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Abstract

Many applications in machine vision and medical imaging require the capture of images
from a scene with very low radiance, which may result in very noisy images and videos.
An important example of such an application is the imaging of fluorescently-labeled tissue
in fluorescence-guided surgery. Medical imaging systems, especially when intended to be
used in surgery, are designed to operate in well-lit environments and use optical filters, time
division, or other strategies that allow the simultaneous capture of low radiance fluorescence
video and a well-lit visible light video of the scene. This work demonstrates video denoising
can be dramatically improved by utilizing deep learning together with motion and textural
cues from the noise-free video.

Keywords: Fluorescence guided surgery, video denoising, neural network denoising, deep
learning, fluorescence video dataset, guided denoising

1. Introduction

In medical imaging modalities such as fluorescence image-guided surgery (FGS), thermal
imaging, imaging of Cerenkov radiation in radiotherapy, or Raman scattering, there are
many photon-starved or low contrast signals that are important to image at video frame
rates. For example in FGS, a patient is injected with a fluorescent compound that binds
to a specific tissue type. Then the tissue is illuminated with an excitation light source
during surgery and the fluorescent marker emits a weak fluorescent signal that can be
picked up by a fluorescent camera. Existing procedures use fluorescent markers to visualize
tumors (Ishizawa et al., 2009; Zhang et al., 2017), blood vessels (Li et al., 2010), lymph
nodes (Kitai et al., 2005; Frumovitz et al., 2018), necrotic tissue (Xie et al., 2015; Zajac
et al., 2022), or nerves (Gibbs-Strauss et al., 2011). A surgeon will use the fluorescent
camera feed to make real-time intraoperative decisions, where having high fluorescent signal
is key. Fluorescence is much weaker than standard light sources and this low signal is
compounded by the need for short exposure times for real-time video. Additionally, some
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Figure 1: Overview: (a) Our imaging setup consists of two co-registered cameras: the reference
camera measures a conventional intensity image of the scene while the low light video (LLV) camera
measures a noisy fluorescence video. (b) To denoise the LLV, we first find optical flow throughout
the video using the reference frames. We then apply the optical flow to the LLV to align frames in
time, we merge the aligned frames to create the OFDV. The OFDV and reference frames are then
fed into a video denoising neural network that will produce our final denoised video.

useful fluorescent dyes and intrinsic fluorescence compounds often have low photon yields
or low specificity leading to noisy videos that may lack the required sensitivity for clinical
decision-making. For example, the auto-fluorescence from the inferior parathyroid can be
weak during thyroidectomy (Kim et al., 2016) making it hard to detect the target. The
low signal levels in FGS can be improved computationally through video denoising methods
that will be able to take into account past captured frames to denoise a current frame as well
as temporal and spatial information. Denoising methods will increase signal-to-noise levels
in FGS to allow surgeons to lower the injection dose, allow for longer imaging time periods,
and allow use of lower contrast and low sensitivity fluorescent agents even auto-florescence.

Due to the low brightness of fluorescent markers, fluorescence signals are flooded by
background and ambient illumination. Hardware solutions have been developed to increase
signal by filtering out ambient light. One method, called transient lighting (Velten et al.,
2020), switches on and off the room light in short intervals between the exposure of fluo-
rescence camera frames. The blinking light is unnoticeable to the human eye due to the
flicker-fusion threshold making the surgical room appear well-lit while providing a dark
environment for fluorescent capture. Another method is wavelength filtering which blocks
photons from the illumination light source and photons outside of the fluorescence emission
band. Both wavelength filtering and transient lighting lend themselves to a two-camera
approach where one camera captures the low light video (LLV) of fluorescence, and another
co-located camera captures a good quality RGB video called the reference video (RV).

In this work, we aim to recover a denoised video from a noisy low light video (LLV)
of a faint fluorescent compound with noise standard deviations one magnitude higher than
what current methods consider. To address this extreme noise, we propose a sensor fusion
approach where the RV provides motion and structural cues that act as a guide when
denoising the LLV. Due to the low signal level of the fluorescent compound we consider using
a shot noise-limited camera such as a single photon avalanche diode (SPAD) to capture the
LLV.
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Figure 2: Optical Flow Denoising: First, we calculate optical flow from the RV frames. We
then calculate an optical flow failure mask by warping the RV frames forward in time and comparing
the warped frames to the true RV frame at that time. We then iterate over every frame and create
a running sum of the LLV video. In one iteration we warp the previous running sum result forward
in time 1 frame with the optical flow. We then reset pixels in the running sum according to the
optical flow failure mask. The current LLV frame is then added to the result which becomes the
next running sum frame and finally the OFDV.

We identify 3 useful properties for FGS denoising, spatial, temporal, and RV correlation
properties, many existing algorithms were only designed to use 2 of these factors. Video
denoising methods, such as the non-learning based V-BM4D (Maggioni et al., 2012) and
learning based FastDVDnet (Tassano et al., 2020), DVDNet (Tassano et al., 2019), and
VNLNet (Davy et al., 2019) are meant to denoise videos without a RV so use only temporal
and spatial properties. These algorithms rely on explicit or implicit feature mapping to
properly denoise frames, which is difficult with the extreme noise considered in this paper.
Additionally, convolutional neural network (CNN) approaches do not scale well to take as
input a large number of video frames due to GPU memory limitations. A second class of
denoisers are guided image denoisers such as guided filtering and joint bilateral filtering
that were designed for images with a guide image so make use of spatial properties and RV
spatial correlations but no temporal information. A third category of denoisers are align and
merge techniques (Hasinoff et al., 2016) which are often used to denoise videos generated
by single photon cameras (Seets et al., 2021; Ma et al., 2020; Istvan et al., 2015; Gyöngy
et al., 2017; Gyongy et al., 2018) and exploit temporal correlation; however, at extreme
noise levels, alignment is difficult. To utilize all three properties, we propose OFDVDnet
which draws inspiration from both align and merge techniques and deep learning methods
in a two-stage approach. First, we align the LLV with motion extracted from the clean RV
to compress the long temporal correlations in the LLV followed by a video denoising CNN
based on FastDVDnet.

An overview of OFDVDnet is shown in Fig 1, first, our LLV and RV data is collected
using two co-registered cameras. We use the RV to compute optical flow and an occlusion
mask between successive frames (Fig 2). The optical flow and mask are then applied to the
LLV to create a denoised motion-compensated estimate of the LLV, called the optical flow
denoised video (OFDV). The OFDV incorporates information from many distant frames.
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One main advantage of the OFDV is it is a compressed representation of many different
frames that can be easily loaded into GPU memory. Finally, we feed the ODFV and the
RV frames into a video denoising neural network inspired by FastDVDnet to create a final
denoised output.

We capture a RV and LLV aligned dataset using a commercial FGS imaging system
(OnLume Surgical, Madison, WI) in a simulated surgery based on the blue blood chicken
model used in micro-surgical training (Albano et al., 2021) where we inject a fluorescent
agent to highlight blood vasculature in chicken thighs. To collect training data we use
indocyanine green (ICG) as our fluorescent agent to capture low-noise video and simulate
much weaker fluorescence giving us noisy and ground truth pairs for training.

2. Method
2.1. Dataset
We capture data with a transient lighting-enabled (Velten et al., 2020), clinical wide-field
FGS imaging system (OnLume Surgical, Madison, WI). OnLume’s system uses two camera
sensors for both the reference and fluorescent cameras. In a surgical training model (Albano
et al., 2021), we inject the near-infrared fluorescent agent, ICG, via syringe into the femoral
artery of four chicken thighs to simulate vascular surgery. We prepared varying doses of ICG
up to the clinical guidelines of 2.5 mg/mL to generate fluorescent videos with visual contrast
and low noise that can be treated as ground truth and simulate much lower fluorescence.
In future work, we would like to detect markers that have much fewer photons than our
captured fluorescent videos. We capture about 100 minutes of simulated surgical footage
with a variety of motion such as cutting, pulling, squeezing, injecting, and working with
surgical tools. The 100 minutes of footage is broken up into 590 100-frame long videos.
The videos are captured at 15 frames per second at a resolution of 768× 1024; however, we
downsample the resolution to 192× 256 to speed up training times in our experiments.

To simulate our noisy LLV, we scale the fluorescent frames between [ϕback, ϕsig + ϕback]
photons per frame, where ϕback is the number of background photons and ϕsig is the max-
imum number of signal photons in a pixel, and then we apply Poisson noise to the scaled
frames. We use ϕback = 10 photons accounting for ambient light and sensor dark counts.
We use 3 different signal photon levels, ϕsig = [1, 5, 20], to represent a range of fluores-
cent strengths. We measure the noise level with the signal-to-background (SBR) ratio,

SBR =
ϕsig

ϕback
. Giving us three SBR levels, SBR= [0.1, 0.5, 2] or standard deviations of

σ = [826, 180, 57] on an 8-bit image, see Appendix E.

2.2. Denoising Algorithm
Our goal is to denoise the LLV with the help of a co-registered noise-free RV. For our
noise model, we consider the case where the LLV was captured with a photon-limited
camera such as a SPAD and is dominated by Poisson noise (Hasinoff, 2014). While a
pure Poisson noise model is a good approximation for single photon cameras, commercial
CMOS cameras may introduce additional noise terms but next-generation CMOS cameras
(e.g. Hamamatsu qCMOS) have low enough noise to measure single photons. These new
cameras are shot noise limited and generally have a Poisson dark current or dark count
rate which can be modeled with a constant photon background rate. We anticipate next-
generation cameras to be used in FGS, so we use a Poisson noise model with a constant
background to simulate these cameras. We note that a different camera-specific noise model
would be straightforward to implement with our model.
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Figure 3: Injection of ICG: In this figure, we show the RV frame, ground truth fluorescence
frame, noisy LLV frame, and our proposed denoised result of a scene before and after ICG injection.
(a) At the start of ICG injection, there is a small amount of innate fluorescence near the injection site.
(b) After injection, the vascular structure becomes visible in the fluorescence channel. OFDVDnet
is able to reconstruct both scenes well, maintaining most of the important vascular structure in (b).
Note that at high concentrations the dye appears green, but this color does not necessarily indicate
the near infrared fluorescence from the ICG for example see the tip of the syringe in (a).

Figure 4: Vessel Detail: OFDVDnet cor-
rectly reconstructs a small vessel (red arrow)
while comparison methods remove it entirely.

At time t, let F̃t and Wt denote the captured
LLV frame and RV frame, respectively. Let,
F̃t = Poiss(Ft) where Ft represents the ground
truth LLV frame, and Poiss represents Poisson
sampling. Because we consider very noisy cases
it is difficult to denoise F̃t alone, so we use the
RV as a guide.

We use a two-step denoising method, first
our optical flow based denoising exploits the
alignment of the LLV and RV to find motion
within the scene from the RV and apply it to
the LLV. Once the LLV is aligned, frames can
be merged to reduce noise to create the optical
flow denoised video (OFDV). We warp the LLV
both forward and backward in time aggregating
information from all frames. However, if a video
is needed to be displayed with little latency, then
the OFDV could be warped only forward in time
resulting in lower latency at the cost of quality.
In our second step, a CNN takes the OFDV and
RV frames as input to further denoise. This two-step approach uses frames from distant
points in time to denoise a single frame without increasing GPU memory use.

Optical Flow Based Denoising: One technique to denoise F̃t is to average 2T frames
around time t, F̃t−T ...F̃t+T . Higher T will reduce noise but also increase motion blur.
Therefore, we would like to spatially align the frames together before averaging. We use
the RV to find optical flow and flow failure masks, which are then applied to the LLV to
create the OFDV. The method is shown in Fig 2.
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First, we use the RV frames to find optical flow warp maps, At→t+1 that warp a frame
at time t to time t+1. At→t+1 can be found using any optical flow method. We found that
Gunnar-Farneback’s (Farnebäck, 2003) optical flow algorithm was sufficient for our problem
and, on our hardware, ran faster than the CNN based MaskFlowNet (Zhao et al., 2020).
We use At→t+1 to average the LLV frames along motion trajectories with a running sum
strategy. Let D+

t be the running sum at time t, then,

D+
t = At−1→t(D

+
t−1) + F̃t (1)

Ideally, we could estimate a frame at time t as
D+

t
t . However, optical flow can fail in a

variety of circumstances such as occlusions. To deal with flow failures, for each frame we
detect pixels with flow errors and reset the summation for those pixels. Then due to the
resets each pixel in D+

t may represent a sum over a different period of time, so we also
record the length of time since the last reset in each pixel given by N+

t . Therefore, the new

LLV estimate at time t is given by
D+

t

N+
t

, which represents an average in each pixel since the

last optical flow failure. Let Mt be a binary mask which has a pixel value of 0 if At−1→t

Figure 5: High Noise: This scene has no
occlusions so OFDV averages over all frames
giving good results where comparisons fail.

fails to warp correctly, then Eq. 1 becomes,

D+
t = Mt ⊙At−1→t(D

+
t−1) + F̃t (2)

N+
t = Mt ⊙At−1→t(N

+
t−1) + 1 (3)

where ⊙ represents pixel-wise multiplication and
1 represents an image of all ones. We generate
Mt by detecting optical flow failures by com-
paring intensity values of successive reference
frames; we warp Wt−1 and compare it to Wt by,

Mt =
∣∣∣1− At−1→t(Wt−1)

Wt

∣∣∣ < τ (4)

where τ is a threshold value, we use τ = 0.07.
We then compute, F̂ flow+

t ,

F̂ flow+
t =

D+
t

N+
t

(5)

F̂ flow+
t is the forward OFDV, we combine

F̂ flow+
t with the backward OFDV F̂ flow−

t to create out final OFDV. The backward OFDV
is calculated by running the same process reversed in time. Similar to the forward OFDV,
we calculate D−

t , and N−
t that represent the running sums on a time-reversed video. We

can then create the final OFDV, F̂ flow
t , by combining the forward and backward estimations

as follows,

Dt = D+
t +D−

t − F̃t (6) Nt = N+
t +N−

t − 1 (7) F̂ flow
t =

Dt

Nt
(8)

where each pixel in Dt and Nt represents the sum and number of aligned pixels between
two optical flow failures, respectively. Note that to find Dt and Nt we need to subtract out
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Table 1: Comparison of PSNR/SSIM/FSIM (higher is better) for LLV frames denoised using
OFDVDnet, OFDV, and the comparison methods at 3 noise levels.

SBR OFDVDnet OFDV FastDVDnet V-BM4D Guided Filtering Joint Bilateral

0.1 29.3/.76/.88 10.8/.015/.20 24.3/.48/.83 19.7/.19/.52 16.4/.19/.69 15.8/.11/.59
0.5 34.0/.89/.93 21.5/.22/.52 30.8/.80/.88 29.9/.61/.86 28.1/.61/.86 26.3/.52/.81
2.0 36.9/.92/.95 30.8/.72/.82 35.7/.89/.93 36.7/.88/.92 33.7/.90/.92 31.5/.85/.90

what is contained in both forward and backward OFDVs. A pixel value in the OFDV is the
average value of an aligned LLV between optical flow failures. For example, if optical flow
is correctly found for all frames, the OFDV will average along motion trajectories over the
entire video, lowering noise and avoiding motion blur. Whereas if there is an occlusion the
OFDV will avoid motion blur and only average pixel values between successive occlusion
events. This process leads to the OFDV having high temporal consistency from frames being
correlated and spatially varying noise levels from different averaging lengths per pixel.

Neural Network: In order to further remove the remaining noise and any warping artifacts
in F̂ flow

t , we use a CNN denoiser based on FastDVDnet (Tassano et al., 2020) which takes
five noisy frames to denoise the middle frame. We provide the CNN with five consecutive
OFDV frames F̂ flow

[t−2:t+2], averaging time maps N[t−2:t+2], and RV frames W[t−2:t+2] as input.

We train the CNN to reconstruct the middle ground truth frame Ft using 1000 training
pairs over 100 videos with mean square error (MSE), see Appendix C,D for details.

The four neighboring OFDV frames of F̂ flow
t , F̂ flow

{t−2,t−1,t+1,t+2}, provide the CNN with

additional information on the center frame and reduce flickering. The averaging time maps
N[t−2:t+2] act as noise maps to indicate per-pixel noise levels because OFDV pixels have
averaged signal over a varying number of frames and thus different noise characteristics. RV
frames W[t−2:t+2] let the CNN exploit structural similarities between the RV and OFDV.

3. Results

Our testing set consists of the middle 96 frames from 100 videos. We compare our results
to video denoisers only given the LLV frames, the CNN FastDVDnet (Tassano et al., 2020)
re-trained on our data, and V-BM4D (Maggioni et al., 2012), a popular block matching
and filtering technique. We also compare our technique to two image denoising techniques
that use a RV frame to assist in denoising a LLV frame, guided filtering (He et al., 2012),
and joint bilateral filtering (Gastal and Oliveira, 2011). In Fig 3, we show an example
scene before and after ICG injection into the vessels in a chicken thigh. Before injecting
ICG, Fig 3(a), fluorescence is only seen near the injection site and in areas of the chicken
thigh that are either auto-fluorescent or fluorescent due to the chicken treatment process.
As the dye injects into the femoral artery, it perfuses and smaller vascular branches begin
fluorescing. OFDVDnet is able to reconstruct most of the details of the vascular system
with only slight blurring.

OFDVDnet performs well in high noise when the OFDV can average over a large num-
ber of frames allowing use of information in the entire video to create the denoised output.
Fig. 5 shows an example scene (SBR= 0.1) with no occlusion events and only small motion
that can be easily taken care of by the OFDV. OFDVDnet reconstructs most of the fluores-
cent structure correctly, but struggles to reconstruct the moving syringe fully due to large
movement. Both FastDVDnet and V-BM4D fail in this high-noise example.
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We found that OFDVDnet could better reconstruct small vessels, one example is shown
in Fig. 4. In this example, the OFDV contains the blood vessel that has been injected with
the marker (red arrow) so the denoising network has the information needed to properly
reconstruct this important feature. Whereas the vessel is lost in the noisy LLV frames so
the comparison methods completely remove this vessel while showing a reasonable image.
This failure mode is arguably worse than the un-processed noisy image since it suggests to
the surgeon that the image is accurate but in fact conceals the vein.

By leveraging the correlation between successive OFDV frames, OFDVDnet produced
videos with very little flickering. When our network denoises successive frames in a video the
inputs are very similar, so the output will have little room to flicker due to noise fluctuations.
Video results for OFDVDnet and the comparison methods can be found in Appendix B.

For our image quality metrics (IQM) we use peak signal-to-noise ratio (PSNR), as well
as structural similarity(Wang et al., 2004) (SSIM), and feature similarity(Zhang et al.,
2011) (FSIM) which better correspond to human interpretation than PSNR. The IQA re-
sults are summarized in Table 1. OFDVDnet outperforms at all noise levels tested and
OFDVDnet’s IQMs drop slower with increasing noise when compared to other methods.

Table 2: Ablation study PSNRs.

SBR=0.5 PSNR

OFDVDnet 34.04
No RV Frames 33.82

No Averaging Time Maps 33.30
Only RV Frames 24.13

Switch OFDV with 5 LLV 31.05
Switch OFDV with 17 LLV 32.74

Network Ablation Study: We study the effects

of the reference frames, averaging time maps, and
OFDV on the performance of our network. We
retrain the network for each ablation case at SBR=
0.5. The results are summarized in Table 2. First,
we tested removing the averaging time maps or the
RV frame inputs which both decrease the PSNR of
the result. Next, we test using only the RV frames
as input which obtains a PSNR of 24.13 indicating
strong structural priors, such as visible veins, in
the RV.

Finally, we replaced the OFDV input with the corresponding LLV frames which resulted
in worse PSNR and significant flickering artifacts. We further studied the case of increasing
the number of input LLV frames to 17, which was the maximum allowable due to GPU
memory constraints. 17 LLV frames produced better quality results compared to five LLV.
However, 17 LLV frames resulted in flickering artifacts and a decrease in PSNR compared
to using five OFDV frames while also requiring a substantial increase in the required GPU
memory (3x), training time (18x), and evaluation time (4x).

4. Conclusions and Discussion

In this work, we demonstrated a guided video denoising method meant for applications in
FGS that is able to leverage deep learning in a memory-efficient manner with an explicit
align and merge step. We captured and evaluated our method on a new dual-camera FGS
dataset. OFDVDnet makes use of three properties spatial, temporal, and RV correlations to
the LLV while comparison methods only use two of the three. FastDVDnet (Tassano et al.,
2020) and V-BM4D (Maggioni et al., 2012) use spatial and temporal properties to provide
decent results without the need for the RV, but fall off quickly as the noise level increases
showing the importance of the RV at high noise. Guided filtering (He et al., 2012), and
joint bilateral filtering (Gastal and Oliveira, 2011) make use of the RV, but only spatially,
and use no temporal information. These methods have the worst image quality metrics and
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result in flickering in the final video at high noise levels but are computationally the least
expensive. Finally, our intermediate OFDV only makes use of temporal information from
the RV and its results show the importance of using spatial information to denoise.

While OFDVDnet is able to produce strong results, we identify three key areas that
future work can improve upon. First, OFDVDnet relies on the time-consuming computation
of optical flow between the RV frames which disallows real-time use. An efficient patch-
based approach (Hasinoff et al., 2016) may be faster using the RV frames as a guide.
Second, OFDVDnet struggles when strong motion or occlusion disrupts the averaging of
the OFDV leading to higher noise results. Better motion tracking that deals with these
cases will be useful in denoising more challenging scenarios. One possible place to improve
is in the detection of optical flow failures (Eq. 2.2); for example, the current method relies
on relative intensity which will falsely detect a failure under changing lighting conditions
this could be improved by using a different failure detection method such as normalized
cross-correlation. Finally, our dataset is limited to simulated chicken thigh data, so it is
unclear how learned priors will translate to other applications such as oncology. While our
dataset is useful for evaluation of new algorithms, new application-specific datasets will be
required for learning-based approaches. We hope our dataset and method can be used in
further algorithm development for medical imaging applications that require higher signal
under scene motion.
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Figure 6: Reconstruction PSNR at different SBR: This plot shows our neural network
reconstruction PSNR for a variety of SBR levels and different inputs into the network.

Appendix A. Additional Ablation Studies

Warp input frames: Explicit motion compensation could benefit video denoising quality (Tassano
et al., 2019). We implemented explicit motion compensation on the input data to our CNN by

warping four of the five frames in F̂ flow
[t−2:t+2], N[t−2:t+2], W[t−2:t+2] to align with their respective

middle frames: F̂ flow
t , Nt, and Wt using optical flow calculated from the reference frames. Warping

did not improve video denoising quality for our case. This results in a PSNR of 33.92.

OFDV forward vs. forward backward OFDV forward(OFDV:FW) warps video frames forward
in time, utilizing only information before the current frame in time space. OFDV:FWBW warps
video frames both forward and backward in time, utilizing information from both before and after
the current frame in time space.We compare the OFDV:FWBW to OFDV:FW by changing the
inputs into the neural network at a variety of SBR levels. The results are summarized in Fig. 6
along with PSNR curves for the only reference frames and replacing the OFDV with the LLV. We
find the OFDV:FWBW obtains the best results due to its ability to use many frames from both
the future and the past. Using the OFDV:FW achieves strong PSNR; however, more flickering is
observed in the denoised results when compared to the OFDV:FWBW. This is likely due to stronger
input correlations and lower noise in the OFDV:FWBW.

OFDV Ablation Next, we examine how the tunable parameters in our OFDV construction effect
the performance of the OFDV construction. Because training the network from scratch takes about
1 week on our hardware we instead choose to run a study on the OFDV PSNR performance. Our
OFDV relies on the computation of optical flow based on OpenCV’s implementation (Bradski, 2000)
Gunnar-Farneback’s algorithm (Farnebäck, 2003) which has 6 tunable parameters. We also have a
seventh tunable parameter in our detection of optical flow failures, τ , that controls the sensitivity
of our optical flow failure detection where higher values lead to fewer failure detection events. We
compute the PSNR of the OFDV on one-third of the training set for a range of values of all 7 of
these parameters. For each parameter, we calculate the PSNR for a specific value as the maximum
PSNR achieved with respect to the other 6 parameters. We found that the 6 optical flow parameters
had very little impact on the final OFDV performance changing by less than 0.25dB over the range
of tested values (ramge chosen based on suggestions from OpenCV’s documentation). We found τ
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Figure 7: OFTV PSNR vs τ : This plot shows our OFDV reconstruction PSNR with respect to
changing the τ parameter.

has a much larger impact on OFDV PSNR and find that larger τ is useful before a limit is reached,
these results are shown in Fig 7.

Appendix B. Video Results

We have included 3 videos from the test set at each noise level. In each video we include the reference
video, ground truth LLV, noisy LLV, the OFDV, our result, FastDVDNet’s(Tassano et al., 2020)
result, and V-BM4D’s(Maggioni et al., 2012) result. A brief description of each included video:

• Video 323: There is slight movement in this video from tool use.

• Video 383: In this video there is moderate movement due to pulling tissue.

• Video 499: The camera is bumped in this video leading to large motion in the scene.

We also include a video of denoised results from our ablation study. The result includes 25
test videos from the neural network denoised output with different input configuration. We use the
following different inputs: OFDV:FWBW, OFDV:FW, 5 noisy LLV frames, 17 noisy LLV frames,
and only reference frames. These results are at SBR = 0.5.

We share our video results on our YouTube channel: https://www.youtube.com/@fgs_denoising/
playlists. For best viewing quality, we recommend enabling ”fullscreen” by clicking the bottom-
right button in the YouTube video player when viewing the videos. See the ”About” tab in the
channel for a short description on navigating the channel.
The original videos can also be downloaded from our Google drive:
https://drive.google.com/drive/folders/1QarTJx4h7TiVlR2zekRwcmqoV9fRL8Je?usp=sharing.
The included .txt file provides a short description on how to navigate the folders.

Appendix C. Neural Network Architecture

We use the same general network architecture as FastDVDNet (Tassano et al., 2020) for our video
denoising network. Suppl. Fig. 8 shows a diagram of the architecture. When denoising an OFDV
frames F̂ flow

t , the network takes four of its neighboring OFDV frames F̂ flow
{t−2,t−1,t+1,t+2} along with
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Figure 8: Diagram of the video denoising network

Figure 9: Architecture of the denoising block

their corresponding reference frames W[t−2:t+2] and averaging time maps N[t−2:t+2] as inputs. Dur-
ing the forward pass, adjacent OFDV frames along with their corresponding reference frames and
averaging time maps are passed into denoising blocks in groups of three. A diagram of the denoising
block is shown in Fig. 9.
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Appendix D. Training Details

Our CNN is trained on the output frames from the optical flow denoising algorithm or OFDV frames.
The training dataset consists of input/ground-truth frame pairs P k

t :

P k
t =

(
(F̂ flow,k

[t−2:t+2],W
k
[t−2:t+2], N

k
[t−2:t+2]), F

k
t

)
where k ∈ {1, 2, · · · , ntot}.
For a given noise level, the training dataset contains a total number of ntot = 1000 input/ground-

truth pairs. We sample 1000 ground-truth fluorescent frames from the first 250 out of 590 ground-
truth LLVs, and fill in their corresponding OFDV frames F̂ flow,k

[t−2:t+2], reference frames W k
[t−2:t+2], and

averaging time maps Nk
[t−2:t+2].

We use Mean Squared Error (MSE) as our loss function:

L(θ) =
1

ntot

ntot∑
k=1

∥F̂net,k
t −Gk

t ∥
2

(9)

where θ is the set of learnable parameters; F̂net,k
t is the output of the CNN.

ADAM optimizer(Kingma and Ba, 2015) is used to minimize the loss function with all its pa-
rameters set to default values and the initial leaning rate set to 10−3. The network is trained for
100 epochs with a batch size of 8. Our CNN is trained separately for three different noise levels,
SBR = [0.1, 0.5, 2].

Retraining FastDVDNet: When comparing our method to FastDVDNet (Tassano et al., 2020)
we found it was necessary to retrain FastDVDNet on our dataset and noise levels in order for
FastDVDNet to produce reasonable results. We feed FastDVDNet the raw LLV frames and an
estimated noise map. We estimate a constant noise map for each frame by using the average number
of photon counts captured at each frame to estimate the noise standard deviation (see Appendix E).
We train FastDVDNet using the same training procedure as our method.

Appendix E. Finding Equivalent Gaussian Standard Deviation

Before we generate Poisson noise we scale our images between [ϕback, ϕsig] then we add Poisson noise
and re-scale the noisy image between [0,255]. For comparison to methods using the standard devia-
tion of additive white Gaussian noise, the comparable standard deviation of our Poisson corrupted
images scaled between [0,255] is given by,

σ =
√
ϕ
255

ϕsig
(10)

where ϕ ∈ [ϕback, ϕsig] is the expected numbers of photons for a given pixel. Although, Poisson noise
is signal dependent we can get an estimate of the noise in a scene by using ϕ = 1

2 (ϕsig+2ϕback), which
gives us a standard deviation of σ = [826, 180, 57] for our three noise levels of SBR= [0.1, 0.5, 2].

Appendix F. Optical Flow Failures

Figure 10 shows five consecutive LLV, RV, OFDV denoised, OFDVDnet denoised and ground truth
frames. The red box circles out a region with optical flow failures due to rapid occluder (a pair
of tweezers) movements in that area. The rapid movement of occluder causes optical flow to fail
repeatedly in short time intervals for those regions around the occluder, leading to less pixels being
averaged over time and more noise remaining in those pixels. As shown in Figure 10, for each of
the five OFDV frames, the area inside the red box has significantly more noise compared to areas
outside the box. Because the OFDV frames are more noisy in areas with rapid occluder movements,
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Figure 10: Example case with optical flow failures

the OFDVDnet also tend to blur out more details in those areas compared to other areas in the
video frames during the neural network denoising step.
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