Comgra: A Tool for Analyzing and Debugging Neural Networks

Florian Dietz”! Sophie Fellenz?> Dietrich Klakow ! Marius Kloft >

Abstract

Neural Networks are notoriously difficult to in-
spect. We introduce comgra, an open source
python library for use with PyTorch. Comgra
extracts data about the internal activations of a
model and organizes it in a GUI (graphical user
interface). It can show both summary statistics
and individual data points, compare early and late
stages of training, focus on individual samples
of interest, and visualize the flow of the gradi-
ent through the network. This makes it possi-
ble to inspect the model’s behavior from many
different angles and save time by rapidly test-
ing different hypotheses without having to re-
run it. Comgra has applications for debugging,
neural architecture design, and mechanistic in-
terpretability. We publish our library through
Python Package Index (PyPI) and provide code,
documentation, and tutorials at github.com/
FlorianDietz/comgra.

1. Introduction

Growing Complexity of Neural Networks Led by the suc-
cess of Large Language Models (LLMs), neural networks
have massively increased in size in recent years (Naveed
et al., 2023). Moreover, they are not only larger, but also
more complex and intricate. Instead of just adding more
fully connected layers, modern State of the Art (SOTA) mod-
els are often based on a combination of many different types
of layers, such as Attention Mechanisms, Convolutional
Layers, Normalization Layers, and Residual Connections.

Difficulties in Debugging and Optimization The complex
interactions between their many components make it very

“Equal contribution 'Spoken Language Systems (LSV),
Saarland University, Saarbriicken, Germany *Machine Learn-
ing Group, RPTU, Kaiserslautern, Germany. Correspondence
to: Florian Dietz <fdietz@lsv.uni-saarland.de>, Sophie Fellenz
<fellenz@cs.uni-kl.de>, Marius Kloft <kloft@cs.uni-kl.de>, Di-
etrich Klakow <dietrich.klakow @lsv.uni-saarland.de>.

Mechanistic Interpretability Workshop at the 41°t International
Conference on Machine Learning, Vienna, Austria. PMLR 235,
2024. Copyright 2024 by the author(s).

difficult to understand how the trained model works inter-
nally. Flagship LLMs frequently differ in small aspects,
such as the positioning of the Layer Norm or the decision
to use a Dropout Layer. Optimization is often a long and
tedious, iterative process. Design decisions are guided by
intuition, which is error prone as often becomes evident
when trying to replicate suggested techniques in other ar-
chitectures. As a result, debugging and improving neural
networks is a very time-consuming and error-prone process,
a problem intensifying as model complexity increases.

Mechanistic Interpretability. The field of Mechanistic
Interpretability has emerged as a more ambitious form
of traditional interpretability research: It aims to reverse-
engineer human-interpretable algorithms from learned net-
work weights (Nanda, 2022). While it suffices to look at
correlations between parameters and the model’s loss for
many of the more traditional interpretability techniques,
mechanistic interpretability requires an in-depth look at in-
dividual model parameters as well as network activations
(Zhang et al., 2020; Anonymous, 2024). Identifying which
of the billions of network parameters and intermediate net-
work activations have which effect, for any given sample,
poses a significant challenge.

Comgra: Computation Graph Analysis. In this paper
we present Comgra, short for Computation Graph Analy-
sis, a library for debugging and analyzing neural networks
in PyTorch (Ansel et al., 2024). Comgra can help you to
track down anomalies in neural networks, analyze depen-
dencies in them, and rapidly test hypotheses by speeding
up your inspections through a convenient Graphical User
Interface. We present a list of existing tools for neural net-
work analysis and summarize their shortcomings. We then
introduce comgra to plug this gap in our software toolkit.
We show on a series of usecases how Comgra can be used
to help researchers with their work in practice, whether in
debugging, in neural architecture design, or in mechanistic
interpretability.

2. Existing Tools for Neural Network Analysis

Tracking Metrics. Keeping track of the key metrics of your
network is the most basic and fundamental type of analysis.
We want to be able to track losses and accuracy values, as
well as the distributions and summary statistics of network

github.com/FlorianDietz/comgra
github.com/FlorianDietz/comgra

Comgra: A Tool for Analyzing and Debugging Neural Networks

weights. Tensorboard', which was originally developed
for TensorFlow (Abadi et al., 2015), allows us to track the
development of all of these values as training proceeds and
enables easy comparisons between different runs. Due to
its popularity, it also offers a wide variety of plugins for
additional features.

Task-specific Visualizations. For some types of tasks it
is possible to visualize the performance of the model on
specific inputs in a human-interpretable way. PyTorch-
GradCAM (Gildenblat & contributors, 2021) makes the
performance of neural networks in vision tasks more explain-
able by visually highlighting how the pixels of an image
affect the model’s decision. PyTorch-Visdom? is a more
generic library that allows you to create custom dashboards
with a variety of visualization for different types of data.

Attribution and Interpretability. It is normally difficult
to tell how input features as well as intermediate neurons
affect the output of a model. PyTorch-Captum (Kokhlikyan
et al., 2020) provides a library of attribution algorithms
to automate this, which makes it easier to interpret your
model’s behavior.

Visualizing the Computation Graph. As the size and com-
plexity of a model increases, it can become difficult to keep
track of its computation graph, which is necessary to trace
the flow of information through the network. Tensorboard'
has a basic feature for this built in, while Netron?® and Torch-
lens (Taylor & Kriegeskorte, 2023) provide a more detailed
visualization. Penzai is a toolkit for visualizing models.

Mechanistic Interpretability. TransformerLens (Nanda
& Bloom, 2022) lets you load a collection of popular lan-
guage models and makes it easy to inspect and modify their
internal activations. Pyvene (Wu et al., 2024) and Nnsight
(Fiotto-Kaufman) make it easier to inspect and intervene
on models. Inseq (Sarti et al., 2023) is an interpretability
toolkit for sequence generation models.

3. Comgra

What Parts of the Network Matter? When analyzing
neural networks, one can look at the data in many differ-
ent ways: Do we inspect individual tensors, or summary
statistics? Raw values, or normalized ones? Do we record
at each step during training, or only at specific, important
times? Do we inspect random inputs, or specific inputs that
are particularly important to us? Tools that visualize metrics
in graphs usually focus on summary statistics and neglect
special cases. Conversely, task-specific visualizations usu-

Tensorboard:
tensorboard
2Visdom: github.com/fossasia/visdom
3Netron: github.com/lutzroeder/netron
“Penzai: github.com/google—-deepmind/penzai

github.com/tensorflow/

ally only focus on a single input image at a time and neglect
how these correlate with other inputs.

The Need for Flexibility. The combination of many inter-
mediate network activations with the many different ways to
record them leads to a combinatorial explosion of possibili-
ties. There are simply too many ways to look at the network
to record and inspect all of it in a reasonable amount of time.
However, since neural network training is not reversible we
need to know in advance what we want to log. If we later
realize that we forgot to record some number that we care
about, we need to rerun the whole model. If we care about
training dynamics and forgot to record something, we may
even have to repeat the entire training process, which may be
too computationally expensive to be practical. At the same
time, if we record too many things then it can become easy
to lose track of the dependencies between them. The compu-
tation graph of a modern neural network can be deceptively
large and complex, so it is important to organize all of your
data in a user interface that is easy and intuitive to use. We
need the flexibility to look at the data from many different
angles without having to spend too much time on writing
code for the inspection, or worse, rerunning the model

Comgra. Comgra ° is a library that aims to address these
remaining problems. It helps you inspect and analyze your
network parameters as well as any tensors that are generated
by your model, either as an output or as an intermediate step
produced by a hidden layer. It includes a GUI that makes
it easy to understand the dependencies between different
tensors and allows you to quickly switch between multiple
different ways of looking at the data. We took care to ensure
that the amount of recorded data is kept to a reasonable
level. If you are interested in the average statistics over all
data, but also in exact details for a specific input sample,
Comgra can provide both in the same interface, all without
a noticeable loss in performance.

Usage. The library works similarly to Tensorboard: You
record network activation tensors while the model trains.
You then use a terminal command to open a browser window
where you can inspect the results in a GUI. This paper
focuses on examples and usecases of comgra. Please, see
the website> for installation and usage instructions, as well
as code examples.

3.1. Graphical User Interface

Figure 1 shows the GUI. It consists of three parts: The
selectors, the dependency graph, and the metrics.

Selectors Comgra generates a number of versions of each
named tensor over the course of a run and provides selectors
to quickly switch between them.

5Comgra:github.com/FlorianDietz/comgra

github.com/tensorflow/tensorboard
github.com/tensorflow/tensorboard
github.com/fossasia/visdom
github.com/lutzroeder/netron
github.com/google-deepmind/penzai
github.com/FlorianDietz/comgra

Comgra: A Tool for Analyzing and Debugging Neural Networks

©Tensors ONetwork ONotes OGraphs OVisualization Navigation: [[= [+ [L
Trial trial_bugged_original_version
Type of recording ©forwardOgradients

Type of training step Any training step

Training step 2 e
Iteration <I=) o . N
Batch or sample [<]>] Mean over the batch

Role of tensor root_module.subnet_out__hidden_state

[Refresh graphs | [Reload data | [Restart server

root_module

input

in.bias.

fnweight

fnn2.bias

fn2.veight

iEEE

emor\é

| output |

‘ Trial ‘ Training Step ‘ Iteration ‘ Step Type ‘ Node ‘ Role ‘ Tensor Type | Tensor Shape ‘
‘ trial_bugged_original_version ‘ 1013 ‘ 5 ‘ any_value ‘ root_module.subnet_out__hidden_state ‘ root_module,subnet_out__hidden_state ‘ calculated ‘ [128, 200] ‘
Item value

mean 2 0.7530488968 - 7.53048897e-01

abs_mean 0.7540145516 - 7.54014552e-01

std 0.5437178612 - 5.43717861e-01

abs_max 2.2733604908 - 2.27336049e+00

neuron @ 0.8291711807 - 8.29171181e-01

neuron 1 0.8379235268 - 8.37923527e-01

neuron 2 0.6872206926 - 6.87220693e-01

neuron 3 0.8155622482 - 8.15562248e-01

Figure 1. Comgra’s GUI Top: Selectors for the version of the selected tensor and aspects you want to inspect. Middle: The dependency
graph, in which you can click on a tensor to select it. Bottom: Summary statistics as well as raw values for the selected tensor under the

selected criteria.

e Compare different trials, which may use different ar-
chitectural variants.

* Select the training step.

« Filter the training step by a condition, e.g. only a step
in which the target had a particular value, or only steps
in which the input contained a particular rare token.

* Inspect either the tensor itself or the gradient on it. If
you use multiple loss functions, you can also compare
the gradients generated by each of them separately.

* Choose between viewing summary statistics over the
batch or inspecting individual samples in the batch.

» Choose between variants if your model generates mul-
tiple instances of tensors with the same role in the
dependency graph. For example, if you are using self-
attention then comgra can store all tokens in one node
and provides a selector to switch between the tokens.

Switching between these selectors is near-instantaneous
even for large models with long training times. This allows
you to rapidly test many different hypotheses without having
to rerun your model.

The Dependency Graph. Comgra automatically generates
a dependency graph for all tensors it extracts. This graph
is a subgraph of the computation graph that displays only

the tensors you have chosen to log. This makes it easier
to understand the graph because it lets you focus on the
relevant parts. It also makes it easier to compare different
variants of architectures: Their computation graphs may
be different, but the simplified dependency graphs are the
same. The dependency graph is automatically generated,
but can also be customized to be more readable and easier
to navigate if necessary. Each rectangle in the dependency
graph represents a named tensor that can be selected for
inspection. The colors indicate the roles of the tensor in the
network, such as input, parameter, calculated value, target
and loss. Note that the arrows between the nodes are only
shown for the currently selected node. Due to the densely
connected nature of computation graphs, this is easier to
interpret in practice.

Display. Comgra displays both the raw values of the se-
lected tensor and summary metrics. The summary metrics
are often all that is needed to detect outliers and anomalies.
For a more in-depth analysis, it can be necessary to look
at individual neurons or at how their values are distributed
across a batch. You can use the Selectors to quickly switch
between these types of information.

Alternative Visualizations. The combination of selectors
and dependency graph is the main benefit of comgra, but
the GUI also includes some additional minor features be-
cause it is convenient to have them all available in a single
tool. Use the radio buttons at the very top of the screen

Comgra: A Tool for Analyzing and Debugging Neural Networks

to switch to these: Network shows the modules your net-
work is composed of and gives a hierarchical breakdown of
the number of parameters in them. Notes displays simple
textual log statements. Graphs supports features similar to
tensorboard', though it is simpler. Lastly, the Visualization
tab allows you to provide a custom visualization to comgra,
through a python file using the Dash® library. This visu-
alization can depend on all the same filters and selectors
that the rest of comgra uses, allowing you to apply com-
gra’s flexibility with the specific visualization requirements
of your task. For example, you might supply a script that
can color-code the text fed into a transformer based on its
attention weights and use comgra’s selectors to investigate
differences between different stages of training on the same
samples.

3.2. Dynamic Logging

Frequency of Recording. Comgra can dynamically adjust
when to record a training step. You can record frequently
at the beginning of training and less frequently as training
goes on. This allows you to get detailed results you can
investigate early on during training without overwhelming
your computer’s memory if you keep the training process
running for days.

Categorizing Recordings. You can assign a Type of Train-
ing Step to each input and make the decision to log for each
type separately. This means that a rarely encountered input
will still appear in the logs frequently enough, even if the
overall logging frequency is low. In this way you can ensure
that the logs always contain representative samples for each
type of input you care about.

4. Usecases

Comgra makes it possible to look at your data from many
different points of view in a short period of time. The main
advantage of the tool is its versatility and speed.

In this section, we give a high-level overview of different
features and usecases. If any of these pique your interest and
you decide to give comgra a try, we recommend checking
out the tutorial on the comgra website®, which is too long to
be reproduced in this paper. It illustrates how comgra can
be used for debugging on an example task. The example
is based on a real bug the authors found in one of their
networks while developing a new architecture. In particular,
it was a bug that led to a reduction in training speed but still
allowed the network to learn. It is very unlikely that we
would have noticed this without comgra.

The following is a list of different features of comgra. Some
of these help with debugging, some with architecture op-

®Dash: github.com/plotly/dash

timization, and some with interpretability. Many of them
help with multiple of these aspects at once.

Getting an Overview. The first and often most useful thing
you can do with comgra is to spend just a few minutes ex-
ploring your network to get an overview. Look at the inputs,
outputs, and targets for different batches and at different
training steps. Is the target what it should be? Does the
output approximate it well? Do intermediate tensors all
have the same value range, or are some of them larger or
smaller than others? Can you notice any irregularities when
you compare different items within a batch? When you look
at the hierarchical breakdown of network parameters, do
any of the modules have fewer parameters than others, form-
ing a bottleneck? Comgra’s GUI makes it much easier and
faster to perform the sanity checks than using conventional
debugging tools, which can easily save you hours or days
of frustration by catching a simple mistake early.

Initialization. What do tensors and their gradients look
like in the very first training steps? Do their means change
significantly as training progresses? If they do, this suggests
that they could be better initialized.

Testing Toy Examples Step-by-Step. You can use the Type
of Training Step selector to record specific data points sepa-
rately. Use this to record toy examples and inspect all tensor
activations of the network to see if they are in line with your
expectations. Comgra makes it much easier to get all the rel-
evant details, which makes this much less time-consuming
and therefore more practical. In addition to helping with de-
bugging, you can also use this for interpretability research:
By comparing the activations of specific examples of in-
terest with the averages over other examples, you can find
out very quickly if there are any neurons or statistics in the
network that consistently have different values for a specific
type of data point than for other data.

Compare Categories of Data Similarly, you can use the
Type of Training Step selector to group your data by similar-
ity and then use comgra to look for correlations. You don’t
need to think of all possible hypotheses in advance: Simply
create a set of recordings that seems like a reasonable break-
down of your data that you might want to investigate later.
You can rely on comgra to record a large enough variety
of internal activations and statistics that you will be able
to answer any questions that might arise later. For exam-
ple, when testing a transformer, you might create separate
Type of Training Step values for batches with particularly
short inputs, or particularly long inputs, or for batches with
particularly many commas relative to the sentence length.
Later on you may come up with a specific hypothesis such
as “I expect longer inputs to make more use of residual
connections than shorter ones, and I expect this to be more
pronounced later in training.” Even for such a specific hy-
pothesis, comgra will already have extracted all the data

github.com/plotly/dash

Comgra: A Tool for Analyzing and Debugging Neural Networks

necessary to answer that question. It takes just a couple
of minutes of inspecting the right nodes in the dependency
graph and adjusting the right sliders and selectors.

Tracing the Origins of NaNs and Extreme Values. If
NaNs or extreme outlier values occur anywhere in the net-
work, you can simply follow the dependency graph to trace
where they come from. This is trivial for NaNs even without
comgra, but with comgra it becomes possible to backtrack
the source of unusually large but still valid numbers as well:
Use the selectors to find a particular element of the batch
that is an outlier, then backtrack through the graph, and
check at each node if its values at that node are outliers
relative to the mean and standard deviation of the batch. In
this way, you can find the earliest part of the network where
the data starts being unusual, even if it does not cause any
numerical instabilities yet.

Organizing Tensors. In complex neural networks, it can
be easy to lose track of dependencies. Comgra helps with
this by reducing the full computational graph to the de-
pendency graph, but it also offers an additional feature to
further simplify things. A single node in the graph can
store multiple tensors that fulfill different roles, and you can
switch between them using the Role of Tensor selector. In
this way you can, e.g. make every element in a variable-
length Attention mechanism selectable without the visual
clutter of creating one node per token. You simply switch
between tokens using the Role of Tensor selector, instead.
Furthermore, you can use this to display helper variables
and derived values of the network without visual clutter. In
our example script in the tutorial, we defined a node called
“helper_partial_sums”, which can be found to the top left of
the dependency graph. Unlike other nodes, this node con-
tains several different tensors with different roles, and you
can switch between them using the Role of Tensor selector.
We use this node to store the partial sums calculated during
the example task, which would not normally get stored by
the network but are helpful for debugging. We use the Role
of Tensor selector to switch between the different partial
sums, so that all share a single node in the GUI, reducing
visual clutter and making the data easier to find.

Investigating Phase Shifts. Neural networks can exhibit
strong differences between different stages of training. For
example, loss curves will sometimes stay largely unchanged
for a long time before suddenly dropping sharply. Grokking
(Power et al., 2022) is an even stranger case, where test
performance improves even though training performance
remains unchanged. Comgra allows you to investigate this.
You can quickly compare how the values and statistics of
each tensor change over time as training proceeds. Are the
values for two training steps within the same phase different
from the training steps in another phase? Even without a
concrete hypothesis in mind, you may notice commonalities

that then serve as the inspiration for a deeper analysis.

Architecture Design. You can easily compare different
variants of an architecture using the Type of Training Step
selector. If the differences are minor, you may even find
that the dependency graph is the same, even though the
computation graphs are different. This makes a one-to-one
comparison possible. If the differences are localized, you
can inspect the statistics at the nodes before and after that
location in the dependency graph.

Variance over the Batch: Mode Collapse and Infinite
Growth. We have found that inspecting the variance over
the batch of any tensor is a very simple way to detect com-
mon problems. If the variance decreases, we may have
mode collapse. If it keeps increasing over time, it suggests
that a tensor is receiving consistently one-directional gradi-
ents that make the tensor more and more extreme instead of
coming to approximate a target value more accurately. The
latter problem is less catastrophic, making it all the more
important to detect: If your network suffers from mode
collapse, then you will notice this as performance drops.
But a steadily growing value means that the network can
still solve the problem, but is less efficient than it could be,
which is very difficult to detect.

Interventions. If I perform an ablation, for example, by
setting an intermediate activation to zero, what effects does
this have on other network weights? It can be difficult
to predict which parts of the network will be affected by
such an intervention. You can use the Type of Training Step
selector to indicate interventions on the model. You can then
inspect tensors and the statistics on them while switching
between the intervention and the normal run. This lets
you quickly find out how different parts of the network are
affected by an intervention.

Exploding and Vanishing Gradients. Comgra allows you
to look at the gradients of your model: The GUI has a
selector to switch from forward mode to gradients. If you
notice exploding or vanishing gradients, you can find out
which calculation is causing it by simply clicking through
the node of the dependency graph until you have found the
rightmost tensor with anomalous gradients.

Imbalanced Gradients You can also use comgra to detect
more subtle issues with gradients: All the same statistics
are available for the gradients that are also available for
the tensors themselves. This makes it easy to detect when
e.g. the training data has rare outliers with abnormally high
gradients, because those will result in a high variance of the
gradient over the batch. You can also use the dependency
graph to compare how much the gradients from different
computation paths contribute to a shared ancestor. If a tensor
A is a dependency of tensors B and C, and the average
absolute gradient on B is a hundred times as large as on

Comgra: A Tool for Analyzing and Debugging Neural Networks

C, then this imbalance suggests room for improvement. C'
will still learn under these conditions, but much more slowly
than it could, because A will be biased to develop its weights
mostly to support B and not C'. This is the kind of issue
that slows down your model but does not break it, which is
in general very difficult to discover.

Finding Interpretable Neurons. You can use comgra to
check if any neurons end up with interpretable values. For
example, the weights in attention mechanisms tell you what
the network pays attention to. But there are also more subtle
interpretable values that would be difficult to inspect without
comgra, unless you already know what to look for before
you run the experiment. For example, you can compare
the mean absolute values of the two branches in a residual
connection to find out if the network ignores a calculation
and relies on residuals. In most cases, neurons will not be
interpretable. But you will not know it until you try, and
comgra’s GUI makes it easy to inspect your data from a lot
of different angles in a short amount of time.

5. Future Work

Improved Dynamic Logging. Comgra’s dynamic logging
has some limitations. You currently need to make the deci-
sion whether to log and what type to assign to the log before
the training step starts. This means that you can create sepa-
rate logs for particular inputs that you have selected ahead
of time, but you cannot change the decision to log based on
the results of the batch. We aim to enable the decision to
log only after the results of the batch are seen, and to focus
on specific samples of that batch based on their properties.
This will allow you to detect and focus more easily on par-
ticular cases. For example, while training a language model,
you might want to review only the adversarial samples that
pose a security issue to the model. More generally, if you
combine this feature with anomaly detection on standard
KPIs, then comgra will be able to extract outlier samples,
making them easier to investigate. Note that this feature is
being implemented at the time of this writing and will likely
be finished by the time you are reading this.

Anomaly Detection. A goal for the future development of
this tool is the automated detection of anomalies in compu-
tation graphs. It should be possible to define anomalies like
“Tensor X has a greater absolute value than 1” or the like,
and then have the program automatically calculate likely
dependencies such as this: The anomaly “abnormally high
loss” has 87% correlation with the anomaly “Tensor Y is
close to zero”. This would save a lot of time with debugging
by automatically generating a list of possible reasons for
unexpected behavior. Similarly, it could be used for inter-
pretability research by automatically scanning the network
for correlations between the categories of data points used
and for anomalies in the network activations. The goal of

this feature is not to detect anomalies with perfect reliabil-
ity, but to quickly and cheaply generate hints that guide a
human’s attention in the right direction, to save time.

6. Conclusion

Comgra provides many different features to help you ex-
plore the internals of your neural network. It logs a diverse
set of data while maintaining a low memory footprint and
computational overhead. It enables the user to inspect their
network in a GUI from many different angles while remain-
ing easy to use. This makes it useful both for explorative
analysis and for quickly testing new hypotheses about net-
work behavior without having to rerun the network. We
have shown usecases that demonstrate its usefulness for
debugging, architecture optimization, and interpretability.

7. Author Contributions

Comgra was invented and developed by Florian Dietz. Pro-
fessors Sophie Fellenz, Marius Kloft and Dietrich Klakow
provided valuable feedback on the paper and helped acquire
users for testing the library.

8. Acknowledgements

Work by the author was supported by a grant by the NHR-
Verein (National High Performance Computing, Germany).

Comgra relies on PyTorch for training neural networks. It
uses Dash’ as the basis of its GUL. We would like to thank
their creators for these valuable tools.

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,
Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Goodfellow, 1., Harp, A., Irving, G., Isard,
M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Lev-
enberg, J., Mané, D., Monga, R., Moore, S., Murray, D.,
Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever,
1., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan,
V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M.,
Wicke, M., Yu, Y., and Zheng, X. TensorFlow: Large-
scale machine learning on heterogeneous systems, 2015.
URL https://www.tensorflow.org/. Software
available from tensorflow.org.

Anonymous. Mechanistic interpretability for Al safety - a
review. Submitted to Transactions on Machine Learning
Research, 2024. URL https://openreview.net/
forum?id=ePUVetPKub6. Under review.

Ansel, J., Yang, E., He, H., Gimelshein, N., Jain, A., Voz-

"Dash: https://github.com/plotly/dash

https://www.tensorflow.org/
https://openreview.net/forum?id=ePUVetPKu6
https://openreview.net/forum?id=ePUVetPKu6
https://github.com/plotly/dash

Comgra: A Tool for Analyzing and Debugging Neural Networks

nesensky, M., Bao, B., Bell, P., Berard, D., Burovski, E.,
Chauhan, G., Chourdia, A., Constable, W., Desmaison,
A., DeVito, Z., Ellison, E., Feng, W., Gong, J., Gschwind,
M., Hirsh, B., Huang, S., Kalambarkar, K., Kirsch, L.,
Lazos, M., Lezcano, M., Liang, Y., Liang, J., Lu, Y., Luk,
C., Maher, B., Pan, Y., Puhrsch, C., Reso, M., Saroufim,
M., Siraichi, M. Y., Suk, H., Suo, M., Tillet, P., Wang,
E., Wang, X., Wen, W., Zhang, S., Zhao, X., Zhou, K.,
Zou, R., Mathews, A., Chanan, G., Wu, P.,, and Chin-
tala, S. PyTorch 2: Faster Machine Learning Through
Dynamic Python Bytecode Transformation and Graph
Compilation. In 29th ACM International Conference on
Architectural Support for Programming Languages and
Operating Systems, Volume 2 (ASPLOS °24). ACM, April
2024. doi: 10.1145/3620665.3640366. URL https:
//pytorch.org/assets/pytorch2-2.pdf.

Fiotto-Kaufman, J. nnsight: The package for in-
terpreting and manipulating the internals of deep
learned models. . URL https://github.com/
JadenFiotto-Kaufman/nnsight.

Gildenblat, J. and contributors. Pytorch library for
cam methods. https://github.com/jacobgil/
pytorch—grad-cam, 2021.

Kokhlikyan, N., Miglani, V., Martin, M., Wang, E., Al-
sallakh, B., Reynolds, J., Melnikov, A., Kliushkina, N.,
Araya, C., Yan, S., and Reblitz-Richardson, O. Captum:
A unified and generic model interpretability library for
pytorch, 2020.

Nanda, N. A comprehensive mechanistic interpretabil-
ity explainer i& glossary, Dec 2022. URL https:
//neelnanda.io/glossary.

Nanda, N. and Bloom, J. Transformerlens.
//github.com/TransformerLensOrg/
TransformerLens, 2022.

https:

Naveed, H., Khan, A. U., Qiu, S., Saqib, M., Anwar,
S., Usman, M., Barnes, N., and Mian, A. S. A
comprehensive overview of large language mod-
els. ArXiv, abs/2307.06435, 2023. URL https:
//api.semanticscholar.org/CorpusID:
259847443,

Power, A., Burda, Y., Edwards, H., Babuschkin, I., and
Misra, V. Grokking: Generalization beyond overfitting
on small algorithmic datasets. ArXiv, abs/2201.02177,
2022. URL https://api.semanticscholar.
org/CorpusID:245769834.

Sarti, G., Feldhus, N., Sickert, L., van der Wal, O., Nissim,
M., and Bisazza, A. Inseq: An Interpretability Toolkit
for Sequence Generation Models. pp. 421-435, July
2023. URL https://aclanthology.org/2023.
acl-demo.40.

Taylor, J. and Kriegeskorte, N. Extracting and visualizing
hidden activations and computational graphs of pytorch
models with torchlens. Scientific Reports, 13(1):14375,
2023. doi: 10.1038/s41598-023-40807-0. URL https:
//doi.org/10.1038/s41598-023-40807-0.

Wu, Z., Geiger, A., Arora, A., Huang, J., Wang, Z., Good-
man, N. D., Manning, C. D., and Potts, C. pyvene: A
library for understanding and improving PyTorch mod-
els via interventions. 2024. URL arxiv.org/abs/
2403.078009.

Zhang, Y., Tino, P, Leonardis, A., and Tang, K. A
survey on neural network interpretability. = IEEE
Transactions on Emerging Topics in Computa-
tional Intelligence, 5:726-742, 2020. URL https:
//api.semanticscholar.org/CorpusID:
229678413.

https://pytorch.org/assets/pytorch2-2.pdf
https://pytorch.org/assets/pytorch2-2.pdf
https://github.com/JadenFiotto-Kaufman/nnsight
https://github.com/JadenFiotto-Kaufman/nnsight
https://github.com/jacobgil/pytorch-grad-cam
https://github.com/jacobgil/pytorch-grad-cam
https://neelnanda.io/glossary
https://neelnanda.io/glossary
https://github.com/TransformerLensOrg/TransformerLens
https://github.com/TransformerLensOrg/TransformerLens
https://github.com/TransformerLensOrg/TransformerLens
https://api.semanticscholar.org/CorpusID:259847443
https://api.semanticscholar.org/CorpusID:259847443
https://api.semanticscholar.org/CorpusID:259847443
https://api.semanticscholar.org/CorpusID:245769834
https://api.semanticscholar.org/CorpusID:245769834
https://aclanthology.org/2023.acl-demo.40
https://aclanthology.org/2023.acl-demo.40
https://doi.org/10.1038/s41598-023-40807-0
https://doi.org/10.1038/s41598-023-40807-0
arxiv.org/abs/2403.07809
arxiv.org/abs/2403.07809
https://api.semanticscholar.org/CorpusID:229678413
https://api.semanticscholar.org/CorpusID:229678413
https://api.semanticscholar.org/CorpusID:229678413

