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Abstract
Transformers have recently been shown to be001
capable of reliably performing logical reason-002
ing over facts and rules expressed in natu-003
ral language, but abductive reasoning - infer-004
ence to the best explanation of an unexpected005
observation - has been underexplored despite006
significant applications to scientific discov-007
ery, common-sense reasoning, and model inter-008
pretability.009

This paper presents AbductionRules, a group010
of natural language datasets designed to train011
and test generalisable abduction over natural-012
language knowledge bases. We use these013
datasets to finetune pretrained Transformers014
and discuss their performance, finding that our015
models learned generalisable abductive tech-016
niques but also learned to exploit the structure017
of our data. Finally, we discuss the viability of018
this approach to abductive reasoning and ways019
in which it may be improved in future work.020

1 Introduction021

Since its introduction, models based on the Trans-022

former (Vaswani et al., 2017) have, due to their023

learning ability and Turing-completeness (Bhat-024

tamishra et al., 2020), sparked research into their025

use in many applications beyond their original pur-026

pose of natural language processing (NLP), includ-027

ing image processing and generation (Parmar et al.,028

2018; Chen et al., 2020), theorem proving (Polu029

and Sutskever, 2020; Welleck et al., 2021), and030

chess (Noever et al., 2020).031

One such task is logical inference - reasoning032

over first-order logic (FOL) knowledge bases (col-033

lections of facts and rules). Given a knowledge034

base, one may attempt to find logical implications035

(deduction), discover rules that extrapolate patterns036

in known facts (induction), or infer facts that would037

explain surprising observations (abduction). More038

specifically, if a newly observed fact p cannot be039

deduced from an existing knowledge base, abduc-040

tion is the process of finding one or more facts that,041

if added to the knowledge base, would allow p to 042

be deduced from existing rules. Figure 1 demon- 043

strates the difference between these three kinds of 044

inference. 045

Traditionally, FOL is represented using a for- 046

mal mathematical syntax, with facts resembling 047

HUMAN(SOCRATES) and rules resembling ∀X : 048

HUMAN(X) =⇒ MORTAL(X). Clark et al. 049

(2020) recently pioneered an alternative approach 050

we call natural-language logic, which might repre- 051

sent these as "Socrates is human" and "Humans are 052

mortal". This approach, properly followed, retains 053

the precision of the mathematical syntax while also 054

taking advantage of Transformers’ NLP aptitude 055

and pretraining. This approach also allows reason- 056

ing over texts not written in formal representations. 057

Clark et al. (2020) examined their models’ po- 058

tential for deduction only. Tafjord et al. (2021) ex- 059

tended this work to explore abduction but retained 060

a focus on deduction. 061

Our goal is to use the natural-language logic ap- 062

proach to train Transformers to perform abductive 063

reasoning with the following properties: 064

• Generalisable: Be able to apply techniques 065

outside domains in which they were learned. 066

• Generative: Produce explanations rather than 067

labelling them as sufficient or insufficient. 068

• Single-hop: Produce direct explanations. In- 069

stead of "plants are green because chlorophyll 070

is green because green light is not used in pho- 071

tosynthesis", prefer "plants are green because 072

chlorophyll is green". If further explanation is 073

desired, abduction can be applied again. 074

• Discerning: Prefer simpler explanations. 075

• Explicit: Use given knowledge bases rather 076

than relying on pretraining. 077

Our efforts to train abduction in this way are 078

motivated by multiple potential applications. 079
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Deduction: Socrates is human → Humans are mortal → ?
Induction: Socrates is human → ? → Socrates is mortal
Abduction: ? → Humans are mortal → Socrates is mortal

Figure 1: A comparison of deduction, induction, and abduction, as attempts to reconstruct different parts of the
same line of FOL reasoning. Note that only deduction is fully reliable, induction may go in either direction in this
case, and only abduction produces new knowledge.

• Ray (2007) describes the use of automated080

abduction in scientific discovery. Since much081

scientific knowledge exists in the form of nat-082

ural language rather than formal representa-083

tions, advances in natural-language abduction084

would greatly assist in automating the scien-085

tific method by helping to explain experimen-086

tal observations.087

• Ignatiev et al. (2019) describe the use of ab-088

duction to interpret deep learning models sim-089

ilar to Transformers, which are infamously090

difficult to interpret.091

• Abduction may also help solve the longstand-092

ing problem of automating common-sense093

reasoning. Transformers excel at memorising094

common knowledge but routinely fail to cap-095

ture any underlying reasoning. Training these096

models to explain their own outputs may rem-097

edy this problem by providing a way to in-098

tegrate this fractured knowledge into a more099

connected model of reality.100

We present the following contributions:101

• A collection of datasets for training and test-102

ing natural-language abduction.103

• A method of synthetically generating more104

realistic natural-language logic datasets.105

• Experimental results showing that Transform-106

ers can perform abductive reasoning without107

additional architecture.108

2 Related Work109

2.1 Natural-language logic110

Our work builds on the RuleTaker line of research111

on natural-language logic. This line began with112

Clark et al. (2020), who developed RuleTakers to113

reason deductively over FOL knowledge bases ex-114

pressed in natural language, judging given facts to115

be true or false. These achieved promising results116

but failed to accurately explain their reasoning or117

generalise to inferences requiring more steps than 118

were seen at training time. PRover (Saha et al., 119

2020) achieved greater explainability by gener- 120

ating proofs of its answers. Similarly, the Itera- 121

tive variant of ProofWriter (Tafjord et al., 2021) 122

chained single-hop deductions rather than reason- 123

ing through multi-hop deductions all at once, mak- 124

ing its reasoning transparent and easily generalis- 125

able to unseen depths. multiPRover (Saha et al., 126

2021) also made use of this iterative approach. 127

The generalisability and interpretability of itera- 128

tive single-hop reasoning are why we seek to train 129

single-hop abduction. 130

Tafjord et al. (2021) also adapted their deduction- 131

based datasets to train abductive reasoning, achiev- 132

ing success but training multi-hop abduction only, 133

and also requiring models to output every possible 134

explanation. By contrast, we seek to train models 135

to discern between simpler and more complex ex- 136

planations - for example, to prefer explanations 137

requiring fewer unknown facts. 138

2.2 Other adjacent work 139

Bhagavatula et al. (2019) presented two more 140

abduction-based datasets: α-NLI, which tests mod- 141

els’ ability to choose which of two hypotheses bet- 142

ter explains an observation, and α-NLG, a gener- 143

ative version of the same dataset. These datasets 144

do not give supporting knowledge bases - all back- 145

ground information must come from pretraining. 146

While this is a valuable approach, we seek to in- 147

vestigate how well Transformers can reason over 148

given knowledge bases to incorporate explicit back- 149

ground knowledge. 150

Gontier et al. (2020) investigated Transformers’ 151

ability to perform inductive reasoning in natural 152

language, finding them able to extrapolate patterns 153

in given proofs but again unable to generalise to 154

more complex proofs. 155

Saparov and Mitchell (2021) developed an al- 156

ternative approach to classifying the ProofWriter 157

datasets that does not reason over natural language, 158

instead using a symbolic, Bayesian approach and 159

using abductive reasoning to satisfy constraints. 160
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Their models’ superior performance demonstrates161

that while Transformers are effective at logical rea-162

soning, they may benefit from more specialised163

architecture.164

3 Methodology165

Prior to our work, there existed no dataset capable166

of training or testing the kind of abductive rea-167

soning we seek. We therefore present Abduction-168

Rules, a natural-language logic dataset designed169

for this task, and use it to train and test several170

models based on a pretrained Text-to-Text Transfer171

Transformer, or T5 (Raffel et al., 2020).172

3.1 Datasets173

AbductionRules has three main predecessors.174

3.1.1 Rule Reasoning175

The Rule Reasoning dataset developed by Clark176

et al. (2020) was, to our knowledge, the first natural-177

language logic dataset.178

To create this dataset, FOL predicates (e.g.179

BIG(LION)) were procedurally generated, entities180

(LION) and attributes (BIG(X)) were extracted,181

and templates ("The {entity} is {attribute}") were182

used to create natural-language logic translations183

("The lion is big"). Rules were created similarly184

(e.g. ∀X : BIG(X) =⇒ BLUE(X) became "If185

something is big then it is blue"). Facts and rules186

were grouped into knowledge bases, each with sev-187

eral questions; the model’s task is to label each188

question true or false.189

The Rule Reasoning dataset includes knowledge190

bases in several domains; those in the animal-191

domain use animals as entities while those in192

the person-domain use peoples’ names. All sub-193

sequent datasets similarly use these two domains.194

The animal-domain includes multi-entity facts195

(CHASES(LION, MOUSE), or "the lion chases the196

mouse"). For our purposes, we consider the lion to197

be the main entity and "chases the mouse" to be an198

attribute of the lion.199

3.1.2 ParaRules200

Recognising that their translations of mathematical201

syntax into natural language were strict and unre-202

alistic (e.g. "Charlie is green. Charlie is rough."),203

Clark et al. (2020) also produced ParaRules, which204

contained knowledge bases and questions similar205

to those in the Rule Reasoning dataset, but were206

paraphrased into more colloquial language (e.g.207

"Charlie has green teeth and rough skin."). This208

approach much better prepares Transformers to 209

reason logically over naturally-occurring texts but 210

requires large amounts of human labour to produce. 211

For this reason, ParaRules is much smaller than the 212

Rule Reasoning dataset. 213

3.1.3 PARARULE Plus 214

Seeing the value in RuleTaker’s size and ease 215

of production as well as the greater utility of 216

ParaRules, Bao (2021) produced PARARULE 217

Plus, a compromise between the Rule Reasoning 218

dataset and ParaRules that procedurally rephrases 219

all rules during generation by using various tem- 220

plates. PARARULE Plus also avoids being entirely 221

context-free by pooling related attributes (such 222

as "big", "strong", "high" and "huge") and only 223

giving entities attributes from one pool. While 224

PARARULE Plus falls short of ParaRules’ variety, 225

its greater collection of rephrased rules is highly 226

valuable. 227

3.1.4 AbductionRules 228

We adapt the open-source code used to generate 229

PARARULE Plus to create AbductionRules1, mak- 230

ing the following changes: 231

• Instead of labelling questions (for our pur- 232

poses, "observations") with "true" or "false", 233

we use the lone fact (or "explanation") that 234

would prove or disprove it. 235

• We ensure that no two knowledge bases in the 236

same dataset give the same attributes to the 237

same entities to avoid repeats. This reduces 238

the size of the datasets; to compensate, we 239

increase the number of entities. 240

• While each rule has a single condition in 241

PARARULE Plus ("If something is cute, 242

then..."), we give three ("If something is cute, 243

funny, and adorable, then..."), with an entity 244

that satisfies exactly two conditions; the model 245

must identify the third. 246

After making these changes, we produce datasets 247

with increasing levels of complexity. 248

• The first complexity level contains no further 249

changes from PARARULE Plus and yields the 250

dataset Abduction-Animal-0.1. 251

1AbductionRules can be found and downloaded
at https://anonymous.4open.science/r/
AbductionRules-D89D.
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Context(Facts+Rules):
Facts: The squirrel is quiet . The leopard is
slow. The dog is adorable. The crocodile is heavy.
The leopard is boring. The leopard is angry. The
crocodile is awful. The leopard attacks the squirrel.
The dog is small. The dog is cute. The squirrel is
nice. The crocodile likes the dog. The squirrel is
kind .

Rules: If something is cute, is adorable, and is furry,
then it is also lovely. All animals that are obese,
are awful, and are heavy, are big. If an animal is
fierce, sees the squirrel, and likes the dog, it is
tired. Things that are smart , are kind , and are
quiet , are also round . If an animal chases the

dog, is boring, and attacks the squirrel, then it is
also strong. All things that are slow, are sleepy, and
are angry, are rough.
Observation: The squirrel is round .
Explanation: The squirrel is smart .

Figure 2: An example observation, explanation,
and corresponding context from Abduction-Animal-
Simple. The model must output the explanation given
the context and observation as input. Facts and rules
used to explain the observation are bolded while rele-
vant attributes are highlighted.

• At the second complexity level, we shuffle252

all knowledge bases to prevent models from253

exploiting the constant position of all sen-254

tences and attributes. This yields the dataset255

Abduction-Animal-0.2.256

• At the third complexity level, we procedurally257

rephrase rules with random variations instead258

of using the same templates as PARARULE259

Plus. For example, the animal-domain FOL260

rule ∀X : (BIG(X) ∧ HEAVY(X) ∧261

FIERCE(X)) =⇒ STRONG(X) might be262

rephrased as "All animals that are big, are263

heavy, and are fierce, are also strong" or "If264

something is heavy, is fierce, and is big, it is265

strong", among many other similar variations.266

Notably, this rephrasing process involves re-267

ordering all attributes so that attributes con-268

tained in correct abductions might be first,269

second, or third. This yields the datasets270

Abduction-Animal-Simple and Abduction-271

Person-Simple.272

Figure 2 contains an example item from273

Animal-Simple.2274

2For brevity, we omit the "Abduction-" prefix when dis-

This method of procedural rule rephrasing 275

represents a useful iteration on the natural- 276

language logic approach and leaves room for 277

further improvement. Concentrated work in 278

this line of research may produce synthetic 279

natural-language logic datasets that are larger 280

yet exhibit much wider variety, making this 281

approach more powerful and robust. 282

• At the fourth and final complexity level, we 283

add extraneous confounding rules to knowl- 284

edge bases. While lower complexity levels 285

only ever have one rule that could explain a 286

given observation, here we create two varia- 287

tions of every (single-entity) rule; one replaces 288

a satisfied condition with an unsatisfied con- 289

dition, while the other replaces all three con- 290

ditions. All replacements come from differ- 291

ent pools. This yields the datasets Abduction- 292

Animal and Abduction-Person. 293

Figure 3 contains simplified examples of data 294

from each complexity level. 295

We intend each successive complexity level to 296

remove additional idiosyncrasies that might be ex- 297

ploited in lieu of using abduction (i.e. used to 298

"cheat"), so that this exploitation can be detected. 299

We also intend the fourth to train models to favour 300

simpler explanations when strictly more complex 301

explanations are available. 302

3.2 Experiments 303

We use AbductionRules to train 8 models based on 304

the pretrained T5 implementation from the Hug- 305

gingFace Transformers library (Wolf et al., 2020).3 306

We first use each training set to train 1 model, 307

yielding 6 models trained at 4 complexity levels 308

across 2 domains. To compare domains and com- 309

plexity levels, we test all models on all test sets, 310

giving us intra-domain results (isolating the effect 311

of the complexity), and inter-domain results (some 312

isolating the effect of the domain). We expect each 313

successive complexity level to train a better-quality 314

model and the two domains to be mostly compara- 315

ble with some variation attributable to the animal- 316

domain’s multi-entity facts. 317

If our approach were adapted to models exten- 318

sively trained to reason on many domains, we ex- 319

pect that teaching abduction in every domain would 320

cussing the AbductionRules datasets within this paper.
3All code used for experiments in this paper can be

found at https://anonymous.4open.science/r/
AbductionRules-D89D.
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Initial Shuffled Rephrased Confounded
The cat is round. The cat is smart. The cat is smart. The cat is smart.
The cat is smart. If something is round, All animals that are All animals that are
If something is round, smart, and quiet, then round, are smart, and round, are smart, and
smart, and quiet, then it is kind. are quiet, are also kind. are quiet, are also kind.
it is kind. The cat is round. The cat is round. The cat is round.

If an animal is round,
is boring, and is quiet,
it is kind.

Figure 3: A diagram demonstrating the successive changes we make to the AbductionRules knowledge bases.

be prohibitively expensive. Therefore, we seek to321

investigate Transformers’ ability to transfer abduc-322

tive reasoning techniques to domains where these323

techniques have not been taught but are nonetheless324

familiar to the Transformer. To this end, we train325

two more cross-domain models.326

• We train one model on our simplest dataset327

and our most complex dataset in another do-328

main, i.e. Animal-0.1 and Person. We name329

this model Person+Animal-0.1.330

• We train another model on the simplest331

person-domain dataset and the most complex332

animal-domain dataset, i.e. Person-Simple333

and Animal, to compare the two domains. We334

name this model Animal+Person-Simple.335

While we are interested in these cross-domain336

models’ performance on all datasets, we are particu-337

larly interested in their results on the most complex338

dataset on which they were not trained (Abduction-339

Animal and Abduction-Person, respectively). We340

treat performance on these datasets as a proxy for341

Transformers’ ability to apply abductive reasoning342

outside the domains in which it was trained.343

4 Results344

Table 1 contains our results, showing the percent-345

age of abductions correctly performed by each346

model on each test set. 4347

Note that no model ever gave a correct explana-348

tion outside the domain(s) in which it was trained.349

On the surface, this would suggest that our models350

were unable to generalise to new domains. How-351

ever, inspection of inter-domain results shows that352

this is not entirely accurate; many explanations con-353

tain errors but nonetheless identify the ground-truth354

4All our results can be found at https://anonymous.
4open.science/r/AbductionRules-D89D.

explanation. For example, the animal models com- 355

monly appended "The" to correct explanations, as 356

in "The Bob is small"; while this is incorrect, it 357

nonetheless indicates the correct explanation in a 358

way that suggests the model still performed the cor- 359

rect abduction. We distinguish between two kinds 360

of errors in correct-yet-useful explanations: loss- 361

less errors and lossy errors. 362

4.1 Lossless errors 363

Explanations with lossless errors failed to match 364

the correct explanation character-for-character but 365

allowed it to be reliably identified. 366

We found several ways in which recognisably 367

correct explanations differed from the ground-truth, 368

such as extra words ("The Bob is small", "The lion 369

is attacks the mouse"), looping ("The dog is is is 370

is is small"), and incorrect grammar ("The anne is 371

wealthy"). While these errors point towards flaws 372

in training, it is a strength of natural-language logic 373

and soft reasoners that they can cope with minor 374

grammar mistakes as long as meaning is preserved. 375

Table 2 contains our results after correcting 376

for these errors. Note that animal-domain models 377

achieved performance comparable to the person- 378

domain models on novel datasets in their own do- 379

main, while person-domain models saw minimal 380

inter-domain improvement. Cross-domain models 381

also saw almost no improvement, suggesting that 382

having seen correct explanations in both domains 383

eliminated this kind of formatting error. 384

4.2 Lossy errors 385

The most important aspect of abduction in our 386

datasets is identification of the correct attribute. 387

The entity at the beginning of the explanation al- 388

ways matches that at the beginning of the observa- 389

tion; therefore, if the correct attribute is identified, 390

the correct explanation can be reconstructed. 391
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Model \ Test set Animal-0.1 Animal-0.2 Animal-Simple Animal Person-Simple Person
Abduction-Animal-0.1 100.0% 99.3% 48.0% 28.8% 0.0% 0.0%
Abduction-Animal-0.2 100.0% 100.0% 37.7% 23.2% 0.0% 0.0%

Abduction-Animal-Simple 100.0% 100.0% 100.0% 50.1% 0.0% 0.0%
Abduction-Animal 92.6% 93.5% 94.1% 100.0% 0.0% 0.0%

Abduction-Person-Simple 0.0% 0.0% 0.0% 0.0% 100.0% 25.6%
Abduction-Person 0.0% 0.0% 0.0% 0.0% 26.8% 100.0%

Person+Animal-0.1 100.0% 100.0% 76.7% 85.5% 92.9% 100.0%
Animal+Person-Simple 99.1% 99.1% 99.4% 100.0% 100.0% 99.8%

Table 1: Performance of all models on all test sets. Test sets corresponding to training sets are bolded.

Model \ Test set Animal-0.1 Animal-0.2 Animal-Simple Animal Person-Simple Person
Abduction-Animal-0.1 100.0% (-) 99.3% (-) 48.0% (-) 28.8% (-) 13.2% (+13.2%) 10.1% (+10.1%)
Abduction-Animal-0.2 100.0% (-) 100.0% (-) 38.5% (+0.9%) 23.6% (+0.4%) 9.6% (+9.6%) 5.7% (+5.7%)

Abduction-Animal-Simple 100.0% (-) 100.0% (-) 100.0% (-) 50.1% (-) 34.4% (+34.4%) 7.0% (+7.0%)
Abduction-Animal 92.6% (-) 93.5% (-) 94.2% (+0.0%) 100.0% (-) 25.0% (+25.0%) 36.5% (+36.5%)

Abduction-Person-Simple 1.5% (+1.5%) 1.3% (+1.3%) 0.9% (+0.9%) 0.3% (+0.3%) 100.0% (-) 25.6% (-)
Abduction-Person 0.0% (-) 0.0% (-) 0.0% (-) 0.0% (-) 26.8% (-) 100.0% (-)

Person+Animal-0.1 100.0% (-) 100.0% (-) 76.7% (-) 85.5% (-) 92.9% (-) 100.0% (-)
Animal+Person-Simple 99.1% (-) 99.1% (-) 99.4% (-) 100.0% (-) 100.0% (-) 99.8% (-)

Table 2: Improvement of all models on all test sets after allowing lossless errors.

Table 3 contains our results after correcting for392

these errors. Note that every model achieved some393

useful results on every test set. Most inter-domain394

results improved to rival intra-domain results, al-395

though the Abduction-Person model continued to396

struggle. Intra-domain results saw minimal im-397

provement, with none seeing a >2% point increase.398

The cross-domain models again saw no visible im-399

provement, further suggesting that these inferior400

results were avoidable from seeing facts, rules, and401

explanations in different formats at training time.402

5 Discussion403

Our results show that models trained on our sim-404

plest datasets struggle to generalise to new com-405

plexity levels and domains, while those trained on406

our more complex datasets are better able to gen-407

eralise but still perform suboptimally. Meanwhile,408

those trained on combined cross-domain datasets409

achieve performance superior to the sum of models410

trained on their parts and easily apply skills outside411

domains in which they were learned. It is also clear412

that models trained in the animal-domain achieve413

better intra-domain and inter-domain performance414

than person-domain models.415

5.1 Animal-0.1 and Animal-0.2416

Unsurprisingly, the models trained on our sim-417

plest datasets fare the worst. Our Animal-0.1 and418

-0.2 models perform similarly poorly, suggesting419

that Animal-0.2’s additional complexity from ran- 420

domised sentence orderings was of minimal impor- 421

tance. In fact, the Animal-0.2 model’s performance 422

on more complex datasets is worse than its sim- 423

pler counterpart; examination of its results reveals 424

a tendency to loop on unfamiliar inputs. Given the 425

Animal-0.1 model’s 99.3% correct (100% allow- 426

ing lossy errors) performance on Animal-0.2, we 427

treat these complexity levels as equivalent and the 428

Animal-0.1 model as definitive. 429

The Animal-0.1 model is approximately 1/3 as 430

accurate on the person-domain when allowing loss- 431

less errors but only loses approximately 6% points 432

when allowing lossy errors, suggesting that it fails 433

to adapt to new formats but is mostly able to use 434

the same techniques as in the animal-domain. 435

These models’ significant performance hit on 436

higher complexity levels clearly indicates that they 437

exploit the structure of their training set. However, 438

it should be noted that the Animal-0.1 model drops 439

each time by approximately a factor of 2. If this 440

model only chose the penultimate attribute in a sen- 441

tence containing the attribute in the question, its 442

accuracy would drop by a factor of 3 with proce- 443

dural rephrasing and again with confounding rules. 444

Therefore, both models utilise some level of gener- 445

alised abductive reasoning. 446

5.2 Animal-Simple and Person-Simple 447

The Animal-Simple model significantly outper- 448

forms our simpler models; this makes sense since 449
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Model \ Test set Animal-0.1 Animal-0.2 Animal-Simple Animal Person-Simple Person
Abduction-Animal-0.1 100.0% (-) 100.0% (+0.7%) 48.4% (+0.4%) 29.1% (+0.3%) 41.9% (+28.8%) 23.5% (+13.4%)
Abduction-Animal-0.2 100.0% (-) 100.0% (-) 39.4% (+0.8%) 24.5% (+0.9%) 29.4% (+19.8%) 14.3% (+8.6%)

Abduction-Animal-Simple 100.0% (-) 100.0% (-) 100.0% (-) 50.1% (-) 66.4% (+32.0%) 14.9% (+7.9%)
Abduction-Animal 92.6% (-) 93.5% (-) 94.2% (-) 100.0% (-) 39.1% (+14.1%) 62.7% (+26.2%)

Abduction-Person-Simple 39.8% (+38.4%) 42.8% (+41.5%) 39.6% (+38.7%) 11.5% (+11.2%) 100.0% (-) 25.6% (-)
Abduction-Person 5.2% (+5.2%) 5.0% (+5.0%) 4.9% (+4.9%) 15.8% (+15.8%) 26.8% (-) 100.0% (-)

Person+Animal-0.1 100.0% (-) 100.0% (-) 76.7% (-) 85.6% (+0.0%) 92.9% (-) 100.0% (-)
Animal+Person-Simple 99.1% (-) 99.1% (-) 99.4% (-) 100.0% (-) 100.0% (-) 99.8% (-)

Table 3: Improvement of all models on all test sets after allowing lossy errors.

Animal-0.1 and -0.2 can be thought of as spe-450

cial, unshuffled cases of Animal-Simple.5 Simi-451

larly to the Animal-0.1 model, the Animal-Simple452

model performs about half as well on Animal as on453

Animal-Simple. This model also performs worse454

on Person-Simple than Animal when allowing loss-455

less errors but better when allowing lossy errors,456

implying that it exploits the structure of Animal-457

Simple to some degree to identify correct attributes.458

Its performance drop from Person-Simple to Per-459

son is greater than from Animal-Simple to Animal,460

suggesting that changes in domain and complexity461

are more difficult to generalise when compounded.462

Our Person-Simple model also performs well463

but fails to generalise to higher complexity; this464

can be partially explained by the multi-entity facts465

in the animal-domain, as rules using these facts are466

not used to create confounding rules. This model467

gives almost no correct inter-domain explanations468

unless lossy errors are allowed, in which case it469

achieves similar inter-domain performance to the470

animal-domain models. Its performance drop on471

Animal can be compared to that of the Animal-472

Simple model from Person-Simple to Person, ex-473

acerbated by the person-domain models’ poorer474

performance in general.475

5.3 Abduction-Animal and476

Abduction-Person477

The Animal model performs the best of all single-478

domain models, achieving >60% performance on479

all datasets except Person-Simple when allowing480

lossy errors. The drop from Person to Person-481

Simple is evidence of cheating, but its generalisabil-482

ity is superior to all other models and demonstrates483

some abductive ability. Surprisingly, it achieves484

worse intra-domain results on lower complexity485

levels than the Animal-Simple model, again indi-486

5Because of this and their failure to train generalisable
abduction, we do not include either Animal-0.1 or -0.2 in the
public release of AbductionRules. The code we used for our
experiments can be used to regenerate them if desired.

cating that some of its performance is dependent 487

on Animal’s rule structure. Still, this performance 488

drop is relatively small (being <10% in all cases), 489

further reinforcing that while this model utilises 490

some degree of both cheating and abduction (like 491

all our models), its abductive capabilities generalise 492

to a promising extent. 493

By contrast, the Person model achieves the worst 494

performance of any model, performing as well on 495

Person-Simple as that dataset’s model does on Per- 496

son and achieving abysmal inter-domain perfor- 497

mance, even on Animal. This model is the clearest 498

indication that (our instantiations of) the two do- 499

mains are not equivalent; the animal-domain’s mod- 500

els are much better able to generalise.The multi- 501

entity rules again offer some explanatory power - 502

the Animal model demonstrates some overtraining 503

on the confounding rules and so performs more 504

poorly in their absence, but still learned to explain 505

observations using multi-entity rules that lacked 506

confounding equivalents, making it robust to extra- 507

neous rules but not reliant on them. If this were a 508

major determining factor, we would expect models 509

trained on both maximally and minimally complex 510

datasets to be even more robust and generalised. 511

5.4 Cross-domain models 512

Our cross-domain models are our best-performing 513

models by far, achieving superior performance on 514

unseen datasets than the sum of models trained on 515

their combined training sets’ parts. 516

The Person+Animal-0.1 model, being trained on 517

our simplest dataset and having its most complex 518

training set come from the worse of our two train- 519

ing domains, is the worse of our two cross-domain 520

models. Nonetheless, it reaches a remarkable level 521

of performance, explaining >76% of all observa- 522

tions correctly on all test sets. Its performance in 523

the face of unconfounded rephrased rules (some- 524

thing unprecedented in its training) is dependent on 525

the domain. In the person-domain (i.e. on Person- 526

Simple), where it received its most complex train- 527

7



ing, it achieves its best result on a dataset it was528

not trained on (excepting Animal-0.2), while in the529

animal-domain (i.e. on Animal-Simple) it achieves530

its worst result, having not seen any rephrased an-531

imal rules at training time. Still, it demonstrates532

a greater ability than any single-domain model to533

generalise to these unfamiliar rule structures. It can534

also apply its training on confounded rules out-535

side the domain in which it was learned, achieving536

far greater performance on Animal than any other537

dataset that it was not trained on.538

The Animal+Person-Simple model is our best539

and most promising, achieving >99% perfor-540

mance on every dataset and consistently adapt-541

ing to all complexity levels in every domain. Like542

Person+Animal-0.1, it encounters unprecedented543

rule structures (singular single-entity animal rules,544

confounded person rules) and generalises almost545

perfectly to each. While our datasets remain some-546

what limited in scope, we believe that this result547

demonstrates that Transformers can generalise ab-548

ductive techniques beyond the domains in which549

those techniques were trained, provided the domain550

itself is not entirely novel.551

Extrapolating these cross-domain results, it552

seems likely that finetuning Transformers that553

have received extensive pretraining (such as GPT-3554

(Brown et al., 2020)) on datasets covering more555

varied and complex examples of abduction would556

make these models capable of much more gener-557

alised natural-language abductive reasoning.558

6 Conclusion559

We have presented the AbductionRules datasets560

and shown that pretrained T5 models finetuned on561

them exhibit generalised abductive reasoning. Our562

more complex datasets train abduction more gen-563

erally and reliably than our less complex datasets.564

Further, training in multiple domains is superior to565

training in only one domain, and we have clear evi-566

dence of generalisation of techniques from one do-567

main to another. We have also made improvements568

to the generation of natural-language logic dataset569

generation, presenting a new middle-ground be-570

tween the template-based PARARULE Plus (Bao,571

2021) and the manually rephrased Pararules (Clark572

et al., 2020). We believe our results are promising573

and demonstrate the viability of Transformer-based574

abduction (and logical reasoning in general), but575

also indicate opportunities for improvement.576

6.1 Future Work 577

Future work in this area might explore: 578

• Examining skill transfer between different 579

kinds of logical reasoning. 580

• Applying abductive techniques in real-world, 581

as opposed to artificial, domains. 582

• Generating probability distributions over mul- 583

tiple possible explanations. 584

• Testing explanations by verifying that they 585

allow the original observation to be deduced. 586

• Explanations that include not only missing 587

premises but the relevant rule(s) they satisfy. 588
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Appendices 693

A Rephrasing method 694

Table 4 demonstrates the method we used to 695

rephrase rules in our more complex datasets. Our 696

method made several binary phrasing choices to 697

decide between 16 possible templates, providing 698

more internal variety than PARARULE Plus but 699

less than ParaRules. As well as this random varia- 700

tion, all 3 conditions were shuffled, giving 6 possi- 701

ble orderings and 96 total possible rephrasings. 702

B Lossless errors 703

The following encompass all errors we considered 704

lossless - i.e. close enough to the ground truth an- 705

swer to be reasonably counted as correct. 706

• Unnecessary inclusion of ’the’, as in "The Bob 707

is small." 708

• Omission of ’the’, as in "Cat is smart." 709

• Unnecessary inclusion of ’is’, as in "The lion 710

is attacks the mouse." 711

• Omission of ’is’, as in "The squirrel funny." 712

• Inclusion of words that are never included in 713

our answers, specifically ’and’, ’are’, and ’a’. 714

• Renaming the entity to better resemble train- 715

ing examples; for example, person-domain 716

models sometimes replaced ’the crocodile’ 717

with ’Cro’ while animal-domain models re- 718

placed ’Bob’ with ’the bobster’. 719

• Looping the correct answer or some part 720

thereof, as in "The dog is is is is is small." 721

or "The rabbit is rabbit is adorable." 722
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Plural? Specific? Also? Then/All? Example rephrasing
× × × × If something is big, is heavy, and is fierce, it is strong.
× × × X If something is big, is heavy, and is fierce, then it is strong.
× × X × If something is big, is heavy, and is fierce, it is also strong.
× × X X If something is big, is heavy, and is fierce, then it is also strong.
× X × × If an animal is big, is heavy, and is fierce, it is strong.
× X × X If an animal is big, is heavy, and is fierce, then it is strong.
× X X × If an animal is big, is heavy, and is fierce, it is also strong.
× X X X If an animal is big, is heavy, and is fierce, then it is also strong.
X × × × Things that are big, are heavy, and are fierce, are strong.
X × × X All things that are big, are heavy, and are fierce, are strong.
X × X × Things that are big, is heavy, and is fierce, are also strong.
X × X X All things that are big, are heavy, and are fierce, are also strong.
X X × × Animals that are big, are heavy, and are fierce, are strong.
X X × X All animals that are big, are heavy, and are fierce, are strong.
X X X × Animals that are big, is heavy, and is fierce, are also strong.
X X X X All animals that are big, are heavy, and are fierce, are also strong.

Table 4: A diagram demonstrating the successive changes we make to the AbductionRules knowledge bases.

• Incorrect capitalisation, as in "The anne is723

wealthy."724

• Omission of spaces, as in "Thebob is small."725

C Abduction-Person-Simple example726

Figure 4 contains an example item from Abduction-727

Person-Simple, similarly to Figure 2’s example728

from Abduction-Animal-Simple.729

Context(Facts+Rules):
Facts: Anne is dull. Dave is nice. Erin is tiny. Fiona
is high . Fiona is strong . Erin is small. Dave is
clever. Fiona is heavy. Anne is sad. Anne is rough.
Erin is thin.
Rules: All things that are big , are high , and
are strong , are also huge . If something is poor,
is small, and is nice, it is also huge. All things that
are high, are rough, and are little, are also smart.
All things that are clever, are quiet, and are dull, are
smart. People that are big, are dull, and are clever,
are also short. If a person is thin, is small, and
is little, that person is short. If a person is thin, is
strong, and is quiet, that person is imperfect. Things
that are little, are small, and are nice, are short. If
a person is high, is poor, and is rough, then that
person is also imperfect. All things that are thin,
are big, and are strong, are also huge. If something
is clever, is nice, and is quiet, then it is smart. If
a person is poor, is rough, and is dull, then that
person is imperfect.
Question: Fiona is huge .

Label: Fiona is big .

Figure 4: An example observation, explanation, and
corresponding context from Abduction-Person-Simple.
The model must output the explanation given the con-
text and observation as input. Facts and rules used to
explain the observation are bolded while relevant at-
tributes are highlighted.
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