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Abstract
Neural algorithmic reasoning (NAR) is an emerging field that seeks to design
neural networks that mimic classical algorithmic computations. Today, graph
neural networks (GNNs) are widely used in neural algorithmic reasoners due to
their message passing framework and permutation equivariance. In this extended
abstract, we challenge this design choice, and replace the equivariant aggregation
function with a recurrent neural network. While seemingly counter-intuitive, this
approach has appropriate grounding when nodes have a natural ordering—and
this is the case frequently in established reasoning benchmarks like CLRS-30.
Indeed, our recurrent NAR (RNAR) model performs very strongly on such tasks,
while handling many others gracefully. A notable achievement of RNAR is
its decisive state-of-the-art result on the Heapsort and Quickselect tasks, both
deemed as a significant challenge for contemporary neural algorithmic reasoners—
especially the latter, where RNAR achieves a mean micro-F1 score of 87%.

1 Introduction

Neural algorithmic reasoning [1, NAR] is an area of research that explores how neural networks can
learn algorithms from data. This seeks to combine the benefits of both neural networks and classical
algorithms and gives rise to the possibility of designing better neural networks that can learn and
develop stronger algorithms for challenging real-world reasoning problems [2–7].

Graph neural networks [8, GNNs] are the most commonly used class of models in NAR due to their
algorithmic alignment [9] to dynamic programming [10]. Algorithmic alignment is the observation
that an increase in the structural similarity between an algorithm and a neural network tends to
result in an increase in the neural network’s ability to learn the algorithm—and GNNs can offer a
high degree of flexibility in how this alignment is designed [11, 12]. Indeed, GNNs are capable of
generalising out-of-distribution (OOD) on standard algorithmic benchmarks like CLRS [13] to a
significantly higher degree [14] than, e.g., Transformer-based LLMs [15, 16].

While it is evident that this improvement is largely due to the permutation equivariance properties
of GNNs [17], so much so that often it is important for OOD generalisation to leverage strictly less
expressive categories of permutation equivariant aggregators [11, 18], it is also worth noting that such
an approach forces all neighbours of a node to be treated symmetrically—and many tasks of interest
to algorithms do not include such a symmetry. This is especially the case for sequential algorithms,
where the input comes in the form of a list and hence a natural ordering between the elements exists.
Indeed, such algorithms are frequent in CLRS—ten out of thirty of its tasks [19–23] are sequential.

In this extended abstract, we detail our attempt to leverage a recurrent aggregator in a state-of-the-art
neural algorithmic reasoning architecture (leaving all other components the same). Specifically, we
leverage long short-term memory (LSTM) networks [24, 25] as the aggregation function. The result-
ing recurrent NAR (RNAR) model yielded a serendipitous discovery: it significantly outperformed
prior art on many sequential tasks in CLRS, while also gracefully handling many algorithms without
such a bias! Further, RNAR sets a dominating state-of-the-art result on the Quickselect task [21],
which was previously identified as a major open challenge in neural algorithmic reasoning [26].
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2 Towards RNAR
Let G = (V,E) denote a graph, where V is the set of vertices and E is the set of edges in the graph.
Let the one-hop neighbourhoods of node u be defined as Nu = {v ∈ V | (v, u) ∈ E}, and xu ∈ Rk

be the features of node u. With reference to the definition of GNNs in Bronstein et al. [17], we can
formalise the message passing framework over this graph as:

x′
u = ϕ

(
xu,

⊕
v∈Nu

ψ(xu,xv)

)
. (1)

The message function ψ : Rk × Rk → Rm first computes the message to be sent along edge (v, u)
based on node u and its neighbour node v. Then, the receiver node u will aggregate the messages
along incoming edges using the aggregation function

⊕
: bag(Rm) → Rm. Lastly, the update

function ϕ : Rk ×Rm → Rk updates the features of the receiver node u based on its current features
and the aggregated messages. Typically, ψ and ϕ are deep multilayer perceptrons.

While various forms of Nu have been explored by prior art [27], nowadays it is standard practice to
use a fully-connected graph [13], i.e. Nu = V , and allow the GNN to infer the important neighbours
by itself. This assumption also makes it easier to learn multiple algorithms in the same model [14].

2.1 Aggregation functions

The choice of aggregation function,
⊕

, is often central to NARs’ success. While it is well-known
that aggregators such as summing are provably powerful for structural tasks [28], in practice a
more aligned choice—such as max—tends to be superior, especially out-of-distribution [11, 18]. In
nearly all cases,

⊕
is chosen to be permutation invariant—i.e. yielding identical answers for any

permutation of neighbours. Such models are known to be universal under certain conditions [29, 30].

Permutation invariance is challenging to learn from data due to the high degrees-of-freedom induced
by the permutation group and, as such, it is believed that this is a key reason for why GNNs tend to
extrapolate better on algorithmic tasks compared to autoregressive Transformers [15]. Invariance to
permutations also grants the model invariance to a certain kind of asynchronous execution [12].

2.2 Why would we ever drop permutation invariance in NARs?

With all of the above reasons in favour, it might seem extremely counter-intuitive to ever consider
setting

⊕
to something which is not permutation invariant. So, why did we even bother attempting it?

There are three key reasons:

• Firstly, permutation invariance is a property typically most desired when inputs are assumed to
be given without any order. In many algorithmic tasks, this is frequently enough not the case,
making this direction worth studying. Many classical algorithm categories, such as sorting [23]
and searching [21], assume that an input is a list, inducing a natural order1 between the nodes.
Previous research [31] highlighted how such sequential algorithms are not favourable for GNNs.

• Secondly, imposing permutation symmetry forces all neighbours to be treated equivalently,
limiting expressive power and the scope of functions that could be learnt. Recently there have
been trends to eliminate various kinds of equivariances from models, leading to surprising
improvements [32, 33], which may also be considered motivating for our attempt.

• Lastly, using a permutation-invariant aggregator is typically realised by fixing a commutative
monoid structure. If the target task requires a substantially different monoid choice—often the
case in more complex tasks—this can pose a unique challenge for NARs [34].

2.3 The RNAR architecture

Motivated by these reasons, in RNAR we drop the commutative monoid assumption, and instead treat⊕
: list(Rm) → Rm as an arbitrary list reduction function. We will hence assume that the N = |V |

node features are pre-arranged in a list [x1,x2, . . . ,xN ]. Such an ordering will always be provided
by the CLRS benchmark through its pos node input feature [13].

1We will study how important is to exploit this natural order in Appendix B.
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A popular, theoretically expressive choice of such a sequential aggregator is the long short-term
memory (LSTM) network [24], which we employ in this work.

In a typical fully-connected GNN, each node receives messages from all other nodes, and therefore
receives a total of N messages in one computational step. In a GNN with an LSTM as its aggregation
function, the messages from the neighbouring nodes are fed into the LSTM in a particular order.

The LSTM will therefore run for N time steps, with the input to the LSTM at each time step,
1 ≤ t ≤ N , being one of the N messages computed using ψ:

z
(u)
t = LSTM

(
ψ(xu,xt), z

(u)
t−1

)
(2)

where the initial LSTM cell state, z(u)0 , is initialised to a fixed zero vector, 0. The final updated
embeddings are then computed using the output of the LSTM at the last time step, which is considered
to be the aggregation of the N messages:

x′
u = ϕ

(
xu, z

(u)
N

)
(3)

Since the choice of the initial node ordering clearly affects z
(u)
N , LSTM as an aggregator is not

invariant to message receiving order, breaking permutation invariance.

While our work offers the first comprehensive study of such a recurrent aggregator on a benchmark
like CLRS—and reveals surprising results—we stress that we are far from the first work to attempt
replacing a GNN’s aggregator with a recurrent neural network.

Key works to consider here include GraphSAGE [35]—one of the earliest GNNs to attempt an LSTM
aggregator; Janossy pooling [36] and PermGNN [37]—illustrating how such models can be made
permutation equivariant in expectation by applying them to several sampled permutations; and LCM
[34]—which showed GRU aggregators [38] can effectively learn a challenging commutative monoid.
Note that RNAR uses a stronger base model than GraphSAGE; we ablate against this in Appendix A.

3 Evaluating RNAR
We evaluate RNAR using the CLRS-30 algorithmic reasoning benchmark [13]. Since we want
to examine whether the use of RNAR enables the emergence of novel capabilities not covered by
previous state-of-the-art, we insert RNAR into the state-of-the-art Triplet-GMPNN architecture [14]
with hint reversals [39], and compare its performance against the baseline Triplet-GMPNN, as well
as two additional state-of-the-art neural algorithmic executors, which both offer inventive ways to
boost performance: Relational Transformers [40] and G-ForgetNets [41].

We remark that there are several very interesting recent works improving NARs [42, 43] which we
exclude because they leverage a different learning regime and/or CLRS environment assumptions.

We commence with Table 1, showcasing RNAR’s performance on sequential algorithms in CLRS-30,
where it is expected it could perform favourably in spite of its lack of symmetry.

Table 1: Micro-F1 test OOD scores on sequential algorithms. RNAR improves on its Triplet-GMPNN
baseline on 8/10 of them (underlined) and sets new state-of-the-art on 6/10.

Algorithm Triplet-GMPNN RT G-ForgetNet RNAR
Activity Selector 95.18%± 0.45 87.72%± 2.7 99.03%± 0.10 95.23%± 0.71
Binary Search 77.58%± 2.35 81.48%± 6.7 85.96%± 1.59 64.71%± 6.79
Bubble Sort 80.51%± 9.10 38.22%± 13.0 83.19%± 2.59 95.78%± 0.40
Find Max. Subarray 76.36%± 0.43 66.52%± 3.7 78.97%± 0.70 83.53%± 2.17
Heapsort 49.13%± 10.35 32.96%± 14.8 57.47%± 6.08 93.07%± 1.03
Insertion Sort 87.21%± 2.80 89.43%± 9.0 98.40%± 0.21 93.00%± 1.77
Minimum 98.43%± 0.01 95.28%± 2.0 99.26%± 0.08 96.92%± 0.09
Quickselect 0.47%± 0.25 19.18%± 17.3 6.30%± 0.85 87.08%± 2.21
Quicksort 85.69%± 4.53 39.42%± 13.2 73.28%± 6.25 94.73%± 0.63
Task Scheduling 87.25%± 0.35 82.93%± 1.8 84.55%± 0.35 88.08%± 1.30
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The most important result is clearly on the Quickselect task, wherein RNAR sets the best recorded
micro-F1 score by a wide margin, settling an important open challenge [26]. Besides this, RNAR
is highly potent for sorting algorithms, and generally outperforms its Triplet-GMPNN baseline in
nearly all of the sequential tasks.

Armed with this exciting result, we now evaluate RNAR on all other tasks in CLRS-30 – see Table 2.

Table 2: Single-task OOD average micro-F1 score of previous SOTA: Triplet-GMPNN, RT and
G-ForgetNet and our new RNAR model. For four of the algorithms (marked in red), RNAR with
triplets ran out of memory on a V100 GPU, and an MPNN model [44] was used as a basis instead.

Algorithm Triplet-GMPNN RT G-ForgetNet RNAR
Activity Selector 95.18%± 0.45 87.72%± 2.7 99.03%± 0.10 95.23%± 0.71
Articulation Points 91.04%± 0.92 34.15%± 14.6 97.97%± 0.46 26.32%± 27.34
Bellman-Ford 97.39%± 0.19 94.24%± 1.5 99.18%± 0.11 96.00%± 0.38
BFS 99.93%± 0.03 99.14%± 0.7 99.96%± 0.01 100.0%± 0.0
Binary Search 77.58%± 2.35 81.48%± 6.7 85.96%± 1.59 64.71%± 6.79
Bridges 97.70%± 0.34 37.88%± 11.8 99.43%± 0.15 72.22%± 12.66
Bubble Sort 80.51%± 9.10 38.22%± 13.0 83.19%± 2.59 95.78%± 0.40
DAG Shortest Paths 98.19%± 0.30 96.61%± 1.6 99.37%± 0.03 96.40%± 1.47
DFS 100.0%± 0.00 39.23%± 10.5 74.31%± 5.03 100.0%± 0.00
Dijkstra 96.05%± 0.60 91.20%± 5.8 99.14%± 0.06 95.04%± 1.62
Find Max. Subarray 76.36%± 0.43 66.52%± 3.7 78.97%± 0.70 83.53%± 2.17
Floyd-Warshall 48.52%± 1.04 31.59%± 7.6 56.32%± 0.86 27.49%± 6.95
Graham Scan 93.62%± 0.91 74.15%± 7.4 97.67%± 0.14 76.20%± 4.51
Heapsort 49.13%± 10.35 32.96%± 14.8 57.47%± 6.08 93.07%± 1.03
Insertion Sort 87.21%± 2.80 89.43%± 9.0 98.40%± 0.21 93.00%± 1.77
Jarvis’ March 91.01%± 1.30 94.57%± 2.2 88.53%± 2.96 91.83%± 1.77
Knuth-Morris-Pratt 19.51%± 4.57 0.03%± 0.1 12.45%± 3.12 4.54%± 2.60
LCS Length 80.51%± 1.84 83.32%± 4.1 85.43%± 0.47 66.91%± 2.53
Matrix Chain Order 91.68%± 0.59 91.89%± 1.2 91.08%± 0.51 25.12%± 1.86
Minimum 98.43%± 0.01 95.28%± 2.0 99.26%± 0.08 96.92%± 0.09
MST-Kruskal 89.93%± 0.43 64.91%± 11.8 91.25%± 0.40 67.29%± 0.93
MST-Prim 87.64%± 1.79 85.77%± 7.9 95.19%± 0.33 86.60%± 4.42
Naïve String Matcher 78.67%± 4.99 65.01%± 32.3 97.02%± 0.77 93.71%± 2.26
Optimal BST 73.77%± 1.48 74.40%± 2.6 83.58%± 0.49 36.04%± 12.55
Quickselect 0.47%± 0.25 19.18%± 17.3 6.30%± 0.85 87.08%± 2.21
Quicksort 85.69%± 4.53 39.42%± 13.2 73.28%± 6.25 94.73%± 0.63
Segments Intersect 97.64%± 0.09 84.94%± 2.6 99.06%± 0.39 97.30%± 0.29
SCC 43.43%± 3.15 28.59%± 15.2 53.53%± 2.48 48.43%± 8.01
Task Scheduling 87.25%± 0.35 82.93%± 1.8 84.55%± 0.35 88.08%± 1.30
Topological Sort 87.27%± 2.67 80.62%± 17.5 99.92%± 0.02 74.00%± 8.18

Overall average 80.04% 66.18% 82.89% 75.78%

While it is evident that removing permutation invariance does not yield the strongest model overall, we
found that performance regressions compared to Triplet-GMPNNs were not as common as expected,
and only 4% average performance points were lost compared to them.

Still, RNAR proves itself a worthy element in the NAR toolbox: with its outperformances on Find
Max Subarray, Heapsort and especially Quickselect, there are now only three tasks in CLRS-30
(Floyd-Warshall, Knuth-Morris-Pratt and Strongly Connected Components) for which there is no
known OOD result above 80%—indicating that we soon may need a new test split for CLRS-30.

As such, it is our hope that RNAR inspires future research into non-commutative aggregators in
NAR. We note two obvious limitations worth exploring in the future: the memory considerations of
LSTM aggregators, which caused OOMs in conjunction with triplets on four of the tasks (see also
Appendix C), and the fact that the Knuth-Morris-Pratt algorithm proves challenging in spite of being
a string algorithm. For the former, one may consider alternatives to recurrent aggregators such as
Binary-GRUs [34]; for the latter, seeking out better alignment with automata may be desirable.
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chronous algorithmic alignment with cocycles. In Learning on Graphs Conference, pages 3–1.
PMLR, 2024. 1, 2
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A RNAR ablations on base model and positional information

In this Appendix, we aim to answer two key questions about the choice of RNAR base model, as
well as its reliance on positional information—both enumerated in Table 3. The results are taken
across only the algorithms where RNAR does not run out of memory, in order to ensure a meaningful
ablation of capabilities.

The ablations are as follows:

RNAR gains additional power through architectural choices. As already previously discussed,
RNAR is not the first GNN architecture to use a recurrent aggregator—GraphSAGE [35] being a
notable early example. However, we remark that RNAR is not the same architecture as GraphSAGE—
its base model relies on architectural novelties such as triplet messages [10] and gating mechanisms
[45], as described by Ibarz et al. [14].

We argue that these improvements further amplify the impact of a recurrent aggregator, and compare
against RNAR-MPNN, a model with a recurrent aggregator which otherwise uses a more typical
message-passing neural network [13, 44] as the base model. Such an architecture is similar to
GraphSAGE-LSTM.

As is evident in Table 3, introducing the architectural changes results in an 11% increase in average
OOD execution performance, which is evidence in support of our hypothesis. That being said, the
simpler MPNN architecture does appear to better align with certain classes of algorithms, such as
dynamic programming (see LCS Length, Matrix Chain Order and Optimal BST) as well as the Floyd-
Warshall and Knuth-Morris-Pratt algorithms; these discrepancies may warrant further investigation
into the optimal base model for RNAR.

RNAR can meaningfully exploit positional features. Since nodes are fed into the LSTM aggre-
gator of RNAR in a canonical order (using its positional feature), it may be argued that the model
does not need to use this feature anymore. We believe that positional information may still be quite
relevant, especially in graph algorithms where nontrivial tiebreaking is common. To assess this, we
compare RNAR against a variant which does not use the positional feature (akin to NoPE [46]).

Once again, the results in Table 3 provide evidence for our claim, with RNAR losing 5% average
performance when the positional features are withheld. That being said, this removal does seem to
provide meaningful uplift on nearly all sorting algorithms, which may provide useful motivation for
future investigation into how the positional feature may be (mis)used by models like RNAR.
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Table 3: Test results of RNAR, RNAR-MPNN (an MPNN-based architecture with a recurrent
aggregator), and RNAR-NoPE (RNAR without positional inputs) on all algorithms where RNAR
does not run out of memory.

Algorithm RNAR RNAR-MPNN RNAR-NoPE
Activity Selector 95.23%± 0.71 87.35%± 4.19 96.86%± 0.31
Bellman-Ford 96.00%± 0.38 93.54%± 0.92 95.33%± 0.10
BFS 100.00%± 0.00 100.00%± 0.00 89.32%± 3.96
Binary Search 64.71%± 6.79 52.75%± 4.17 62.40%± 9.14
Bubble Sort 95.78%± 0.40 62.79%± 9.68 96.86%± 0.35
DAG Shortest Paths 96.40%± 1.47 49.06%± 4.98 83.07%± 6.41
DFS 100.0%± 0.00 6.78%± 2.30 97.37%± 2.15
Dijkstra 95.04%± 1.62 96.75%± 0.49 86.38%± 6.67
Find Max. Subarray 83.53%± 2.17 73.47%± 0.79 75.43%± 5.67
Floyd-Warshall 27.49%± 6.95 41.33%± 4.56 9.92%± 4.50
Graham Scan 76.20%± 4.51 50.92%± 3.04 79.18%± 2.25
Heapsort 93.07%± 1.03 67.61%± 10.71 95.41%± 0.33
Insertion Sort 93.00%± 1.77 87.88%± 0.75 99.16%± 0.27
Knuth-Morris-Pratt 4.54%± 2.60 23.01%± 10.60 3.96%± 1.62
LCS Length 66.91%± 2.53 77.46%± 2.83 73.29%± 4.12
Matrix Chain Order 25.12%± 1.86 43.55%± 9.14 24.18%± 1.92
Minimum 96.92%± 0.09 98.08%± 1.16 97.73%± 0.38
MST-Prim 86.60%± 4.42 87.59%± 3.52 89.82%± 1.97
Naïve String Matcher 98.95%± 0.42 28.55%± 21.13 18.81%± 9.13
Optimal BST 36.04%± 12.55 42.29%± 13.39 22.31%± 13.06
Quickselect 87.08%± 2.21 83.90%± 3.11 79.67%± 5.54
Quicksort 94.73%± 0.63 71.57%± 3.34 94.66%± 0.43
Segments Intersect 97.30%± 0.29 97.84%± 0.15 97.03%± 0.21
SCC 48.43%± 8.01 28.53%± 3.01 45.35%± 11.01
Task Scheduling 88.08%± 1.30 81.65%± 0.59 87.89%± 1.34
Topological Sort 74.00%± 8.18 81.98%± 14.07 76.29%± 9.01

Overall average 77.74% 66.01% 72.22%

B RNAR’s robustness against choice of node permutation

One of the motivating factors for the suitability of recurrent aggregators in NAR is the fact that
nodes may often have a canonical ordering when executing algorithms—and this is certainly the
case in CLRS-30. We now seek to investigate how relevant is this canonicalisation to the model’s
performance, by checking how well it performs when node permutations are consistently randomly
sampled, during both training and inference.

It might be noted that aggregating across randomly sampled permutations is exactly one of the
strategies employed by Janossy pooling [36] to achieive permutation equivariance in expectation.
This motivates our comparison in Table 4, where we benchmark RNAR (using canonical node order)
against RNAR-Janossy-k, which chooses k random permutations, runs the LSTM over each of them,
and averages the resulting embedding vectors. We focus on values of k ∈ {1, 2, 3}, to provide a
meaningful indication of trends without requiring too many computational resources.

As in Appendix A, we only take results across the algorithms where RNAR-Janossy-3 does not run
out of memory, in order to ensure a meaningful ablation.

While our results in Table 4 do indicate a slight average advantage to the canonical order used by
RNAR, the comparison is substantially less clear-cut; there are several algorithms from which there
is a very clear uplift from regularising RNAR towards permutation equivariance in this way. If we
take into consideration the number of algorithms where Janossy pooling runs out of memory, it may
still be concluded that canonicalisation is the better choice. That being said, our ablation points at a
clear line of future work, which would study principled ways to regularise NARs without symmetries
(such as permutation equivariance) towards satisfying these symmetries in expectation.

8



Recurrent Aggregators in Neural Algorithmic Reasoning

Table 4: Test results of RNAR and RNAR-Janossy-k (where embeddings are aggregated across k
random node permutations) models on all algorithms where these ablations do not run out of memory.

Algorithm RNAR RNAR-Janossy-1 RNAR-Janossy-2 RNAR-Janossy-3
Activity Selector 95.23%± 0.71 95.54%± 0.93 95.65%± 0.64 96.13%± 0.99
Bellman-Ford 96.00%± 0.38 96.31%± 0.43 96.64%± 0.05 96.22%± 0.40
BFS 100.00%± 0.00 100.00%± 0.00 100.00%± 0.00 100.00%± 0.00
Binary Search 64.71%± 6.79 55.40%± 6.96 36.37%± 4.02 60.60%± 7.16
DAG Shortest Paths 96.40%± 1.47 89.71%± 4.17 80.90%± 6.16 84.40%± 5.76
DFS 100.0%± 0.00 17.52%± 4.11 18.98%± 2.25 39.53%± 9.44
Dijkstra 95.04%± 1.62 89.67%± 5.44 92.33%± 1.24 96.54%± 1.09
Find Max. Subarray 83.53%± 2.17 67.93%± 7.39 78.64%± 1.02 79.14%± 2.28
Floyd-Warshall 27.49%± 6.95 70.36%± 10.24 46.70%± 18.75 47.86%± 17.72
Graham Scan 76.20%± 4.51 83.59%± 4.75 86.61%± 3.22 90.88%± 0.78
Insertion Sort 93.00%± 1.77 94.72%± 0.56 97.44%± 0.86 95.01%± 1.39
Knuth-Morris-Pratt 4.54%± 2.60 0.67%± 0.28 8.98%± 2.54 3.65%± 1.08
LCS Length 66.91%± 2.53 82.97%± 2.00 84.78%± 0.07 78.84%± 2.98
Matrix Chain Order 25.12%± 1.86 84.94%± 2.79 86.59%± 3.35 82.97%± 4.30
Minimum 96.92%± 0.09 97.20%± 0.29 93.81%± 1.76 85.63%± 9.86
MST-Prim 86.60%± 4.42 91.59%± 0.96 91.72%± 1.12 90.93%± 2.81
Naïve String Matcher 98.95%± 0.42 5.63%± 2.30 61.40%± 24.26 11.75%± 5.74
Optimal BST 36.04%± 12.55 50.21%± 20.45 78.06%± 3.40 70.51%± 9.91
Segments Intersect 97.30%± 0.29 92.17%± 1.57 91.45%± 2.14 94.22%± 1.60
Task Scheduling 88.08%± 1.30 88.18%± 0.53 88.55%± 0.91 87.74%± 0.96
Topological Sort 74.00%± 8.18 95.13%± 1.11 73.08%± 12.39 74.55%± 8.79

Overall average 76.29% 73.78% 75.65% 74.63%

C Timing performance of RNAR
In Figure 1 we show the effects of adding RNAR on computation time compared to the baseline
Triplet-GMPNN. As expected, the overall training steps-per-second is worse affected for algorithms
that require more intermediate iterations before arriving at the final answer.
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Figure 1: A comparison of the wall-clock times (y-axis, in seconds) required for completing a
certain number of training steps (x-axis), for the baseline Triplet-GMPNN (in blue) against RNAR
(in orange), across eight representative algorithms in CLRS-30.
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