
Proto-Value Networks: Scaling Representation
Learning with Auxiliary Tasks

Jesse Farebrother * 1 3 5 , Joshua Greaves * 5, Rishabh Agarwal 2 3 5, Charline Le Lan 4 5,
Ross Goroshin 5, Pablo Samuel Castro 5, Marc G. Bellemare † 3 5

Abstract

Auxiliary tasks improve the representations learned by deep reinforcement learning
agents. Analytically, their effect is reasonably well-understood; in practice, how-
ever, their primary use remains in support of a main learning objective, rather than
as a method for learning representations. This is perhaps surprising given that many
auxiliary tasks are defined procedurally, and hence can be treated as an essentially
infinite source of information about the environment. Based on this observation, we
study the effectiveness of auxiliary tasks for learning rich representations, focusing
on the setting where the number of tasks and the size of the agent’s network are
simultaneously increased. For this purpose, we derive a new family of auxiliary
tasks based on the successor measure. These tasks are easy to implement and have
appealing theoretical properties. Combined with a suitable off-policy learning rule,
the result is a representation learning algorithm that can be understood as extending
Mahadevan & Maggioni (2007)’s proto-value functions to deep reinforcement
learning – accordingly, we call the resulting object proto-value networks. Through
a series of experiments on the Arcade Learning Environment, we demonstrate that
proto-value networks produce rich features that may be used to obtain performance
comparable to established algorithms, using only linear approximation and a small
number (~4M) of interactions with the environment’s reward function.

1 Introduction

In deep reinforcement learning (RL), an agent maps observations to a policy or return prediction
by means of a neural network. The role of this network is to transform observations into a series
of successively refined features, which are linearly combined by the final layer into the desired
prediction. A common perspective treats this transformation and the intermediate features it produces
as the agent’s representation of its current state. Under this lens, the learning agent performs two tasks
simultaneously: representation learning, the discovery of useful state features; and credit assignment,
the mapping from these features to accurate predictions.

Although end-to-end RL has been shown to obtain good performance in a wide variety of prob-
lems (Mnih et al., 2015; Levine et al., 2016; Bellemare et al., 2020), modern RL methods typically
incorporate additional machinery that incentivizes the learning of good state representations: for
example, predicting immediate rewards (Jaderberg et al., 2017), future states (Schwarzer et al., 2021a),
or observations (Gelada et al., 2019); encoding a similarity metric (Castro, 2020; Agarwal et al.,
2021a; Zhang et al., 2021); and data augmentation (Laskin et al., 2020). In fact, it is often possible,
and desirable, to first learn a sufficiently rich representation with which credit assignment can then
be efficiently performed; in that sense, representation learning has been a core aspect of RL from

Correspondence to: Jesse Farebrother <jfarebro@cs.mcgill.ca>
1 McGill University, 2 Université de Montréal, 3 Mila – Québec AI Institute, 4 University of Oxford
5 Google Research – Brain Team, * Equal contribution, † CIFAR Fellow.

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2022

its early days (Sutton & Whitehead, 1993; Sutton, 1996; Ratitch & Precup, 2004; Mahadevan &
Maggioni, 2007; Diuk et al., 2008; Konidaris et al., 2011; Sutton et al., 2011).

An effective method for learning state representations is to have the network predict a collection of
auxiliary tasks associated with each state (Caruana, 1997; Jaderberg et al., 2017; Chung et al., 2019).
In an idealized setting, auxiliary tasks can be shown to induce a set of features that correspond to the
principal components of what is called the auxiliary task matrix (Bellemare et al., 2019; Lyle et al.,
2021). This makes it possible to analyze the theoretical approximation error (Petrik, 2007; Parr et al.,
2008), generalization (Le Lan et al., 2022), and stability (Ghosh & Bellemare, 2020) of the learned
representation. Perhaps surprisingly, there is comparatively little that is known about their empirical
behaviour on larger-scale environments. In particular, the scaling properties of representation learning
from auxiliary tasks – i.e., the effect of using more tasks, or increasing network capacity – remain
poorly understood. This paper aims to fill this knowledge gap.

Our approach is to construct a family of auxiliary rewards that can be sampled and subsequently.
Specifically, we implement the successor measure (Blier et al., 2021; Touati & Ollivier, 2021), which
extends the successor representation (Dayan, 1993) by replacing state-equality with set-inclusion. In
our case, these sets are defined implicitly by a family of binary functions over states. We conduct most
of our studies on binary functions derived from randomly-initialized networks, whose effectiveness
as random cumulants has already been demonstrated (Dabney et al., 2021).

Although our results may hold for other types of auxiliary rewards, our method has a number of
benefits: it can be trivially scaled by sampling more random networks to serve as auxiliary tasks, it
directly relates to the binary reward functions common of deep RL benchmarks, and can to some
extent be theoretically understood. The actual auxiliary tasks consist in predicting the expected return
of the random policy for their corresponding auxiliary rewards; in the tabular setting, this corresponds
to proto-value functions (Mahadevan & Maggioni, 2007; Stachenfeld et al., 2014; Machado et al.,
2018). Consequently, we call our method proto-value networks (PVN).

We study the effectiveness of this method on the Arcade Learning Environment (ALE) (Bellemare
et al., 2013). Overall, we find that PVN produces state features that are rich enough to support linear
value approximations that are comparable to those of DQN (Mnih et al., 2015) on a number of games,
while only requiring a fraction of interactions with the environment reward function. We explore the
features learned by PVN and show that they capture the temporal structure of the environment, which
we hypothesize contributes to their utility when used with linear function approximation.

In an ablation study, we find that increasing the value network’s capacity improves the performance
of our linear agents substantially, and that larger networks can accommodate more tasks. Perhaps
surprisingly, we also find that our method performs best with what might seem like small number of
auxiliary tasks: the smallest networks we study produce their best representations from 10 or fewer
tasks, and the largest, from 50 to 100 tasks. In a sense, this finding corroborates the result of Lyle
et al. (2021, Fig. 5), where optimal performance (on a small set of Atari 2600 games and with the
standard DQN network) was obtained with a single auxiliary task. From this finding we hypothesize
that individual tasks may produce much richer representations than expected, and the effect of any
particular task on fixed-size networks (rather than the idealized, infinite-capacity setting studied in
the literature) remains incompletely understood.

2 Related work

Deep RL algorithms have employed auxiliary prediction tasks to learn representations with various
emergent properties (Schaul et al., 2015; Jaderberg et al., 2017; Machado et al., 2018; Bellemare
et al., 2019; Gelada et al., 2019; Fedus et al., 2019; Dabney et al., 2021; Lyle et al., 2022). While most
of these papers optimize auxiliary tasks in support of reward maximization from online interactions,
our work investigates learning representations solely from auxiliary tasks on offline datasets. Closely
related to our work is the study of random cumulants (Dabney et al., 2021; Lyle et al., 2021),
both of which identify random cumulant auxiliary tasks as being especially useful in sparse-reward
environments. Our work differs from these prior works in both motivation and implementation.
Notably absent in prior work on random cumulants is the study of representational capacity as a
function of the number of tasks.

Another body of related work on decoupling representation learning from RL primarily revolves
around the use of contrastive learning (Anand et al., 2019; Wu et al., 2019; Stooke et al., 2021;

2

Schwarzer et al., 2021b; Erraqabi et al., 2022). Anand et al. (2019) proposed ST-DIM, a collection of
temporal contrastive losses operating on image patches from environmental observations. Although
the representations learned by ST-DIM are able to predict annotated state-variables in Atari 2600
games, their pretraining method was never evaluated for control. Stooke et al. (2021) uses contrastive
learning for learning the temporal dynamics, resulting in minor improvements in online control from
a fixed representation. Additionally, Schwarzer et al. (2021b) augments next-state prediction with
goal-conditioned RL and inverse dynamics modelling, enabling strong performance on Atari 100k
benchmark (Kaiser et al., 2020). Our work is complementary to these prior works and investigates
the utility of scaling auxiliary tasks for learning good representations, which in principle can be
easily combined with existing approaches. Additionally, recent work on using state-similarity metrics
tackles the representation learning problem through the lens of behavioral similarity (Castro et al.,
2021; Zhang et al., 2021; Agarwal et al., 2021a). We note that, in contrast to our method, the
behavioral metrics used in these works are heavily based on the reward structure of the environment.

Related to our method, Touati & Ollivier (2021) consider representation learning with the successor
measure (see also Touati, 2021, Algorithm 7). Algorithmically, their approach differs from ours in a
number of ways, including the use of a learned state density function in lieu of indicator functions, the
decomposition of the successor measure into its so-called forward and backward representations, and
a bespoke sampling procedure to generate sample trajectories from which the representation is learned.
By comparison, our approach directly constructs a relevant set of auxiliary tasks, which results in
a significantly simpler algorithm that is more easily scaled according to available computational
resources and to the full gamut of Atari 2600 games, as we will demonstrate.

Additionally, there has been recent work on framing the representation learning problem in RL as a
min-max objective where you learn state features that can linearly represent, for example, a specific
class of value-functions (Bellemare et al., 2019) or the Bellman backup itself (Modi et al., 2021;
Zhang et al., 2022). Although we do not frame our method in terms of a min-max formulation, we do
seek to learn a representation that can linearly predict the value function given any reward function.
These previous works are primarily theoretical in nature, with some assuming specific structure of
the MDP. In contrast, our class of auxiliary prediction tasks allows us to learn representations in
environments with large, high-dimensional state-spaces without any of these prior assumptions.

3 Background
The RL problem can be modeled as a Markov Decision Process (MDP) defined by the 5-tuple
M = 〈X ,A,R,P, γ〉, in which X is a set of states, A is a set of actions, R : X × A 7→ R is a
scalar reward function, P : X × A 7→ P(X) is a transition function that maps state-action pairs
to a distribution over next states, and γ ∈ [0, 1) is a discount factor. A policy π : X 7→P(A) is a
function that maps states to a distribution over actions.

The goal of an RL agent is to learn a policy that maximizes the cumulative discounted rewards from
the environment, also known as the discounted return. The state-action value function is defined as
the expected discounted return when starting in a state and following the policy π:

Qπ(x, a) := E
π,P

[∞∑
t=0

γtR(Xt, At) |X0 = x,A0 = a

]
.

In this paper, we consider approximating the value function Qπ using a linear combination of features.
We call the map φ : X → Rk a k-dimensional state representation; φ(x) is the feature vector for a
state x ∈ X . The value function approximant at (x, a) is

Q̂(x, a) = φ(x)>wa,

where wa ∈ Rk is a weight vector associated with action a. In deep RL, the state representation is
parameterized by a neural network. Often, the representation is learned end-to-end by optimizing the
parameters to make more accurate predictions about the value function. Additional predictions that
further shape the state representation are called auxiliary tasks (Jaderberg et al., 2017). In this work,
we write T for the set of auxiliary tasks.

The successor representation (SR; Dayan, 1993) encodes the temporal structure of the MDP in terms
of which states can be reached from any other state under a given policy. It is given by

ψπSR(x, a, x̃) =

∞∑
t=0

γtP{Xt = x̃ |X0 = x,A0 = a,At>0 ∼ π}.

3

PVN (RNI) PVN (Hash) Environment Reward Random Cumulants Random Initialization

Figure 1: MDS plots of the features learned by PVN and other baseline methods. Each plotted point
corresponds to a state in a single trajectory on the game CHOPPER COMMAND. The episode starts
with the dark purple points and ends with the light yellow points. Environment Reward corresponds
to features learned by optimizing the environment reward directly.

A convenient, recursive form expresses the SR in terms of an indicator function, highlighting that for
each x̃, the SR is the value function associated with the reward functionR(x, a) = 1{x = x̃}:

ψπSR(x, a, x̃) = 1{x = x̃}+ γ Eπ
[
ψSR(X ′, A′, x̃) |X = x,A = a

]
.

4 Proto-value networks

In this section, we derive our proto-value networks algorithm. At a high level, this algorithm learns a
state representation that approximates the singular vectors associated with the successor measure, the
extension of the SR to continuous state spaces. We do this in order to derive an algorithm that is more
suitably tailored to the large state spaces of deep RL domains, where many states are encountered
once or never at all, and some notion of distance between states must be accounted for.

To gain some understanding into this process, let us consider how the method of auxiliary tasks
(Jaderberg et al., 2017) can be used to obtain a state representation that approximates the SR. In the
tabular setting, where X and T are of finite sizes n and m respectively, we write the feature matrix
Φ ∈ Rn×d, so that each state x is associated with a feature vector φ(x) ∈ Rd. Given an auxiliary
task matrix Ψ ∈ Rn×m, the method of auxiliary tasks can be shown to be equivalent to minimizing
the loss function

L(Φ,W) = ‖ΦW −Ψ‖2F =
∑

x∈X ,i∈T

(
φ(x)>wi − ψi(x)

)2
jointly with respect to Φ and W . Here, W ∈ Rd×m is a weight matrix with columns (wi)

m
i=1 and

ψi(x) is the entry of Ψ corresponding to state x and task i. In the sequel, we will assume that a
near-optimal W can be obtained easily and simply consider the loss

L(Φ) = min
W
L(Φ,W),

to be minimized over Φ. It is known (e.g., Bellemare et al., 2019) that any feature matrix that
minimizes this loss function must have columns that lie in the subspace spanned by the top d left
singular vectors of Ψ. In particular, when Ψ is square and symmetric the auxiliary task method
recovers the subspace spanned by its top d eigenvectors.

Here, we are interested in the setting in which Ψπr is the SR matrix for the uniformly random policy.
In the symmetric case, the eigenvectors of Ψπr form what is called the proto-value functions of the
MDP (Mahadevan & Maggioni, 2007). These eigenvectors are of special importance because they
encode the spatial structure of the MDP in terms of a diffusion process, and have been shown to
correlate with neural encodings of spatial location in mammals (Stachenfeld et al., 2014).

4.1 Extension to the random successor measure

Let π be a policy and Σ the power set of X . The successor measure ψπ : X ×A× Σ→ R extends
the SR to quantify the discounted visitation frequency of an agent, in expectation over trajectories

Behzadian & Petrik (2018) gives the singular-vector extension for the asymmetric case. Because this
extension is straightforward and symmetry rarely holds, in this paper we use the term proto-value networks to
describe state representations learned in both the symmetric and asymmetric settings.

4

and for various subsets of the state space (Blier et al., 2021). Given a set S ⊂ X , we write

ψπ(x, a, S) =

∞∑
t=0

γtP{Xt ∈ S |X0 = x,A0 = a,At>0 ∼ π} .

As with the SR, this can be expressed in terms of an expectation over an indicator function, and
further decomposed in a Bellman equation:

ψπ(x, a, S) =

∞∑
t=0

Eπ
[
γt1{Xt ∈ S} |X0 = x,A0 = a

]
= 1{x ∈ S}+ γ Eπ

[
ψπ(X ′, A′, S) |X = x,A = a

]
.

The passage from state equality to set inclusion is particularly appealing in deep RL: first, because
states rarely repeat along a trajectory or between episodes, the indicator 1{x = y} is almost always
zero. Second, set inclusion allows us to incorporate a notion of closeness to ψπ , e.g. by focusing on
subsets S that include semantically similar states. We will return to this point later in the section.

By analogy with the tabular setting, let us now define a loss function which, if suitably minimized,
should produce a useful state representation. For ease of exposition, we continue to assume that X is
finite, although perhaps very large; the reader interested in a proper mathematical treatment of the
full continuous-state setting is invited to consult Blier et al. (2021) and Pfau et al. (2019).

Let ξ be a distribution over subsets of states and Ξ ∈ Rn×n is a diagonal matrix with entries
{ξ(x) : x ∈ X} on the diagonal. The Monte Carlo successor measure loss is

LMCSM (Φ) = min
wS,a∈Rd

E
S∼ξ

[(∑
x∈X ,a∈A

(φ(x)>wS,a − ψπ(x, a, S)
)2]

.

Theorem 1. If Φ∗ is a feature matrix minimizing LMCSM (Φ), then its column space spans the top d
left singular vectors of the (infinite-dimensional) successor measure matrix Ψπ with respect to the
inner product (x, y)Ξ = y>Ξx, for all x, y ∈ Rn.

In practice, samples of ψπ(x, a, S) (which must be estimated from complete trajectories) are not
available; instead, it is preferable to learn an approximation by bootstrapping (Sutton & Barto, 2018).
The corresponding temporal-difference successor measure loss is

min
wS,a∈Rd

E
S∼ξ

[(∑
x∈X ,a∈A

(1{x ∈ S}+ γ E
π

[
φ(X ′)>wS,A′ |X = x,A = a

]
− φ(x)>wS,a

)2]
; (1)

we will use this form in the derivations that follow.

4.2 A practical implementation

Our algorithm aims to approximate the loss in Equation 1 using tools from deep RL. We first
approximate the expectation over ξ by sampling a collection of sets (Si)

m
i=1 from ξ. These sets are

kept fixed throughout learning. With this in mind, each set corresponds to an indicator function that
we treat as a binary reward function ri(x) = 1{x ∈ Si}. The actual auxiliary task is then the value
function of the random policy associated with this reward.

Denote by ψ̂i(x, a) the prediction made by our neural network for state x, action a, and the set Si.
Given a sample transition (x, a, x′), we define the sample target

ri(x) + γ
1

|A|
∑
a′∈A

ψ̂i(x
′, a′) .

Notice that the average over the next-action a′ arises as a consequence of taking the policy π to be
uniformly random. We then train the neural network by performing stochastic gradient descent on
the loss derived from this sample target:(

ri(x) + γ
1

|A|
∑
a′∈A

ψ̂i(x
′, a′)− ψ̂i(x, a)

)2
.

5

Following common usage, the actual gradient estimate is obtained by aggregating multiple transitions
into a minibatch and applying the Adam optimizer (Kingma & Ba, 2015).

Before explaining how the sets Si are defined, let us remark on a number of appealing properties
of these auxiliary tasks, when viewed from a deep RL perspective. First, the use of a random
policy means that learning usually proceeds in an off-policy manner. However, we expect this to
be a relatively mild form of off-policy learning, one that is in general much more stable than one
derived by maximization, as in a Bellman optimality equation. Although one could also learn the
value function associated with the current policy (as in SARSA (Rummery & Niranjan, 1994)), this
precludes the use of offline datasets for learning the representation, or at least makes the learned
representation strongly dependent on the behaviour policy. By contrast, the representation learned
by PVN only depends on the availability of data. In effect, these auxiliary tasks depend only on the
structure of the environment, and not on the agent’s behaviour.

We also expect binary reward functions to be easier to tune than, say, those derived from a distance
function (dependent on getting the scale parameter correct) or real-valued random rewards (dependent
on the underlying distribution). Binary rewards are particularly appealing in domains where the
reward function is itself binary or ternary (i.e., Atari 2600 video games), in which case they can be
adjusted to have similar statistics to the true reward function. We will demonstrate how to do this in
the following section.

4.3 Generating indicator functions

Thus far we have described our algorithm as sampling sets of states (Si)
m
i=1 which are then converted

into a reward function by means of an indicator. In deep RL, this is inconvenient for two reasons: first,
because it is not clear from what distribution of states should be sampled (how should one generate
arbitrary video-game states?); second, because testing for set inclusion may also be brittle, effectively
reducing to repeated equality tests. Instead, we opt here for an implied set, defined directly by its
indicator function.

Let F be a family of functions mapping X to {0, 1}. Then, for any function f ∈ F , its implied set is

Sf = {x ∈ X : f(x) = 1} .

Of course, this is equivalent to
f(x) = 1{x ∈ Sf}.

Sampling functions from F according to some distribution ξf and using them in lieu of the indicator
is therefore equivalent to sampling sets of states for some distribution ξ implied by ξf . The advantage
is that testing for inclusion in Sf only requires the evaluation of f at x, which for carefully-chosen
functions can be done at little computational cost.

The simplest scenario occurs when the family F is parametrized by some weight vector θ, so that the
random function fθ corresponds to a random set of states. In this paper we consider two such families
of functions: universal hash functions and random network indicators. Both families are tunable, in
the sense that they are parametrized so that the implied sets Sf each cover a desired fraction of the
overall state space. In probabilistic terms, tunable means that we can with minimal or no computation
find parameters such that for any given state x,

P{x ∈ Sf} = p .

Here, the probabilistic statement is with respect to the draw of f from F . For universal hash functions,
the tuning is immediate from the algorithm, and so we describe it first.

A Carter-Wegman family of hash functions FCW (Carter & Wegman, 1979) consists of functions
mapping each integer x ∈ N to the set {0, . . . , k − 1}, with the property that

P{h(x) = i} = 1
k for i = 0, . . . , k − 1,

where the probabilistic statement is over the random draw of h from FCW. One may think of a CW
family as deterministically assigning labels to integers x (in the sense that f is deterministic), but
randomly (in the sense that f is random). See Appendix D.1 for full implementation details.

We construct our tunable indicator function as

f(x) = 1{h(x) = 0} .

6

0 20 40 60 80 100
Number of Tasks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1
- O

pt
im

al
ity

 G
ap

1x 2x 4x 8x

Figure 2: Performance of agents performing linear value approximation on top of a learned PVN.
Agents are trained for 4 million environment frames; the legend indicates the network size as a
capacity multiplier. Scaling network capacity with the number of auxiliary tasks leads to better
performance. Larger networks support a larger number of auxiliary tasks.

By construction, choosing k = 1
p yields the desired tuning (up to integer rounding). In our setting,

x is a high-dimensional observation (for example, an image) rather than an integer; yet we will
see that, perhaps surprisingly, encoding each image as a unique integer is sufficient to produce
better-than-random state representations.

One drawback of using universal hash functions to define sets of interest is that they may assign
different values to perceptually near-identical states (a single pixel difference suffices). Following
common usage (Burda et al., 2019; Dabney et al., 2021), we may use randomly initialized neural
networks to map similar states to similar values. Specifically, let us view a randomly initialized,
single-output DQN network as a function g : X → R. We further decompose this function into a
map g1 : X → Rl and a linear map from Rl → R:

g(x) = g1(x)>ω + b,

where ω is a parameter vector and b ∈ R is a bias term. With this in mind, we may simply construct
the indicator function

f(x) = 1{g(x) > 0}.
The result, however, is not yet tunable: it is hard to choose the right distribution of network weights
so that a desired fraction of states satisfy f(x) = 1. However, for any p ∈ [0, 1] and any non-zero
fixed ω, g1, and distribution of states µ, there exists a bias term b′ such that

Px∼µ{g1(x)>ω + b′ > 0} = p .

Such a bias term can accurately be determined from a small number of online interactions using the
method of quantile regression (Koencker, 2005); the exact update rule is given in Appendix D.2.
With this method, we obtain network-derived indicator functions that are tunable and are likely to
assign similar values to perceptually similar states. We refer to this class of indicator functions as
random network indicators (RNIs), which we empirically evaluate in the following section.

5 Empirical Analysis

To disentangle the contributions of the primary and auxiliary tasks on the expressiveness of the
learned features, we split our learning procedure in two parts: a representation pre-training phase,
and an online RL phase. During the representation pre-training phase, we use transition data from
offline Atari datasets in RL Unplugged (Agarwal et al., 2020; Gulcehre et al., 2020) and the procedure
described in Section 4 to train an encoder which acts as a feature extractor (see Appendix D for
complete implementation details). Note that while this dataset contains environment rewards, none of
the methods make use of the environment rewards unless explicitly stated. Following the pre-training
phase, we fix the weights of the learned encoder and train an RL agent online directly from this
“frozen” representation. Notably, we train for only 3.75 million agent steps, compared to the 50
million agent steps (200M Atari 2600 frames) that is standard in most Atari setups. Our agents are

This corresponds to using a SIGN nonlinearity at the end of the network.

7

implemented using the Acme library (Hoffman et al., 2020). Our hyperparameter choices for both
phases of training can be found in Appendix D.5.

5.1 Scaling capacity with auxiliary tasks

Prior work indicates that the optimal number of auxiliary tasks for representation learning is un-
expectedly small, and that scaling up the number of auxiliary tasks can hurt performance (Lyle
et al., 2021, Fig. 5). We expect that the representational capacity of the neural network has a strong
effect on the number of auxiliary tasks we are able to learn with. To study this effect, we use the
Impala-CNN network (Espeholt et al., 2018) and vary its effective width; that is, we multiply the
number of convolutional filters and the number of features in the penultimate layer. We select a
width multiplier in the set {1, 2, 4, 8} and sweep the number of tasks from {0, 10, . . . , 100}. For
this experiment, we use 5 games (ASTERIX, BEAM RIDER, PONG, QBERT, and SPACE INVADERS)
with 3 seeds for pre-training, resulting in 15 encoders for each combination of width multiplier and
number of auxiliary tasks. During the online phase, we train with 3 seeds per encoder, resulting in a
total of 45 runs per sweep configuration. We evaluate for 100 episodes after 1M agent steps.

We summarize our results using Rliable (Agarwal et al., 2021b). Figure 2 depicts the optimality
gap (distance from human-level performance). We find that increasing the representational capacity
of the network increases performance, even for a very small number of tasks. This is perhaps
surprising, since it indicates that we only need a handful of tasks to train large-scale representations,
corroborating results by Lyle et al. (2021). Though a small part of this performance gain might
be obtained just by virtue of having more output features (following the lottery ticket hypothesis
(Frankle & Carbin, 2019)), we can see that there is a marked improvement when we increase the
number of auxiliary tasks from 0 for all network sizes.

We further find that as network capacity is increased, the algorithm can use more auxiliary tasks to
improve its representation. For example, while the 2× network achieves maximal performance with
10 tasks, the 8× network performs best in the range of [50, 100] tasks. This gives evidence for the
scalability of PVN as an approach for learning rich state representations.

5.2 Evaluating the learned representation

Using the insights gained from our scaling experiment, we evaluate a model with a large number
of auxiliary tasks on a broader suite of Atari games. We use the 8× network and fix the number of
auxiliary tasks to 100, which empirically performed well. We use the same training setup described
in the previous section, though we use all 46 games available in RL Unplugged. We use 3 seeds for
offline pre-training, and 3 additional seeds per encoder during online training. We train for 3.75M
agent steps, and evaluate for 100 episodes. We compare against the following pre-training baselines:

Random Initialization: Randomly initialized features using the same network architecture. This
simple baseline should confirm that the efficacy of our representations come from our pre-training
procedure, and not merely because we use a large encoder network.

Random Cumulants (RCs): Random reward functions introduced by Dabney et al. (2021), and
later expanded upon by Lyle et al. (2021). This method is similar to ours, but uses a random reward
ri(x, x

′) = s · (f(x′)− f(x)) instead of the random indicator function, and replaces the average over
next-state actions by a maximization (off-policy learning of the optimal policy for each cumulant).
Here, f is also given by a random network.

Self-Predictive Representations (SPR): A contrastive-learning method that directly optimizes for
temporal consistency of the learned representation (Schwarzer et al., 2021a). It does so by learning a
latent-space transition model and forcing subsequent states to have similar representations.

Behavior Cloning (BC): Behavior Cloning has been shown as a strong baseline in Offline RL,
especially when increasing the amount of pre-training data (Schwarzer et al., 2021b; Baker et al.,
2022). It should give a strong indication of the performance that is possible when using large datasets.

For each of these methods, we freeze the 8x encoder after the pre-training stage and use the previously-
described online training scheme. Figure 3 illustrates that PVN outperforms these baselines in all
aggregate metrics. We also note that PVN using linear function approximation (3.75M agent
interactions) is competitive with DQN (50M agent interactions) in many games, as illustrated in the
per-game results found in Appendix F.

8

0.00 0.15 0.30 0.45
Random Initialization

Behavior Cloning
SPR

Random Cumulants
PVN (RNI)

Median

0.00 0.15 0.30 0.45

IQM

0.0 0.5 1.0 1.5

Mean

0.60 0.75 0.90 1.05

Optimality Gap

Human Normalized Score

Figure 3: Performance of PVN RNI vs other methods described in Section 5.2. Computed using 125
seeds, aggregated across 46 Atari games.

0.00 0.15 0.30 0.45
Random Initialization

PVN (Hash)
PVN (RNI + Opt. Policy)

PVN (RNI)
Median

0.00 0.15 0.30 0.45

IQM

0.0 0.5 1.0 1.5

Mean

0.60 0.75 0.90 1.05

Optimality Gap

Human Normalized Score

Figure 4: PVN (Hash): PVN with hash indicator functions. PVN (RNI): PVN with random network
indicators. A randomly initialized network with (8×) capacity is plotted for comparison.

We visualize the learned representations from different methods using multidimensional scaling
(MDS) plots in Figure 1 (with more games in Appendix E). These plots show that different methods
clearly lead to representations with different structures. Notably, the representations learned by PVN
(RNI) place temporally-successive states close together, and appears to capture information about the
dynamics of the environment without requiring access to the environment reward.

5.3 Ablations

We perform ablative experiments to verify the importance of the different PVN components. First,
we validate our choice of indicator function by replacing RNIs with the hash indicator functions
described in Section 4. We compare their performance in Figure 4, which shows that hash indicator
functions perform poorly compared to RNIs; this indicates that the choice of indicator function is an
important design decision. We expect that the inductive biases in random convolutional networks
allow RNIs to include a notion of state similarity in the tasks they induce.

Next, we hypothesize that using the random policy as the target policy is a key contributor to PVN’s
performance. To verify this hypothesis, we ablate the TD-target of our learning update to maximize
over the next-state action-values, as per the Bellman optimality equation. When the mean function is
replaced with the max function in the TD backup, PVN attempts to learn the optimal value function
for each indicator function, rather than the value function of the random policy. The result of this
experiment can be seen in Figure 4. Using the mean formulation has a much higher median human
normalized score than the max formulation. This is likely due to instability that arises from max bias
and state coverage due to the off-policy learning required for the optimal value function. Learning
the value function of the random policy also requires off-policy learning; however, we predict that it
doesn’t have such a large effect, as we previously described in Section 4.2.

6 Discussion

While our experiments have shed some light on the scalability of auxiliary tasks, there are a number
of remaining open questions that represent exciting opportunities for further exploration. An exciting
future direction is to use insights from the literature on scaling models effectively (Tan & Le, 2019) to
further scale the auxiliary tasks we introduced here. Orthogonally, it may still be possible to train with
more tasks without increasing the capacity of the network. It is surprising that with even a relatively
large network with tens of millions of parameters, such as Impala (8×), the network only supports a
handful of tasks. It is not clear why training with more tasks leads to worse performance, especially
for smaller Impala architectures. Finally, in line with Agarwal et al. (2022), we will open-source our
pre-trained representations, which we hope would enable researchers to tackle credit assignment on
ALE, without the excessive computational cost of re-learning such representations.

9

Acknowledgements

We thank Nathan Rahn, Max Schwarzer, Harley Wiltzer, Wesley Chung, Adrien Ali Taïga, David
Meger, and Doina Precup for their useful feedback on this work. A special thanks to Wesley Chung
for completing the tabular proof presented in Appendix C. This work was supported by the National
Sciences and Engineering Research Council of Canada (NSERC) and the Canada CIFAR AI Chair
program.

References
Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic perspective on offline

reinforcement learning. In International Conference on Machine Learning (ICML), 2020.

Rishabh Agarwal, Marlos C Machado, Pablo Samuel Castro, and Marc G Bellemare. Contrastive
behavioral similarity embeddings for generalization in reinforcement learning. In International
Conference on Learning Representations (ICLR), 2021a.

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. Neural Information Processing
Systems (NeurIPS), 2021b.

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G Bellemare.
Beyond tabula rasa: Reincarnating reinforcement learning. Neural Information Processing Systems
(NeurIPS), 2022.

Ankesh Anand, Evan Racah, Sherjil Ozair, Yoshua Bengio, Marc-Alexandre Côté, and R Devon
Hjelm. Unsupervised state representation learning in atari. In Neural Information Processing
Systems (NeurIPS), 2019.

Bowen Baker, Ilge Akkaya, Peter Zhokhov, Joost Huizinga, Jie Tang, Adrien Ecoffet, Brandon
Houghton, Raul Sampedro, and Jeff Clune. Video pretraining (VPT): learning to act by watching
unlabeled online videos. Neural Information Processing Systems (NeurIPS), 2022.

Bahram Behzadian and Marek Petrik. Feature selection by singular value decomposition for rein-
forcement learning. In Proceedings of the ICML prediction and generative modeling workshop,
2018.

Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The Arcade Learning
Environment: An evaluation platform for general agents. Journal of Artificial Intelligence Research
(JMLR), 47:253–279, June 2013.

Marc G. Bellemare, Will Dabney, Robert Dadashi, Adrien Ali Taiga, Pablo Samuel Castro, Nicolas
Le Roux, Dale Schuurmans, Tor Lattimore, and Clare Lyle. A geometric perspective on optimal
representations for reinforcement learning. In Neural Information Processing Systems (NeurIPS),
2019.

Marc G Bellemare, Salvatore Candido, Pablo Samuel Castro, Jun Gong, Marlos C Machado, Sub-
hodeep Moitra, Sameera S Ponda, and Ziyu Wang. Autonomous navigation of stratospheric
balloons using reinforcement learning. Nature, 588(7836):77–82, 2020.

Léonard Blier, Corentin Tallec, and Yann Ollivier. Learning successor states and goal-dependent
values: A mathematical viewpoint. arXiv preprint arXiv:2101.07123, 2021.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. In Proceedings of the International Conference on Learning Representations (ICLR),
2019.

J. Lawrence Carter and Mark N. Wegman. Universal classes of hash functions. Journal of Computer
and System Sciences, 1979.

Rich Caruana. Multitask learning. Machine Learning, 28(1), 1997.

10

Pablo Samuel Castro. Scalable methods for computing state similarity in deterministic markov
decision processes. In Proceedings of the AAAI Conference on Artificial Intelligence, 2020.

Pablo Samuel Castro, Tyler Kastner, Prakash Panangaden, and Mark Rowland. Mico: Improved
representations via sampling-based state similarity for markov decision processes. In Neural
Information Processing Systems (NeurIPS), 2021.

Wesley Chung, Somjit Nath, Ajin George Joseph, and Martha White. Two-timescale networks for
nonlinear value function approximation. In International Conference on Learning Representations
(ICLR), 2019.

Will Dabney, André Barreto, Mark Rowland, Robert Dadashi, John Quan, Marc G. Bellemare, and
David Silver. The value-improvement path: Towards better representations for reinforcement
learning. In AAAI Conference on Artificial Intelligence (AAAI), 2021.

Peter Dayan. Improving generalization for temporal difference learning: The successor representation.
Neural Computation, 1993.

Carlos Diuk, Andre Cohen, and Michael L Littman. An object-oriented representation for efficient
reinforcement learning. In International Conference on Machine learning (ICML), 2008.

Akram Erraqabi, Marlos C. Machado, Mingde Zhao, Sainbayar Sukhbaatar, Alessandro Lazaric,
Ludovic Denoyer, and Yoshua Bengio. Temporal abstractions-augmented temporally contrastive
learning: An alternative to the laplacian in RL. arXiv, 2203.11369, 2022.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam Doron,
Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with importance
weighted actor-learner architectures. In International Conference on Machine Learning (ICML),
2018.

William Fedus, Carles Gelada, Yoshua Bengio, Marc G. Bellemare, and Hugo Larochelle. Hyperbolic
discounting and learning over multiple horizons. arXiv, 1902.06865, 2019.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning Representations (ICLR), 2019.

Carles Gelada, Saurabh Kumar, Jacob Buckman, Ofir Nachum, and Marc G. Bellemare. DeepMDP:
Learning continuous latent space models for representation learning. In International Conference
on Machine Learning (ICML), 2019.

Dibya Ghosh and Marc G Bellemare. Representations for stable off-policy reinforcement learning.
In International Conference on Machine Learning (ICML), 2020.

Caglar Gulcehre, Ziyu Wang, Alexander Novikov, Thomas Paine, Sergio Gómez, Konrad Zolna,
Rishabh Agarwal, Josh S Merel, Daniel J Mankowitz, Cosmin Paduraru, et al. Rl unplugged: A
suite of benchmarks for offline reinforcement learning. Neural Information Processing Systems
(NeurIPS), 2020.

Matthew W. Hoffman, Bobak Shahriari, John Aslanides, Gabriel Barth-Maron, Nikola Momchev,
Danila Sinopalnikov, Piotr Stańczyk, Sabela Ramos, Anton Raichuk, Damien Vincent, Léonard
Hussenot, Robert Dadashi, Gabriel Dulac-Arnold, Manu Orsini, Alexis Jacq, Johan Ferret, Nino
Vieillard, Seyed Kamyar Seyed Ghasemipour, Sertan Girgin, Olivier Pietquin, Feryal Behbahani,
Tamara Norman, Abbas Abdolmaleki, Albin Cassirer, Fan Yang, Kate Baumli, Sarah Henderson,
Abe Friesen, Ruba Haroun, Alex Novikov, Sergio Gómez Colmenarejo, Serkan Cabi, Caglar
Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Andrew Cowie, Ziyu Wang, Bilal Piot, and Nando
de Freitas. Acme: A research framework for distributed reinforcement learning. arXiv preprint
arXiv:2006.00979, 2020. URL https://arxiv.org/abs/2006.00979.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z. Leibo, David
Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. In
International Conference on Learning Representations (ICLR), 2017.

11

https://arxiv.org/abs/2006.00979

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Miłos, Błażej Osiński, Roy H Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, Afroz Mohiuddin,
Ryan Sepassi, George Tucker, and Henryk Michalewski. Model based reinforcement learning for
atari. In International Conference on Learning Representations (ICLR), 2020.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representations (ICLR), 2015.

Roger Koencker. Quantile Regression. Cambridge University Press, 2005.

George D. Konidaris, Sarah Osentoski, and Philip S. Thomas. Value function approximation in
reinforcement learning using the fourier basis. In Proceedings of the 25th Conference on Artificial
Intelligence, 2011.

Misha Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas. Re-
inforcement learning with augmented data. Neural Information Processing Systems (NeurIPS),
2020.

Charline Le Lan, Stephen Tu, Adam Oberman, Rishabh Agarwal, and Marc G Bellemare. On
the generalization of representations in reinforcement learning. In International Conference on
Artificial Intelligence and Statistics (AISTATS), 2022.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep
visuomotor policies. The Journal of Machine Learning Research (JMLR), 17(1), 2016.

Clare Lyle, Mark Rowland, Georg Ostrovski, and Will Dabney. On the effect of auxiliary tasks
on representation dynamics. In International Conference on Artificial Intelligence and Statistics
(AISTATS), 2021.

Clare Lyle, Mark Rowland, and Will Dabney. Understanding and preventing capacity loss in
reinforcement learning. In International Conference on Learning Representations (ICLR), 2022.

Marlos C Machado, Clemens Rosenbaum, Xiaoxiao Guo, Miao Liu, Gerald Tesauro, and Murray
Campbell. Eigenoption discovery through the deep successor representation. arXiv preprint
arXiv:1710.11089, 2017.

Marlos C. Machado, Clemens Rosenbaum, Xiaoxiao Guo, Miao Liu, Gerald Tesauro, and Murray
Campbell. Eigenoption discovery through the deep successor representation. In International
Conference on Learning Representations (ICLR), 2018.

Sridhar Mahadevan and Mauro Maggioni. Proto-value functions: A laplacian framework for learning
representation and control in markov decision processes. Journal of Machine Learning Research
(JMLR), 2007.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, Stig Petersen, Charles
Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane
Legg, and Demis Hassabis. Human-level control through deep reinforcement learning. Nature,
2015.

Aditya Modi, Jinglin Chen, Akshay Krishnamurthy, Nan Jiang, and Alekh Agarwal. Model-free
representation learning and exploration in low-rank mdps. arXiv preprint arXiv:2102.07035, 2021.

Ben O’Neill. The double-constant matrix, centering matrix and equicorrelation matrix: Theory and
applications. arXiv preprint arXiv:2109.05814, 2021.

Ronald Parr, Lihong Li, Gavin Taylor, Christopher Painter-Wakefield, and Michael L Littman.
An analysis of linear models, linear value-function approximation, and feature selection for
reinforcement learning. In International Conference on Machine Learning (ICML), 2008.

Marek Petrik. An analysis of Laplacian methods for value function approximation in MDPs. In
Proceedings of the International Joint Conference on Artificial Intelligence, 2007.

12

David Pfau, Stig Petersen, Ashish Agarwal, David G. T. Barrett, and Kimberly L. Stachenfeld.
Spectral inference networks: Unifying deep and spectral learning. In International Conference on
Learning Representations (ICLR), 2019.

Bohdana Ratitch and Doina Precup. Sparse distributed memories for on-line value-based rein-
forcement learning. In Proceedings of the 15th European Conference on Machine Learning,
2004.

Gavin A. Rummery and Mahesan Niranjan. On-line Q-learning using connectionist systems. Techni-
cal report, Cambridge University Engineering Department, 1994.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approximators.
In International Conference on Machine Learning (ICML), 2015.

Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville, and Philip Bach-
man. Data-efficient reinforcement learning with self-predictive representations. In International
Conference on Learning Representations (ICLR), 2021a.

Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand, Laurent Charlin, R De-
von Hjelm, Philip Bachman, and Aaron C Courville. Pretraining representations for data-efficient
reinforcement learning. In Neural Information Processing Systems (NeurIPS), 2021b.

Alec Solway, Carlos Diuk, Natalia Córdova, Debbie Yee, Andrew G Barto, Yael Niv, and Matthew M
Botvinick. Optimal behavioral hierarchy. PLoS Computational Biology, 10(8):e1003779, aug
2014.

Kimberly L. Stachenfeld, Matthew Botvinick, and Samuel J. Gershman. Design principles of the
hippocampal cognitive map. In Neural Information Processing Systems (NeurIPS), 2014.

Adam Stooke, Kimin Lee, Pieter Abbeel, and Michael Laskin. Decoupling representation learning
from reinforcement learning. In International Conference on Machine Learning (ICML), 2021.

Richard S. Sutton. Generalization in reinforcement learning: Successful examples using sparse coarse
coding. In Neural Information Processing Systems (NeurIPS), 1996.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Richard S. Sutton and Steven D. Whitehead. Online learning with random representations. In
International Conference on Machine Learning (ICML), 1993.

Richard S. Sutton, Joseph Modayil, Michael Delp, Thomas Degris, Patrick M. Pilarski, Adam
White, and Doina Precup. Horde: a scalable real-time architecture for learning knowledge from
unsupervised sensorimotor interaction. In International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), 2011.

R.S. Sutton, D. Precup, and S. Singh. Between MDPs and semi-MDPs: A framework for temporal
abstraction in reinforcement learning. Artificial Intelligence, 112:181–211, 1999.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural networks.
In International Conference on Machine Learning (ICML), 2019.

Ahmed Touati. Large State Spaces and Self-supervision in Reinforcement Learning. PhD thesis,
Université de Montréal, 2021.

Ahmed Touati and Yann Ollivier. Learning one representation to optimize all rewards. In Neural
Information Processing Systems (NeurIPS), 2021.

Yifan Wu, George Tucker, and Ofir Nachum. The laplacian in RL: learning representations with
efficient approximations. In International Conference on Learning Representations (ICLR), 2019.

Amy Zhang, Rowan Thomas McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine. Learning
invariant representations for reinforcement learning without reconstruction. In International
Conference on Learning Representations (ICLR), 2021.

Xuezhou Zhang, Yuda Song, Masatoshi Uehara, Mengdi Wang, Alekh Agarwal, and Wen Sun.
Efficient reinforcement learning in block mdps: A model-free representation learning approach. In
International Conference on Machine Learning, pp. 26517–26547. PMLR, 2022.

13

A Background

A.1 Proto-Value Functions

PVF 1 PVF 2 PVF 3 PVF 4

Proto-Value Functions on Four-Room Grid

Figure 5: First four proto-value functions (eigenvectors of Ψπ when π is the uniform random policy)
on the Four Room grid world.

Proto-Value Functions (PVFs) are defined in terms of the graph Laplacian L ∈ Rn×n, that is

L = D −A ,

where D ∈ Rn×n is the degree matrix and A ∈ Rn×n is the adjacency matrix. The actual PVFs are
defined as the eigenvectors of the graph Laplacian, that is the non zero vectors v ∈ Rn \{0} verifying

Lv = λv .

where λ ∈ R is the eigenvalue associated with the eigenvector v.

Individually, these eigenvectors correspond to different time-scales of the diffusion process of a
random-walk over the state-space (Mahadevan & Maggioni, 2007). Intuitively, PVFs can be thought
of as capturing large-scale temporal properties of the environment. Figure 5 shows an example of
the first four PVFs on the Four-Room domain (Sutton et al., 1999; Solway et al., 2014) to give some
intuition for their structure.

A.2 The Successor Representation

Let Pπ ∈ Rn×n be the transition matrix and rπ the reward vector, both induced by the policy π. We
can now write the policy evaluation equation for the values vπ ∈ Rn as:

vπ = (I − γPπ)
−1︸ ︷︷ ︸

Ψπ

rπ ,

where Ψπ is the Successor Representation (SR). We can also write each element of the SR as the
expected discounted future occupancy for a state s′ given you start in a state s:

Ψπ(s, s′) =
∑
t>0

γtP(St = s′ |S0 = s)

= Eπ
[
γt1 {St = s′} |S0 = s

]
.

A.3 Connection Between the SR & PVFs

We can further connect the Successor Representation with Proto-Value Functions under some as-
sumptions.

Assumption 1. The Successor Representation is defined with respect to the uniform random policy.

Assumption 2. The transition matrix Pπ is symmetric.

Under the above assumptions, we have that the eigenvectors of Ψπ are equivalent to the PVFs
(eigenvectors of L) (Machado et al., 2017; Stachenfeld et al., 2014). This helps motivate the choice
of the uniform random policy as the target policy in the PVN TD update.

14

B Proofs for Section 4

Theorem 1. If Φ∗ is a feature matrix minimizing LMCSM (Φ), then its column space spans the top d
left singular vectors of the (infinite-dimensional) successor measure matrix Ψπ with respect to the
inner product (x, y)Ξ = y>Ξx, for all x, y ∈ Rn.

Proof. We consider the SVD of the successor measure ψ with respect to the weighted inner product
Ξ. In matrix form, we write

Ψ = FΣBT

where F ∈ Rn×d,Σ ∈ Rd×d and B ∈ Rn×d satisfy

FTF = I,BTΞB = I,Σ = diag(σ1, ..., σd)

and σi are the singular values of Ψ sorted in decreasing order.

arg min
Φ∈Rn×d

LMCSM (Φ) = arg min
Φ∈Rn×d

min
wS,a∈Rd

E
S∼ξ

[(∑
x∈X ,a∈A

(φ(x)>wS,a − ψ(x, a, S)
)2]

= arg min
Φ∈Rn×d

min
W
‖(ΦW −Ψ)‖2Ξ

= arg min
Φ∈Rn×d

‖Π⊥ΦΨ‖2Ξ

where ΠΦ is the orthogonal projection onto span(Φ). The above is equivalent to saying that Φ must
span the top d singular vectors of Ψ.

C Tabular Results

Define the Successor Representation (SR) as Ψπ = (I − γPπ)
−1 ∈ Rn×n and assume that Pπ is

symmetric. Let Gk ∈ Rn×(nk) be the matrix containing all the binary vectors corresponding to all
(
n
k

)
subsets (i.e., its columns have all possible k-hot binary vectors). For example, given n = 4 we have,

G2 =

1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

 .
In the tabular setting we seek to learn the successor measure with respect to Gk by minimizing

L(Φ,W) = ‖ΦW −ΨGk‖2F .

We know that the optimal Φ will span the principal components of ΨGk (Bellemare et al., 2019).
Note that when k = 1 we have, ΨG1 = Ψ in which case the principal components are the PVFs
Machado et al. (2017). We want to characterize the principal subspace of ΨGk for 1 < k < n.

Claim: C = (ΨGk) (ΨGk)
> has the same eigenvectors for all k ∈ {1, . . . , n− 1}.

Proof: We start by writing down the covariance matrix as

C = (ΨGk) (ΨGk)
>

= ΨGkG>k Ψ> .

The matrix GkG>k is a double-constant matrix (O’Neill, 2021), i.e., it has a constant a on the diagonal
and a constant different from a on the off-diagonal:

Mk = GkG>k =

a t t · · · t
t a t · · · t
t t a · · · t
...

...
...

. . .
...

t t t · · · a

 .

15

In our case we have a =
(
n−1
k−1

)
and t =

(
n−2
k−2

)
. Furthermore, we can use another property of

double-constant matrices, we have that the eigenvalues of Mk are λ1 = λ∗∗ = a − t + n · t and
λi = λ∗ = a− t for all i = 2, . . . , n. The eigenvectors for λ∗∗ are v∗∗ ∝ 1 where 1 is the vector of
all ones. The eigenvectors for λ∗ are any non-zero vectors v∗ where v∗ · 1 = 0, i.e., v∗ is orthogonal
to the vector of all ones.

Next, we characterize the eigenspace of the matrix Ψπ . We have,

Ψ = (I − γPπ)
−1

=
(
I − γQΛQ−1

)−1
(Since Pπ is symmetric, hence diagonalizable)

= Q (I − γΛ)
−1
Q−1 .

This means that the eigenvectors of Ψπ are the same as the eigenvectors of Pπ. We will denote the
eigenvalues of Pπ to be λi with associated eigenvectors xi. For simplicity, we denote the eigenvalues
of Ψπ as µi for i = 1, . . . , n. Note that µi = (1− γλi)−1 for i = 1, . . . , n.

Furthermore, since Pπ is a stochastic matrix, we have that 1 is an eigenvector with eigenvalue 1. We
let x1 = 1 without loss of generality. Also, since Pπ is assumed to be symmetric, the eigenvectors
can be chosen to be orthogonal to each other.

Putting this all together, take xi to be the i-th eigenvector of Ψπ (and Pπ). We now have,

Cxi = ΨMkΨ>xi
= ΨMkΨxi (by symmetry)
= ΨMkµixi . (xi is an eigevector of Ψ)

Now there are two cases:

Case 1: If xi = 1 (and i = 1) we have,
Cxi = ΨMkµixi

= Ψλ∗∗µ11

= µ1λ∗∗µ11

= µ2
1λ∗∗1

Case 2: If xi 6= 1 (and i > 1) we know that xi is orthogonal to 1 (since Pπ is a symmetric matrix)
thus lies in the second eigenspace of Mk corresponding to the eigenvector v∗. Therefore, we have,

Cxi = ΨMkµixi
= Ψλ∗µixi
= µiλ∗µixi

= µ2
iλ∗xi .

Thus, we have shown that C = ΨMkΨ> has the same eigenvectors as Ψ and are independent of
k. The new eigenvalues are µ2

1λ∗∗ for the eigenvector 1 and µ2
iλ∗ for all other eigenvectors xi for

i = 2, . . . , n.

D Implementation Details

D.1 Universal Hash Functions

We define the set of multiply-shift universal hash functions (Carter & Wegman, 1979) as:

hi(x) =

a(i)
0 +

n∑
j=1

a
(i)
j · xj mod p

 mod m,

where x ∈ Rn is a flattened vector of the environment’s observation, a(i) ∈ Rn is a randomly
initialized vector that that parameterizes the hash function, p is a prime, which in our case is the
Mersenne prime p = 213 − 1, and m allows us to control the activation proportion of the indicator
function. We can now define the indicator function as follows:

fi(x) = 1{hi(x) = 0} .

16

D.2 Quantile Regression

We use quantile regression to tune the proportion of states that trigger our random network indicator
functions. To do so, we use a tunable bias that we update with gradient descent. First, recall that the
random network indicators are computed using a random neural network f : x 7→ R. If we naively
apply the SIGN function to the network output, the proportion of states that map to 1 is unlikely to
match the target proportion p. Therefore, we first add a bias term to the output r′ = f(x) + b, and
then tune the bias to minimize the quantile regression loss

LQR(b) = Ex∈X r′(x) · ((1− p)− SIGN(r′(x))) (2)

Once the bias has been tuned, the output of the random network indicator is r = SIGN(f(x) + b).

D.3 Algorithm

Algorithm 1 gives pseudo-code for the method as implemented with a fixed replay memory.

Algorithm 1 Proto-Value Networks

Require: Transition dataset D, Function approximator Ψ̂θ : X → Rm×|A|, m RNI networks
fi : X → R, m RNI threshold bias vectors bi, Polyak coefficient τ , reward proportion p

1: for step = 1, . . . do
2: Sample mini-batch of n transitions {(x, a, x′)}ni=1 ⊂ D
3:
4: # Calculate random network indicators
5: r′j(x)← fj(x) + bj ∀j = 1, . . . ,m
6: rj(x)← SIGN(r′j(x))
7:
8: # Calculate PVN loss
9: LPVN(θ)← 1

n

∑n
i=1

1
m

∑m
j=1

(
rj(xi) + γ 1

|A|
∑
a′∈A Ψ̂

(j)
θ−(x′i, a

′)− Ψ̂
(j)
θ (xi, ai)

)2

10:
11: # Calculate quantile regression loss
12: LQR(bj)← 1

n

∑n
i=1 r

′
j(x) · ((1− p)− SIGN(r′j(x)))

13:
14: # Perform gradient step
15: Update θ ← θ − η1

∂
∂θLPVN(θ)

16: Update bj ← bj − η2
d
dbj
LQR(bj) ∀ j = 1, . . . ,m

17:
18: # Polyak average target network parameters
19: θ− ← τθ− + (1− τ) θ
20: end for

D.4 Self-Predictive Representations (SPR)

We implement an 8x version of SPR (Schwarzer et al., 2021a) using the same parameters as in,
Schwarzer et al. (2021a) except we take the final fixed representation to be the projection layer in
addition to the convolutional encoder. This was done to maintain the number of features for all our
pre-trained methods. We also train SPR for much longer than in the original paper, specifically, we
perform the same number of gradient steps as PVN.

17

D.5 Hyperparemeters

In the tables below we report all relevant hyperparameter choices for both our offline pre-training
phase, and online learning phase.

We selected most of our hyperparameters based on best practices from previous work. We chose p
based on the estimated reward proportion from actual Atari games. We tuned our online hyperparam-
eters using 5 tuning games, ASTERIX, BEAM RIDER, PONG, QBERT, and SPACE INVADERS.

Table 1: PVN Hyperparameters
Hyperparameter Value

Number of auxiliary tasks 100
Batch size 256
Number of gradient steps 1,562,500
Discount factor γ 0.99
Target EMA coefficient τ 0.99
Reward proportion p 0.01
Quantile regression burn-in steps 62,500
Tasks per module 10
Optimizer Adam
Adam Learning rate 1e-4
Adam β1 0.9
Adam β2 0.999
Adam ε 1.5e-4

Table 2: Online Hyperparameters
Hyperparameter Value

Update rule DQN
Number of layers 1 (linear)
Number of agent steps 3.75M
Frame skip 4
Total frames 15M
Train ε 0.01
Evaluation ε 0.001
n step 1
Discount factor γ 0.99
Optimizer Adam
Adam Learning rate 6.25e-5
Adam ε 1.5e-4
Maximum gradient norm 10
Batch size 32
Minimum replay size 2,000
Maximum replay size 1,000,000
Gradient updates per agent step 1

18

E MDS Plots

Below are a selection of MDS plots for the methods discussed in the paper for each of the 5 tuning
games. These plots are generated using the representations learned during the pre-training phase, and
one expert trajectory is presented in each plot. Darker points correspond to states at the beginning
of the trajectory, and lighter points correspond to states at the end of the trajectory. These plots
demonstrate that the representations learned by each method are clearly different, and therefore have
different properties. With these MDS explorations, we hope to gain some insight into the properties of
each learnt representation. Motivated by PVFs, we expect a good (general) representation to capture
the structure of the underlying transition dynamics of the environment. We note that PVN captures
the temporal structure of each episode relatively well. With PVN, states that are near together in time
have similar features, aligning with the properties of PVFs in the tabular case.

PVN (RNI) PVN (Hash) Environment Reward Random Cumulants Random Initialization

(a) Asterix

PVN (RNI) PVN (Hash) Environment Reward Random Cumulants Random Initialization

(b) BeamRider

PVN (RNI) PVN (Hash) Environment Reward Random Cumulants Random Initialization

(c) Pong

PVN (RNI) PVN (Hash) Environment Reward Random Cumulants Random Initialization

(d) Qbert

PVN (RNI) PVN (Hash) Environment Reward Random Cumulants Random Initialization

(e) SpaceInvaders

Figure 6: MDS plot for a single trajectory.

19

F Per-Game Results

Below, we report the per-game results for the methods discussed in the paper. In addition, we include
DQN and the Environment Reward method, which trains an encoder using the environment reward
during the pre-training phase, and then uses the fixed representation to train a linear head in the same
manner as the compared methods. Note that Environment Reward acts as a kind of oracle in our
setting – it is the only method that has access to the environment reward during the pre-training phase.
The results reported here use 1 offline seed and 3 online seeds, and evaluation scores (averaged over
100 evaluation runs) are reported after 3.75M agent steps. DQN’s performance is reported after 50M
agent steps.

Table 3: Per-Game Results on RLU Games
Method

Game DQN Environment Reward Random Initialization Behavior Cloning SPR Random Cumulants PVN (RNI)

Alien 1,932.2 2,681.1 403.7 414.8 962.8 104.7 1,042.8
Amidar 893.7 169.1 43.8 50.2 46.8 43.8 63.6
Assault 1,442.5 695.1 193.2 452.9 293.0 494.6 1,100.7
Asterix 2,953.4 13,096.3 522.9 7,139.8 1,625.1 347.8 15,401.2
Atlantis 645,494.5 592,372.5 14,269.8 12,682.1 10,275.0 34,212.2 12,760.3
BankHeist 589.8 47.6 7.0 54.7 618.8 1,036.4 456.1
BattleZone 14,818.1 37,796.3 1,547.4 12,545.5 2,360.1 6,492.2 13,528.7
BeamRider 4,569.7 10,660.3 411.8 3,862.2 1,111.5 5,447.1 8,646.0
Boxing 74.7 99.5 -30.2 -4.7 53.0 -2.8 87.2
Breakout 96.4 296.8 6.5 3.8 7.1 334.0 16.4
Carnival 4,438.2 4,976.0 362.2 671.0 684.8 648.9 1,228.5
Centipede 2,358.9 1,176.9 3,534.5 1,688.6 4,300.3 1,082.6 3,420.6
ChopperCommand 1,958.7 3,685.8 494.2 643.2 880.6 1,078.0 2,018.5
CrazyClimber 100,158.8 137,240.0 10,179.4 2,914.7 51,999.3 133,041.2 19,259.1
DemonAttack 4,427.9 101,850.7 123.1 14,426.7 421.8 2,407.8 78,671.1
DoubleDunk -14.2 -18.5 -19.6 -18.4 -16.9 -17.0 -20.4
Enduro 668.4 1,593.9 22.7 126.8 509.4 14.7 426.4
FishingDerby -1.1 28.7 -96.6 -92.6 -89.2 -95.6 -72.5
Freeway 24.1 33.7 8.5 14.7 15.9 29.5 18.9
Frostbite 623.0 4,386.1 39.2 96.0 834.0 56.2 408.3
Gopher 4,579.2 1,114.5 231.1 479.8 939.6 1,459.0 3,070.0
Gravitar 214.4 1,481.9 42.7 310.0 72.8 77.6 164.3
Hero 12,348.1 9,932.4 544.5 1,974.9 9,256.3 445.5 1,942.2
IceHockey -7.3 21.8 -13.2 -9.1 -14.9 -12.2 -8.9
Jamesbond 473.3 1,058.6 24.4 387.9 82.2 69.7 630.2
Kangaroo 8,653.0 9,612.0 199.1 1,818.0 78.7 1,033.1 1,724.4
Krull 5,892.5 8,630.4 1,248.9 3,622.1 3,836.1 206.4 4,006.5
KungFuMaster 20,245.1 35,076.0 2,806.7 9,463.0 16,877.5 12,262.9 13,628.4
MsPacman 2,880.5 5,797.4 836.4 629.4 1,946.6 1,444.4 1,373.9
NameThisGame 6,114.5 17,612.3 1,425.9 2,519.8 2,036.0 2,418.6 7,218.7
Phoenix 4,764.3 24,501.3 414.6 904.1 935.8 7,828.6 6,946.1
Pong 11.5 21.0 -20.8 -14.3 -14.0 6.8 20.1
Pooyan 3,114.5 1,675.0 747.7 444.9 829.5 1,443.3 1,432.2
Qbert 8,309.5 14,393.7 172.1 664.6 567.9 2,611.3 3,503.1
Riverraid 9,703.1 11,319.0 1,279.7 2,829.2 3,053.1 619.9 6,841.6
RoadRunner 36,386.9 37,417.8 2,543.2 939.2 3,932.6 418.0 6,975.3
Robotank 39.2 75.1 2.4 44.7 3.9 14.1 3.5
Seaquest 1,510.1 173.7 63.8 294.2 310.3 51.6 1,040.8
SpaceInvaders 1,466.0 28,807.5 131.3 327.5 264.8 988.4 870.5
StarGunner 18,799.0 728.0 642.6 12,927.1 743.2 677.3 6,189.2
TimePilot 2,613.8 11,205.9 2,409.2 1,860.5 1,842.7 1,408.7 2,418.6
UpNDown 8,889.8 17,629.3 1,174.4 2,307.4 541.2 11,018.7 9,193.7
VideoPinball 87,468.5 269,381.0 5,213.2 12,181.1 6,480.1 4,810.8 7,638.2
WizardOfWor 1,904.9 4,749.5 480.3 1,298.0 882.6 794.7 1,739.4
YarsRevenge 20,520.1 47,218.7 3,089.1 10,056.0 10,047.2 768.4 21,253.5
Zaxxon 2,985.8 14,329.2 313.8 3,013.2 283.8 1,170.9 4,215.0

20

G Training Curves

Figure 7 presents training curves for all 46 games in RL Unplugged. Each point corresponds to the
average episodic return during training binned over 1M frames. The shaded region corresponds to the
95% bootstrapped confidence interval for the mean over three runs. Note: These results will differ
from Table 3 as we use a separate evaluation phase with a lower value of ε as is standard in the ALE.

0 5 10 15
200

400

600

800

1,000

1,200

PVN

SPR

BC
RC

Alien

0 5 10 15

30

40

50

60

70

80

90

PVN
SPR

BC

RC

Amidar

0 5 10 15

400

600

800

PVN

SPR
BC
RC

Assault

0 5 10 15

2,500

5,000

7,500

10,000

12,500

15,000 PVN

SPR

BC

RC

Asterix

0 5 10 15

10,000

15,000

20,000

25,000

30,000

PVN
SPR
BC

RC

Atlantis

0 5 10 15

100

200

300

400

500

PVN
SPR

BC

RC
BankHeist

0 5 10 15

4,000

6,000

8,000

10,000

12,000

14,000 PVN

SPR

BC

RC

BattleZone

0 5 10 15

2,000

4,000

6,000

8,000 PVN

SPR

BC

RC

BeamRider

0 5 10 15

-20

0

20

40

60

80
PVN

SPR

BC
RC

Boxing

0 5 10 15

50

100

150

200

250

300

PVN
SPR
BC

RC

Breakout

0 5 10 15

700

800

900

1,000

1,100

PVN

SPR
BC

RC

Carnival

0 5 10 15

1,000

1,500

2,000

2,500

3,000

3,500

4,000
PVN
SPR

BC

RC

Centipede

0 5 10 15

1,000

2,000

3,000 PVN

SPR

BC
RC

ChopperCommand

0 5 10 15

20,000

40,000

60,000

80,000

100,000

120,000

PVN

SPR

BC

RC
CrazyClimber

0 5 10 15

20,000

40,000

60,000

80,000
PVN

SPR

BC
RC

DemonAttack

0 5 10 15

-22

-21

-20

-19

PVN

SPR
BC

RC

DoubleDunk

0 5 10 15

100

200

300

400

500

PVN

SPR

BC

RC

Enduro

0 5 10 15

-90

-85

-80

-75

-70

PVN

SPR
BC
RC

FishingDerby

0 5 10 15
5

10

15

20

25

30

PVN
SPR
BC

RC
Freeway

0 5 10 15

200

400

600

800

1,000

1,200

PVN

SPR

BC
RC

Frostbite

0 5 10 15

1,000

2,000

3,000

4,000
PVN

SPR

BC

RC

Gopher

0 5 10 15

150

200

250

300

350

400

PVN

SPR

BC

RC

Gravitar

0 5 10 15

2,000

4,000

6,000

8,000

10,000

PVN

SPR

BC
RC

Hero

0 5 10 15

-14

-12

-10

-8
PVN

SPR

BC

RC

IceHockey

0 5 10 15

100

200

300

400

500

600

700
PVN

SPR

BC

RC

Jamesbond

0 5 10 15

500

1,000

1,500

2,000

2,500

3,000
PVN

SPR

BC
RC

Kangaroo

0 5 10 15

1,000

2,000

3,000

4,000

5,000

6,000

PVN
SPR
BC

RC

Krull

0 5 10 15

5,000

10,000

15,000

20,000

PVN
SPR

BC

RC

KungFuMaster

0 5 10 15
500

750

1,000

1,250

1,500

1,750

2,000

PVN

SPR

BC

RC

MsPacman

0 5 10 15
2,000

3,000

4,000

5,000

6,000

7,000 PVN

SPR
BC
RC

NameThisGame

0 5 10 15

2,000

4,000

6,000

8,000 PVN

SPR
BC

RC

Phoenix

0 5 10 15
-20

-10

0

10

PVN

SPR
BC

RC

Pong

0 5 10 15
250

500

750

1,000

1,250

1,500
PVN

SPR

BC

RC

Pooyan

0 5 10 15

1,000

2,000

3,000
PVN

SPR
BC

RC

Qbert

0 5 10 15

2,000

4,000

6,000

PVN

SPR
BC

RC

Riverraid

0 5 10 15

2,000

4,000

6,000

8,000

10,000

12,000

PVN

SPR

BC
RC

RoadRunner

0 5 10 15

10

20

30

40

50

60

PVN
SPR

BC

RC

Robotank

0 5 10 15

250

500

750

1,000

1,250 PVN

SPR
BC

RC

Seaquest

0 5 10 15

400

600

800

1,000
PVN

SPR
BC

RC

SpaceInvaders

0 5 10 15

2,500

5,000

7,500

10,000

12,500

15,000

PVN

SPR

BC

RC

StarGunner

0 5 10 15

1,500

2,000

2,500

3,000

PVN

SPR

BC
RC

TimePilot

0 5 10 15

2,000

4,000

6,000

8,000

10,000

PVN

SPR

BC

RC

UpNDown

0 5 10 15
5,000

10,000

15,000

20,000

25,000

PVN
SPR

BC

RC

VideoPinball

0 5 10 15

500

1,000

1,500

2,000
PVN

SPR
BC

RC

WizardOfWor

0 5 10 15

5,000

10,000

15,000

20,000 PVN

SPR

BC

RC

YarsRevenge

0 5 10 15

1,000

2,000

3,000

4,000

5,000
PVN

SPR

BC
RC

Zaxxon

Iteration

Av
er

ag
e

Ep
iso

di
c

Re
tu

rn

PVN (RNI) SPR Behavior Cloning Random Cumulants

Figure 7: Training curves for: PVN (RNI), SPR, and Random Cumulants on all 46 games in RL
Unplugged. The shaded region corresponds to the 95% bootstrapped confidence interval for the
mean over three runs. The dashed horizontal line corresponds to the average evaluation score for
Behavioral Cloning over three runs.

21

	Introduction
	Related work
	Background
	Proto-value networks
	Extension to the random successor measure
	A practical implementation
	Generating indicator functions

	Empirical Analysis
	Scaling capacity with auxiliary tasks
	Evaluating the learned representation
	Ablations

	Discussion
	Background
	Proto-Value Functions
	The Successor Representation
	Connection Between the SR & PVFs

	Proofs for sec:methodology
	Tabular Results
	Implementation Details
	Universal Hash Functions
	Quantile Regression
	Algorithm
	Self-Predictive Representations (SPR)
	Hyperparemeters

	MDS Plots
	Per-Game Results
	Training Curves

