LLMs. We 236

use two annotation methods: direct annotation and 237

adding calling function context for annotation. Af- 238

ter obtaining the final annotated results, we pair 239

annotated queries with code and used the GPT-4- 240

turbo model to score (0-3) and evaluate the quality 241

of generated queries. The final results are shown 242

in Figure 2, from which we observe that including 243

4https://tree-sitter.github.io

3

https://tree-sitter.github.io

Parse

(a) Repository

models.py

main.py

datasets

utils

data.pyconfigs

(d) Context Construction

torch.nn.utils.clip_grad_norm_(Parameters, max_norm): Used to clip
the gradients of a model. . "Parameters" is the list of parameters
of the model, and "max_norm" is the maximum norm of the gradients.

API Function Annotation

Annotated function

Intra-repository function calls# file_path: main.py
def contrastive_loss(feature1, feature2, label, margin): Given
features and labels, calculate the contrastive learning loss.

def train_batch(model, inputs, targets):
optimizer = transformers.AdamW(model.parameters(), lr=1e-5)
outputs = model(inputs)
loss = contrastive_loss(outputs, targets)
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
...

train

load_data train_batch

test

(b) Function Call Graph

contrastive_loss

(c) API Calls

torch.nn.utils.
clip_grad_norm_ 2
transformers.AdamW 15
... ...

API POP

(e) Pipeline

Context

Step1. Function
Annotation

A python function use
contrastive learning to
train model for a batch
data.

Functionality

Query

How to train models using
Contrastive Learning?

file_path: main.py

Step2. Query Annotation

Step3. Filtering & Explanation
Code

def train_batch(model,
inputs, targets):

...

{"Explanation": "code can satisfy a certain category of query
requirement", "Score": 3}

def train_batch
torch.nn.utils.

Pairing

Figure 3: The overview of our annotation method. (a) Files in the repository. (b) Function call graph obtained from
parsing. (c) API calls obtained from parsing and their corresponding popularity. (d) Construct annotated context
based on call relationships and current API calls. (e) Pipeline for annotation method.

information about called functions significantly af-244

fects annotation quality. Furthermore, more call245

relationships will lead to a greater degree of influ-246

ence, and model capability also significantly affects247

the quality of final annotations.248

[0.7, 1.6] [1.6, 2.6] [2.6, 3.5] [3.5, 4.2] [4.2, 5.0] [5.0, 5.7] [5.7, 6.4] [6.4, 7.3][7.3, 10.6]
Log Popularity

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Av
er

ag
e

Sc
or

e

GPT-3.5-turbo
Code Llama-Instruct 7B

Figure 4: The impact of third-party APIs with Different
Popularity Levels on LLM Understanding.

3.3 Impact of Third-Party APIs Calls249

After analyzing the invocation of third-party APIs250

in functions, as shown in Table 1, we observe that251

53.5% of the functions involve third-party API252

calls, with the maximum number of calls reach-253

ing 120 times. We next examine the impact of254

third-party APIs on annotation quality. Inspired255

by previous research (Mallen et al., 2023), we con-256

sider that the impact of APIs on annotation quality257

is closely related to the API’s popularity. Therefore,258

we initially use the frequency of API calls in the259

repositories as a proxy for API popularity. We then 260

annotate functions in our development set using 261

LLMs, including all available API documentation. 262

GPT-4-turbo is used to compare LLM explanations 263

of API functions against the actual API documen- 264

tation, with results categorized according to pop- 265

ularity. Our findings, presented in Figure 4, show 266

that LLMs often lack a comprehensive grasp of 267

many API details, particularly for unpopular APIs. 268

This phenomenon adversely affects the quality of 269

LLM annotations for queries. And even for models 270

with stronger performance (e.g., gpt-3.5-turbo), the 271

understanding of low-popularity APIs is also poor. 272

4 Approach 273

4.1 Overview 274

In the preceding analysis, we demonstrate how the 275

invocation relationships within a repository and 276

those in third-party libraries can impact the quality 277

of Large Language Models (LLMs) in annotating 278

queries. As shown in Figure 3, we attempt to pro- 279

pose an annotation method to address these issues. 280

We endeavor to collect information about functions 281

with invocation relationships, as well as functional- 282

ities of unpopular APIs, and incorporate them into 283

the annotation context. Then, we use this context to 284

prompt LLMs to generate queries (see the prompt 285

in Appendix B). 286

4.2 Task Decomposition 287

Inspired by previous research work (Wei et al., 288

2022), a complex task can be simplified by de- 289

4

composing it into multiple simpler tasks, thereby290

easing the model’s inference load. For the task of291

query annotation, we consider that the model first292

needs to understand the code of the currently an-293

notated function and then generate queries that a294

user might write during the development process295

based on this understanding of code semantics. As296

shown in Figure 3 (e), we initially use LLMs for297

code interpretation and then proceed to annotate298

queries based on the interpretation and the content299

of the code snippets:300

s = LLM(c), q = LLM(s, c). (1)301

In the code interpretation stage, we mainly rely on302

the LLM’s understanding of the code, while in the303

query generation stage, the alignment capability of304

LLMs with human intent is primarily utilized.305

4.3 Analyzing Function and API Calls306

Since in Section 3, we have analyzed that the main307

factors affecting the quality of LLM annotations308

for queries are function calls within the repository309

and third-party API calls. Therefore, as shown in310

the upper of Figure 3, for a given repository, we311

first use the tree-sitter tool to parse all functions in312

the code files within the repository. Then, we ana-313

lyze each function’s calls to other intra-repository314

functions and third-party APIs separately.315

4.4 Annotation Algorithm Based on Function316

Call Graph317

Having established the function invocation rela-318

tionships within the repository, a straightforward319

approach would be to include the relevant con-320

text of the function to be annotated along with321

the query into the LLM’s input context. How-322

ever, as shown in Figure 3 (b), there are multi-level323

call relationships between functions in the repos-324

itory. Understanding the train function requires325

knowing the train_batch function because it calls326

the train_batch function, which then calls the327

contrastive_loss function. Similarly, to grasp328

the train_batch function properly, it’s essential329

to understand the contrastive_loss function. Di-330

rectly incorporating all functions into the context331

would pose challenges associated with multi-level332

reasoning.333

Thus, we propose a novel annotation algorithm334

based on topological ordering. The intuition behind335

this algorithm is the decoupling of multi-level invo-336

cation relationships into single-level relationships.337

Specifically, we first construct a directed graph 338

G(V,E) of function calls, where each node v ∈ V 339

represents a function in the repository. If function 340

A is called by function B, there will be a directed 341

edge e ∈ E from vA to vB . Based on topological 342

sorting, we first annotate functions without depen- 343

dency relationships. During the annotation process, 344

when encountering recursive calls, we randomly 345

delete an edge to continue with the annotation. Sub- 346

sequently, we annotate functions with invocation 347

relationships, thus breaking down multi-level invo- 348

cation relationships into single-level relationships. 349

For the annotation context of the function currently 350

being annotated, it is only necessary to include in- 351

formation about its directly called functions. We 352

summarized the algorithm in Appendix C. 353

4.5 Collection of Third-Party API 354

Documentation Based on Popularity 355

In Section 3, our analysis indicates that LLMs 356

struggle to understand unpopular APIs. Therefore, 357

we aim to add descriptions of unpopular third-party 358

API functionalities in the annotation context. As 359

shown in figure 3 (c), first, we need to assess the 360

popularity of APIs, using the frequency of API 361

calls in the repository as a basis for popularity. Our 362

analysis concludes that LLMs understand APIs bet- 363

ter if they exceed a popularity threshold. Therefore, 364

we set a popularity threshold and for third-party 365

APIs below this threshold in the function, we use 366

the DuckDuckGo5 search engine to look up docu- 367

mentation and employ LLM to summarize the API 368

functionalities. Then, we add this information into 369

the annotation context. 370

4.6 Data Filtering 371

To further enhance the quality of generated queries 372

and improve the explainability of the annotation 373

process, we attempt to incorporate a reverse vali- 374

dation and an explanation phase for the query and 375

code snippet pairs into the annotation framework. 376

Specifically, as shown in figure 3 (e), after complet- 377

ing the annotation to obtain aligned query and code 378

snippet pairs, we first use LLMs for reverse vali- 379

dation. Inspired by Huang et al. (2021), we notice 380

that the code in the annotated query-code pairs can- 381

not fully answer the query. It may exceed, partially 382

satisfy, or completely fail to meet the query require- 383

ments. Specifically, we focus on the following four 384

scenarios: 1) If the code can answer and exceed 385

5https://duckduckgo.com

5

https://duckduckgo.com

Dataset Training Validation Test

CoSQA 19.0K 0.5K 0.5K
SO-DS 14.2K 0.9K 1.1K
StaQC 20.4K 2.6K 2.7K
CoNaLa 2.8K - 0.8K
WebQueryTest - - 1.0K

Table 2: The statistics of benchmark datasets.

the query requirements, it is considered a correct386

answer. 2) If the code can satisfy certain categories387

of query requirements, it is also deemed a correct388

answer. 3) If the code satisfies less than 50% of389

the query requirements, it cannot correctly answer390

the query. 4) The code has almost no relevance to391

the query. Based on this principle, we construct the392

CLS prompt language model to obtain classification393

results:394

f(q, c) = LLM(q, c, CLS). (2)395

Then, we will filter out the code snippets of cate-396

gories 1 and 2 from the original constructed dataset397

C to obtain Cfiltered:398

Cfiltered = {c ∈ C | f(q, c) ∈ {1, 2}}. (3)399

5 Experiment400

5.1 Annotation401

To facilitate comparison, we followed the selection402

of GitHub repositories in CodeSearchNet (Hu-403

sain et al., 2019), choosing only Python reposi-404

tories for cost reasons. We then applied a certain405

method to filter high-quality functions within these406

repositories. Subsequently, we used the GPT-3.5-407

turbo model to generate queries using the anno-408

tation method mentioned above. Ultimately, we409

successfully annotated a total of 237.2K pairs of410

natural language and code snippets, forming the411

Query4Code dataset.412

5.2 Model Validation413

To validate the quality of the Query4Code dataset,414

which we obtain through our final annotation pro-415

cess, we pre-train existing pre-trained code repre-416

sentation models using both the CodeSearchNet417

and Query4Code. We aim to evaluate model per-418

formance across multiple real-world code retrieval419

benchmarks in a zero-shot setting. Furthermore,420

we fine-tune the models on real-world datasets to421

assess the adaptability of the Query4Code dataset422

to downstream benchmarks.423

5.2.1 Baseline 424

To compare the performance differences when pre- 425

training with the CodeSearchNet and Query4Code 426

datasets, we pre-trained the following code repre- 427

sentation models using different datasets and con- 428

ducted a performance comparison: 429

• CodeBERT (Feng et al., 2020) is a bimodal 430

pre-trained model that is pre-trained through 431

two tasks: Masked Language Modeling 432

(MLM) and Replaced Token Detection (RTD). 433

• GraphCodeBERT (Guo et al., 2021) proposes 434

two structure-based pre-training tasks (data 435

flow edge prediction and node alignment) to 436

enhance code representation. 437

• UniXcoder (Guo et al., 2022) proposes to en- 438

hance code representation using cross-modal 439

content such as AST and code comments. 440

• StarEncoder (Li et al., 2023) is pre-trained on 441

The Stack (Kocetkov et al., 2022) dataset, us- 442

ing MLM and Next Sentence Prediction (NSP) 443

as the pretraining tasks. 444

5.2.2 Benchmark and Metric 445

In order to evaluate the performance of the model 446

in real-world code retrieval scenarios, we have 447

selected a wide range of benchmarks for valida- 448

tion. Among them, the datasets CoNaLa (Yin 449

et al., 2018), SO-DS (Heyman and Van Cutsem, 450

2020), and StaQC (Yao et al., 2018) are col- 451

lected from Stackoverflow questions, and queries 452

in CoSQA (Huang et al., 2021) and WebQueryTest 453

(Lu et al., 2021) are collected from web search en- 454

gines. Therefore, the queries in these datasets are 455

closer to real code search scenarios. The statistics 456

of benchmark datasets are listed in Table 2. Follow- 457

ing prior research works (Kanade et al., 2020; Li 458

et al., 2022), we employed Mean Reciprocal Rank 459

(MRR) (Hull, 1999) as the evaluation metric: 460

MRR =
1

N

N∑
i=1

1

ranki
, (4) 461

where ranki is the rank of the correct code snippet 462

related to the i-th query. 463

5.2.3 Training Objective 464

Given a paired query q and code c+ pair, we adopt 465

the contrastive learning InfoNCE objective func- 466

tion commonly used in existing code retrieval tasks 467

6

Model
CoNaLa SO-DS StaQC CoSQA WebQueryTest

CSN Q4C CSN Q4C CSN Q4C CSN Q4C CSN Q4C
Zero-Shot
CodeBERT 21.65 25.45 18.42 18.98 14.26 15.74 56.34 59.80 32.43 35.61
GraphCodeBERT 23.70 28.88 19.01 21.56 16.90 18.72 56.83 60.24 31.83 35.97
UniXCoder 25.47 29.07 18.78 19.85 16.45 19.07 55.22 58.87 30.18 34.42
StarEncoder 25.72 28.14 17.31 19.65 15.55 18.59 54.27 58.41 31.46 35.80
Fine-Tuning
CodeBERT 22.41 26.83 23.24 25.76 23.75 25.39 67.72 72.91 - -
GraphCodeBERT 25.01 29.15 24.05 25.92 24.41 25.84 67.35 73.64 - -
UniXCoder 26.27 29.96 23.59 25.90 23.38 26.10 68.47 73.30 - -
StarEncoder 26.05 29.58 24.31 26.83 24.07 25.29 67.41 72.65 - -

Table 3: Compare the zero-shot and fine-tune performance of code representation models pre-trained on Code-
SearchNet (CSN) and Query4Code (Q4C) datasets.

for model training. Furthermore, we employ an468

in-batch negative sampling approach for selecting469

negative samples c− in contrastive learning:470

L = −E

[
log

exp (q · c+)
exp (q · c+) +

∑N
j=1 exp (q · c

−
j)

]
,

(5)471

where N represents batch size.472

5.2.4 Implementation details473

All experiments are implemented using PyTorch.474

During the pre-training phase, for all settings re-475

lated to model architecture and hyperparameters,476

we follow the original paper. During the fine-477

tuning phase, to adapt to variations between dif-478

ferent datasets, we conducte a grid search on the479

downstream dataset to find the learning rate, setting480

the range in our experiments as {1e-5, 2e-5, 5e-5},481

and utilize the AdamW optimizer (Loshchilov and482

Hutter, 2017). The options for batch size included483

{32, 64, 128}. Training is set for 10 epochs and484

to prevent overfitting, we adopte an early stopping485

strategy. The experiments described in this paper486

are conducted with three random seeds: 0, 1, and487

2, and we will report the average results in the488

paper. All experiments meet the p<0.01 signifi-489

cance threshold. Experiments are conducted on a490

GeForce RTX 4090 GPU.491

5.2.5 Results492

Zero-shot Performance The final zero-shot ex-493

perimental results, as shown in Table 3, indicate494

that pre-training on the Query4Code dataset sig-495

nificantly enhances performance compared to pre-496

training on the CodeSearchNet dataset, with im-497

provements observed across multiple code repre-498

sentation models. Additionally, we note substantial499

performance gains on both the CoSQA and Web- 500

QueryTest datasets. We attribute this improvement 501

to the fact that the queries in these two datasets 502

were extracted from logs of real-world search en- 503

gines, which closely match the distribution of our 504

annotated queries. Conversely, the improvement 505

on the SO-DS dataset was minimal, likely due to a 506

greater disparity between the code snippets in the 507

SO-DS dataset and our annotated dataset. 508

Fine-tuning Performance In the fine-tuning ex- 509

periment, it is worth noting that since the Web- 510

QueryTest dataset is specifically designed for as- 511

sessing real-world code retrieval task performance 512

without available training data, its related results 513

were not reported. The final experiments demon- 514

strate that pretraining with the Query4Code dataset 515

before fine-tuning yielded superior performance 516

across all other datasets, confirming that models 517

pretrained through Query4Code exhibit enhanced 518

adaptability in real-world code retrieval scenarios. 519

5.3 The potential of the dataset 520

Cqc Csc Cqc+Csc

CoNaLa 25.45 23.28 26.39
SO-DS 18.98 19.35 20.17
StaQC 15.74 15.92 16.51
CoSQA 59.80 58.46 61.93
WebQueryTest 35.61 35.07 36.55

Table 4: Using different data pairs with Query4Code to
train CodeBERT for zero-shot performance.

Although this paper mainly focuses on generat- 521

ing annotations for query retrieval of code, our two- 522

stage annotation method can obtain functional sum- 523

maries of functions. We are interested in whether 524

7

Code Docstring Query
def escape_shell_arg(shell_arg):

if isinstance(shell_arg, six.text_type):
msg = "ERROR: escape_shell_arg() expected

string argument but " \
"got '%s' of type '%s'." % (repr(shell_arg),

type(shell_arg))
raise TypeError(msg)

return "'%s'" % shell_arg.replace("'", r"'\''")

"""Escape shell argument shell_arg by placing
it within single-quotes. Any single quotes
found within the shell argument string will be
escaped.
@param shell_arg: The shell argument
to be escaped.
@type shell_arg: string
..."""

Python code for shell argument
escaping with single quotes

Figure 5: Example of code snippet with docstring and annotated query.

the functional summary of functions can enhance525

the ability of the current code retrieval model. As526

shown in Table 4, compared with only using (q, c)527

pairs (denoted as Cqc) for contrastive learning, us-528

ing only (s, c) pairs (denoted as Csc) achieved com-529

parable performance and performed better on the530

SO-DS and CoSQA datasets. Furthermore, utiliz-531

ing both annotated query q and summary c data532

achieved the best performance. For detailed experi-533

mental settings, please refer to Appendix D. This534

demonstrates the potential of the our annotation535

method.536

5.4 Human Evaluation537

To evaluate the quality of the data generated by538

the annotation algorithm we proposed, we em-539

ployed a manual assessment approach. We extracte540

200 pairs of queries and code snippets from the541

Query4Code dataset and invited three experts to542

score them according to the four types mentioned543

in Section 4.6. We then calculate the Pearson’s r544

and Kendall’s τ correlation coefficients between545

the scores and the results generated by the model.546

The results are summarized in Table 5. Observa-547

tion reveals that the query-code pairs we annotate548

demonstrate a strong correlation, confirming the549

effectiveness of our filtering method.550

Expert r τ score
Expert1 0.652 0.483 2.47
Expert2 0.630 0.469 2.65
Expert3 0.623 0.471 2.58

Table 5: Results of human evaluation.

5.5 Cost Analysis551

Our annotation algorithm surpasses traditional ex-552

pert annotation methods in both cost-effectiveness553

and time efficiency. The API call cost for the GPT-554

3.5-turbo model we used generally ranges from555

$0.001 to $0.004, allowing for the processing of556

approximately 3K requests per minute. In contrast, 557

based on crowdsourcing platform rates, the cost 558

for pairing a query with a code snippet is around 559

$0.2; meanwhile, the time required for an expert to 560

annotate, including reading the query and finding 561

a matching code snippet, typically takes about 3 562

minutes. This demonstrates the superior scalability 563

of our method. 564

5.6 Case Study 565

As illustrated in Figure 5, there exists a discrepancy 566

between the docstring of the code snippet and the 567

query annotated by us. Docstrings are typically 568

employed to elucidate the function’s purpose and 569

usage, possibly encompassing descriptions of input 570

and output parameters. In contrast, a query repre- 571

sents the functionality requirements described by 572

users in natural language. 573

6 Conclusion 574

In this paper, we addressed the trade-off between 575

quality and scalability inherent in the construction 576

methods of previous code retrieval datasets by at- 577

tempting to generate queries based on Large Lan- 578

guage Models (LLMs). Initially, we analyzed the 579

key factors affecting the annotation of queries by 580

LLMs and identified that both intra-repository func- 581

tion calls and third-party API calls significantly 582

impacted annotation quality. Based on this un- 583

derstanding, we had designed an annotation algo- 584

rithm that constructed appropriate contexts by pars- 585

ing call relationships to generate function queries. 586

Moreover, we had utilized existing code snippets 587

to create the Query4Code dataset. Through model 588

validation and manual assessment, the high qual- 589

ity of the Query4Code dataset was confirmed, and 590

cost analysis had demonstrated the scalability of 591

our annotation approach. 592

8

Limitations593

This study primarily focuses on utilizing Large594

Language Models (LLMs) for the construction of595

code retrieval datasets and demonstrates the signifi-596

cant impact of call relations on the understanding597

of function-level code snippets in repositories by598

language models. However, this paper has certain599

limitations. Due to cost considerations, we only600

analyzed and annotated a Python dataset. Although601

our analytical method is adaptable across differ-602

ent programming languages, we cannot guaran-603

tee that our conclusions will perform consistently604

across various languages. Therefore, we aim to605

explore the construction of code retrieval datasets606

for other programming languages using LLMs in607

future work.608

Ethical consideration609

This paper considers using LLMs for code retrieval610

data synthesis tasks. Previous studies have shown611

that LLMs may have hallucination problems, and612

using synthetic data may lead to potential biases in613

the retrieval process.614

References615

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama616
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,617
Diogo Almeida, Janko Altenschmidt, Sam Altman,618
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.619
arXiv preprint arXiv:2303.08774.620

Luiz Bonifacio, Hugo Abonizio, Marzieh Fadaee, and621
Rodrigo Nogueira. 2022. Inpars: Data augmentation622
for information retrieval using large language models.623
arXiv preprint arXiv:2202.05144.624

Nghi DQ Bui, Yijun Yu, and Lingxiao Jiang. 2021. Self-625
supervised contrastive learning for code retrieval and626
summarization via semantic-preserving transforma-627
tions. In Proceedings of the 44th International ACM628
SIGIR Conference on Research and Development in629
Information Retrieval, pages 511–521.630

Zhuyun Dai, Vincent Y Zhao, Ji Ma, Yi Luan, Jianmo631
Ni, Jing Lu, Anton Bakalov, Kelvin Guu, Keith Hall,632
and Ming-Wei Chang. 2022. Promptagator: Few-633
shot dense retrieval from 8 examples. In The Eleventh634
International Conference on Learning Representa-635
tions.636

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-637
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,638
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-639
bert: A pre-trained model for programming and nat-640
ural languages. In Findings of the Association for641
Computational Linguistics: EMNLP 2020, Online642

Event, 16-20 November 2020, volume EMNLP 2020 643
of Findings of ACL, pages 1536–1547. 644

Mingyang Geng, Shangwen Wang, Dezun Dong, Hao- 645
tian Wang, Ge Li, Zhi Jin, Xiaoguang Mao, and Xi- 646
angke Liao. 2023. An empirical study on using large 647
language models for multi-intent comment genera- 648
tion. arXiv preprint arXiv:2304.11384. 649

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming 650
Zhou, and Jian Yin. 2022. Unixcoder: Unified cross- 651
modal pre-training for code representation. In Pro- 652
ceedings of the 60th Annual Meeting of the Associa- 653
tion for Computational Linguistics (Volume 1: Long 654
Papers), ACL 2022, Dublin, Ireland, May 22-27, 655
2022, pages 7212–7225. 656

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu 657
Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey Svy- 658
atkovskiy, Shengyu Fu, Michele Tufano, Shao Kun 659
Deng, Colin B. Clement, Dawn Drain, Neel Sundare- 660
san, Jian Yin, Daxin Jiang, and Ming Zhou. 2021. 661
Graphcodebert: Pre-training code representations 662
with data flow. In 9th International Conference on 663
Learning Representations, ICLR 2021, Virtual Event, 664
Austria, May 3-7, 2021. 665

Geert Heyman and Tom Van Cutsem. 2020. Neural code 666
search revisited: Enhancing code snippet retrieval 667
through natural language intent. arXiv preprint 668
arXiv:2008.12193. 669

Or Honovich, Thomas Scialom, Omer Levy, and Timo 670
Schick. 2023. Unnatural instructions: Tuning lan- 671
guage models with (almost) no human labor. In 672
Proceedings of the 61st Annual Meeting of the As- 673
sociation for Computational Linguistics (Volume 1: 674
Long Papers), ACL 2023, Toronto, Canada, July 9-14, 675
2023, pages 14409–14428. Association for Computa- 676
tional Linguistics. 677

Junjie Huang, Duyu Tang, Linjun Shou, Ming Gong, 678
Ke Xu, Daxin Jiang, Ming Zhou, and Nan Duan. 679
2021. Cosqa: 20,000+ web queries for code search 680
and question answering. In Proceedings of the 59th 681
Annual Meeting of the Association for Computational 682
Linguistics and the 11th International Joint Confer- 683
ence on Natural Language Processing (Volume 1: 684
Long Papers), pages 5690–5700. 685

David A Hull. 1999. Xerox trec-8 question answering 686
track report. In TREC. 687

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis 688
Allamanis, and Marc Brockschmidt. 2019. Code- 689
searchnet challenge: Evaluating the state of semantic 690
code search. arXiv preprint arXiv:1909.09436. 691

Paras Jain, Ajay Jain, Tianjun Zhang, Pieter Abbeel, 692
Joseph Gonzalez, and Ion Stoica. 2021. Contrastive 693
code representation learning. In Proceedings of the 694
2021 Conference on Empirical Methods in Natural 695
Language Processing, pages 5954–5971. 696

9

https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2022.acl-long.499
https://doi.org/10.18653/v1/2022.acl-long.499
https://doi.org/10.18653/v1/2022.acl-long.499
https://openreview.net/forum?id=jLoC4ez43PZ
https://openreview.net/forum?id=jLoC4ez43PZ
https://openreview.net/forum?id=jLoC4ez43PZ
https://doi.org/10.18653/V1/2023.ACL-LONG.806
https://doi.org/10.18653/V1/2023.ACL-LONG.806
https://doi.org/10.18653/V1/2023.ACL-LONG.806

Aditya Kanade, Petros Maniatis, Gogul Balakrishnan,697
and Kensen Shi. 2020. Learning and evaluating con-698
textual embedding of source code. In International699
Conference on Machine Learning, pages 5110–5121.700

Denis Kocetkov, Raymond Li, LI Jia, Chenghao Mou,701
Yacine Jernite, Margaret Mitchell, Carlos Muñoz Fer-702
randis, Sean Hughes, Thomas Wolf, Dzmitry Bah-703
danau, et al. 2022. The stack: 3 tb of permissively li-704
censed source code. Transactions on Machine Learn-705
ing Research.706

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying707
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E. Gon-708
zalez, Haotong Zhang, and I. Stoica. 2023. Efficient709
memory management for large language model serv-710
ing with pagedattention. Symposium on Operating711
Systems Principles.712

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas713
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc714
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.715
2023. Starcoder: may the source be with you! arXiv716
preprint arXiv:2305.06161.717

Xiaonan Li, Yeyun Gong, Yelong Shen, Xipeng Qiu,718
Hang Zhang, Bolun Yao, Weizhen Qi, Daxin Jiang,719
Weizhu Chen, and Nan Duan. 2022. Coderetriever:720
A large scale contrastive pre-training method for code721
search. In Proceedings of the 2022 Conference on722
Empirical Methods in Natural Language Processing,723
pages 2898–2910.724

Ilya Loshchilov and Frank Hutter. 2017. Fixing725
weight decay regularization in adam. CoRR,726
abs/1711.05101.727

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey728
Svyatkovskiy, Ambrosio Blanco, Colin B. Clement,729
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Li-730
dong Zhou, Linjun Shou, Long Zhou, Michele Tu-731
fano, Ming Gong, Ming Zhou, Nan Duan, Neel Sun-732
daresan, Shao Kun Deng, Shengyu Fu, and Shujie733
Liu. 2021. Codexglue: A machine learning bench-734
mark dataset for code understanding and generation.735
In Proceedings of the Neural Information Process-736
ing Systems Track on Datasets and Benchmarks 1,737
NeurIPS Datasets and Benchmarks 2021, December738
2021, virtual.739

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das,740
Daniel Khashabi, and Hannaneh Hajishirzi. 2023.741
When not to trust language models: Investigating742
effectiveness of parametric and non-parametric mem-743
ories. In Proceedings of the 61st Annual Meeting of744
the Association for Computational Linguistics (Vol-745
ume 1: Long Papers), pages 9802–9822.746

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,747
Carroll Wainwright, Pamela Mishkin, Chong Zhang,748
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.749
2022. Training language models to follow instruc-750
tions with human feedback. Advances in Neural751
Information Processing Systems, 35:27730–27744.752

Md Rizwan Parvez, Wasi Ahmad, Saikat Chakraborty, 753
Baishakhi Ray, and Kai-Wei Chang. 2021. Retrieval 754
augmented code generation and summarization. In 755
Findings of the Association for Computational Lin- 756
guistics: EMNLP 2021, pages 2719–2734. 757

Nikitha Rao, Chetan Bansal, and Joe Guan. 2021. 758
Search4code: Code search intent classification using 759
weak supervision. In 2021 IEEE/ACM 18th Interna- 760
tional Conference on Mining Software Repositories 761
(MSR), pages 575–579. IEEE. 762

Daniel Rodriguez-Cardenas, David N Palacio, Dipin 763
Khati, Henry Burke, and Denys Poshyvanyk. 2023. 764
Benchmarking causal study to interpret large lan- 765
guage models for source code. In 2023 IEEE Inter- 766
national Conference on Software Maintenance and 767
Evolution (ICSME), pages 329–334. IEEE. 768

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten 769
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, 770
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023. 771
Code llama: Open foundation models for code. arXiv 772
preprint arXiv:2308.12950. 773

Vinay Samuel, Houda Aynaou, Arijit Ghosh Chowd- 774
hury, Karthik Venkat Ramanan, and Aman Chadha. 775
2023. Can llms augment low-resource reading com- 776
prehension datasets? opportunities and challenges. 777
arXiv preprint arXiv:2309.12426. 778

Ivan Sedykh, Dmitry Abulkhanov, Nikita Sorokin, 779
Sergey Nikolenko, and Valentin Malykh. 2023. 780
Searching by code: a new searchbysnippet dataset 781
and snipper retrieval model for searching by code 782
snippets. arXiv preprint arXiv:2305.11625. 783

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, 784
Rangan Majumder, and Furu Wei. 2023a. Improving 785
text embeddings with large language models. arXiv 786
preprint arXiv:2401.00368. 787

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa 788
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh 789
Hajishirzi. 2023b. Self-instruct: Aligning language 790
models with self-generated instructions. In Proceed- 791
ings of the 61st Annual Meeting of the Association 792
for Computational Linguistics (Volume 1: Long Pa- 793
pers), ACL 2023, Toronto, Canada, July 9-14, 2023, 794
pages 13484–13508. Association for Computational 795
Linguistics. 796

Yue Wang, Hung Le, Akhilesh Deepak Gotmare, 797
Nghi DQ Bui, Junnan Li, and Steven CH Hoi. 2023c. 798
Codet5+: Open code large language models for 799
code understanding and generation. arXiv preprint 800
arXiv:2305.07922. 801

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 802
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, 803
et al. 2022. Chain-of-thought prompting elicits rea- 804
soning in large language models. Advances in Neural 805
Information Processing Systems, 35:24824–24837. 806

Peter West, Chandra Bhagavatula, Jack Hessel, Jena 807
Hwang, Liwei Jiang, Ronan Le Bras, Ximing Lu, 808

10

https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://doi.org/10.18653/V1/2023.ACL-LONG.754
https://doi.org/10.18653/V1/2023.ACL-LONG.754
https://doi.org/10.18653/V1/2023.ACL-LONG.754

Sean Welleck, and Yejin Choi. 2022. Symbolic809
knowledge distillation: from general language mod-810
els to commonsense models. In Proceedings of the811
2022 Conference of the North American Chapter of812
the Association for Computational Linguistics: Hu-813
man Language Technologies, pages 4602–4625.814

Ziyu Yao, Daniel S Weld, Wei-Peng Chen, and Huan815
Sun. 2018. Staqc: A systematically mined question-816
code dataset from stack overflow. In Proceedings of817
the 2018 World Wide Web Conference, pages 1693–818
1703.819

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan820
Vasilescu, and Graham Neubig. 2018. Learning to821
mine aligned code and natural language pairs from822
stack overflow. In Proceedings of the 15th interna-823
tional conference on mining software repositories,824
pages 476–486.825

Junlei Zhang, Zhenzhong Lan, and Junxian He. 2023.826
Contrastive learning of sentence embeddings from827
scratch. arXiv preprint arXiv:2305.15077.828

Shuyan Zhou, Uri Alon, Frank F Xu, Zhengbao Jiang,829
and Graham Neubig. 2022. Docprompting: Gener-830
ating code by retrieving the docs. In The Eleventh831
International Conference on Learning Representa-832
tions.833

A Analysis Settings 834

We use the CodeLlama-Instruct 7B and GPT- 835

3.5-turbo, where we load the checkpoint for 836

CodeLlama-Instruct 7B from huggingface. For 837

GPT-3.5-turbo, we chose to experiment with the 838

gpt-3.5-turbo-0613 version. And we use the GPT- 839

4-turbo model for scoring, where we select the 840

gpt-4-1106-preview version for experimentation. 841

For GPT model, we use the official OpenAI API 842

and employ the default temperature parameters and 843

sampling methods. 844

A.1 LLM Inference Details 845

In the inference process of CodeLlama-Instruct 7B, 846

we adopt a sampling method with a temperature pa- 847

rameter of 0.2 and top-p of 0.95. Additionally, we 848

utilize the vLLM (Kwon et al., 2023) inference 849

library, which integrates various decoding tech- 850

niques to accelerate sampling during generation. 851

A.2 Prompts for Analysis 852

System Prompt for Directly Generating Query

Please act as a query generator.
For the given function-level code
snippet in the repository, please
provide a query that the user might use.
This query should be able to search for
that function in a search engine.
Note that you should not provide any
other information.

User Input

Code: {code snippet}

System Prompt for Generating Query (w/ Context)

Please act as a query generator.
For the given function-level code
snippet in the repository and the
information about functions called
within those code snippets, please
provide a query that the user might use.
This query should be able to search for
that function in a search engine.
Note that you should not provide any
other information.

User Input

Code: {code snippet}
Called Function: {called code snippet}

11

Verification System Prompt for Query

Please play the role of a programming
expert. For the given user queries and
function pairs, please judge whether
the code can meet the needs of the
user's query based on the following
principles:
1. The code can answer and exceed the
requirements for query needs (3 points);
2. The code can satisfy a certain
category of query needs (2 points);
3. The code only meets less than 50% of
query needs (1 points);
4. The code is only minimally related
to the query (0 point).
Please provide an explanation along
with corresponding scores, noting that
you need to output in JSON format as
follows: `{"Explanation": <explanation>,
"Score": <score>}`, without providing
any other information

User Input

Code: {code snippet}
Query: {query}

System Prompt for API Explanation

Please provide a detailed explanation
of the functionality of the third-
party library API and the role of its
mandatory parameters. Please note that
you do not need to provide any
additional output.

User Input

API: {API}

System Prompt for API Explanation (w/ Document)

Please summarize the functions of the
API and the roles of its mandatory
parameters based on the API and
document information. Please note that
you do not need to provide any
additional output.

User Input

API: {API}
Document : {doc}

System Prompt for Rating APIs

Please play the role of a programming
expert.
For a given API and its corresponding
documentation explanation, as well as a
user's description of the API's
functionality, please help me confirm
the degree to which the user-provided
description of the API's functionality
matches with what is described in the
documentation. If it completely matches
semantically, award 2 points; if it
partially matches, give 1 point; if
there is no match, give 0 points.
Please provide an explanation along with
corresponding scores, noting that you
need to output in JSON format as follows:
`{"Explanation": <explanation>, "Score":
<score>}`, without providing any other
information.

User Input

API Documentation Explanation: {function}
User-Provided description: {description}

B Method Settings 853

B.1 Prompts for Method 854

In the method, for summarizing the functions of 855

API documentation, see prompt in section A.2; for 856

scoring prompts used in Data Filtering, refer to 857

section A.2. 858

System Prompt for Generating Query (w/ Summary)

Please act as a query generator.
For a function-level code snippet and its
functional summary (to help you
understand the function's purpose)
provided by the user, please provide a
query that can be used to find the
function on search engine.
Note, do not provide any additional
information.

User Input

Code: {Code}
Code Summary: {summary}

C Annotation Algorithm 859

D Experimental settings for dataset 860

potential performance 861

To test the potential performance of our annota- 862

tion method, we used CodeBERT to initialize the 863

12

System Prompt for Generating Summary

Please play the role of a programming
expert.
For the functions in a given repository
and the description of third-party API
functionalities called within those
functions, as well as summaries of
functionalities for functions called
within the repository, please provide a
summary of the specified code's
functionality. Note that you need to
offer a concise summary of the code
rather than step-by-step explanations,
and there is no need to reply with any
additional information.

User Input

Code: {Code}
API Explanation: {explanation}
Called Function Summary: {summary}

Algorithm 1 Annotation Algorithm

Input: A directed function call graph, G(V,E);
Output: The annotation order of functions, L;
1: Initialize sorted elements list L← ∅
2: Compute in-degrees din(v), ∀v ∈ V
3: Initialize a queue Q← {v ∈ V : din(v) = 0}
4: while Q ̸= ∅ or |A| ≠ |V | do
5: while Q = ∅ and |A| ≠ |V | do
6: e← RandomSelect(E)
7: E ← E \ {e}
8: Q← {v ∈ V : din(v) = 0}
9: end while

10: v ← Dequeue(Q)
11: L← L ∪ {v}
12: for u ∈ Adjacent(v) do
13: din(u)← din(u)− 1
14: if din(u) = 0 then
15: Q← Q ∪ {u}
16: end if
17: end for
18: end while
19: return L

model and constructed three pre-training data set- 864

tings through the Query4Code dataset: 865

• Using only query q and code c pair data (orig- 866

inal data setting) 867

• Using only function summary s and code c 868

pair data 869

• Construct a triplet (q, c, s) using data from 870

query, code, and summary simultaneously. At 871

this point, consider the summary correspond- 872

ing to the code as a positive sample. Finally, 873

compare the learning loss function as shown 874

in Equation 6. 875

Ltri = −E

[
log

exp (q · c+) + exp (s · c+)∑N
j=1 exp (q · cj) +

∑N
j=1 exp (s · cj)

]
.

(6) 876

13

	Introduction
	Related Work
	Code Retrieval Datasets
	Code Retrieval Models
	LLM in Data Annotation

	Preliminary Analysis
	Setup
	Impact of Intra-Repository Function Calls
	Impact of Third-Party APIs Calls

	Approach
	Overview
	Task Decomposition
	Analyzing Function and API Calls
	Annotation Algorithm Based on Function Call Graph
	Collection of Third-Party API Documentation Based on Popularity
	Data Filtering

	Experiment
	Annotation
	Model Validation
	Baseline
	Benchmark and Metric
	Training Objective
	Implementation details
	Results

	The potential of the dataset
	Human Evaluation
	Cost Analysis
	Case Study

	Conclusion
	Analysis Settings
	LLM Inference Details
	Prompts for Analysis

	Method Settings
	Prompts for Method

	Annotation Algorithm
	Experimental settings for dataset potential performance

