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Abstract

Understanding and identifying controlled direct
effects (CDEs) is crucial across numerous scien-
tific domains, including public health. While exist-
ing methods can identify these effects from causal
directed acyclic graphs (DAGs), the true underly-
ing structure is often unknown in practice. Essen-
tial graphs, which represent a Markov equivalence
class of DAGs characterized by the same set of
d-separations, provide a more practical and realis-
tic alternative. However, learning the full essential
graph is computationally intensive and typically
depends on strong, untestable assumptions. In this
work, we characterize a local class of graphs, de-
fined relative to a target variable, that share a spe-
cific subset of d-separations, and introduce a graph-
ical representation of this class, called the local
essential graph (LEG). We then present LocPC, a
novel algorithm designed to recover the LEG from
an observed distribution using only local condi-
tional independence tests. Building on LocPC, we
propose LocPC-CDE, an algorithm that discov-
ers the portion of the LEG that is both sufficient
and necessary to identify a CDE, bypassing the
need of retrieving the full essential graph. Com-
pared to global methods, our algorithms require
less conditional independence tests and operate
under weaker assumptions while maintaining theo-
retical guarantees. We illustrate the effectiveness
of our approach through simulation studies.

1 INTRODUCTION

Understanding controlled direct effects [Pearl, 2000, [2001]]
(CDE?s) is fundamental to causal inference across a wide

array of scientific fields, including public health [Vanstee{

landt, 2009, Vanderweele, [2010] and industries [[Assaad

et al.,|2023]]. CDEs quantify how changes in one variable
influence another independently of any mediating pathways,
offering valuable insight into mechanisms of action and
informing targeted interventions. For instance, suppose an
epidemiological study on the effect of physical exercise on
cardiovascular health, where estimating the CDE reveals
that exercise improves heart outcomes even without weight
loss. This insight is critical as it shows that interventions
promoting exercise should be encouraged even in individu-
als who do not lose weight, shifting public health messaging
and clinical advice to focus on exercise benefits beyond
weight control.

Numerous tools exist for identifying CDEs when the under-
lying causal structure is known and can be represented as a
directed acyclic graph (DAG). However, in many practical
scenarios, the true DAG is unknown. Instead, one can often
recover, under the causal sufficiency and the faithfulness
assumptions [Spirtes et al.l 2000], an essential graph [An{
dersson et al.,|1997], which encodes a Markov equivalence
class of DAGs consistent with the observed conditional inde-
pendencies. While global causal discovery methods such as
the PC algorithm [Spirtes et al., 2000] aim to recover the en-
tire essential graph, they are often computationally intensive
and require large amounts of data—particularly in high-
dimensional settings where only a few causal relationships
are of practical interest. In many real-world applications,
these methods often fail, likely due to the violation of the
strong and untestable assumptions they rely on [[Uhler et al.,
2012l |/Andersenl, 2013} |Ait-Bachir et al., [2023]].

This motivates the development of local causal discovery
methods that concentrate solely on the relevant subgraph
surrounding the variables of interest. Restricting the dis-
covery process to a local neighborhood, would not only
reduce computational complexity but also enhance robust-
ness, while still yielding valid and actionable causal insights.
For instance, |Gao and Ji| [2015]] proposed an algorithm to
discover the immediate neighborhood of a target variable.
Other works proposed algorithms aimed at discovering parts
of the essential graph sufficient for identifying total effects
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using only local information [Maathuis et al., 2008| Malin4
sky and Spirtes|, 2016} [Hyttinen et al., 2015} |Gupta et al.|
2023| |Geffner et al.|[2024]. Nevertheless, the problem of lo-
cal causal discovery targeted for identifying a CDE remains
largely unaddressed. Moreover, the characterization of the
class of graphs recoverable through local information has
received little attention in the literature.

In this paper, we characterize the class of graphs that share a
specific notion of locality around a target variable Y that de-
pendents on a targeted neighborhood hop distance specified
by the user. We show that this class can be uniquely repre-
sented by a local essential graph (LEG) and introduce the
LocPC algorithm for recovering the LEG from data, requir-
ing weaker assumptions than those needed for recovering
the full essential graph. Furthermore, we demonstrate that a
naive application of LocPC can serve for local causal dis-
covery aimed at identifying a CDE. Finally, we develop an
improved version of the algorithm, called the LocPC-CDE
algorithm that optimally discovers only the part of the LEG
that is both necessary and sufficient for CDE identification
in a non-parametric setting.

The remainder of the paper is organized as follows: Sec-
tion 2 introduces preliminaries. Section [3|presents a charac-
terization of all graphs that have the same local information.
Section [ presents the LocPC algorithm. Section [3] starts
by showing how a naive application of LocPC can be used
for identifying a CDE and then presents the LocPC-CDE
algorithm. In Section [ we evaluate the proposed algorithms
on synthetic linear and non-linear datasets. Finally, Sec-
tion [7 concludes the paper. All proofs are deferred to the
supplementary material.

2 PRELIMINARIES

We use capital letters (Z) for variables, bold letters (Z) for
sets of variables, and |Z| for their size.

In this work, we rely on the framework of Structural Causal
Models (SCMs) as introduced by |Pearl [2000]. Formally,
an SCM M is defined as a 4-tuple (U, V,F, P(U)), where
U represents a set of exogenous variables and V denotes
a set of endogenous variables. The set F contains causal
mechanisms, each determining an endogenous variable from
a corresponding exogenous variable and a subset of other
endogenous variables, usually referred to as direct causes or
parents. We assume that the SCM induces a directed acyclic
graph (DAG) G = (V,E) consisting of a set of vertices V
and directed edges E C V x V. Additionally, we assume no
hidden confounding, also known as causal sufficiency.

Assumption 1 (Causal sufficiency). All exogenous vari-
ables are mutually independent and each influences only a
single endogenous variable.

In G, a parent of W; € V is any W,,, € V such that

Wy — Wi is in E. The set of parents of W, is denoted
Pa(W;,G). The children of W}, denoted Ch(W;,G), are
the variables W,, such that W; — W,, is in E. The an-
cestors of W, An(W,, G), are all variables with a directed
path to W;, while its descendants, De(W;,G), are those
reachable by a directed path from ;. The neighbors of
Wi, Ne(W,;,G), are all variables connected to W in G.
The h-hop neighborhood of a target variable Y, denoted
Neighborhood(Y, h,G) is the set of nodes Z C V such
that the shortest path between Y and any node in Z is less
than or equal to h. A node W; in G is considered a collider on
a path p if there exists a subpath W;, — W, < W,,, within
p. In this context, we will interchangeably refer to the triple
Wi — W; < W,, and the node W as the collider. Further-
more, W, — W; + W, is termed an unshielded collider
(UC) if Wy, and W,,, are not adjacent. A path p is said to be
blocked by a set Z if and only if 1) p contains a non-collider
triple (i.e., Wy, — Wy — Wy, or Wy, < W, < W, or
Wy < W; — W,,) such that the middle node (W) is in
Z, or 2) p contains a collider (i.e., Wi, — W; < W,,)
such that (De(W;,G) U {W;}) N Z = ). Two nodes W,
and W), are d-separated by Z, denoted Wi Il gW,, | Z, if
and only if all paths between W; and W, are blocked by
Z [Pearl, |2000]]. The d-separation between W; and W,,, by
Z implies that W; and W,,, are independent conditional on
Z, denoted Wl ,W,, | Z, in every distribution P that
is compatible with G. We denote by ds(W;, W,,,G) all
subsets that d-separates W; and W, in G. Multiple DAGs
can encode the same set of d-separations, forming what is
known as a Markov equivalence class (MEC). Under As-
sumption [T} any two DAGs within the same MEC share
both the same adjacencies and the same UCs [[Verma and
Pearl| |{1990]. This structural similarity allows every MEC to
be uniquely represented by an essential graph, also known
as a CPDAG [Chickering, 2002, |Andersson et al.l [1997,
Meekl, [1995]], denoted C. An essential graph captures all
common adjacencies and encodes edge orientations that
are invariant across all DAGs in the MEC. Specifically, a
directed edge W; — W, in the essential graph implies
that this orientation is present in every DAG in the MEC.
In contrast, an undirected edge W; — W,,, signals ambigu-
ity—some DAGs contain W; — W,,, while others contain
Wi < W,,. All structural relations—parents, children, an-
cestors, descendants, and neighbors—defined in DAGs natu-
rally extend to essential graphs. Thus, we write Pa(W;,C),
Ch(W,;,C), An(Wy,C), De(W;,C), and Ne(W;,C) to re-
fer to their counterparts in the essential graph.

Essential graphs are particularly valuable because they can
be learned from observational data under Assumption |l|and
an additional key assumption, called the faithfulness assump-
tion [Spirtes et al., [ 2000] which posits that all and only the
conditional independencies observed in the data distribution
correspond to d-separation relations in the true underlying
causal DAG. Under these assumptions, structure learning
algorithms can recover the essential graph corresponding



to the true DAG’s MEC. One of the most well-known algo-
rithms for this purpose is the PC algorithm [Spirtes et al.,
2000]. In a nutshell, the PC algorithm uses conditional inde-
pendence tests to infer the skeleton of the graph, meaning
it removes edges between two nodes W; and W, if there
exists a set Z such that W;_ll »W,, | Z. Then, for each un-
shielded triple Wj, — W; — W, in the skeleton, it identifies
it as an UC Wy — W; < W, if the middle node W; was
not included in the conditioning set that yielded the indepen-
dence between W}, and W,,,. Finally, the algorithm orients
as many other edges as possible using Meek’s rules [Meek|,
1995]].

In this paper, we concentrate on the controlled direct ef-
fect (CDE) of treatment variable X on a target variable
Y in a non-parametric setting [Pearl, 2000, 2001]], de-
noted as CDE(z,z’,Y) and formally expressed as E(Y |
do(x), do(pay\x)) — E(Y | do(z'),do(pay x)), where
pay\ x stands for any realization of the parents of Y, ex-
cluding X and do() operator represents an intervention. A
CDE(x,2',Y) is said to be identifiable if it can be uniquely
computed from the positive observed distribution [Pearl,
2000]. Causal graphs are invaluable for identifying causal
effects in general. Specifically, it has been shown that under
Assumption [1} the CDE(x,2',Y) is always identifiable
from a DAG. It is also identifiable from an essential graph
if and only if there is no undirected edge connected to Y
[Flanagan, [2020, Theorem 5.4].

3 CHARACTERIZATION OF LOCAL
MARKOV EQUIVALENCE

In this section, we introduce notations and results that will
be used to define our search space. We start by defining the
local Markov equivalence class which contains all DAGs
that satisfy a subset of d-separations that will be referred to
as local d-separations, whose implied conditional indepen-
dencies will be referred to as local conditional independen-
cies.

Definition 1 (Local Markov equivalence class (LMECQC)).
Consider a DAG G = (V,E), a target vertex Y € V and
an integer h. We define the local Markov equivalence class
of G relative to a vertex Y and its h-hop neighborhood,
denoted by LM EC(Y, h,G), as the set of graphs such that
VG, € LMEC(Y,h,G), VD € Neighborhood(Y,h,G;),
YW e V\ {D}:

ds(D,W,G) = ds(D,W,G;).

The following theorem derives graphical characterization of
all DAGs within the same LMEC.

Theorem 1. Consider a DAG G = (V,E) and a ver-
tex of interest Y € V. We have the following ¥G;,G; €
LMEC(Y,h,G):

1. Same (h+1)-Neighborhood:

Neighborhood(Y,h+1,G;) = Neighborhood(Y, h+1,G;),

2. Same local adjacencies:

VD € Neighborhood(Y, h,G;) : Ne(D,G;) = Ne(D, §G;),

3. Same local UCs: A UC involving the un-
ordered triplet {Dy,Ds, A} appears in G;
with Dy,Ds €  Neighborhood(Y,h,G;) and
A € Neighborhood(Y,h + 1,G;) if and only if the
same UC appears in G,

4. Same inactive triples: For any unordered triplet
{D,A,W} with D € Neighborhood(Y,h,G;), A €
Ne(D,G;) and W € V\{Neighborhood(Y, h,G;)U
Ne(Y,Gi)}:

D— A+ WeG,orW ¢ Ne(A,G;)
<
D— A+ WeGorW ¢ Ne(A,G).

In the following, we present a new graphical representation,
which we call local essential graph (LEG), that represents
all graphs in a given LMEC.

Definition 2 (Local essential graph (LEG)). Let G = (V,E)
be a directed acyclic graph (DAG), and let Y € V be a
vertex of interest. The local essential graph (LEG) associ-
ated with LM EC(Y, h,G), denoted by LY" = (V,EY:h),
is defined as the partially directed acyclic graph over
V satisfying the following conditions for all nodes D &
Neighborhood(Y, h,G), A € Neighborhood(Y,h+1,G),
and W; € V:

1. Undirected edge: (A — W)
(A — W) € EY" if and only if VG, €
LMEC(Y,h,G), either A — W or A < W is
present, and 3G;,G; € LMEC(Y,h,G) such that
A — W appears in G; and A <— W appears in G ;.

2. Arrow edge: (A — W)
(A — W) € EY if and only if VG, €
LMEC(Y,h,G), A— W appears in G;.

3. Double-bar edge: (D — A)

(D —# A € EY" if and only if,
VG, € LMEC(Y,hG) and YW ¢
{Neighborhood(Y,h,G;) U Ne(Y,G;)}, either

W & Ne(A,G;)or D — A+ W.

Note that from Definition 2] the absence of an edge be-
tween two nodes N7 and Ny in the LEG has different
interpretations depending on the nodes. If at least one of
the nodes belongs to Neighborhood(Y, h,G), then the ab-
sence of an edge indicates that the nodes are non-adjacent
in all DAGs of LM EC(Y,h,G). If neither node is in
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Figure 1: A DAG G and the LEGs £Y-0, £Y°!, and £Y*2
around node Y. Red: outcome/target Y'; blue: treatment X;
grey: h-neighborhood nodes; red arrow: direct effect (M:
mediator).

Neighborhood(Y, h, G), then the absence of an edge is non-
informative about the edge existence in the LMEC DAGs.

The first two items in Definition [2] closely resemble the
conditions used to characterize a full essential graph, with
the key difference being that they now apply at the local
level (i.e., within a neighborhood). The major distinction
compared to the global essential graph characterization lies
in the introduction of a new type of orientation in item
3 of Definition [2] Interestingly, this additional orientation
enables us—using only local d-separation—to infer that
there cannot exist a node outside the neighborhood W' that
completes a structure of the form D — A — W, D «+
A« W,or D < A — TW. This observation, which
follows from item 3 of Theorem [} will prove useful in
Section[5|when addressing a stopping criterion during causal
discovery for CDE identification.

The above definition may be relatively dense, and in gen-
eral graphical concepts are often better understood through
visual representation. To facilitate this, we provide an illus-
tration in Figure [T} where Figure [Ta] depicts a DAG, Fig-
ure [1b| displays its corresponding LEG relative to Y and
its 0-hop neighborhood, while Figure |Ic| shows its corre-
sponding LEG relative to Y and its 1-hop neighborhood and
Figure[Id|shows its corresponding LEG relative to Y and its
2-hop neighborhood. Notice that the LEG in Figure[Td|con-
tains more edge orientations than the one in Figure [Ib] even
among nodes that already belong to the 1-hop neighborhood
of Y.

A LEG is particularly valuable in the context of local causal

discovery, as it compactly encodes rich information about
the local d-separations within the graph. Moreover, given
any DAG from a specific LMEC, it is possible to reconstruct
the corresponding LEG. To demonstrate this, we introduce
four orientation rules: three are adaptations of The Meek
rules to our local setting, referred to as the LocMeek-Rules,
and the fourth is a newly proposed orientation rule, referred
to as Loc-Rule.

Definition 3 (Local Rules). Consider any node de-
noted by D or D with a subscript (e.g., D) to be in
Neighborhood(Y, h,G); any node denoted by A to be in
Neighborhood(Y,h + 1,G). The LocMeek-Rules are de-
fines as follows:

LocMeek-Rule-1 If Vi — Vo — V3 is unshielded then
Vi—=Ve— Vs

LocMeek-Rule-2 If Vi — Vo — Vs and Vi — V3 then
Vi — Vs

LocMeek-Rule-3 If Vi — Vo — V3, Vi — V4 — V3 and
Vi — V3 then Vi — V3,

where (V1,Va, V3, Vy) is any ordering of { D1, D2, D3, A}.
Moreover, the LocRule is defined as follows:

Loc-Rule If D — A such that:
(a) A & Neighborhood(Y,h,G), and
(b) VW € 'V \ {Neighborhood(Y,h,G) U
Ne(D,G)},3S € ds(D,W,G) : A ¢S,
then D — A.

Now that all needed orientation rules are introduced, in the
following theorem, we formally establish how these rules,
along with necessary conditions taken from Theorem|I] can
be applied to derive the LEG from any DAG in the LMEC.

Theorem 2. Let G be a directed acyclic graph (DAG). The
Local essential graph (LEG) LY'" associated with G and
defined with respect to a target node Y and hop h can be
constructed as follows:

1. Same Neighborhood:

Neighborhood(Y, h+1, LY'") = Neighborhood(Y,h+1,G),

2. Same local adjacencies:

VD € Neighborhood(Y, h,G),

3. Same local UCs: For all pairs of nodes
D;, D; €  Neighborhood(Y,h,G) and all
A € Neighborhood(Y,h + 1,G), the following
UCs are preserved:

(a) If D = Dj <= AinG, then Dy — D; < Ain
EY,h,.

Ne(D, L£Y") = Ne(D, G),



(b) I]‘é)}f—)A%Djing,thenDi—)A%Djin
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4. Additional local rules: Apply

to|LocMeek-Rule-3|and|Loc-Rule|iteratively until no
further rule can be applied.

We refer back to Figure|l|to illustrate how a LEG can con-
structed from a DAG. Items 1 and 2 of Theorem [2] are
straightforwardly demonstrated in all LEGs: the shaded
nodes are always connected to each other in each LEG and
to their neighbors exactly as in the DAG in Figure[Ta] With
Item 3 of Theorem [2} all unshielded colliders (UCs) involv-
ing at least two shaded nodes are exactly those present in the
DAG shown in Figure[Tal The of item 4 of Theo-
rem 2]is exemplified in the LEG for the 1-hop neighborhood
of Y in Figure[Ic} the paths from Z; to Z4, Zs and Z7 con-
taining Z3 are naturally blocked in the DAG of Figure
hence Z3 do not appear in ds(Zs, Z4,G), ds(Z2, Zs, G) and
ds(Zy, Z7,G). Since Zy, Zg and Z; are the only nodes out-
side Neighborhood(Y,1,G) U Ne(Z1,G), ap-
plies, and we orient Z5 —# Z3 in the LEG of Figure
This indicates that if an edge between Z3 and Z4, Zg or Z»
exists in the DAG, then Z; — 73 < Z; (fori = 4,6,7)
must hold in the DAG. Finally, local Meek rules are applied
for example in the LEG of the 2-hop neighborhood of Y in
Figure [Id} For example, after orienting Zs — Z3 via the
UC involving Z5,[LocMeek-Rule-1]is applied iteratively to
infer Z3 — X — Y. At this stage (h = 2), the full DAG
is recovered, which is expected since only one node lies
outside the 3-hop neighborhood and G = C in this example.

For any given LMEC, the corresponding LEG is unique, as
emphasized by this corollary.

Corollary 1. Let Gy and G be two DAGs, and let E}/’h and
L';/’h denote their associated LEGs. If LM EC(Y, h,G1) =
LMEC(Y,h,Gy), then LY = L3,

4 LOCAL CAUSAL DISCOVERY

In this section, our objective is to recover the LEG from
an observed probability distribution, that is, to infer the
LEG using conditional independence (CI) tests. To achieve
this, we introduce a new algorithm, LocPC, which is an
adaptation of the classical PC algorithm designed to focus
exclusively on local conditional independencies. Given a
target variable Y and an integer h representing the size of
the local neighborhood of interest, LocPC begins with an
undirected graph £ where all nodes are connected to Y and
initializes the set of focus variables D as {Y'}. Next, LocPC
performs conditional independence tests, inspired by the
strategy of the original PC algorithm. For each D € D and
W € Ne(D, L), it checks whether D_1l ;W | S for subsets
S C Adj(D, E), starting with |S| = 0 and incrementally
increasing the size of S. If there exists at least a subset S

such that D_Il W | S then the edge D — W is removed and
S is saved in sepset(D, W, ﬁ) This process continues until
either the edge D — W is removed or all possible condition-
ing sets have been exhausted. This first phase identifies the
variables that cannot be rendered conditionally independent
of Y, helping to delineate its 1-hop neighborhood. In the
second phase, all neighbors of Y in £ are added to D, and
undirected edges are drawn between all newly added nodes
in D as well as between these new nodes and nodes outside
of D. The procedure from the first phase is then repeated,
while avoiding redundant tests (for instance, excluding Y
from further conditional independence tests in this phase).
The algorithm iteratively expands D by including all neigh-
bors of nodes in the current D, repeating the process h-times,
i.e., until D contains at least one node whose shortest path
to Y is equal to h. After that LocPC proceeds to orienta-
tion. It first detects all UCs using the same procedure as
the PC algorithm. Then it iteratively applies
[HLocMeek-Rule-3] and [Loc-Rule] until no more rules can
be applied. [LocMeek-Rule-I[HLocMeek-Rule-3|are applied
directly by replacing G with £, while[Loc-Rule]is applied by
substituting ds with the separating set sepset identified by
the algorithm and also replacing G with L.A pseudo-code
of the LocPC algorithm is given in Appendix [C]

As with full essential graphs, it is generally not possible
to recover the LEG purely from observational data with-
out additional assumptions. Discovering essential graphs
typically requires both Assumption [I]and the faithfulness
assumptions. In the context of LEG recovery using LocPC,
Assumption [T|remains necessary. However, a key insight is
that the full faithfulness assumption is not required. Instead,
we introduce a weaker assumption, which we refer to as lo-
cal faithfulness. Due to its relaxed nature, local faithfulness
can be more realistic and practical in many applications.

Assumption 2 (Local faithfulness). Consider a DAG
G = (V,E) and a vertex of interest Y € V with
its h-hop neighborhood. We assume that for all D €
Neighborhood(Y, h,G), forall W € V\ {D}:

ci(D,W,G) =ds(D,W,G),

where ci(D, W, G) represents all conditioning sets under
which D is conditionally independent of W in any distribu-
tion P compatible with G.

With all necessary assumptions now established, we proceed
to demonstrate in the following theorem the correctness of
the LocPC algorithm.

Theorem 3. Let L be the output of the LocPC algorithm
given a target node Y and an integer h representing the size
of the local neighborhood of interest. If Assumptions[I|and
Plare satisfied and given perfect conditional independencies,
then L corresponds to the true LEG LY".



5 LOCAL CAUSAL DISCOVERY FOR
IDENTIFYING CDE

In this section, we aim to recover a portion of the LEG suf-
ficient to determine the identifiability of the causal direct
effect CDE(x,2',Y"). According to [Flanagan, 2020, The-
orem 5.4], identifying this CDE requires verifying whether
all edges adjacent to Y are oriented. A straightforward strat-
egy, which we refer to as naiveLocPC-CDE, consists of
initially applying the LocPC algorithm with » = 0, and
subsequently checking whether all edges incident to Y have
been oriented. If so, the CDE(x,2’,Y") is identifiable, and
the procedure terminates. Otherwise, the process is repeated
with h = 2, reusing previously obtained information and
avoiding redundant conditional independence tests, and con-
tinues incrementally in this manner.

For instance, consider the CDE of X — Y (depicted as
a red edge) in Figure (1} This effect is identifiable in £Y2
because all edges adjacent to Y are oriented within the
corresponding LEG.

When CDE(z,2’,Y) is not identifiable from the full es-
sential graph, the naiveLocPC-CDE algorithm would, in
principle, need to repeatedly apply LocPC until the entire
essential graph is recovered. However, it is possible to antic-
ipate cases where C DE(x, 2',Y") is non-identifiable and to
identify variables whose exploration would not contribute
to identification (i.e., adding them to D in LocPC would
be uninformative). To address this, we introduce a stopping
criterion that allows us to detect, in advance, when an edge
into Y is non-orientable in the essential graph. In such cases,
the algorithm can terminate early, as CDE(x, 2',Y") would
remain non-identifiable even if the full essential graph were
recovered.

Definition 4 (Non-orientability criterion in LEGs). Let D C
Neighborhood(Y, h,G) be a subset of nodes, and consider
the LEG LY = (V,EY'") with h > 1. D satisfies the
non-orientability criterion if VD € D:

1. BA ¢ D such that (D — A) € EY'", and
2. {A¢D:(D—HA) eEVMY <1

Theorem 4. Let D C Neighborhood(Y, h,G), and let
LYP = (V,EY'") denote the LEG with h > 1. If D satisfies
the non-orientability criterion (Def.[d), then VD;, D; € D:

(D; — D;) €EY'" = Vk > h: (D, — D;) € EVF.

Corollary 2. Let D C Neighborhood(Y, h,G) be a subset
of nodes such that Y € D, and let LY! denote the LEG with
h > 1. If D satisfies the non-orientability criterion (Def. H)),
then CDE(x,2',Y) is not identifiable.

Corollary 2] shows that full discovery of the essential graph
is unnecessary when the CDE is not identifiable (as in
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Figure 2: A DAG G, its essential graph C and its associated
LEG LY are given. D = {Y, X, D;} satisfies the non-
orientability criterion from Def[d} Theorem 4] then implies
that no undirected edge in £Y*! between nodes in D will be
oriented in LY for any k > 1.

naiveLocPC-CDE); the process can be halted earlier if
the non-orientability criterion holds. Figure [2] illustrates
such a case where identification of CDE(x,2’,y) is al-
ready precluded after obtaining the LEG £Y!. By choosing
D = {Y, X, D:}, we observe that there is no unoriented
edge between a node in I and a node outside ID (condition 1
of Definition ). Moreover, there exists a unique — edge
between the node X € Dand A; ¢ D (condition 2 of Defini-
tion E[) Therefore, D satisfies the non-orientability criterion,
and we conclude by Corollary 2 that the CDE(x,z',Y")
is not identifiable in C from the LEG £Y"!—hence, a full
discovery of the essential graph is unnecessary. However,
note that the set D' = {Y, X, Dy, D3} does not satisfy the
non-orientability criterion since the edge Do — As is present
in £Y°1.

Building on this idea, we propose the LocPC-CDE algo-
rithm. The core idea is to start from the target variable
Y and progressively construct the LEG by incrementally
increasing the neighborhood hop h. At each step, a local
causal discovery procedure is performed, leveraging infor-
mation from previous iterations to avoid redundant tests
and to incorporate already discovered edges. After each
expansion, we check whether a set satisfies the criterion
defined in Definition 4] If no such set exists, the procedure
continues; otherwise, causal discovery can be halted early
since the non-identifiability of CDE(z,z',Y) is already
established. Other stopping criteria, such as detecting that
X is achild of Y or that X is not adjacent to Y implying
that CDE(x,2',y) = 0, are retained in the algorithm. A
pseudo-code of the LocPC-CDE algorithm is provided in
Appendix [B] The LocPC-CDE algorithm is obviously more
efficient than its naive counterpart, as the discovery process
should terminate earlier in cases where the CDE is not iden-
tifiable. Theoretically, both algorithms (LocPC-CDE and
the naive approach) are equivalent in terms of output. How-
ever, LocPC-CDE offers a computational advantage due to
its early stopping criterion in cases where CDFE(z,2’,Y)
is not identifiable. The following theorem establishes the
correctness of the LocPC-CDE algorithm.

Theorem 5. If Assumptions[l|and |2 are satisfied and with



access to perfect conditional independencies, the LocPC-
CDE algorithm will correctly detect if CDE(z,z',Y) is
identifiable and in case of identifiability it will return the
LEG from which CDE(x,x',Y) is identifiable.

The following result emphasizes that LocPC-CDE will iden-
tify CDE(x,x’,Y) as fast as possible given the information
retrieved by the LocPC algorithm.

Proposition 1. Consider Assumptions[I|and | are satisfied
and we have access to perfect conditional independencies,
if LocPC-CDE returns that CDE(xz,x',Y) is not identifi-
able, then it was impossible to determine this at any earlier
iteration of LocPC-CDE.

6 EXPERIMENTS

In this section, we present an empirical evaluation based on
simulated data to support and validate our theoretical results.
We evaluate the LocPC-CDE algorithnﬂ by comparing it
to the PC algorithm [Spirtes et al.,|2000] (global discovery),
and to LDECC [Gupta et al., 2023]], initially designed for
local causal discovery of the total effect when targeting the
treatment node (X'). When targeting the outcome node (Y"),
LDECC can also be used to identify the direct effect.

For each setting, experiments are conducted on 100 random
Erdés—Rényi DAGs (with constant sparsity as the graph size
increases). The DAGs are generated such that the CDE of
a variable X on a variable Y is either identifiable or non-
identifiable in the associated essential graph. For each DAG
of size |V| = {10, 20, 30,40}, a sample of n = 5000 ob-
servations is generated according to a linear or nonlinear
(binary) SCM consistent with the DAG structure. In the lin-
ear (Gaussian) case, the Fisher-Z conditional independence
test [Fisher, |1921] is used, whereas for the binary case, the
G? conditional independence test is employed [Tsamardi-
nos et al.l |2006] (both tests are performed at significance
level @ = 0.05). For each experiment, we measure: (1) the
execution time, (2) the true positive rate (TPR, i.e., the pro-
portion of graphs correctly labeled as having an identifiable
CDE when it is identifiable, and non-identifiable otherwise),
and (3) for identifiable cases, the F score between the es-
timated parents of the outcome Y and the true parents in
the DAG. Since this corresponds to a valid adjustment set
for CDE estimation, an F) score of 1 indicates accurate
CDE estimation capability. Details about experiments are
presented in Appendix [C} Results (mean +1.96xsd) are
shown in Figure[3]

In all experiments, LocPC-CDE outperforms PC and
LDECC in computation time, with the advantage increasing
as the number of nodes grows and being more pronounced

'In our implementation, we take into accound practical consid-
erations, as suggested in|(Colombo and Maathuis| [2014], to make
the algorithm order independent.
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Figure 3: Empirical performance of LocPC-CDE across
different graph sizes and SCM settings, compared to global
discovery (PC) and state-of-the-art local discovery method
(LDECCQ).

in the nonlinear setting. For identifiable cases, TPR do not
differ significantly between LocPC-CDE and PC (i.e., local
discovery performs as well as global discovery). LDECC
performs similarly to LocPC-CDE for nonlinear SCMs but
worse in linear SCMs. Regarding the F} score in identifiable
cases, LocPC-CDE is comparable or superior to LDECC
in both linear and nonlinear settings (though differences are



not significant), and both local methods significantly outper-
form PC. Finally, in non-identifiable cases, LocPC-CDE
consistently achieves higher TPR than baselines, and both
local methods significantly outperform PC.

7 CONCLUSION

In this work, we addressed the problem of local causal
discovery, aiming to identify causal relationships within
a graph region sufficient to determine a controlled direct
effect (CDE) of interest, without reconstructing the entire
causal structure. We characterized a class of graphs sharing
local properties with the true graph and introduced local
essential graphs (LEGs) as a graphical representation of this
class. We demonstrated that LEGs can be recovered from
observational data under causal sufficiency and a mild local
faithfulness assumption, and introduced the constraint-based
local discovery algorithm LocPC to achieve this. Build-
ing on this, we proposed LocPC-CDE, an algorithm that
leverages local constraints and iterative rule-based infer-
ence to efficiently recover the smallest LEG sufficient for
identifying the CDE of interest. We proved the algorithm’s
soundness, completeness, and optimality, and demonstrated
its efficiency and effectiveness on simulated data, where it
outperformed baselines (global discovery algorithm and ex-
isting local discovery algorithm) in runtime while achieving
comparable or better CDE identifiability.

This work has several limitations: the LEG characterization
is incomplete (a single LEG may correspond to different
LMECs); both LocPC and LocPC-CDE assume causal
sufficiency, which may not hold in practice; and CDE iden-
tifiability in LocPC-CDE depends on identifiability within
essential graphs.
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A PROOFS

A.1 PROOF OF THEOREM

We restate Theorem [1|and then we prove it.
Theorem 1. Consider a DAG G = (V,E) and a vertex of interestY € V. We have the following ¥G;,G; € LMEC(Y, h,G):
1. Same (h+1)-Neighborhood:
Neighborhood(Y,h +1,G;) = Neighborhood(Y,h +1,G;),
2. Same local adjacencies:
VD € Neighborhood(Y, h,G;) : Ne(D,G;) = Ne(D, G;),

3. Same local UCs: A UC involving the unordered triplet {D1, D2, A} appears in G; with D1,Dy €
Neighborhood(Y, h,G;) and A € Neighborhood(Y, h + 1,G;) if and only if the same UC appears in Gj,

4. Same inactive triples: For any unordered triplet {D, A, W} with D € Neighborhood(Y, h,G;), A € Ne(D, G;) and
W e V\ {Neighborhood(Y,h,G;) UNe(Y,G;)} :

DA« WegG,orW ¢ Ne(A,G;)
<~
DA+ WeGorW ¢ Ne(A,QG).

Proof. LetG;,G; € LMEC(Y,h,G). We prove every item of the theorem, starting by proving 1 and 2 simultaneously:

Items 1 and 2: Proven by induction on h.

(Base case Consider h = 0. We show that Neighborhood(Y,1,G;) = Neighborhood(Y,1,G;), ie., Ne(Y,G;) =
Ne(Y,G;). Assume for contradiction that N € Ne(Y,G;) but N ¢ Ne(Y,G;). Since N € Ne(Y,G;), no
seﬂ d-separates Y and N in G;. However, since N ¢ Ne(Y,§;), there exists a set S € ds(Y, N, G;) that
d-separates Y and N in G;. This contradicts the assumption that G; and G; belong to the same LMEC (i.e., share
the same d-separation structure). Hence, Neighborhood(Y, 1,G;) = Neighborhood(Y,1,G;).

(Induction step) Assume the induction hypothesis H : Neighborhood(Y,h,G;) = Neighborhood(Y,h,G;) holds for some
h > 0. We prove it holds for h + 1. Let D € Neighborhood(Y, h,G;) = Neighborhood(Y, h,G;) (by H). We
show Ne(D,G;) = Ne(D, G;). Suppose, for contradiction, that A € Ne(D, G;) but A ¢ Ne(D,G;). Then no

'Note that when we say there is no separating set for A and B in G, we mean that ds(A, B, G) is undefined, not that ds(A, B, G) = 0.
If A and B are unconditionally d-separated, then ds(A, B, G) = 0, and we say they are separated by the empty set.
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Item 3:

Item 4:

set S d-separates D and A in G;, but some set S d-separates them in G;. Again, this contradicts the assumption that
G; and G; are in the same LMEC. Therefore, for all D € Neighborhood(Y, h,G;), Ne(D,G;) = Ne(D,G,),
implying Neighborhood(Y, h + 1,G;) = Neighborhood(Y,h +1,G;).

This completes the induction and proves both first items of the theorem. From this point onward, whenever we write
Neighborhood(Y, h +1,G;), it is understood to denote the same set as Neighborhood(Y, h+1,G;).

Let Dy, D; € Neighborhood(Y, h,G;) and A € Neighborhood(Y,h + 1,G;). Suppose, for contradiction, that the
unshielded collider (UC) Dy, — A < D exists in G; but not in G;. By item 2, the adjacencies A € Ne(Dy, G;),
A € Ne(Dy,G;), and Dy, ¢ Ne(Dy,G;) also hold in G;. Since the triplet (Dy, A, D;) is not a collider in G, it must
be a chain (D, -+ A — D or D; — A — Dy) or fork (D, < A — D), implying A € Sforall S € ds(Dy, Dy, G;).
In contrast, since Dy, — A < D;in G;, A is a collider and thus A ¢ S for all S € ds(Dy, Dy, G;). This contradicts the
fact that G;,G; € LMEC(Y,h,G).

Hence, D), — A < D; must also exist in G;. The argument similarly applies to UCs of the form D, — D; < A.

We show that if D — A < W € G, or W ¢ Ne(A,G;), then it must also hold that D — A < W € G, or
W ¢ Ne(A,G;). Equivalently, if the triple (D, A, W) is neither a chain nor a fork in G;, it must also be neither a chain
nor a fork in G;.

We proceed by contradiction. Suppose D — A + W € G, or W ¢ Ne(A, G;), but that (D, A, W) forms a chain or a
fork in G;. Then the path (D, A, W) must be blocked to d-separate D and W in G;, which requires conditioning on A.
Hence, for all S € ds(D, W, G;), it must be that A € S. We show that this contradicts the assumption that G; and G;
belong to the same LMEC by demonstrating that there always exists S € ds(D, W, ;) such that A ¢ S.

e If D - A+ W € G, then conditioning on A activates the collider path between D and W, and thus A cannot
belong to any separating set: VS € ds(D, W, G;), A ¢ S. This directly contradicts the requirement in G; that all
separating sets contain A.

o If W ¢ Ne(A,G;), we consider two subcases:

(a) If no active path between D and W contains A in G;, then A is irrelevant for d-separation, and so there exists
a minimal separating set S € ds(D, W, G;) such that A ¢ S, contradicting the assumption.
(b) If there exists at least one active path from D to W passing through A, we distinguish two further cases:
i. If D ¢ De(W,G;), then by standard properties of d-separation, Pa(W, G;) separates D from W. Since
W ¢ Ne(A,G;), it follows that A ¢ Pa(W,G;), and thus A ¢ S for some S € ds(D, W, G;) — again a
contradiction.
ii. If D € De(W, G;), then any path from W to D through A must be directed: W — -+ - K — A — D.
These paths are blocked by K, and conditioning on K does not activate any other path since K is neither
a collider nor a descendant of one — otherwise it would form a cycle. Thus, the path is blocked without
conditioning on A, and again there exists S € ds(D, W, G;) such that A ¢ S.

In all cases, we reach a contradiction. Therefore, it must be that D — A <~ W € G; or W ¢ Ne(A, G;). The reverse
implication follows by symmetry, exchanging the roles of G; and G;.

O

A.2 PROOF OF THEOREM

We proceed to prove the theorem after having restated it.

Theorem 2. Let G be a directed acyclic graph (DAG). The Local essential graph (LEG) LY°" associated with G and defined
with respect to a target node Y and hop h can be constructed as follows:

1.

2.

Same Neighborhood:

Neighborhood(Y,h + 1, LY'") = Neighborhood(Y,h + 1,G),

Same local adjacencies:

VD € Neighborhood(Y,h,G), Ne(D,LY"")= Ne(D,G),



3. Same local UCs: For all pairs of nodes D;, D; € Neighborhood(Y, h,G) and all A € Neighborhood(Y,h+1,G),
the following UCs are preserved:
(a) IfD; - Dj <~ AinG, then D; — D; < Ain LYh;
(b) If D; - A< D;inG, then D; — A< Djin LYh,
4. Additional local rules: Apply|LocMeek-Rule-1|to|LocMeek-Rule-3|and|Loc-Rule|iteratively until no further rule can be
applied.

Proof. Items 1, 2, and 3 follow directly from Items 1, 2, and 3 of Theorem which ensures that the edges of type (—) and
(—) introduced through these items are consistent with Definition

[CocMeek-Rule-1} [LocMeek-Rule-2] and [LocMeek-Rule-3| guarantee that no new unshielded collider common to all DAGs
in the LMEC (according to Theorem|I)) is introduced, and that no cycles are created. Therefore, the directed edges added by
these rules also satisfy Definition 2]

We now prove the soundness of the local rule Let G; € LMEC(Y,h,G). Suppose that there exists a node
Wy € V\ {Neighborhood(Y,h,G;) U Ne(D, G;)} such that the triple (D, A, W) forms a chain or a fork in G;. Then
necessarily, for all separating sets S € ds(D, Wy, G;), it must hold that A € S. Thus, if the condition of ruleis
satisfied for all W ¢ Neighborhood(Y, h,G;), it implies that, for all such W, either W ¢ Ne(A,G;)or D — A < W is
a collider in G;. By Item 4 of Theorem [T} this property holds in all DAGs of the LMEC. Therefore, introducing the edge
D —H A is consistent with Definition 2]

O

Corollary 1. Let Gy and G be two DAGs, and let E{’h and ,C;/’h‘ denote their associated LEGs. If LMEC(Y,h,G1) =
LMEC(Y,h,Gy), then L3 = £,

Proof. If G; and G5 belong to the same LMEC, then Theorem [I| ensures that all the structural features required for
constructing the LEG, as defined in Theorem 2} are shared by both DAGs. Consequently, they have the same LEG. L

A.3 PROOF OF THEOREM

Theorem 3. Let L be the output of the LocPC algorithm given a target node Y and an integer h representing the size of the
local neighborhood of interest. If Assumptions and@are satisfied and given perfect conditional independencies, then L
corresponds to the true LEG LY.

Proof. Let G denote the true underlying graph, £Y*" the associated LEG, and L the output of LocPC. We show that under
Assumptions [I{and 2| and assuming access to a perfect conditional independence (CI) oracle, the output L satisfies all items
of Theorem 2

Items 1, 2: We first show that LocPC correctly recovers the neighborhood of Y: Ne(Y, L) = Ne(Y, £Y-"). Initially, all nodes are
adjacent to Y. For each node N # Y, LocPC tests whether there exists a conditioning set S such that Y and [V are
independent conditionally on S. If N ¢ Ne(Y,G), then there must exists S € ds(Y, N, G), implying S € ¢i(Y, N, G).
The CI oracle allows LocPC to identify such S and remove the edge between Y and N. Conversely, if N € Ne(Y,G),

then no such S exists under Assumption [2} and LocPC retains the edge. Therefore, Ne(Y, L) = Ne(Y,G), and by
Theorem this equals Ne(Y, £LY""). Extending this argument recursively to the h-hop neighborhood yields:

Neighborhood(Y, h + 1,L) = Neighborhood(Y, h + 1, LY"™"),

-~

and for all D € Neighborhood(Y, h, L):

Ne(D,L) = Ne(D, LY.
Item 3: LocPC examines all unshielded triples {D;, D;, A} where D;, D; €& Neighborhood(Y,h, L), A €
Neighborhood(Y,h + 1, L), and either D; — D; — A or D, — A — D; exists in £. Without loss of generality,
assume the latter. From Items 1 and 2, we know D;, D; € Ne(A, LY") and D; ¢ Ne(D;, LY"). Suppose this triple



does not form a collider in G. Then for all S € ds(D;, Dy, G), we must have A € S. Under Assumption this implies
A e Cforall C € ¢i(D;, Dj,G). Thus, if the CI oracle returns a separating set that excludes A, the triple must be a
collider. Conversely, if A is always included, LocPC does not falsely orient the triple as a collider. Hence, LocPC
identifies exactly the unshielded colliders (UCs) present in G, which, by Theorem are also present in £Y>". Therefore,
Item 3 is satisfied.

Item 4: Rules[LocMeek-Rule-T} [LocMeek-Rule-2] and[LocMeek-Rule-3|are applied in LocPC exactly as defined in Definition[3}
Therefore, Item 4 of Theoremlg], concerning Meek’s rules, is necessarily satisfied by the output L.

To show that[Loc-Rule]is also correctly applied, we focus on a subtle point: the definition of Rule [Loc-Rule]requires
that for all W € V \ {Neighborhood(Y, h,G) U Ne(D, G)}, there exists a separating set S € ds(D, W, G) such that
A ¢ S. However, the LocPC algorithm only finds one separating set per d-separated pair and not all of them. We must
therefore verify that this is sufficient to identify all node pairs (D, A) satisfying the local rule. This follows by rewriting
the condition using contraposition:

YW € V\ {Neighborhood(Y,h,G) U Ne(D,G)}, IS € ds(D,W,G) : A ¢S
—
BW € V\ {Neighborhood(Y,h,G) U Ne(D,G)} : VS € ds(D,W,G), A €S

The right-hand side shows that it suffices for LocPC to find a single separating set between each D and candidate
W € V\ {Neighborhood(Y,h,L) U Ne(D, L). If such a set contains A for any W, then Rule is not
satisfied. Conversely, if no such W is found, then the edge D —H A can be correctly added. Therefore, Rule [Loc-Rule]

is soundly applied, and Item 4 of Theoremis fully satisfied by L.

The LocPC algorithm thus recovers all the elements of Theorem [2|characterizing the LEG. Moreover, LocPC performs
no additional operations beyond identifying these elements. Consequently, the graph returned by LocPC necessarily
corresponds to the LEG of the LMEC of the underlying graph. O

A4 PROOF OF THEOREME]

Theorem 4. Let D C Neighborhood(Y,h,G), and let LY" = (V,EY"") denote the LEG with h > 1. If D satisfies the
non-orientability criterion (Def. E]) thenVD;, D; € D:

(D; — D;) €EY'" = VEk > h:(D; — D;) € EVF.

Proof. After constructing the LEG £Y>" for a given hop h, the only way the undirected edge D; — D; could become oriented
in a LEG £Y°* with k > h is through the propagation of orientations via Meek’s rules. These are the only mechanisms
capable of orienting edges already present at hop h.

To prevent such propagation, we first require that there are no undirected edges between nodes in D and nodes outside D;
such connections could serve as pathways for orientation propagation under Meek’s rules.

Furthermore, for each node D € D, if there exists at most one node A ¢ ID such that D — A, then we ensure the followingf]

* Either no new neighbor of A will be discovered (i.e., one that was not already included at hop k), in which case the
edge D — A cannot be oriented and no propagation can occur;

* Or, if new neighbors of A are discovered (which are non-neighbors D), then D — A will be oriented. This orientation,
however, is incompatible with all of Meek’s rules for propagating directions back into D.

Therefore, if the non-orientability conditions (Def. E]) are satisfied, no orientation can reach the edge D; — D; in LYF for
any k > h. As aresult, D; — D; remains undirected in all subsequent LEGs. O

We now turn to the proof of the corollary associated with Theorem [4]

2If multiple such nodes A exist, they could form an unshielded collider with D in some LEG of hop k > h, possibly leading to
orientations like A — D, and thus allowing orientations to propagate within D via Meek’s rules.



Corollary 2. Let D C Neighborhood(Y, h,G) be a subset of nodes such that Y € D, and let LY" denote the LEG with
h > 1. If D satisfies the non-orientability criterion (Def. , then CDE(x,x',Y’) is not identifiable.

Proof. First, note that the essential graph C = L£Y**max where k. is the length of the longest path from Y to any other
node in the graph. By applying Theorem []to the undirected edges adjacent to Y that are included in the subset I, we deduce
that these edges remain undirected in the essential graph C. Then, by Theorem 5.4 of [Flanagan, [2020], it follows that the
CDEs on Y are not identifiable. O

A.5 PROOF OF THEOREM

Theorem 5. If Assumptions[I|and 2] are satisfied and with access to perfect conditional independencies, the LocPC-CDE
algorithm will correctly detect if CDE(x,x',Y) is identifiable and in case of identifiability it will return the LEG from
which CDE(x,2',Y) is identifiable.

Proof. Assume that the CDE is identifiable. This means that in the essential graph C, all nodes adjacent to Y are oriented.
Under Assumptions[I]and 2} and assuming access to a perfect conditional independence oracle, it follows from Theorem 3]
that at each iteration over h, the locally estimated essential graph (LEG) L discovered by LocPC is correct. Moreover, if the
CDE is identifiable, then by Corollary [2] the non-orientability criterion (Def. [d)) will never be satisfied. Consequently, the
local discovery will proceed until all edges adjacent to Y are oriented. This will eventually occur since, in the worst case,
the discovered graph £ becomes equal to the essential graph C if all relevant nodes are included. Therefore, there exists an
iteration in which all edges adjacent to Y are oriented, and the algorithm will conclude that the CDEs with respect to Y are
identifiable. The returned LEG necessarily has all of Y’s adjacents oriented, which is sufficient for estimating the CDE.

Assume that the CDE is not identifiable. This implies that in the essential graph C, the adjacency of Y is not fully oriented.
Under Assumptions |1 and L and given a conditional independence oracle, the LEG L discovered at each iteration A is
correct by Theorem [3] Accordlng to Corollary [2] if the non-orientability criterion (Def. ) is satisfied—which acts as a
stopping condition—then the CDE is not identifiable. If the stopping condition is never triggered, the algorithm continues
the local discovery process until it recovers the full essential graph C. Thus, in all cases, when the algorithm terminates and
finds that Y’s adjacency is not fully oriented, we are guaranteed that the CDE is indeed not identifiable. O

Proposition 1. Consider Assumptions|l|and|2|are satisfied and we have access to perfect conditional independencies, if
LocPC-CDE returns that CDE(x, x',Y') is not identifiable, then it was impossible to determine this at any earlier iteration
of LocPC-CDE.

Proof. Assume that the CDE is not identifiable and that the algorithm declares non-identifiability at iteration . We now
show that it was not possible to conclude non-identifiability at iteration h — 1.1f the algorithm did not terminate at iteration
h— 1, this implies that the non-orientability condition (Deﬁnition was not satisfied at that stage. However, as demonstrated
in the proof of Theorem ] when the non-orientability condition is not satisfied, it remains possible that an edge in the
discovery set D becomes oriented as the size of the discovery increases. Therefore, it follows directly that without continuing
the discovery at iteration %, it was not possible to be certain that the CDE was not identifiable. O

B PSEUDO-CODES

B.1 LOCPC

We present here the main steps of Algorithm[I} which describes the LocPC procedure for learning a local essential graph
(LEG) in the neighborhood of a target node Y, up to a given hop h.

The algorithm begins by initializing essential data structures. Specifically, line 1 initializes the estimated LEG Lasa fully
disconnected graph over the set of observed variables V. Line 2 initializes the exploration frontier ID with the target node Y,
and line 3 sets the list of visited nodes to initially contain Y. The hop counter k, used to track the depth of exploration in the
first degree, is initialized to O in line 4.

The local skeleton discovery phase is implemented in the loop spanning lines 5-26. As long as k < h, the algorithm expands
the neighborhood of the current frontier. At each iteration, line 6 resets the container Dy, for nodes discovered in the current



hop. Then, lines 7-10 ensure all nodes B € V \ visited are connected to each current node D € D, temporarily introducing
edges.

Lines 11-24 implement the constraint-based local structure learning phase, analogous to the PC algorithm [Spirtes et al.,
2000], but restricted to the current local frontier. The variable s denotes the size of conditioning sets and is initialized in
line 11. The algorithm proceeds iteratively, increasing s until no separating sets of size s are found. At each iteration, the
adjacency set of each D € D is cached (line 14) to ensure order independence [[Colombo and Maathuis} [2014]. Then, for each
neighbor B of D (line 18), if there are at least s other adjacent nodes, the algorithm considers all subsets S C adj(D) \ {B}
of size s. If a subset S is found such that D_Il B | S (line 22), it is recorded as a separating set (lines 23-24), the corresponding
edge is removed from L (line 25), and further testing for this pair is halted.

After all candidate edges have been tested for a given s, the newly discovered neighbors of each D are added to Dy,
(line 27). This process repeats with increasing s until no further conditional independencies can be established, at which
point D is updated for the next hop (line 29), and the hop counter k is incremented (line 30).

Upon completion of the local skeleton discovery, the algorithm proceeds to edge orientation. Lines 31-33 orient unshielded
colliders using standard criteria: for each unshielded triple A — B — C, if B ¢ Sepset(A, C') and only one of the nodes
belongs to the (h 4 1)-hop neighborhood of Y, then A — B «+ C is oriented.

Subsequently, line 34 applies the three local Meek rules inspired by [Meekl, |1995]—namely, Rules [LocMeek-Rule-1|
[LocMeek-Rule-2] and [LocMeek-Rule-3}—to further orient edges where possible.

Finally, lines 35-43 implement a local orientation rule (Rule that aims to distinguish between within-neighborhood
and out-of-neighborhood connections. For each candidate edge D — A, where D belongs to the h-hop neighborhood and
A does not, the algorithm verifies that A is not present in any separating set Sepset(D, W) for nodes W lying outside the
neighborhood. If this condition is satisfied for all such W, an edge D —H A is added (line 43), indicating the possibility of
an unmeasured confounder or non-identifiable causal relationship.

The algorithm concludes by returning the estimated LEG L, the map of separating sets S, and the list of visited nodes, which
can be reused in subsequent procedures such as LocPC-CDE (see|2)) to avoid redundant computations.

B.2 LOCPC-CDE
First, we define the set of non-arrow neighbors of a node Y in a graph Gy = (V,Ep) as

Nenar(Y,G0) = Ne(Y,Go)\{VeVy | (Y > V)eEqor (Y + V) € Ep}.

We now detail the main steps of Algorithm [2} The algorithm first calls LocPC to discover the O-hop LEG around Y (line 1).
At this stage, discovered separating sets and visited nodes are stored, with the visited set initialized to {Y'}. The set D,
containing nodes to test for non-orientability, is initialized to {Y'} (line 3), and the hop counter 4 is set to 1 (line 3). While
there exists a node X adjacent to Y, which is not a child of Y, and there remain unoriented edges connected to Y, and not
all nodes have been discovered, the exploration continues (line 4). At each iteration, the h-hop LEG is discovered using and
updating previous knowledge through the known separating sets S and visited nodes (line 5). Next, all nodes connected by
unoriented edges to any node in D and belonging to the h-hop neighborhood are added to ID to form a candidate subset
for the non-orientability criterion (lines 6—7). This ensures D contains nodes with unoriented edges and always includes
Y. The algorithm checks whether the updated set D satisfies the non-orientability criterion (line 8); if so, discovery stops
(line 9). Otherwise, the algorithm increments h and continues exploration (line 10). Upon termination (by any stopping
criterion), two cases arise: (1) if X is adjacent to Y, not a child of Y, and unoriented edges remain connected to Y, then
CDE(x,',y) is not identifiable (lines 11-12); (2) otherwise, the CDE is identifiable (lines 13—14).

The algorithm returns only identifiability and the LEG; however, estimation steps can be added when the CDE is identifiable.
For example, in a linear setting, one can estimate it by regression adjusting on the parents of Y in the estimated LEG.

C EXPERIMENTS

We detail here the procedure used to generate the graphs and simulate the data, as well as how the evaluation metrics are
computed.



Algorithm 1 LocPC

Reqllire: Variables V, target node Y, hop h, known sepsets S
1: £ = Fully unconnected graph over V

2: D=1[Y]
3: visited = [Y]
4: k=0
5: while £k < h do
6: Dyew = 0
7. for D € Ddo
8: for B € V\ visited do
9: L.addEdge(D — B)
10: s=0
11:  stop = False
12:  while not stop do
13: for D € Ddo N
14: adj(D) = Ne(D, L)
15: stop = True
16: for D € Ddo
17: visited = visited U { D}
18: for B € Ne(D, L) do
19: if |adj(D) \ {B}| > s then
20: stop = False
21: for all S C adj(D) \ {B} with |S| = s do
22: if D1 B | S then
23: Sepset(D,B) =S
24: Update S with Sepset(D, B) =S
25: L.removeEdge(D — B)
26: break R
27: Diew = Dpew U Ne(D, L)
28: s=s5+1
29: D= Dyew
300 k=k+1

31: for every unshielded triple A — B — C € L with only one node in Neighborhood(Y,h + 1, E) do

32:  if B ¢ Sepset(A,C) then

33: Orient A » B < C

34: Apply rules ILocMeek-Rule—ll, ILocMeek-Rule-ZL and ILocMeek-Rule-3| repeatedly on £ until no more edges can be
oriented. R

35: for D € Neighborhood(Y,h, L) do

36:  for A ¢ Neighborhood(Y,h,L) such that D — A € L do

37: LocRule = True N R

38: for W € V\ {Neighborhood(Y,h,L) U Ne(D, L)} do
39: if A € Sepset(D, W) then

40: LocRule = False

41: break

42: if LocRule then

43: L.addEdge(D —# A)

44: return L, S, visited

C.1 DAGS GENERATION

All random graph models considered are homogeneous Erdés—Rényi models with edge existence probability p = %.
This ensures constant sparsity as the number of variables varies (on average, each node in the graph is adjacent to 2 edges).



Algorithm 2 LocPC-CDE

Requlre Variables V, treatment X, outcome Y, known sepsets S
. L, 8, visited = LocPC(V, Y, h = 0, S)
D=[Y]
h=1 e R R
while X € Ne(Y, L) and X ¢ Ch(Y, L) and Nep,, (Y, L) # 0 and visited # V do
L, S, visited = LocPC(V, Y, h, S)
for D € Ddo R R
D =D U{Nepar (D, L) N Neighborhood(Y, h, L)}
if D satisfies the non-orientability criterion (Def. 4) then
break
100 h=h+1 _ ~ R
11: if X € Ne(Y, L) and X ¢ Ch(Y, L) and Ney,, (Y, £) # () then
12:  identifiable = False
13: else
14:  identifiable = True
15: return identifiable, £

R AR A i e

C.1.1 Identifiable CDE Case

For each number of variables |V|, we generate a DAG as follows:

1. Generate an undirected Erd6s—Rényi graph, where each edge exists independently with probability p. Then, sample
a random permutation o of {1,...,|V|} to define a topological (causal) order. For each undirected edge i — j, if
o(i) < o(j), orient the edge as ¢ — j. This results in a DAG whose sparsity is controlled by the edge probability p.

2. Convert the resulting DAG into its essential graph. Search for a pair of variables (X, Y") such that (i) X — Y is in
the DAG (to ensure the existence of a direct effect) and (ii) all adjacents of Y are oriented in the essential graph. This
guarantees identifiability of the CDE CDE(x, z’,y), according to Theorem 5.4 of [Flanagan, [2020].

3. If no such pair (X,Y") exists, generate a new random graph and repeat until the condition is met. The final graph thus
guarantees that the direct effect from X to Y is identifiable.

Data is then simulated according to the linear/non-linear SCM as described below.

C.1.2 Non-Identifiable CDE Case

The procedure is similar, with a modified condition to ensure non-identifiability:

1. Generate an undirected Erd6s—Rényi graph and orient it according to a random topological order o, as described above.

2. Convert the DAG to its essential graph and look for a pair of variables (X,Y") such that (i) X — Y is present in
the DAG, and (ii) at least one adjacent edge to Y remains unoriented in the essential graph. This guarantees that
CDE(x, 2, y) is not identifiable, according to Theorem 5.4 of [Flanagan| 2020].

3. If no such pair (X, Y") exists, repeat the process until one is found.

The data is then simulated using the linear/non-linear SCM procedure described below.

C.2 DATA SIMULATION

C.2.1 Linear Gaussian SCM

Let G denote the causal structure. A linear Gaussian SCM can be expressed, for each variable V;, ¢ = 1,. .. , as:

Vi = Z a; Vi + &,

Vj€Pa(Vi,0)



with noise &; ~ N(0, 02). Equivalently, the model can be written in matrix form as:

V = BV + ¢,

where B is a coefficient matrix that can be permuted to lower-triangular form (due to the causal ordering) and € ~ N (0, X)
is a Gaussian noise vector of dimension |V|. The solution is then given by:

V=(-B)"'¢

The simulation procedure is as follows:

1. Generate a random lower-triangular coefficient matrix B, with non-zero entries sampled uniformly from {z € [-1,1] :
|z| > 0.2};

2. Sample 5000 independent noise vectors &, with each component §; ~ N (0, sz) and (sz ~ U[0.8,1];

3. For each noise vector, compute V = (I — B)~!¢, resulting in 5000 independent observations from the linear SCM.

C.2.2 Non-linear SCM

For the nonlinear case, we simulate binary variables to model categorical data commonly encountered in practice. Let G be
the causal DAG. For each variable V;, i = 1,...,|V|, the binary variable is generated as:

Vi=lei<pi,
where I is the indicator function, &; ~ U([0, 1]) is a uniform random variable, and

_ 1
1+exp (— >V, ePa(vi,0) %‘,z‘Vj)

Di

The coefficients a;; are sampled uniformly from {z € [—5,5] : |z| > 0.2}. Then, 5000 independent observations are
generated by first sampling vectors &; ~ U([0, 1]) of size 5000 and simulating the variables V; following the causal ordering.

Note that this is equivalent to stating that each variable V;, conditional on its parents, follows a Bernoulli distribution with
parameter p;: V; | Pa(V;, G) ~ B(p;).

C.3 ESTIMATION AND EVALUATION METRICS

For each method and each graph, we apply the causal discovery algorithm, which outputs either a fully or partially oriented
causal graph. We evaluate the output based on the following criteria:

1. Identifiability detection: Whether the method correctly determines if all adjacents of Y™ are oriented (in the identifiable
case) or not (in the non-identifiable case).

2. Parent recovery (identifiable case only): If all adjacents of Y are oriented, we compare the set of estimated parents of
Y to the true parents.

3. Computation time: The time taken by each method is recorded.

The proportion of correctly identified non-identifiable graphs, shown in Figure 3] is computed as the ratio of graphs for
which the method returns a non-identifiable output to the total number of graphs (100) for each value of |V|.



F1 Score Calculation

—

The F1 score is computed to evaluate the accuracy of parent recovery in identifiable cases. Let Pa(Y") be the set estimated
by the method and Pa(Y, G) be the set of true parents. Then:

Precision = |Pa(Y)£31(y7g)‘7 Recal] — [£2Y) N Pa(Y, g)|7 2. Precision - Recall
|Pa(Y)] |Pa(Y,G)| Precision + Recall

C.4 BASELINES IMPLEMENTATION

We use the implementations of the PC and LDECC algorithms from [Gupta et al., [2023]], available at
https://github.com/acmi-lab/local-causal-discovery?utm_source=catalyzex.com. These
algorithms were minimally modified to report the same evaluation metrics as LocPC-CDE (number of CI tests,
computation time, identifiability, etc.) and to use exactly the same conditional independence tests (https:
//causal-learn.readthedocs.io/en/latest/independence_tests_index/index.html), in
order to ensure fair comparisons with respect to runtime. Aside from these adjustments, the original code remains
unchanged.


https://github.com/acmi-lab/local-causal-discovery?utm_source=catalyzex.com
https://causal-learn.readthedocs.io/en/latest/independence_tests_index/index.html
https://causal-learn.readthedocs.io/en/latest/independence_tests_index/index.html
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