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Abstract

Modern large-language models often face communication bottlenecks on current
hardware rather than computational limitations. Multi-head latent attention (MLA)
addresses this by compressing the key-value cache using low-rank matrices, while
the Absorb operation prevents the KV cache from reverting to its original size,
significantly boosting both training and inference speed. Despite the success of
DeepSeek V2/V3/R1, most model providers have heavily invested in optimizing
GQA-based models and, therefore, lack strong incentives to retrain MLA-based
models from scratch. This paper demonstrates that MLA provides superior ex-
pressive power compared to GQA with the same KV cache overhead, thereby
offering a rationale for transitioning from GQA to MLA. In addition, we introduce
TransMLA, a framework that seamlessly converts any GQA-based pre-trained
model (e.g., LLaMA, Qwen, Gemma, Mistral/Mixtral) into an MLA-based model.
For the first time, our method enables direct conversion of these models into a
format compatible with DeepSeek’s codebase, allowing them to fully leverage the
existing, highly-optimized support for the DeepSeek architecture within inference
engines like vLLM and SGlang. By compressing 93% of the KV cache in LLaMA-
2-7B, we achieve a 10x speedup with an 8K context length while maintaining
meaningful output. Moreover, the model requires only 6B tokens for fine-tuning to
recover comparable performance across multiple benchmarks. TransMLA provides
a practical path for migrating GQA-based models to the MLA structure, and when
combined with DeepSeek’s advanced optimizations—such as FP8 quantization and
Multi-Token Prediction—further inference acceleration can be achieved.

1 Introduction

Advanced Large language models (LLMs)—such as GPT-4o [1], Claude 3.7 Sonnet [2], Gemini-
2.5 [3], LLaMA-4 [4], Mistral-3 [5], Qwen-3 [6], DeepSeek V3/R1 [7, 8], Gemma-3 [9], and
Phi-4 [10]—represent a rapidly evolving frontier for both research and applications. At their core,
LLMs rely on next-token prediction [11, 12]: tokens are generated sequentially, a process that
requires self-attention to be computed over all preceding tokens at each generation step. To avoid
the computationally expensive recalculation of these states, implementations store the intermediate
key–value (KV) pairs in a cache. Yet, as model and context sizes grow, the KV cache itself becomes
a major bottleneck for inference.
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Figure 1: (a) GQA, MLA, and MQA can be equivalently transformed in one direction, illustrating a
gradual increase in expressive power. (b) RoRoPE aggregates positional information in the first head,
eliminating the need for RoPE in others. FreqFold further enhances this effect. After balancing the
magnitudes of Krope and V , a joint low-rank approximation is applied to compress the KV cache.

To mitigate these challenges, Group-Query Attention (GQA) [13] partitions the query heads into
groups, where every head within a group shares a single key and value head. GQA thus generalizes
both Multi-Query Attention (MQA) [14] and Multi-Head Attention (MHA) [15]: it degenerates to
MQA when a single group is used, and reduces to MHA when the number of groups equals the number
of query heads. While both GQA and MQA cut the size of the KV cache relative to MHA, they do so
at the cost of model quality. Post-training KV-cache compression techniques—such as Duo-Attention
[16], KiVi [17], KV-Quant [18], H2O [19] and Palu [20]—further shrink memory usage, but their
non-standard implementations demand specialized optimizations, hindering widespread adoption.

Multi-Head Latent Attention (MLA)—introduced with DeepSeek V2 [21] and further refined in
DeepSeek-V3 [7]/-R1 [8]—offers a pre-trained KV-cache compression strategy that strikes an excel-
lent balance between computational efficiency and model quality. Models equipped with MLA deliver
state-of-the-art results while driving training and inference costs to new lows. Moreover, the DeepSeek
team’s ongoing commitment to open-source releases provides highly optimized implementations and
deployment recipes, making these advances readily accessible to the community.

In this paper, we first prove that MLA consistently offers higher expressive power than GQA under
the same KV cache overhead, which theoretically explains the advantage of MLA. However, a
practical hurdle preventing model vendors from switching to MLA is the substantial prior investment
on GQA-based models. This motivates us to ask: can we seamlessly convert a GQA-based pretrained
model, such as LLaMA [4] and Qwen [6], to MLA so that we can inherit the model weights and
pretraining effort, rather than training MLA from scratch?

A key obstacle to converting a GQA-based model to MLA is that the Absorb operation [20], which
DeepSeek uses to switch between the compute and memory-efficient modes, is blocked. This occurs
because every query / key head has its own Rotary Positional Embedding (RoPE) [22]. Borrowing
from DeepSeek’s Decoupled RoPE scheme, we concentrate the positional signal in K into a small
subset of dimensions, Krope. The remaining dimensions, Knope, contain negligible positional content.
This decoupling allows us to drop the RoPE from Knope and then absorb its up-projection into
the query projection—mirroring the DeepSeek methodology—thereby enabling seamless MLA
conversion.

To efficiently concentrate positional information into fewer dimensions, we introduce RoRoPE—a
novel technique that performs principal component analysis (PCA) on the key output, applies rotation
across the two ends of RoPE, and consolidates the principal components of all attention heads into
the dimensions of the first attention head. We theoretically prove that the product remains invariant
after rotating the query and key using an orthogonal matrix U, as long as U satisfies two conditions:
(1) rotation occurs only within the same dimensions across all attention heads and (2) the real and
imaginary components of RoPE are rotated in the same manner. Additionally, by exploiting the
frequency similarity between adjacent RoPE dimensions, we propose FreqFold, a technique that
improves the concentration efficiency.

Finally, we find that the ℓ2-norm of Knope is much larger than that of V . If we run PCA on the
concatenated matrix

[
Knope;V

]
without adjustment, the principal components are dominated by

Knope, leading to a severe loss of information from the value subspace and a sharp decrease in
accuracy. We therefore introduce a Balanced Key–Value (BKV) procedure: we first rescale Knope and
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V so that their norms match, and only then perform joint PCA. This simple normalization restores
the balance between the two subspaces and delivers a marked improvement in compression quality.

The above innovations collectively form our TransMLA method. Using TransMLA, we compressed
the KV cache of LLaMA-2 by 68.75%, with only a 1.65% performance drop across 6 benchmarks for
training free. In contrast, a concurrent method, MHA2MLA [23], experienced a 21.85% performance
decline. At a compression rate of 93%, the model still maintained meaningful responses, and
after training with 6B tokens, its performance was mostly restored. We evaluated both the original
(GQA/MHA) models and their TransMLA-converted counterparts on different hardware setups using
vLLM. The TransMLA models achieved up to a 10x speedup over the originals, demonstrating the
significant potential of our approach. Moreover, the TransMLA models are fully compatible with
DeepSeek’s code, enjoying DeepSeek’s ecosystem to accelerate inference and seamlessly integrate
with various hardware and frameworks.

2 Related Work

Autoregressive decoding in large language models necessitates storing past activations—the key–value
(KV) pairs—in a cache to avoid recomputation. Because the size of this cache grows linearly with
sequence length, its memory footprint quickly becomes the limiting factor for very long contexts.
Consequently, shrinking the KV cache without compromising accuracy has become a pivotal research
focus, motivating a spectrum of architectural innovations and compression strategies.

Multi-Query Attention (MQA) [14] and Group-Query Attention (GQA) [13] shrink the KV cache by
letting every query in a group share a single key and value head. Although both schemes save memory
relative to Multi-Head Attention (MHA) [15], they usually give up some accuracy. Multi-Head Latent
Attention (MLA)—introduced with DeepSeek V2 [21] and refined in later releases DeepSeek V3/R1
[21, 24]—offers a more favorable trade-off, delivering near-state-of-the-art quality while cutting
training and inference costs. Grouped Latent Attention (GLA) [25] provides a parallel-friendly
implementation of latent attention that further accelerates MLA inference. By contrast, Tensor
Product Attention (TPA) [26] tackles the memory bottleneck by dynamically factorizing activations,
slashing the runtime KV cache by an order of magnitude, but it necessitates training the model from
scratch. TransMLA fills this gap: rather than proposing yet another attention variant, it converts
an existing GQA model into an MLA model with only light fine-tuning, restoring accuracy while
inheriting MLA’s memory and speed advantages.

Another approach is to optimize the KV cache of existing pre-trained models. For example, dynamic
token pruning is employed by LazyLLM [27], A2SF [28], and SnapKV [29]. These methods
selectively prune less important tokens from the KV cache. Sharing KV representations across layers,
as in YONO [30], MiniCache [31], and MLKV [32], reduces memory by reusing the same KV cache
across multiple layers. This can drastically lower memory usage and speed up inference. Although
effective, both families of methods usually require custom kernels or runtime tweaks, complicating
deployment and limiting adoption. TransMLA, by contrast, plugs directly into the mature DeepSeek
ecosystem—converted checkpoints load out-of-the-box, delivering MLA-level speed-ups across every
DeepSeek-supported platform.

There are two works most related to TransMLA. One is Palu [20], which reduces KV cache size by
applying low-rank decomposition on both the keys and values, enabling speedup through tailored
optimizations. However, Palu does not specifically handle RoPE, which prevents it from using the
Absorb operation during inference. Therefore, Palu needs to project the compressed representations
back to their original size. This projection incurs significant computational overhead during inference,
limiting the overall acceleration. Another concurrent work, MHA2MLA [23], also claims to convert
MHA to MLA and decouple RoPE from the main computational path. It is important to clarify
that TransMLA is not simply a GQA extension of MHA2MLA—both TransMLA and MHA2MLA
support MHA and GQA architectures. However, MHA2MLA determines which RoPE dimensions
to remove solely based on the norms of the query and key vectors, which tends to cause larger
information loss when pruning the same proportion of positions. Also, the distribution of important
dimensions in MHA2MLA is uneven, requiring sparse indexing that complicates optimization and
acceleration. Their work reports compression ratios of the KV cache but does not demonstrate actual
inference speedup. Furthermore, MHA2MLA directly applies joint singular value decomposition to
KV, resulting in higher loss compared to our balanced key-value PCA method.
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3 Preliminary

Rotary Position Embedding and Group Query Attention Details are provided in Appendix A.

Multi-Head Latent Attention MLA operates on an input sequence, where xt ∈ RD is the
embedding of the t-th token and D is the model’s hidden dimension. To save KV cache, it first
computes low-rank latent features cKV

t using a down-projection matrix WDKV ∈ Rrkv×D. Then,
up-projection matrices WUK ∈ Rhd×rkv and WUV ∈ Rhd×rkv are used to derive the key (k)
and value (v) representations for all h heads, where d is the per-head dimension. Similarly, MLA
decomposes the query projection (using WDQ ∈ Rrq×D and WUQ ∈ Rhd×rq , where rq is the query
rank) to reduce activation memory. For positional embedding, MLA uses a decoupled RoPE strategy.
This employs additional multi-head queries qR

t,i ∈ RdR

and a shared key kR
t ∈ RdR

to carry the
RoPE signal, which are generated from WQR ∈ RhdR×rq and WKR ∈ RdR×D (dR is the per-head
RoPE dimension). The computation of the key and query representations is formulated as follows:

cKV
t = WDKV xt,

[kC
t,1;k

C
t,2; ...;k

C
t,h] = kC

t = WUKcKV
t ,

kR
t = RoPEt(W

KRxt),

kt,i = [kC
t,i;k

R
t ], (1)

cQt = WDQxt,

[qC
t,1;q

C
t,2; ...;q

C
t,h] = qC

t = WUQcQt ,

[qR
t,1;q

R
t,2; ...;q

R
t,h] = qR

t = RoPEt(W
QRcQt ),

qt,i = [qC
t,i;q

R
t,i]. (2)

MLA features a dual-mode capability, tailored for different operational stages. For the compute-
intensive training phase, it adopts a configuration resembling standard MHA (Equation (3)), offering
slightly lower computational overhead than conventional MHA. Conversely, for communication-
intensive inference, it can seamlessly switch to an MQA-like setting (Equation (4)). In this latter
mode, the latent features function as a shared large KV head, interacting with all query and output
heads to efficiently produce the final output. This mechanism, known as the Absorb operation, is
crucial for accelerating inference.

[vC
t,1;v

C
t,2; ...;v

C
t,h] = vC

t = WUV cKV
t ,

ot,i =

t∑
j=1

softmaxj(
qT
t,ikj,i√
d+ dR

)vC
j,i,

yt = WO[ot,1;ot,2; ...;ot,h], (3)

q̂t,i = [WUK
i

⊤
qC
t,i;q

R
t,i], k̂t = [cKV

t ;kR
t ],

ôt,i =

t∑
j=1

softmaxj(
q̂T
t,ik̂j√
d+ dR

)cKV
j ,

yt = WO[WUV
1 ôt,1; ...;W

UV
h ôt,h], (4)

where W
{UK,UV }
i denotes slices of the projection matrices corresponding to the i-th attention head.

One of the main contributions of this paper is the seamless support for the Absorb operation,
significantly enhancing inference speed.

4 TransMLA

In this section we formally present TransMLA, motivated by two observations:

1. For a fixed KV-cache budget, MLA is strictly more expressive than GQA. As proven in
Appendix B and illustrated in Figure 1a, any GQA layer can be rewritten as an MLA layer by
introducing a single additional projection matrix. The reverse transformation is not always possible,
implying that MLA subsumes GQA. This equivalence holds even when RoPE are present, although it
requires the equivalent MLA layer to be expressed in the absorbed form.

2. Inference acceleration occurs when MLA uses a smaller KV cache. Although one can build an
MLA-equivalent representation of a GQA model, speedups arise only if the number of stored KV
vectors is actually reduced. TransMLA achieves this by converting the GQA-based network into
a DeepSeek-like MLA architecture while compressing its KV cache. This allows the transformed
model to run directly on DeepSeek’s inference stack and realize the full memory–latency benefits.

4.1 Merging Grouped Heads to a Latent Head

The core insight behind establishing the strictly greater expressive power of MLA over GQA, and
the first step in the TransMLA transformation, lies in unifying GQA’s g grouped key-value (KV)
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heads into a single MLA latent representation. This transformation replicates GQA’s repeat_kv
mapping, where each query i maps to a specific KV group j = ⌈i/(h/g)⌉. To achieve this, we
initialize the MLA up-projection WUK

i ,WUV
i as sparse block matrices: for each i-th query head,

only the block corresponding to its designated j-th KV group is set to an identity matrix, while all
others are zero. This ensures that a single key representation can be shared across g query heads while
maintaining interactions solely with its designated partner. WUV

i is initialized analogously to map to
the j-th value head. Consequently, the g identical RoPE rotations must also be consolidated into a
single operator, denoted RoPE, which applies the original rotation pattern (of per-head dimension d)
repeatedly every d dimensions to the unified key. In this way, the computation of GQA attention is
transformed into the following form:

[qt,1;qt,2; . . . ;qt,h] = qt = WQxt, [cKt ; cVt ] = cKV
t = WDKV xt, (5)

q̂R
t,i = RoPEt

(
WUK⊤

i qt,i

)
, k̂R

t = RoPEt

(
cKt
)
, v̂t = cVt , (6)

ôt,i =

t∑
j=1

softmaxj

(
q̂R⊤

t,i k̂
R
j√

d

)
v̂j , yt = WO[WUV

1 ôt,1; . . . ;W
UV
h ôt,h], (7)

where:
WDKV = [WK ;WV ] ∈ R2gd×D,

WUK
i = WUV

i ∈ Rd×gd, WUK
i [k, l] =

{
1 if l = (j − 1)d+ k,

0 otherwise.

This GQA-equivalent formulation (Equation (6)-(7)) is crucial because it makes the model structurally
compatible with the absorb operation, enabling seamless switching between execution modes.
However, this equivalence alone provides no acceleration. It is evident that the total KV cache size
remains unchanged (cKV

t ∈ R2gd), which is identical to the original GQA model. Furthermore, as
shown in Equation (6), the effective attention dimension increases from d to gd (since q̂R

t,i and k̂R
t

are both in Rgd), leading to higher computational costs. To achieve actual acceleration, compressing
the KV cache is therefore essential. This unified representation is advantageous for compression, as
merging multiple KV heads allows for better identification of shared principal components. Moreover,
this merged-key structure is a prerequisite for efficiently decoupling RoPE in the subsequent steps.

Overview of the RoRoPE decoupling pipeline. Blue lines and orange lines denote the real and
imaginary components, respectively. We first gather dimensions with the same rotational frequency
(θl) across all g heads. A joint Principal Component Analysis (PCA) is then applied to these g-
dimensional real and imaginary components. This process concentrates the dominant positional
signal into a single principal component for each frequency, which is then represented by a standard
RoPE (RoPE 1, RoPE 2), while the remaining components are decoupled (NoPE 3-8).

4.2 Head-wise Rotation for Decoupled RoPE with Minimal Loss

To enable the essential KV cache compression identified in the previous section, we introduce a
method, RoRoPE. As illustrated in Figure 2, applying RoRoPE to the merged head removes the bulk
of the positional signal from K.

In the GQA-equivalent form (Equation (7)), the attention dot product q̂R⊤

t,i k̂
R
j is computed over

the merged gd-dimensional vectors. Recall that RoPE operates by rotating d/2 independent 2D
subspaces. Because our RoPE operator applies the same rotation pattern to all g heads, we can
regroup this total dot product by summing over these d/2 independent subspaces. We define the
real and imaginary components (Appendix A) of the l-th 2D subspace (where l ∈ [1, d/2]) as the
(2l − 1)-th and (2l)-th dimensions of any single head, respectively. Let q̂(l,real)

t,i and q̂
(l,imag)
t,i be the

g-dimensional vectors formed by gathering all real (dims [2l − 1, 2l − 1 + d, . . . ]) and imaginary
(dims [2l, 2l+ d, . . . ]) components, respectively, from the g (absorbed) query heads. The key vectors
k̂
(l,real)
j and k̂

(l,imag)
j are defined similarly from k̂R

j . The total gd-dimensional dot product can then be
expressed as the sum of d/2 independent 2g-dimensional dot products:

q̂R⊤

t,i k̂
R
j =

d/2∑
l=1

RoPEt,l

([
q̂
(l,real)
t,i ; q̂

(l,imag)
t,i

])⊤
RoPEj,l

([
k̂
(l,real)
j ; k̂

(l,imag)
j

])
, (8)
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Group 1 Group 2 Group 4Group 3

Dim 1 Dim 2 Dim 3 Dim 4 Dim 5 Dim 6 Dim 7 Dim 8

PCA

RoPE NoPE NoPE NoPE

Figure 2: Overview of the RoRoPE decoupling pipeline. Blue lines and orange lines denote the
real and imaginary components, respectively. We first gather dimensions with the same rotational
frequency (θl) across all g heads. A joint Principal Component Analysis (PCA) is then applied
to these g-dimensional real and imaginary components. This process concentrates the dominant
positional signal into a single principal component for each frequency, which is then represented by a
standard RoPE

where

RoPEt,l

([
x
(l,real)
t ;x

(l,imag)
t

])
= cos tθl

[
x
(l,real)
t ;x

(l,imag)
t

]
+ sin tθl

[
−x

(l,imag)
t ;x

(l,real)
t

]
. (9)

When the l-th concatenated real and imaginary components of q̂t,i and k̂j are multiplied by an
orthogonal matrix Ul ∈ Rg×g , the inner product with RoPE applied remains invariant. Specifically,

d/2∑
l=1

RoPEt,l

([
Ulq̂

(l,real)
t,i ;Ulq̂

(l,imag)
t,i

])⊤
RoPEj,l

([
Ulk̂

(l,real)
j ;Ulk̂

(l,imag)
j

])
= q̂R⊤

t,i k̂
R
j . (10)

This invariance holds because RoPE is a linear rotation independently applied to different heads, and
any orthogonal transformation applied to the g-dimensional components preserves the inner product.
However, this reveals a critical constraint: the same orthogonal matrix Ul must be applied to both
the real and imaginary components within each 2D subspace. For a detailed proof and our proposed
solution, please refer to Appendix C.

In practice, our RoRoPE method uses Principal Component Analysis (PCA) to compute the required
orthogonal matrices {Ul}l∈{1,...,d/2} from the key activations for each l-th subspace. To apply these
rotations (as required by Equation (10)), we transform the weight matrices WK and WUK directly.
This is because rotating the activations (q̂t,i, k̂j is equivalent to rotating their respective generation
matrices. The rotation effectively concentrates the essential information into the first few components
(heads), and in turn, allows us to perform the final decoupling: we remove the RoPE encoding
from the non-principal components, preserving positional information only within the principal
components.

However, applying PCA directly to each 2g-dimensional subspace independently is suboptimal, as
this space is often too small for effective compression. We address this by exploiting a key property
of RoPE: adjacent rotational frequencies are often similar (θl ≈ θl+1). This similarity allows us
to treat adjacent subspaces as effectively equivalent, grouping them to perform PCA over a larger,
combined latent space. This technique, which we call FreqFold, achieves superior compression by
identifying principal components across a broader set of dimensions. We defer a detailed analysis of
FreqFold to Appendix D.

6



4.3 Balancing Knope and V for Improved Joint Low-Rank Compression

In the previous section, we split the key heads into one carrying positional information and the
others without positional information, achieving minimal loss. We then apply Principal Component
Analysis (PCA) jointly on the values and the non-positional components of the keys (i.e. Knope),
using activations collected from a small calibration dataset, thereby compressing the projection
matrices into a low-rank latent space. However, we observed that although the principal components
of the keys were effectively separated with RoRoPE, the norm of the residual key features remained
significantly larger than that of the value features. This imbalance caused the direct decomposition to
favor principal component directions dominated by the keys.

To mitigate this, we scale WDK
nope by dividing it by

α =
Et[∥WDK

nope xt∥2]
Et[∥WDV xt∥2]

(11)

and correspondingly scale WUK by multiplying it by α. Here, WDK
nope ∈ R(g−1)d×D represents the

last g − 1 heads that does not use RoPE in WDK .

This transformation is mathematically equivalent and does not affect the overall model outputs, while
significantly enhancing the effectiveness of KV cache compression in subsequent steps. More details
is provided in the Appendix E and F.

5 Experiment

5.1 Main Experiment

In this section, we present our main experimental results. Following the experimental setup of
MHA2MLA, we converted two models—smolLM 1.7B and Llama 2 7B—into the MLA architec-
ture. We evaluated the models’ performance on six benchmarks at three stages: before conversion,
immediately after conversion without further training, and after conversion followed by training. For
the training process, we used a subset of the pretraining corpus used for the smolLM model. The
fine-tuned results of MHA2MLA are taken directly from the original paper. Our experiments were
conducted on an 8-GPU machine, each GPU having 40GB of memory and delivering 312 TFLOPS
of FP16 compute power. Detailed hyperparameter settings are provided in the Appendix G.

From Table 1, we observe that TransMLA efficiently facilitates architecture migration across various
models and KV cache compression ratios. Notably, the untrained performance of MLA models
initialized with TransMLA shows minimal degradation in capability compared to the original mod-
els—significantly less than the degradation observed with MHA2MLA under equivalent KV cache
compression. In fact, using TransMLA to compress the KV cache of Llama 2 7B to just 7.03% of
its original size still results in better performance than MHA2MLA’s compression to 31.25% on
the same model. This highlights the effectiveness of our proposed techniques includes RoRoPE,
FreqFold and activation-based balanced KV low-rank factorization.

The low-loss transformation achieved by TransMLA enables us to recover the original model per-
formance with minimal training overhead. As shown in the table, TransMLA achieves stronger
performance than MHA2MLA-6B while using significantly fewer training tokens. For instance, when
transforming smolLM 1.7B and compressing the KV cache to 31.25% of its original size, we only
need 4.9% of the training data used by MHA2MLA and 2 hours training to surpass its performance.

5.2 Key Norm Analysis Reveals the Impact of RoRoPE and FreqFold

In this section, we conduct a detailed analysis of the distribution of key activations in the attention
module to demonstrate the effectiveness of our proposed methods.

Figure 3a presents the average L2 norm of each key dimension in the first attention layer of the
LLaMA 3 8B model, computed on a subset of the WikiText-2 [39] dataset. We compare the original
model (in blue), the model transformed using our RoRoPE equivalence method (in orange), and the
further approximated model using 4D FreqFold (in green). The top and bottom halves of the plot
correspond to pairs of dimensions that share the same rotation angle in RoPE, which we refer to as
the real (Re-dim) and imaginary (Im-dim) dimensions.
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Table 1: Commonsense reasoning ability of two LLMs with TransMLA compared to MHA2MLA.
The six benchmarks include MMLU ([33]), ARC easy and challenge (ARC, [34]), PIQA ([35]),
HellaSwag (HS, [36]), OpenBookQA (OBQA, [37]), and Winogrande (WG, [38]). Tokens refers to
the number of tokens used for further training after the TransMLA conversion. A value of 0 indicates
that the model was evaluated immediately after conversion, without any fine-tuning.

Model Tokens KV Mem. Avg. MMLU ARC PIQA HS OBQA WG

SmolLM-1.7B 1T – 55.90 39.27 59.87 75.73 62.93 42.80 54.85

- MHA2MLA

0
-68.75% 40.97 27.73 41.96 63.00 29.19 34.40 49.53
-81.25% 37.14 26.57 32.73 55.77 26.90 31.40 49.49
-87.50% 34.01 25.32 27.15 51.36 25.47 26.20 48.54

-68.75% 54.76 38.11 57.13 76.12 61.35 42.00 53.83
6B -81.25% 54.65 37.87 56.81 75.84 60.41 42.60 54.38

-87.50% 53.61 37.17 55.50 74.86 58.55 41.20 54.38

- TransMLA

-68.75% 51.95 35.70 55.68 73.94 53.04 39.80 53.51
0 -81.25% 47.73 32.87 47.89 69.75 48.16 36.20 51.46

-87.50% 44.12 29.97 41.72 66.87 41.15 34.80 50.28

300M -68.75% 55.24 38.60 58.95 74.97 61.52 43.00 54.38
700M -81.25% 54.78 37.79 57.53 75.52 59.88 42.80 55.17

1B -87.50% 54.01 37.24 56.32 74.81 60.08 42.40 53.20

LLaMA-2-7B 2T – 59.85 41.43 59.24 78.40 73.29 41.80 64.96

- MHA2MLA

-68.75% 37.90 25.74 32.87 59.41 28.68 28.60 52.09
0 -81.25% 34.02 25.50 26.44 53.43 27.19 22.60 49.01

-87.50% 32.70 25.41 25.79 50.60 26.52 19.40 48.46

-68.75% 59.51 41.36 59.51 77.37 71.72 44.20 62.90
6B -81.25% 59.61 40.86 59.74 77.75 70.75 45.60 62.98

-87.50% 58.96 40.39 59.29 77.75 69.70 43.40 63.22

- TransMLA

0
-68.75% 58.20 39.90 57.66 77.48 70.22 41.00 62.90
-87.50% 51.19 34.39 45.38 71.27 60.73 37.40 57.93
-92.97% 43.26 28.93 36.32 63.38 45.87 31.60 53.43

500M -68.75% 59.82 40.87 59.18 77.91 71.82 45.20 63.93
3B -87.50% 59.36 40.77 58.84 78.18 71.28 43.60 63.46
6B -92.97% 59.19 40.41 58.68 77.53 70.39 45.00 63.14

LLaMA-3-8B 15T – 63.84 46.20 65.75 80.47 76.20 45.60 68.82

- TransMLA 0 -71.875% 54.13 36.38 52.84 73.83 64.34 37.00 60.38

30B -71.875% 63.39 46.18 66.30 80.30 76.33 45.00 66.22
60B -71.875% 63.76 47.39 66.96 80.41 77.10 44.80 65.90

We observe that the original model exhibits a highly uneven norm distribution across key dimensions,
with numerous outliers. This suggests that naively removing RoPE from certain heads would likely
result in significant performance degradation. After applying our RoRoPE transformation, as shown
by the orange line, the key dimensions with large norms are nearly all concentrated to the first two
heads (dimension 0-128). Further applying the 4D FreqFold approximation compresses the tail (i.e.,
higher-index dimensions) even more, leading to an even sharper concentration of high-norm key
dimensions. This concentrated structure is highly beneficial for the subsequent RoPE removal step as
shown in Figure 3b.

In Figure 3b, we present the log-perplexity of the LLaMA 3 8B model on WikiText-2 as RoPE
components are progressively removed. We observe that our proposed RoRoPE method significantly
outperforms MHA2MLA’s per-head dimension selection strategy, especially at high removal ratio.
Furthermore, incorporating similar-dimension approximation leads to even better performance under
extreme removal rates. At 90% removal ration, RoRoPE + 4D-FreqFold still maintains a log-
perplexity about 2, while MHA2MLA reaches nearly 6, which no longer generates meaningful outputs.
At the same time, we observe that overly aggressive FreqFold (i.e., using too many dimensions) can
degrade performance, as the loss introduced by approximation of nearby dimensions can outweigh
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Figure 3: Visualization of key norms and RoPE removal results on LLaMA 3 8B model. The top and
bottom halves of the left figure correspond to pairs of dimensions that share the same rotation angle
in RoPE, which we refer to as the real (Re-dim) and imaginary (Im-dim) dimensions.
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Figure 4: Visualization of the norms of keys and values for the first layer of LLaMA 3 8B and
the perplexity results after joint low-rank compression of keys and values under WikiText-2. Here,
W-based and WX-based refer to PCA applied on the attention weights and the activation outputs,
respectively. BKV denotes the application of KV balancing.

the benefit in concentrating the principal components. This figure suggests that for LLaMA 3 8B, the
sweet spot lies in applying RoRoPE combined with 4D FreqFold.

5.3 Key-Value Norm Disparity Motivates KV Balancing

In Figure 4a, we visualize the norm magnitudes of the key and value activations in the first layer
of LLaMA 3 8B before and after KV balancing. Note that both the key and value shown here are
activations after applying the RoRoPE principal component concentration, and the first head of the
key—reserved for RoPE—is excluded. As a result, the value and the remaining key components
shown in the figure are precisely the elements we aim to compress jointly into a lower-dimensional
space via PCA.

It is evident that even after removing the first head with the highest norm, the overall norm of the key
remains significantly larger than that of the value. This norm disparity poses a substantial challenge
for joint compression into a shared latent space. In particular, such imbalance can bias the PCA
toward directions aligned with the key, rather than the value, leading to suboptimal representation of
the value components.

The lower part of Figure 4a shows the norm distribution of keys and values after applying KV
balancing. At this point, the norms of keys and values become more aligned, which is beneficial for
performing joint PCA. This observation is further supported by the results in Figure 4b, where KV
balancing consistently reduces the loss incurred by jointly applying low-rank approximation to keys
and values—whether the PCA is based on weights or on activations. Figure 4b also demonstrates that
activation-based PCA yields significantly better results than weight-based PCA.
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5.4 Hardware-Agnostic Inference Speedup with TransMLA

By converting MHA/GQA models into MLA models that are fully compatible with the DeepSeek
codebase and compressing the KV cache, TransMLA enables us to leverage all optimizations and
tooling available in DeepSeek. Using the vLLM framework, we achieve substantial real-world
inference speedups.

In Figure 5, we benchmarked the inference performance of an MLA model—with a 92.97% reduction
in KV cache size—on three consumer-grade AI accelerators with different compute capabilities and
memory sizes: 165.2 TFLOPS with 24GB memory, 312 TFLOPS with 40GB memory, and 320
TFLOPS with 64GB memory. The figure shows the inference speedup of the MLA model relative
to the original MHA model. Low-rank Q and Full-rank Q indicate whether the query projections
were also compressed. Context length represents the total sequence length (i.e., context length plus
generated tokens).

Our experiments show that the inference speedup of MLA models increases as the context length
grows, which aligns with our expectations. Since the primary performance gain of MLA stems from
KV cache compression, longer contexts lead to more substantial savings and thus higher speedups.
Remarkably, for the 8K context window on the first hardware platform, the TransMLA-transformed
model achieves an impressive 10x inference acceleration. To the best of our knowledge, the
MHA2MLA method has not reported any inference speedup results.
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Figure 5: Inference speedups with TransMLA comparing to the original LLaMA2 7B model on three
consumer-grade AI accelerators. Context length represents the total sequence length.

6 Conclusion, Limitation and Future Work

In this work, we demonstrate that the expressive power of TransMLA is stronger than GQA under the
same KV cache. To help existing GQA transition to the MLA structure with minimal cost, we propose
the TransMLA method. By using the RoRoPE method, the multi-head KV positional information is
concentrated into the first head, and FreqFold further enhances this extraction effect. The positional
information of the remaining query-key heads is removed, and the Balance KV norm method is used
to jointly compress the values and the remaining heads of keys. TransMLA can convert models
such as LLaMA and Qwen into MLA-based models, and the converted model incurs very little loss
compared to the original model, with performance being recoverable through training with only a
few tokens. Additionally, TransMLA can easily leverage the DeepSeek ecosystem for accelerated
inference, achieving significant throughput improvements across various hardware platforms.

Although TransMLA significantly reduces the loss caused by decoupling RoPE through RoRoPE and
FreqFold, and mitigates KV cache compression loss via KV balancing, error accumulation becomes
increasingly severe for longer texts, making recovery more challenging. Moreover, potential issues
may arise during training aimed at enhancing recovery performance, including subtle performance
degradation and hallucinations, which must be carefully considered. To address these challenges, it is
worth exploring more advanced mathematical approaches that can better reconcile the norm disparity
between keys and values, achieving improved performance under the same compression rate and
ultimately enabling a truly training-free conversion process.

All speed comparisons in this paper are conducted on the single GPU. When multi-GPU parallel
inference is required, MLA is less compatible with tensor parallelism (TP) than GQA, since multiple
devices must replicate the same latent cache, which typically necessitates the use of data parallelism
(DP). How can the speed of TransMLA be improved under TP? Furthermore, TransMLA should be
integrated with pruning, quantization, token selection, and other optimization techniques to fully
explore the upper limits of inference acceleration.
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For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: All theorical results are proved either in the main paper or in supplemental
material.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All the information to reproduce the experimental results is given in the paper,
and the corresponding code will be released both in the supplemental material and github
repository.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All data used in the paper can be publicly accessed, and code will be released
upon publication. The supplemental material contains detailed instructions on how to
download and preprocess the data, as well as how to run the provided scripts to reproduce
the main experimental results. Environment details, dependencies, and exact commands
are documented to ensure faithful reproduction. For any baseline methods, scripts and data
preparation steps are also included or referenced.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In Section 5, the experiment settings are briefly discussed. Detailed experi-
mental configurations are provided in the supplemental material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Due to limited space in the main text for figures and tables, detailed reporting
of error bars and statistical significance information is provided in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have provided detailed information about the GPU parameters, including
memory size and compute capability.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have carefully reviewed and ensured that all aspects of our research
conform fully to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See supplemental materials.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have carefully reviewed and verified the licenses and terms of use for all
existing assets used in this paper, including code, datasets, and pretrained models. The
original creators are properly credited with citations to the corresponding papers.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.

19



• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We release new code assets alongside the paper. The documentation includes
details on usage, training, license, and limitations, and is provided with the code repository.
Assets are anonymized for submission.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core methods of this research do not involve any large language models.
LLMs were not used in any important, original, or non-standard capacity in this work.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Additional Preliminaries

A.1 Rotary Position Embedding (RoPE)

RoPE [22] is a position encoding method that encodes the absolute positions with different rotations
and incorporates the explicit relative position dependency in the self-attention formulation. It applies
different rotations to tokens in different positions to encode the position information.

Consider xt ∈ Rd to be the embedding of the t-th token with the hidden size d. The RoPE operation
upon xt produces a representation xR

t that encodes both semantic and positional information:

xR
t = RoPEt(xt) =


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
, (12)

where ⊗ denotes the element-wise multiplication of two vectors, x(i)
t ∈ R denotes the i-th element

of xt, and θi = 10000−2(i−1)/d is the i-th rotation angle. If we interpret every two elements in
the embedding as a representation in the complex coordinate system, we can divide xt into paired
dimensions, where the odd-indexed dimensions x(2k−1)

t represent the real parts and the even-indexed
dimensions x(2k)

t represent the imaginary parts.

A.2 Group Query Attention

Let the t-th token of the input sequence be xt ∈ RD, where D denotes the hidden dimension. To
reduce the memory overhead of the KV cache, GQA divides the h query heads uniformly into g
groups, with all query heads within a group sharing the same key and value vectors. Specifically,
let WQ ∈ Rhd×D, WK ,WV ∈ Rgd×D and WO ∈ RD×hd be the projection matrices for the
query, key, value and output, where d = D/h denotes the dimension per head. GQA first computes
the concatenated queries qt, keys kt, and values vt, and then slices them into heads or groups for
attention computation:

[qt,1;qt,2; ...;qt,h] = qt = WQxt, (13)

[kt,1;kt,2; ...;kt,g] = kt = WKxt, (14)

[vt,1;vt,2; ...;vt,g] = vt = WV xt, (15)

where each qt,i ∈ Rd corresponds to the query vector of the i-th head, and kt,j ,vt,j ∈ Rd correspond
to the key and value vectors of the j-th group.

Using the notation in Section A.1, after applying RoPE to qt,i,kt,i, we can obtain the attention output
for the t-th token as follows:

ot,i =

t∑
j=1

softmaxj(
qR
t,i

⊤
kR
j,⌈i/h

g ⌉
√
d

)vj,⌈i/h
g ⌉, (16)

yt = WO[ot,1;ot,2; ...;ot,h]. (17)

As we can see, in GQA, each key and value head corresponds to h
g query heads. When g = h, GQA

becomes MHA, and when g = 1, GQA becomes Multi-Query Attention (MQA).
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B Enhanced Expressive Power of MLA with Decoupled RoPE

B.1 Introduction

This section provides a theoretical analysis to demonstrate that Multi-Head Latent Attention (MLA)
with decoupled Rotary Position Embedding (RoPE), as described in Section 3 of the main paper,
possesses greater expressive power than Grouped-Query Attention (GQA) (Section A.2). This
analysis assumes comparable KV cache sizes and number of query heads.

Our primary argument focuses on the core projection mechanisms that generate queries, keys, and
values, abstracting away from the specifics of RoPE application initially. We first present the following
proposition concerning the relative expressiveness of these core mechanisms:

Proposition 1. Given the same KV cache size and number of query heads, the expressiveness of the
core attention projection mechanisms follows the order: GQA < MLAFactorized < MQA.

Here, MLAFactorized refers to an attention mechanism employing low-rank factorization for its
key and value projections, representing the content-processing aspect of the full MLA. It is im-
portant to note that in the proposition, the query projection in MLAFactorized does not undergo
low-rank factorization; this differs from the full MLA, where the query is also factorized. After
proving this proposition, we will discuss how the full MLA architecture, which incorporates such
an MLAFactorized core for its content components and an MQA core for its decoupled RoPE com-
ponents, is thereby more expressive than GQA. For this analysis, we primarily consider the impact
of the architectural structure on representational capacity, setting aside the direct effects of RoPE
itself on the expressiveness comparison between the fundamental GQA, MLA-Factorized, and MQA
structures.
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Figure 6: Comparison of Multi-Query Attention (MQA), Group Query Attention (GQA), and Multi-
Head Latent Attention (MLA). In this work, we illustrate that given the same KV cache size, the
expressiveness increases in the order of GQA, MLA, and MQA. In the figure, h, d, g denote the
number of heads, hidden dimension of each head, and the number of groups (K/V heads) in GQA,
respectively. In MQA, the head dimension is set to gd to align the KV cache size with GQA and
MLA. As a result, the KV cache size per token per layer for all three approaches is 2gd

B.2 Proof of Proposition 1

Let D be the hidden dimension of the input token xt ∈ RD, h be the number of query heads, and
d = D/h be the dimension per head. In GQA, query heads are divided into g groups. For fair KV
cache comparison, the latent dimension for keys and values in MLAFactorized (rkv) and the head
dimension of MQA will be related to gd. Specifically, if the KV cache per token in GQA is 2gd for
both keys and values, then in MLAFactorized, rkv = 2gd, and in MQA, the head dimension is also
2gd; this ensures the KV cache sizes are aligned.
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B.2.1 GQA ≤ MLAFactorized

In GQA, query head qt,i attends to key kj,⌈i/(h/g)⌉ and value vj,⌈i/(h/g)⌉. The GQA key projection
WK ∈ Rgd×D produces g distinct key vectors [kt,1; . . . ;kt,g]. Similarly, WV ∈ Rgd×D produces
value vectors. We define effective per-query-head projection matrices W ′K ∈ Rhd×D and W ′V ∈
Rhd×D for GQA:

W ′K =

W ′K
1
...

W ′K
h

 ,where W ′K
i = WK

⌈i/(h/g)⌉, (18)

W ′V =

W ′V
1
...

W ′V
h

 ,where W ′V
i = WV

⌈i/(h/g)⌉. (19)

Here, WK
k is the k-th d×D block of WK . Thus, k′

j,i = W ′K
i xj = kj,⌈i/(h/g)⌉, and similarly for

values. The matrices W ′K and W ′V have ranks at most gd.

An MLAFactorized mechanism generates keys via kj,i = (WUK(WDKV xj))i, where WDKV ∈
Rrkv×D and WUK ∈ Rhd×rkv . A similar formulation applies for values with WUV ∈ Rhd×rkv .

To demonstrate expressive capability, GQA ≤ MLAFactorized, we set rkv = 2gd. Let WDKV =(
WK

WV

)
∈ R2gd×D. We seek WUK ,WUV ∈ Rhd×2gd such that W ′K = WUKWDKV ,W ′V =

WUV WDKV . This is achieved by setting WUK
i ,WUV

i ∈ Rd×2gd (the block for head i) as selector
matrices:

WUK
i = [0d×d, . . . ,0d×d︸ ︷︷ ︸

k−1 blocks

, Id×d,0d×d, . . . ,0d×d︸ ︷︷ ︸
2g−k blocks

], (20)

WUV
i = [0d×d, . . . ,0d×d︸ ︷︷ ︸

g+k−1 blocks

, Id×d,0d×d, . . . ,0d×d︸ ︷︷ ︸
g−k blocks

], (21)

where k = ⌈i/(h/g)⌉. Thus, GQA’s key/value generation can be replicated by an MLAFactorized

model with rkv = 2gd and specific sparse structures for WUK and WUV . The KV cache size
2gd× (sequence length) is preserved since we will be caching cKV

j = WDKV xj ∈ R2gd. On that
account, the theoretical expressive power of GQA is less than or equal to that of MLAFactorized given
the same KV cache size.

B.2.2 MLAFactorized ≤ MQA

Consider an MLA-Factorized model where queries are qt,i = WQ
i xt (assuming WQ

i ∈ Rd×D is the
i-th block of WQ) and keys are kj,i = (WUK

i (WDKV xj)). The attention score for head i involves
q⊤
t,ikj,i:

q⊤
t,ikj,i = (WQ

i xt)
⊤(WUK

i (WDKV xj)). (22)

This can be rewritten as:

q⊤
t,ikj,i = ((WUK

i )⊤WQ
i︸ ︷︷ ︸

W ′Q
i

xt)
⊤(WDKV xj). (23)
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Let q̂t,i = W ′Q
i xt ∈ R2gd and cKV

j = WDKV xj ∈ R2gd. The computation of attention output
becomes:

ot,i =
∑
j

softmaxj(
q̂⊤
t,ic

KV
j√
d

)WUV
i cKV

j , (24)

yt = WO[ot,1;ot,2; ...;ot,h]

= WO


WUV

1

WUV
2

. . .
WUV

h


︸ ︷︷ ︸

W ′O


softmaxj(

q̂⊤
t,1c

KV
j√
d

)cKV
j

...

softmaxj(
q̂⊤
t,1c

KV
j√
d

)cKV
j

 . (25)

This is an MQA formulation where each modified query q̂t,i (now of dimension 2gd) attends to a
shared key and value cKV

j . This indicates that the computations within MLA-Factorized can be
structured to use shared intermediate key and value representations akin to MQA’s core. Thus, any
MLA-Factorized model can be represented as an MQA model with a shared key/value of dimension
2gd.

B.2.3 Strict Inequalities: GQA < MLAFactorized < MQA

The relationships are strict:

GQA < MLAFactorized When GQA is represented as an MLAFactorized model, the up-projection ma-
trices WUK and WUV must adopt specific sparse, block-selector structures. A general MLAFactorized

model imposes no such constraints; WUK and WUV are typically dense and fully learnable. This
allows a general MLAFactorized to create h distinct key (and value) vectors by combining features
from the rkv-dimensional latent space in complex ways. GQA is restricted to g unique key (and
value) vectors that are merely replicated h/g times. If h > g, MLAFactorized can generate a richer
set of interaction patterns. Thus, MLAFactorized has strictly greater expressive power.

MLAFactorized < MQA Consider the bilinear form x⊤
t Mxj in the attention score. In MLAFactorized,

for head i, MMLA,i = (WQ
i )⊤WUK

i WDKV . The maximum rank of the transformation is
determined by the smallest one among the ranks of WQ

i ∈ Rd×D, WUK
i ∈ Rd×2gd, and

WDKV ∈ R2gd×D, which is at most d.

However, in the MQA form derived from MLAFactorized, the rank of the interaction matrix here,
(W ′Q

i )⊤WDKV , is determined by the smallest one among the ranks of W ′Q
i ∈ R2gd×D and

WDKV ∈ R2gd×D, which is at most 2gd.

Since 2gd ≥ d, MQA allows for a potentially higher-rank interaction between the (modified) query
and the shared key representations compared to the per-head effective rank in MLAFactorized’s
original formulation. This indicates that MQA has a greater representational capacity for the scoring
mechanism.

B.3 Expressiveness of MLA with Decoupled RoPE

The full MLA architecture, as defined in Section 3 (main paper), employs a decoupled RoPE strategy.
The query qt,i and key kt,i for head i (in the MHA-like training paradigm, Equation 3) are:

qt,i = [qC
t,i;q

R
t,i] (26)

kt,i = [kC
t,i;k

R
t ] (27)

where kR
t is a shared RoPE key component across all heads for token t. The bilinear attention score

(numerator of the softmax argument) for head i between query at t and key at j is:

(qC
t,i)

⊤kC
j,i + (qR

t,i)
⊤kR

j (28)

Let’s analyze the two components of this score:
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1. Content Component Interaction: (qC
t,i)

⊤kC
j,i. The content keys kC

j,i are derived from
WUK(WDKV xj). This key generation mechanism for kC

j,i is precisely that of the
MLAFactorized model discussed in Section B.1. As established, MLA-Factorized is strictly
more expressive than GQA for the non-positional part of the representation.

2. Positional Component Interaction: (qR
t,i)

⊤kR
j . This interaction, where h distinct query-

side RoPE components qR
t,i attend to a single, shared key-side RoPE component kR

j , is an
MQA structure specifically for the positional information. As shown in Section B.2.3, MQA
is strictly more expressive than MLAFactorized, and by extension, GQA.

In summary, we have demonstrated that the expressive power of MLA with decoupled RoPE is
stronger than that of the traditional GQA. However, it is worth noting that in the previously proven
proposition, the MLAFactorized does not have a low-rank decomposition on the query; this differs
from DeepSeek MLA. In the full MLA architecture, the query is also decomposed.

C Proof of RoPE Inner Product Invariance under Orthogonal
Transformation

In this subsection, we provide a rigorous proof of Equation (10), namely:
d/2∑
l=1

RoPEt,l

([
Ulq̂

(l,real)
t,i ;Ulq̂

(l,imag)
t,i

])⊤
RoPEj,l

([
Ulk̂

(l,real)
j ;Ulk̂

(l,imag)
j

])
= q̂R⊤

t,i k̂
R
j .

Here, d is the dimension of each original attention head. The notation q̂
(l,real)
t,i (and similarly for other

terms) refers to an g-dimensional vector collecting the (2l − 1)-th components from each of the g
original attention heads. The matrix Ul is an g × g orthogonal matrix.

Proof. For the sake of convenience, we omit all i, j, k and let qx,l = q̂
(l,real)
t,i and qy,l = q

(l,imag)
t,i .

Similarly, let kx,l = k̂
(l,real)
j and ky,l = k̂

(l,imag)
j .

The RoPE transformation, as defined by Equation (9) in the main text, applies as follows for a query
vector at position t and key vector at position j within the l-th subspace:

(qx,l)
R = qx,l cos(tθl)− qy,l sin(tθl)

(qy,l)
R = qx,l sin(tθl) + qy,l cos(tθl)

(kx,l)
R = kx,l cos(jθl)− ky,l sin(jθl)

(ky,l)
R = kx,l sin(jθl) + ky,l cos(jθl)

The superscript R denotes the application of RoPE. We use the shorthand ct = cos(tθl), st = sin(tθl),
cj = cos(jθl), and sj = sin(jθl).

The right-hand side (RHS) of Equation (10) is given by the definition of the RoPE inner product:

qR
t,i

⊤
kR
j =

d/2∑
l=1

[
(qx,l)

R; (qy,l)
R
]⊤ [

(kx,l)
R; (ky,l)

R
]

=

d/2∑
l=1

((qx,l)
R)⊤(kx,l)

R + ((qy,l)
R)⊤(ky,l)

R

Let Sl be the l-th term in this sum:

Sl = (ctqx,l − stqy,l)
⊤(cjkx,l − sjky,l) + (stqx,l + ctqy,l)

⊤(sjkx,l + cjky,l)

= ctcjq
⊤
x,lkx,l − ctsjq

⊤
x,lky,l − stcjq

⊤
y,lkx,l + stsjq

⊤
y,lky,l

+ stsjq
⊤
x,lkx,l + stcjq

⊤
x,lky,l + ctsjq

⊤
y,lkx,l + ctcjq

⊤
y,lky,l

= (ctcj + stsj)(q
⊤
x,lkx,l + q⊤

y,lky,l) + (stcj − ctsj)(q
⊤
x,lky,l − q⊤

y,lkx,l)

= cos((t− j)θl)(q
⊤
x,lkx,l + q⊤

y,lky,l) + sin((t− j)θl)(q
⊤
x,lky,l − q⊤

y,lkx,l).
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Now, let’s analyze the left-hand side (LHS) of Equation (10). Let q′
x,l = Ulqx,l and q′

y,l = Ulqy,l.
Similarly, let k′

x,l = Ulkx,l and k′
y,l = Ulky,l. The l-th term of the LHS sum, denoted S′

l , is:

S′
l =

(
((q′

x,l)
R)⊤(k′

x,l)
R + ((q′

y,l)
R)⊤(k′

y,l)
R
)
.

This has the same structure as Sl, just with primed variables:

S′
l = cos((t− j)θl)((q

′
x,l)

⊤k′
x,l + (q′

y,l)
⊤k′

y,l) + sin((t− j)θl)((q
′
x,l)

⊤k′
y,l − (q′

y,l)
⊤k′

x,l).

We need to show that the dot product terms involving primed variables are equal to their unprimed
counterparts. Consider the first coefficient term:

(q′
x,l)

⊤k′
x,l + (q′

y,l)
⊤k′

y,l = (Ulqx,l)
⊤(Ulkx,l) + (Ulqy,l)

⊤(Ulky,l)

= q⊤
x,lU

⊤
l Ulkx,l + q⊤

y,lU
⊤
l Ulky,l

= q⊤
x,lkx,l + q⊤

y,lky,l.

The last equation holds because Ul is an orthogonal matrix. This matches the corresponding term in
Sl.

The same applies to the second coefficient term. In this way, we have proven that S′
l = Sl for each

l ∈ {1, . . . , d/2}. This implies that the LHS of Equation (10) is equal to its RHS:

d/2∑
l=1

([
Ulq

[2l−1::]
t,i ;Ulq

[2l::]
t,i

])R⊤ ([
Ulk

[2l−1::]
j ;Ulk

[2l::]
j

])R
= qR

t,i

⊤
kR
j .

This completes the proof, demonstrating that the orthogonal transformation Ul applied to the g-
dimensional vectors representing the l-th 2D subspace components across heads preserves the
RoPE-based inner product structure.

In practice, we leverage this rotational invariance property to find a set of optimal orthogonal matrices
{Ul} that concentrate the principal components of the key vectors into the first few attention heads.
The preceding proof reveals a critical constraint: for the inner product’s value to remain unchanged
after transformation, the same orthogonal matrix Ul must be applied to both the real (2l − 1) and
imaginary (2l) components of the key vectors within each 2D subspace. This requirement precludes
performing separate PCA on the real and imaginary parts. We must therefore find a single rotation
that is jointly optimal for both.

Specifically, we formulate this as a joint optimization problem. First, we process a calibration
dataset (e.g., Wikitext-2) to collect the key activations at each layer. For each RoPE subspace
l ∈ {1, . . . , d/2}, we obtain two collections of n × g-dimensional matrices (where n denotes the
number of samples): the "real" parts {Kx,l}l and the "imaginary" parts {Ky,l}l. To find a single
transformation Ul that simultaneously compresses the information from both sets into the first few
heads, we proceed as follows.

Let σx,l = K⊤
x,lKx,l and σy,l = K⊤

y,lKy,l be the g× g covariance matrices of the real and imaginary
key components, respectively. Our objective is to find an orthogonal matrix Ul that maximizes
the variance—or energy—concentrated in the first m heads after rotation. This corresponds to
maximizing the trace of the top-left m×m submatrix of the summed covariance of the rotated vectors.
The problem is formally stated as:

max
Ul

Tr
[
(UT

l (σx,l + σy,l)Ul):m,:m

]
s.t. UT

l Ul = I. (29)

Here, Ul is the g × g orthogonal optimization variable, and (·):m,:m denotes the top-left m × m
submatrix. The solution to this trace maximization problem is obtained by performing an eigende-
composition on the summed covariance matrix σx,l + σy,l. The resulting matrix Ul, whose columns
are the eigenvectors sorted in descending order of their corresponding eigenvalues, is the optimal
orthogonal transformation Ul.

By applying this rotation, we ensure that the principal components from both the real and imaginary
dimensions of the keys are aligned and concentrated within the first few heads. Consequently, we can
discard the RoPE components from the remaining heads in both queries and keys while preserving
the most significant positional information, thereby minimizing the performance degradation.
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Group 1 Group 2 Group 4Group 3

dim=[1,3] dim=[2,4] dim=[5,7] dim=[6,8]

PCA

RoPE NoPE NoPE NoPE

Figure 7: Pipeline of RoRoPE with FreqFold. RoRoPE encodes the entire frequency spectrum of all
attention heads in a single latent dimension, which limits its expressive power. FreqFold remedies
this by clustering adjacent-frequency dimensions and extracting their principal components jointly,
allocating a higher-dimensional subspace to similar features. This richer representation enables Krope

to retain far more positional information.

D FreqFold: Detailed Mechanism, Example, and PCA Efficiency

This appendix provides a detailed explanation of the FreqFold technique, illustrates its operation with
a concrete example, and formally connects its benefits to a general principle of Principal Component
Analysis (PCA) concerning structured data. This justification clarifies FreqFold’s role in minimizing
transformation loss towards decoupled RoPE within the RoRoPE framework (Section 4.2).

D.1 Detailed Explanation of FreqFold and RoRoPE’s PCA

In the RoRoPE framework, Rotary Position Embedding (RoPE) is applied. RoPE encodes positional
information by rotating pairs of feature dimensions. For each RoPE frequency index l ∈ {1, . . . , d/2},
the corresponding pair of dimensions ([2l − 1 :: d], [2l :: d]) from key vectors are rotated. When
multiple original attention heads are used (say, g heads), and their key/query projection outputs are
concatenated, the RoPE operation for a specific frequency index l applies to a 2g-dimensional vector
segment (formed by concatenating the l-th 2D RoPE subspace from each of the g heads). RoRoPE
then applies PCA via matrices {Ul}d/2l=1 to these 2g-dimensional segments, independently for each
frequency index l.

The core idea of FreqFold is to approximate numerically similar RoPE base frequencies as being
effectively identical. For instance, if RoPE uses original base frequencies θl1 , θl2 , . . . , θlM that are
close in value, MD-FreqFold might treat them all as a single, representative frequency θ∗.

This approximation has a significant implication for how PCA is applied in RoRoPE:

• Without FreqFold (Standard RoRoPE PCA): For each distinct RoPE frequency index l, a
separate PCA transformation Ul is learned and applied to the corresponding 2g-dimensional
key/query segments.

• With FreqFold: If M original RoPE frequency indices (say l1, . . . , lM ) are grouped
together by FreqFold due to their frequency similarity, the M corresponding 2g-dimensional
segments are effectively concatenated. Instead of M separate PCAs on 2g-dimensional
vectors, a single PCA is performed on the resulting M · 2g-dimensional vectors.
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D.1.1 Illustrative Example of FreqFold

Let’s consider a scenario with g = 2 key heads, and each head has dhead = 8 dimensions. Thus, there
are d/2 = 8/2 = 4 distinct RoPE frequency indices per head, which we denote as ϕ1, ϕ2, ϕ3, ϕ4.
The total number of dimensions is 2× 8 = 16. The RoPE angles for these 16 dimensions could be
conceptualized as follows (repeating for each pair, and across heads):

• Head 1 (dims 1-8): (ϕ1, ϕ1), (ϕ2, ϕ2), (ϕ3, ϕ3), (ϕ4, ϕ4)

• Head 2 (dims 9-16): (ϕ1, ϕ1), (ϕ2, ϕ2), (ϕ3, ϕ3), (ϕ4, ϕ4)

Case 1: RoRoPE without FreqFold For each frequency index ϕl, RoRoPE groups the corresponding
dimensions from all g = 2 heads. Each such group forms 2g = 2 × 2 = 4-dimensional vectors
(across N samples).

• Group for ϕ1: Dimensions {1, 2} from Head 1 and {9, 10} from Head 2. PCA is applied to
these N samples of 4D vectors.

• Group for ϕ2: Dimensions {3, 4} from Head 1 and {11, 12} from Head 2. PCA is applied
to these N samples of 4D vectors.

• Group for ϕ3: Dimensions {5, 6} from Head 1 and {13, 14} from Head 2. PCA is applied
to these N samples of 4D vectors.

• Group for ϕ4: Dimensions {7, 8} from Head 1 and {15, 16} from Head 2. PCA is applied
to these N samples of 4D vectors.

Here, RoRoPE performs 4 separate PCA operations.

Case 2: RoRoPE with 2D-FreqFold 2D-FreqFold implies we are pairing up original frequencies.
Suppose FreqFold approximates ϕ1 ≈ ϕ2 (calling this effective frequency ΦA = ϕ1) and ϕ3 ≈ ϕ4

(calling this ΦB = ϕ3).

• Effective Group for ΦA: This group now includes all dimensions originally associated with
ϕ1 OR ϕ2.

– Original ϕ1-dimensions: {1, 2} from Head 1; {9, 10} from Head 2. (Forms a 4D
segment Sϕ1

)
– Original ϕ2-dimensions: {3, 4} from Head 1; {11, 12} from Head 2. (Forms a 4D

segment Sϕ2 )
With FreqFold, these segments Sϕ1 and Sϕ2 are concatenated. PCA is now applied to the N
samples of (4 + 4) = 8-dimensional vectors formed by [Sϕ1 , Sϕ2 ]. Effectively, dimensions
{1, 2, 3, 4} from Head 1 are combined with {9, 10, 11, 12} from Head 2.

• Effective Group for ΦB: Similarly, this group includes dimensions originally for ϕ3 OR
ϕ4.

– Original ϕ3-dimensions: {5, 6} from Head 1; {13, 14} from Head 2. (Forms Sϕ3
)

– Original ϕ4-dimensions: {7, 8} from Head 1; {15, 16} from Head 2. (Forms Sϕ4
)

PCA is applied to the N samples of 8-dimensional vectors formed by [Sϕ3
, Sϕ4

].

Here, RoRoPE with FreqFold performs 2 PCA operations, but each operates on larger, 8-dimensional
vectors which are concatenations of what were previously separate PCA targets.

D.2 Formalizing the Benefit of FreqFold in PCA

The example above illustrates that FreqFold causes a re-grouping and concatenation of data segments
prior to PCA. The benefit of this concatenation is explained by the following proposition. It states
that performing PCA jointly on these concatenated segments (as FreqFold enables) is more effective
at preserving variance (and thus minimizing loss) than the alternative of performing separate PCAs
on the original, smaller segments and then notionally combining their outcomes.

Consider one such FreqFold merge: suppose M original RoPE frequency indices l1, . . . , lM are
deemed equivalent by FreqFold. Without FreqFold, each lp would correspond to a dataset Xp (e.g.,
N samples of 2g-dimensional key segments). With FreqFold, these M datasets are concatenated into
a single larger dataset Xmerged = [X1, X2, . . . , XM ], and PCA is applied to Xmerged.
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Proposition 2. Let M distinct groups of key segments X1, X2, . . . , XM be identified. Each Xp ∈
RN×d′

(where p ∈ {1, . . . ,M}) consists of N samples of d′-dimensional vectors. Assume data in
each Xp is mean-centered. Let Sp = 1

N−1X
T
p Xp ∈ Rd′×d′

be its covariance matrix. FreqFold
causes these M groups to be merged for a single PCA operation.

Define V1 =
∑M

p=1 λp,1, where λp,1 is the largest eigenvalue of Sp. This V1 represents the sum of
variances if each of the M original groups Xp were individually reduced to its single most dominant
dimension.

Let Z = [X1, X2, . . . , XM ] ∈ RN×(M ·d′) be the dataset formed by concatenating the features
(columns) of these M groups. Let Sconcat =

1
N−1Z

TZ ∈ R(M ·d′)×(M ·d′) be its covariance matrix.

Define V2 =
∑M

j=1 µj , where µ1 ≥ µ2 ≥ . . . ≥ µM are the M largest eigenvalues of Sconcat. This
V2 represents the variance captured if the concatenated data Z is reduced to M dimensions using
PCA.

Then, the variance captured by the joint PCA on the FreqFold-merged data (V2) is greater than or
equal to the sum of variances from optimally reducing each original group to one dimension (V1):

V2 ≥ V1

This proposition explains that FreqFold’s strategy of enabling PCA over larger, concatenated segments
(formed by merging data from RoPE frequencies deemed similar) is mathematically favored for
variance preservation compared to separate, more fragmented PCAs.

D.3 Proof of Proposition 2

The objective is to prove that V2 ≥ V1, using the notation from Proposition 2. The proof strategy is to
construct a specific M -dimensional subspace for the concatenated data Z. We show that the variance
captured by projecting Z onto this particular subspace equals V1. Since the PCA procedure yielding
V2 finds the optimal M -dimensional subspace maximizing captured variance, V2 must be at least V1.

Let λp,1 be the largest eigenvalue of Sp (covariance of Xp), and wp,1 ∈ Rd′
be its corresponding

eigenvector. So, Spwp,1 = λp,1wp,1 and wT
p,1wp,1 = 1. The variance λp,1 = wT

p,1Spwp,1.
V1 =

∑M
p=1 λp,1.

For the concatenated data Z, V2 =
∑M

j=1 µj . By Ky Fan’s theorem for matrix eigenvalues:

V2 = max
U∈R(M·d′)×M

UTU=IM

Tr(UTSconcatU)

where U ’s columns form an orthonormal basis for an M -dimensional subspace of RM ·d′
.

Construct U∗ = [u∗
1, . . . ,u

∗
M ] ∈ R(M ·d′)×M . For p ∈ {1, . . . ,M}, define u∗

p ∈ RM ·d′
:

u∗
p =


0d′×1

...
wp,1 (as the p-th block of size d′)

...
0d′×1


The set {u∗

1, . . . ,u
∗
M} is orthonormal. The variance retained by projecting Z onto the subspace of

U∗ is:

Tr((U∗)TSconcatU
∗) =

M∑
p=1

(u∗
p)

TSconcatu
∗
p

Let Sqr be the (q, r)-th block of Sconcat, where Sqr = 1
N−1X

T
q Xr. Note Spp = Sp. Each

term (u∗
p)

TSconcatu
∗
p = wT

p,1Sppwp,1 = wT
p,1Spwp,1 = λp,1. So, Tr((U∗)TSconcatU

∗) =∑M
p=1 λp,1 = V1. Since V2 is the maximum possible variance:

V2 ≥ Tr((U∗)TSconcatU
∗) = V1

Thus, V2 ≥ V1. This proves Proposition 2.
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D.4 Discussion on the Trade-off in FreqFold

While Proposition 2 demonstrates a clear benefit of FreqFold in terms of PCA efficiency—specifically,
that merging M original frequency groups allows for greater variance preservation when reducing to
M dimensions—it is crucial to acknowledge an inherent trade-off. The foundational assumption of
FreqFold is the approximation of numerically similar RoPE base frequencies as effectively identical.
This approximation, by its very nature, introduces a degree of deviation from the original, precise
RoPE formulation.

The extent of this deviation, and thus the potential loss in the fidelity of positional encoding, typically
correlates with how aggressively frequencies are grouped. A larger M or a looser criterion for
similarity when grouping frequencies can amplify this approximation error. Consequently, while
increasing the dimensionality of vectors undergoing PCA is beneficial from the perspective of PCA
variance capture as shown by the proposition, it may simultaneously increase the lossiness of the
RoPE approximation itself. Therefore, the practical application of FreqFold requires a careful
balancing act. The parameter M (representing the number of original RoPE frequencies treated as
one effective frequency for PCA purposes) or the specific grouping strategy for frequencies must be
chosen to optimize this trade-off.

E Balancing Key-Value Norms and Low-Rank Approximation

This appendix elaborates on the Key-Value (KV) balancing technique and the subsequent joint low-
rank approximation applied to the NoPE (No Positional Encoding) components of the keys and the
values, as mentioned in Section 4.3 of the main paper. After the RoRoPE procedure (Section 4.2), the
key projection matrix WK is effectively split into two components: WDK

rope ∈ Rd×D corresponding
to the single head that retains RoPE, and WDK

nope ∈ R(g−1)d×D corresponding to the remaining g − 1

head components that do not use RoPE. The value projection matrix is denoted as WDV ∈ Rgd×D.

E.1 KV Balancing: Purpose and Formulation

Purpose The primary goal of KV balancing is to ensure that the principal component analysis
(PCA), when applied jointly to the NoPE key and value activations, is not disproportionately in-
fluenced by components with larger norms. We observed that the activations derived from WDK

nope

(i.e., kNoPE,t = WDK
nope xt) often have a significantly larger average norm than those from WDV (i.e.,

vt = WDV xt). Without balancing, PCA would predominantly capture the variance within the NoPE
key components, potentially neglecting important variations in the value components.

Formulation To address this imbalance, we introduce a scaling factor α. This factor is computed
as the ratio of the expected L2 norms of the NoPE key activations to the value activations, based on a
calibration dataset:

α =
Et[∥WDK

nope xt∥2]
Et[∥WDV xt∥2]

(30)

where xt ∈ RD is the t-th input token.

While the main paper states scaling WDK
nope by 1/α and WUK by α for mathematical equivalence in

the model’s output, for the purpose of deriving the PCA projection, we effectively use scaled NoPE
key activations. That is, the activations used to compute the PCA basis are k′

NoPE,t = 1/α ·WDK
nope xt

and vt = WDV xt. This ensures that the PCA process considers features from keys and values on a
more equitable footing with respect to their magnitudes. The subsequent low-rank decomposition will
then be applied to WDK

nope and WDV , using the PCA basis derived from these balanced activations.

E.2 Joint Low-Rank Approximation of NoPE Keys and Values using PCA

After determining the scaling factor α, we proceed to compress the projection matrices associated
with the NoPE keys (WDK

nope ) and all values (WDV ) jointly.

The process is as follows:
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1. Collect Calibrated Activations: A small calibration dataset (WikiText-2) is used. For each input
xt from this dataset, we compute the scaled NoPE key activations k′

NoPE,t and the value activations
vt. These are concatenated to form combined activation vectors:

cNoPE,t =

(
k′

NoPE,t
vt

)
∈ R(2g−1)d (31)

2. Perform PCA: PCA is performed on the set of collected combined activation vectors {cNoPE,t}.
This involves computing the covariance matrix of these vectors and finding its principal components.
The eigenvectors (corresponding to the largest eigenvalues) are selected to form the columns of a
projection matrix RKV ∈ R((2g−1)d)×rkv , where rkv is the reduced rank. This matrix RKV captures
the directions of highest variance in the (balanced) combined NoPE key and value activation space.

3. Low-Rank Decomposition of Projection Matrices: Let WDKV =

(
WDK

nope
WDV

)
∈ R((2g−1)d)×D

be the initial projection matrix that transforms the input xt into an intermediate NoPE Key and Value

representation cNoPE,t = WDKV xt. Further, let WUKV =

(
WUK

nope 0
0 WUV

)
∈ R2hd×((2g−1)d)

represent the subsequent collective projection matrix that takes cNoPE,t and processes it to produce
the actual keys and values required by the attention mechanism for the NoPE components, where
WUK

rope ∈ Rhd×gd and WUK
nope ∈ Rhd×(g−1)d are two parts of WUK hat participate in and do not

participate in the RoPE computation, respectively. The original sequence of operations for these
components can be expressed as WUKV WDKV xt ∈ R2hd, in which the first hd elements correspond
to the keys and the following hd elements correspond to the values.

To introduce a low-rank bottleneck, we modify both WDKV and WUKV using the PCA projection
matrix RKV .

• The initial projection matrix WDKV is transformed into WDKV ′ ∈ Rrkv×D:

WDKV ′
= RT

KV W
DKV (32)

This new matrix WDKV ′ takes the original input xt and projects it into a compressed
rkv-dimensional latent space, which is the actual content stored in the KV cache for the
NoPE components.

• The subsequent projection matrix WUKV is transformed into WUKV ′ ∈ R2hd×rkv :

WUKV ′
= WUKV RKV (33)

This new matrix WUKV ′ now takes the compressed latent representation as input and
produces the final representations for the NoPE components that are used in the attention
calculation. As we can see, WUKV ′ is actually the concatenated form of WUK and WUV

in MLA:

WUKV ′
=

(
WUK

WUV

)
(34)

This joint decomposition allows for a more holistic compression by identifying shared latent structures
between NoPE keys and values, guided by the balanced PCA.

F Theoretical Analysis of Balancing Scheme for PCA in Matrix
Decomposition

F.1 Theoretical Analysis

In this section, we focus on a situation where two matrices, Wk and Wv, are concatenated together
for dimensionality reduction. A potential issue arises when the matrices have different magnitudes,
which leads to an imbalance in the relative errors during reconstruction. The relative error for one
matrix may be small while for the other it may be large. To address this, we propose scaling both
matrices by their Root Mean Square (RMS) before concatenating. This scaling ensures that the
relative errors for both matrices are approximately equal. The goal of this section is to theoretically
prove the validity of this approach by formulating a loss function that reflects the relative errors and
demonstrating that the scaling values we mentioned will minimize this loss.
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F.1.1 Problem Setup

We are given two matrices Wk and Wv of dimensions m×nk and m×nv , respectively. The matrices
are concatenated as follows:

W =

[
Wk

a
,
Wv

b

]
(35)

where a and b are scaling factors that need to be optimized. These scaling factors are introduced to
balance the relative errors during reconstruction. We perform PCA on the concatenated matrix W .
The SVD of the matrix W is given by:

W = UΣV T =

rank(W )∑
i=1

uiσiv
T
i (36)

where U , Σ, and V are singular vectors, singular values, and right singular vectors, respectively. The
r-rank approximation of matrix W is given by:

W ′ = UrΣrV
T
r =

r∑
i=1

uiσiv
T
i (37)

W ′ =

[
W ′

k

a
,
W ′

v

b

]
(38)

where W ′
k and W ′

v are the low-rank approximations of Wk and Wv . When the scaling factors a = 1
and b = 1, the matrices Wk and Wv are not scaled and directly undergo low-rank approximation.
The matrices W ′

k and W ′
v represent the low-rank approximations of Wk and Wv without the effect of

any relative scaling based on the Frobenius norms.

To address the imbalance in the relative errors during reconstruction, we define the loss function to
equally quantify the relative errors between the original and the approximated matrices. The loss is
the sum of the relative errors for Wk and Wv , given by:

L(a, b) = ∥ WK −W ′
K

RMS(WK)
∥2F + ∥ WV −W ′

V

RMS(WV )
∥2F (39)

Next, we will derive the condition when the loss function reaches its minimum, specifically when the
scaling factors a and b satisfy the ratio:

a

b
=

RMS(Wk)

RMS(Wv)
(40)

F.1.2 Proof of Proportionality

Before proceeding with the derivation, we first need to verify the proportionality between a and b,
which implies that the absolute values of a and b do not affect the conclusion. As long as the ratio
a : b is fixed, the final loss will be the same, regardless of the absolute values of a and b.

Consider scaling the factors a and b by a constant c > 0: a′ = ca, b′ = cb.

The concatenated matrix with the new scaling factors is:

Wnew =

[
Wk

a′
,
Wv

b′

]
=

[
Wk

ca
,
Wv

cb

]
=

1

c
W =

1

c
UΣV T (41)

Thus, the SVD of Wnew has the same left and right singular vectors U and V as W , but its singular
values are scaled by 1

c . The low-rank approximation of Wnew is:

W ′
new = Ur

(
1

c
Σr

)
V T
r =

1

c

(
UrΣrV

T
r

)
=

1

c
W ′. (42)

Comparing this with the block definition of W ′
new, we identify:

W ′
k,new = W ′

k, W ′
v,new = W ′

v. (43)

The loss function L(a, b) is invariant under scaling a 7→ ca and b 7→ cb for any c > 0. Thus, it
depends only on the ratio a

b . Therefore, in the following derivations, we will always assume that
b = 1.
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F.1.3 Verify Minimum Conditions

We now verify the minimum condition when a = RMS(Wk)
RMS(Wv)

. For convenience, we define Wk

a =

A, Wv

b = B,
W ′

k

a = C,
W ′

v

b = D.

L(a, 1) = ∥A− C∥2F
∥A∥2F

mnk +
∥B −D∥2F

∥B∥2F
mnv (44)

dL(a, 1)
da

=
d

da

(
∥A− C∥2F

∥A∥2F
mnk +

∥B −D∥2F
∥B∥2F

mnv

)
(45)

= ∥A− C∥2F
d

da

(
1

∥A∥2F

)
mnk +

mnk
d
da

(
∥A− C∥2F

)
∥A∥2F

(46)

+
mnv

d
da

(
∥B −D∥2F

)
∥B∥2F

(47)

when b = 1, a = RMS(Wk)
RMS(Wv)

,

dL(a, 1)
da

=
2∥A− C∥2F
a∥A∥2F

mnk +
mnv

d
da

(
∥A− C∥2F + ∥B −D∥2F

)
∥B∥2F

(48)

=
2∥A− C∥2F
a∥A∥2F

mnk +
mnv

d
da

(
∥W −W ′∥2F

)
∥B∥2F

(49)

=
2∥A− C∥2F
a∥A∥2F

mnk +
mnv

d
da

(∑rank(W )
i=r+1 σ2

i

)
∥B∥2F

(50)

(51)

W = UΣV T (52)
dW = UdΣV T + UΣdV T + dUΣV T (53)

UT dWV = dΣ+ ΣdV TV + UT dUΣV T (54)
Since d(UTU) = dUTU + UT dU = 0 and d(V TV ) = dV TV + V T dV = 0, UT dU and V T dV
are skew-symmetric matrices, and the diagonal elements are zero. therefore,

dσi

da
= uT

i

dW

da
vi = uT

i [−
A

a
, 0]vi (55)

dL(a, 1)
da

=
2∥A− C∥2F
a∥A∥2F

mnk +

∑rank(W )
i=r+1 2mnvσi

dσi

da

∥B∥2F
(56)

=
2∥A− C∥2F
a∥A∥2F

mnk −
∑rank(W )

i=r+1 2mnvσiu
T
i [A, 0]vi

a∥B∥2F
(57)

A = W [:, : nk] =

rank(W )∑
i=1

uiσiv
T
i [: nk] (58)

C = W ′[:, : nk] =

r∑
i=1

uiσiv
T
i [: nk] (59)

A− C = W ′[:, : nk] =

rank(W )∑
i=r+1

uiσiv
T
i [: nk] (60)

therefore,

∥A− C∥2F = Tr((A− C)T (A− C)) =

rank(W )∑
i=r+1

σ2
i v

T
i [: nk]vi[: nk] (61)
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Table 2: Composition of the training dataset.
Dataset Sampling Weight
fineweb-edu-dedup 0.70
cosmopedia-v2 0.15
python-edu 0.06
open-web-math 0.08
stackoverflow 0.01

σiu
T
i [A, 0]vi = σ2

i v
T
i [: nk]vi[: nk] (62)

when b = 1, a = rms(Wk)
rms(Wv)

, we have:
dL(a, 1)

da
= 0 (63)

Thus far, we have demonstrated that when the loss function is

L(a, b) =
∥∥∥∥WK −W ′

K

RMS(WK)

∥∥∥∥2
F

+

∥∥∥∥WV −W ′
V

RMS(WV )

∥∥∥∥2
F

(64)

the ratio
a

b
=

RMS(Wk)

RMS(Wv)
(65)

achieves the best compression performance.

G Experimental Settings of Fine-tuning

Datasets Following the experimental setups of MHA2MLA, we fine-tune our models using the
prtraining corpus from SmolLM [40]. The dataset comprises FineWeb-Edu-Dedup [41], Cosmopedia-
v2 — a synthetic dataset generated by Mixtral [42], Python-Edu from StarCoder [43], Open-Web-
Math [44], and data from StackOverflow [45]. To ensure a fair comparison with the MHA2MLA
baseline, we constructed our training dataset using the same data composition strategy. Specifically,
we replicate the dataset mixing ratios used in the MHA2MLA setup to maintain experimental
consistency, which is shown in Table 2.

Hyperparameters The fine-tuning hyperparameters for models of all sizes are listed in Table 3. In
the table, entries with a slash (/) indicate a two-step training process.

Table 3: Training details across different models.
SmolLM 1B7 LLaMA2 7B

-68.75% -87.50% -68.75% -87.50% -92.97%
Batch size 64 64 64 64 / 64 256 / 64
Learning rate 1e-4 1e-4 2e-5 2e-5 / 2e-5 1e-4 / 2e-5
Tokens 300M 1B 500M 2B / 1B 5B / 1B
Warmup ratio 0.03 0.08 0 0 / 0.03 0 / 0.03
lr scheduler constant constant constant constant / cosine constant / cosine
Sequence length 2048 2048 4096 4096 4096

H vLLM Benchmark Details

In Section 5.4, we demonstrated the speedup achieved by TransMLA—which compresses 92.97% of
the KV cache—compared to the original LLaMA-2-7B model. This section provides the detailed
methodology and hardware configurations for this benchmark.

To account for the effects of both the prefilling and decoding stages, we adopt a setting where the
input and output lengths are equal. For instance, with a total context length of 1k, we set the input
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length to 512 tokens and the output length to 512 tokens. Most experiments are conducted using
100 requests to compute the average throughput. However, for shorter context lengths such as 1k,
inference is extremely fast, leading to some timing fluctuations. To mitigate this, we increase the
number of requests to 1000 for more stable measurements.

While the original LLaMA-2-7B model supports a maximum context length of 4096 tokens, we
extend this limit to 32k tokens in our evaluation. Detailed throughput results are presented in Table 4.

On a GPU with 165.2 TFLOPS of compute and 24GB of memory, the LLaMA-2-7B model runs out
of memory when the context length reaches 16k tokens. In contrast, TransMLA sustains a throughput
of 414.41 tokens per second under the same conditions. On a more powerful GPU with 320 TFLOPS
and 64GB of memory, we employ a development version of the vLLM framework. We anticipate that
the throughput of TransMLA will improve further with the release of future optimized versions of the
framework tailored for this hardware.

Table 4: Throughput comparison between LLaMA-2-7b and TransMLA at varying input lengths and
number of requests.

Context Length Requests Model Throughput(output tokens/s)
165.2 TF|24GB 312 TF|40GB 320 TF|64GB

1K 1000 LLaMA-2-7b 653.81 1579.26 1249.13
TransMLA 3043.65 4062.43 1798.17

2K 100 LLaMA-2-7b 352.85 850.14 789.31
TransMLA 2241.87 2577.01 1080.73

4K 100 LLaMA-2-7b 173.09 441.37 442.63
TransMLA 1318.78 1926.15 1021.03

8K 100 LLaMA-2-7b 85.80 218.51 216.66
TransMLA 832.69 1118.18 870.15

16K 100 LLaMA-2-7b OOM 110.58 112.13
TransMLA 414.41 601.36 483.22

32K 100 LLaMA-2-7b OOM 38.32 55.69
TransMLA OOM 243.81 278.09

I Inference Speed Ablation

The strength of the MLA design extends beyond its use of low-rank compression—a concept that has
been explored in prior works. Its true innovation lies in the Absorb operation, which plays a pivotal
role in enhancing efficiency. During the training phase (which is compute-intensive), this operation
enables attention computations to be performed using compact 192-dimensional representations per
head, resulting in high computational efficiency. In the inference phase (which is memory-bound), it
utilizes a shared 576-dimensional KV cache across heads by absorbing the key projections into the
query projection matrices. This mechanism significantly reduces memory access overhead, both on
high-bandwidth memory (HBM) and on-chip SRAM.

Table 5: Comparison of the impact of num_kv_heads, head_dim, and parameters on inference speed
for GQA and MLA. To eliminate the influence of MLP layers on the results, the speed test was
conducted using models composed of 32 attention layers only.

Method hkv d KV Cache Param (M) Throughput (tokens/s)
MLA (with Absorb) 1*1 576 576 48.5 4151.17

MLA (without Absorb) 32*2 192 12288 48.5 248.85

4*2 128 1024 37.7 2714.80
GQA 8*2 128 2048 41.9 1436.92

16*2 64 2048 41.9 1118.83

As shown in Table 5 (rows 2–3), disabling the Absorb operation leads to a 16.7× degradation in
MLA’s inference speed at a 16k context length, underscoring its crucial role in achieving efficiency.
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This highlights the necessity of supporting the Absorb operation, as it is indispensable for realizing
the practical benefits of MLA in real-world deployment. The importance of the Absorb operation is
further corroborated by findings from Palu [20]. In their Figure 5, they demonstrate that removing
RoPE allows the Absorb operation to deliver a 6.17× speedup at a 64k context length. However,
when RoPE is retained, Absorb must be disabled, reducing the speedup to 2.91×. Unfortunately,
since Palu does not support RoPE decoupling, it cannot apply the Absorb operation to widely used
architectures such as LLaMA, Qwen, and Mistral.

In Figure 5, we only present the inference speed of the LLaMA-2 model based on MHA. Since GQA
already requires fewer KV cache entries than MHA, it is natural to ask whether TransMLA can further
improve the inference speed of GQA-based models. To investigate this, we conducted experiments
using LLaMA-3-8B, whose key and value projections each contain 8 heads with 128 dimensions per
head, resulting in a total KV cache size of 2048 dimensions. We applied TransMLA to reduce the
KV cache to 576 dimensions and measured the inference speed across different GPUs. As shown in
Figure 8, TransMLA still achieves approximately a 3× speedup, demonstrating its effectiveness even
when applied to GQA architectures.

1k 2k 4k 8k 16k1.5

2.0

2.5 2.4x

(a) 165 TFlops | 24GB

1k 2k 4k 8k 16k 32k1

2

3
3.1x

(b) 148 TFlops | 96GB

1k 2k 4k 8k 16k 32k1

2

3 3x

(c) 1979 TFlops | 80GB

Figure 8: Inference speedups with TransMLA compared to the original LLaMA3-8B model on three
AI accelerators. Context length represents the total sequence length.

J Evaluation on GQA Models

The goal of Table 1 is to provide a fair and consistent comparison between TransMLA and prior
relevant work. Therefore, we selected the recently published MHA2MLA [23] as our baseline, as it
also focuses on RoPE decoupling and KV cache compression. Following their experimental setup,
we used two MHA-based models—SmolLM-1.7B and LLaMA-2-7B. In fact, TransMLA is fully
compatible with GQA. As stated in related work, both MHA and MQA can be regarded as special
cases of GQA. Specifically, when the number of query heads equals the number of key-value heads
in GQA, it effectively reduces to an MHA. In this section, we further extend our evaluation to several
mainstream GQA models, and the corresponding results without training are presented in Table 6.

Table 6: Evaluated with Wikitext-2 Perplexity (PPL) of Converting GQA Models to MLA (lower
is better). Original PPL refers to the perplexity of the original GQA model without conversion.
Decoupled RoPE PPL represents the result after applying RoRoPE and FreqFold to reduce decoupled
RoPE loss. Compressed KV PPL indicates the perplexity when the KV cache is compressed to 576
with the help of Balance-KV.

Model KV Cache Original ppl Decouple RoPE ppl Compress KV ppl
Llama-3-8B -71.875% 6.1371 8.3997 18.35
Qwen2.5-7B -43.75% 6.848 7.3059 7.9812
Qwen2.5-72B -71.875% 4.2687 4.6931 7.7172
Mistral-7B -71.875% 5.3178 5.5915 7.0251
Mixtral-8x7B -71.875% 3.8422 4.1407 5.8374
Gemma-2-9B-IT -85.94% 10.1612 11.421 21.626
GPT-OSS-20B -43.75% 10.2563 9.2175 9.4072

From Table 6, we can observe that for GQA models—ranging from 7B to 70B, whether dense
models or MoE models—TransMLA consistently incurs only minimal performance loss. It’s worth
noting that MLA is specifically optimized for a latent dimension of 576, which we adopt as a unified
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compression target across all models. Since GQA models typically maintain smaller KV caches than
MHA, converting them to MLA results in less information loss, making the transition both effective
and efficient.

K Distillation Experiments

In Table 1, our work follows the experimental setup of MHA2MLA and uses the smollm-corpus
for pretraining. However, this dataset differs from the original training data of LLaMA-2-7B. To
investigate whether the observed improvements stem from additional learning or genuine recovery
of model capabilities, we adopted the data distillation approach proposed in the LLM-QAT [46].
Specifically, we generated a new dataset from the original model to guide the distillation of the
converted model. For each model, we generated distillation datasets containing 14,000 samples,
with each sample consisting of 2,048 tokens. These datasets were used to distill the converted
model by minimizing the error between the output of each converted MLA attention module and the
corresponding GQA outputs of the original model, as well as aligning the final token predictions.
Each attention module was trained for 10 epochs and hyperparameter tuning was conducted on 10
evenly spaced learning rates within the range [1e-3, 2e-2]. The results are presented in Table 7.

Table 7: Commonsense reasoning accuracy for distilling converted MLA-based models from original
GQA models

Model KV Cache AVG ARC HS MMLU OBQA PIQA WG
LLaMA-2-7b — 59.81 59.31 73.13 41.35 41.60 78.40 65.04
TransMLA -68.75% 59.89 59.82 72.43 41.67 42.60 78.18 64.64
Qwen2.5-7b — 63.38 64.45 77.49 47.26 45.40 79.76 65.90
TransMLA -71.875% 63.12 68.13 74.90 46.33 44.20 79.11 66.06
Mistral-7b-v0.1 — 64.83 66.71 79.48 45.67 45.60 82.86 68.67
TransMLA -50% 64.48 66.22 79.00 45.53 45.60 82.70 67.80

According to Table 7, aligning the converted models using only the distilled data from the original
models allows them to closely match the performance of the original models. This confirms that the
observed performance improvements are not due to additional learning but reflect genuine restoration.
We plan to distill more data and complete experiments on additional models and compression rates in
the future.

L Ablation Study: Calibration Dataset

To investigate the impact of the calibration dataset on the effectiveness of TransMLA, we conducted
an ablation study focusing on different calibration data sources and dataset sizes. As shown in Table
8, the number of calibration samples noticeably affects the conversion quality, with 64 samples
achieving the best overall performance. Using different datasets for calibration also introduces slight
variations in results; however, all calibration datasets outperform the baseline that uses randomly
generated tokens.

M Ablation Study: Core Components

In Figure 3b and Figure 4b, we presented ablation results on perplexity (PPL), focusing on RoRoPE,
FreqFold, and BalanceKV. In this section, we further evaluate commonsense reasoning accuracy,
with the results summarized in Table 9:

• Removing RoRoPE leads to an accuracy drop of approximately 20% compared to the
best-performing configuration.

• Disabling FreqFold (i.e., setting FreqFold = 1) results in about a 6.5% reduction in accuracy.
• Excluding BalanceKV causes an accuracy decline of around 10%.

These findings underscore the significance of each component in sustaining strong downstream
reasoning performance.
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Table 8: Ablation study of using different calibration data sources and dataset sizes for converting
LLaMA-3-8B to MLA.

Dataset n_samples Decouple RoPE ppl Compress KV ppl

wikitext2

1 8.674 155.65
2 8.217 38.134
4 8.192 22.859
8 8.050 18.688
16 8.164 17.499
32 8.217 15.966
64 8.368 14.898

128 8.404 15.080

ptb 128 8.209 19.394
c4 128 7.341 16.018
alpaca 128 7.389 17.398
random 128 15.693 44.956

Table 9: Ablation study of removing each method and its impact on commonsense reasoning
performance of the converted model without training.

Method Avg. MMLU ARC PIQA HS OBQA WG
LLaMA-3-8B 63.92 46.13 65.81 80.79 76.26 45.40 69.14
TransMLA 55.12 37.47 54.31 73.78 65.72 38.80 60.62
- RoRoPE 35.59 25.64 28.91 55.77 28.06 24.00 51.14
- FreqFold 48.63 31.19 45.24 69.37 56.18 34.60 55.17
- BKV 44.91 29.19 37.81 65.56 49.89 32.20 54.78

In the main paper, the default scaling factor for BalanceKV is computed as the average L2 norm of
KRoPE divided by the average L2 norm of V. Table 10 presents an ablation study on the impact of the
BalanceKV scaling factor on the performance of the converted model.

Table 10: Ablation study on the impact of the BalanceKV scaling factor on the performance of the
converted model. Lower perplexity (PPL) indicates better performance.

BalanceKV Scaling Factor Lora PPL (WikiText2)
None 28.8341
(krope_mean_norm × 4)/vmean_norm 18.8790
(krope_mean_norm × 2)/vmean_norm 15.3617
krope_mean_norm/vmean_norm 15.0796
krope_mean_norm/(vmean_norm × 2) 17.8757
krope_mean_norm/(vmean_norm × 4) 27.9021
Optimized per-layer 13.7945

On LLaMA-3-8B, completely removing BalanceKV results in a 3.8-point increase in perplexity,
highlighting its critical role in maintaining model quality. We also observed that model performance
is sensitive to the specific scaling coefficient used in BalanceKV. The default value reported in our
paper already yields strong overall performance. To explore this further, we performed a per-layer
grid search over the range [0.3, 2.0] with 20 intervals to minimize the output difference from the
original model. This tuning produced a 1.2-point reduction in perplexity compared to the default
configuration, suggesting that layer-wise coefficient optimization is both feasible and beneficial for
further performance improvement.

N Evaluation on the LongBench Benchmark

TransMLA achieves KV cache compression by reducing the dimensionality of token representations,
making it orthogonal to methods such as token pruning and quantization. However, as sequence
length increases, the compression error for each token can accumulate. To evaluate the effectiveness
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of TransMLA on long-context tasks, we conducted experiments using Qwen-2.5-7B, which supports
a maximum positional embedding length of 131,072. The model was converted into an MLA-based
architecture, and the original model was then used to distill the converted one. We report the
performance of both the original and converted (distilled) models across multiple long-context tasks
from the LongBench benchmark in Table 11.

Table 11: Performance on multiple long-text tasks and inference speed (tested on 16k-length context)
of Qwen after converting GQA to MLA and applying further distillation. Abbreviations: SD-QA =
Single-Document Question Answering, MD-QA = Multi-Document Question Answering, Sum. =
Summarization, FSL = Few-Shot Learning, Code = Code Completion, Avg. = Average across all
tasks.

Model Thpt. SD-QA MD-QA Sum. FSL Code Avg.
Qwen2.5-7B 1233.04 20.29 25.73 24.46 62.11 63.10 39.14
TransMLA 1925.19 16.50 19.02 18.51 44.20 38.39 27.32
TransMLA-distill 1925.19 18.74 28.26 22.39 61.00 59.21 37.92

While TransMLA provides substantial speedup (approximately 1.56× throughput improvement),
its zero-shot performance declines significantly when no additional training is applied. Although
distillation can partially recover accuracy, performance restoration becomes increasingly difficult
on long and complex reasoning tasks. Future work will focus on reducing the compression-induced
degradation in TransMLA, aiming to achieve stronger zero-shot generalization on challenging long-
context benchmarks.

O Extension to Multi-Group MLA

FlashMLA supports only a fixed configuration of 64 RoPE dimensions and 512 non-RoPE dimensions
for its KV cache, which limits compression flexibility. To address this, we divide the query heads
into multiple groups, converting each group into an independent MLA module.

We experimentally verified this in Table 12: under identical KV cache conditions, the ungrouped
approach outperforms the two-group version. However, the grouped method enables the model to
retain more KV cache, so it performs better than the original TransMLA with a single 576-dimensional
KV cache.

Importantly, this multi-group strategy remains compatible with FlashMLA inference. We tested the
inference speeds of MHA, GQA, two-group MLA, and single-group MLA under a 16k context length.
Since FlashMLA does not support inference with KV cache dimensions other than 576, we excluded
the single-group 64+1024 MLA configuration. As shown in Table 12, the two-group MLA achieves
a 6.2× speedup over MHA and a 1.58× speedup over GQA, while the single-group MLA remains
approximately 1.9× faster than the two-group version.

Table 12: Performance comparison of multi-group MLA under different RoPE/NoPE dimensions
and group settings. Abbreviations: rope_dim = RoPE dimension, nope_dim = NoPE dimension,
num_grp = number of MLA groups, ppl = perplexity, Thpt. = throughput in tokens per second
(tested at 16k context length).

Model rope_dim nope_dim num_grp ppl Thpt. (tok/s)

LLaMA-2-7B

- - - 5.4732 11776
64 512 1 41.6135 141246
64 1024 1 24.0931 –
64 512 2 31.2177 73098

LLaMA-3-8B

- - - 6.1371 46247
64 512 1 25.8047 141246
64 1024 1 8.9768 –
64 512 2 12.9472 73098
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P Case Study

To provide an intuitive understanding of TransMLA’s impact on model performance, this section
presents several examples from vLLM’s docs. We compare the outputs of three model variants: (1) a
model with 92.97% of its KV cache compressed without any fine-tuning; (2) a model pretrained on
6B tokens, as detailed in Table 1; and (3) a model fine-tuned for one epoch on the SmolTalk dataset,
following the setup described in [47]. The results are summarized in Table 13.

As shown in Table 13, even without any additional training, the compressed model is still able to
produce coherent and meaningful responses. This demonstrates the effectiveness of techniques such
as RoRoPE, FreqFold, and BKV-PCA in significantly mitigating performance degradation. Moreover,
with a modest amount of pretraining or supervised fine-tuning (SFT), the model’s performance
improves substantially. These findings highlight TransMLA’s potential as a general framework for
converting various GQA models into MLA models, with promising prospects for aligning with the
performance of advanced systems like DeepSeek R1.

Table 13: Examples from different model configurations. Red indicates input; black indicates
output. “w/o Training” denotes the TransMLA-compressed model (92.97% KV cache) without
further training. “Pre-Training” and “Fine-Tuning” show outputs after pretraining on a 6B-token
corpus and SFT on SmolTalk [48], respectively.

Model Prompt & Generated Text

w/o Training Hello, my name is Katiu, my father’s dog, the pet of the 3600 year-old tribe,
Kint. The Kangs were part of a race of reptiles. A small handful

Pre-Training Hello, my name is Sasha and I am in third grade at Meadows. You may be
wondering what this article is about. Well, I have been doing a lot of research on
the water cycle and decided to write about it.

Fine-Tuning Hello, my name is Emily, and I’m a 20-year-old college student. My hobbies
include painting, writing, and photography. I also enjoy playing the guitar.

w/o Training The president of the United States is elected by the legislature. The legislature
controls the national armed forces, but only provides the funds to establishing a
national guard.

Pre-Training The president of the United States is elected to a four-year term by the people of
each state in a general election held every four years on the Tuesday following
the first Monday in November.

Fine-Tuning The president of the United States is not a position to be taken lightly. This
person is the chief executive of the United States of America, and has immense
power and influence.

w/o Training The capital of France is Paris. Its geographical position in the Iberian Plain of
France, Spain, Spain, and Morocco are the four largest cities. This region is
located in Asia, Spain and Morocco.

Pre-Training The capital of France is a major business city and it is a favorite destination for
businesses from all over the world. It has a strategic location in the heart of the
European Union, which makes it one of the most popular cities in Europe.

Fine-Tuning The capital of France is Paris, and it is one of the most popular tourist
destinations in the world. It is a city that offers something for everyone, from art
and history to food and fashion.

w/o Training The future of AI is in serious risk to create a major breakthrough in this
emerging phenomenon in the history of artificial intelligence.

Pre-Training The future of AI is looking bright. With advancements in technology and the
increasing availability of data, AI is expected to become more intelligent and
capable of performing even more complex tasks.

Fine-Tuning The future of AI is The future of AI is more nuanced and complex than we might
think. Here are some potential developments that could shape the future of AI.
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