
MICROADAM: Accurate Adaptive Optimization with
Low Space Overhead and Provable Convergence

Ionut-Vlad Modoranu1∗ Mher Safaryan1 Grigory Malinovsky2 Eldar Kurtic1
Thomas Robert1 Peter Richtárik2 Dan Alistarh1

1Institute of Science and Technology Austria (ISTA)
2King Abdullah University of Science and Technology (KAUST)

Abstract

We propose a new variant of the Adam optimizer [Kingma and Ba, 2014] called
MICROADAM that specifically minimizes memory overheads, while maintaining
theoretical convergence guarantees. We achieve this by compressing the gradient
information before it is fed into the optimizer state, thereby reducing its memory
footprint significantly. We control the resulting compression error via a novel
instance of the classical error feedback mechanism from distributed optimiza-
tion [Seide et al., 2014, Alistarh et al., 2018, Karimireddy et al., 2019] in which
the error correction information is itself compressed to allow for practical memory
gains. We prove that the resulting approach maintains theoretical convergence
guarantees competitive to those of AMSGrad, while providing good practical per-
formance. Specifically, we show that MICROADAM can be implemented efficiently
on GPUs: on both million-scale (BERT) and billion-scale (LLaMA) models, MI-
CROADAM provides practical convergence competitive to that of the uncompressed
Adam baseline, with lower memory usage and similar running time. Our code is
available at https://github.com/IST-DASLab/MicroAdam.

1 Introduction
The Adam [Kingma and Ba, 2014] adaptive optimizer and its variants [Reddi et al., 2019, Loshchilov
and Hutter, 2019] has emerged as a dominant choice for training deep neural networks (DNNs),
especially in the case of large language models (LLMs) with billions of parameters. Yet, its versatility
comes with the drawback of substantial memory overheads: relative to naive SGD-based optimization,
the Adam optimizer states doubles the memory overhead, as it requires storing two additional parame-
ters for each variable. For large-scale models, these memory demands pose a significant challenge. In
turn, this has spurred research into memory-efficient adaptive optimizers, such as AdaFactor [Shazeer
and Stern, 2018], 8-bit Adam [Dettmers et al., 2021], or the very recent GaLore [Zhao et al., 2024]
low-rank projection approach. Despite their popularity and practical utility, the above methods lack
rigorous convergence guarantees, and often trade off memory reductions with decreased convergence
in practice. This raises the question of whether it is possible to design adaptive optimizers that are
not only memory-efficient, but also maintain strong theoretical and practical performance metrics.

Contributions. In this paper, we address this gap by introducing MICROADAM, an adaptive optimizer
which guarantees low memory usage but also ensures provable convergence. We develop our approach
to improve the performance of finetuning LLMs and mainly focus on the research question “are all
gradient entries important for optimization?” To answer this question, we start from the idea that
we can allow the (lossy) sparse projection of gradient information before it enters the optimizer
states; crucially, different from prior work, we ensure convergence by correcting for the inherent error

∗Correspondence to ionut-vlad.modoranu@ista.ac.at

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/IST-DASLab/MicroAdam

due to compression by employing a novel variant of error correction, a mechanism introduced for
distributed optimization [Seide et al., 2014]. However, simply using error feedback would not lead to
memory savings, since the size of the error correction buffer is comparable to the that of the original
optimizer state. Instead, our main algorithmic innovation is in showing that the error feedback can
itself be compressed in the context of adaptive optimization. This renders the memory overhead of
error feedback negligible, while preserving convergence guarantees.

Specifically, on the theoretical side, we provide a new analysis showing that, under reasonable
assumptions on the loss function being optimized and on the degree of compression, MICROADAM
provably guarantees convergence, at asymptotically the same rate as AMSGrad [Zhou et al., 2024a],
i.e. a version of Adam with general convergence guarantees, that fixes a fundamental technical issue
in the Adam optimizer’s proof [Reddi et al., 2019]. The key finding is that our approach allows for the
overhead of compression to be shifted to the higher-order terms, where it should not impact practical
convergence in common cases. This claim holds both for general smooth non-convex functions, and
for non-convex functions under the Polyak-Lojasiewicz (PL) assumption, highlighting a trade-off
between the degree of compression of the gradients, and that of the error feedback.

We complement our algorithmic and analytic results with an efficient GPU implementation of
MICROADAM, which we validate for fine-tuning language models from the BERT [Devlin et al.,
2018], OPT [Zhang et al., 2022] and LLaMA [Touvron et al., 2023] families, with hundreds of
millions to billions of parameters. We show that, in practice, gradients can be projected to very high
sparsity (99%), while the error correction can be stored at 4 bits per component, without loss of
convergence. Concretely, our method can significantly improve upon the memory footprint of the
extremely popular 8bit Adam [Dettmers et al., 2021] when fine-tuning models such as LLaMA2-
7B/13B [Touvron et al., 2023], at similar or better accuracy. At the same time, MICROADAM provides
better accuracy relative to high-compression heuristics such as GaLore [Zhao et al., 2024].

In summary, we provide a new theoretically-grounded approach to memory-efficient adaptive op-
timization, which has the advantage of providing both theoretical guarantees and good practical
convergence, while being scalable to billion-parameter models. MICROADAM could therefore serve
as a useful new tool for accurate and memory-efficient optimization of large models.

2 Related Work
We mainly focus on related work reducing the cost of optimizer states. Dettmers et al. [2021]
considers this problem, specifically by performing fine-grained quantization of the optimizer states.
Their work does not alter the Adam algorithm; instead, it deals with the challenge of accurately
compressing the dynamically-changing meta-data sequence. As the name suggests, the space savings
correspond to roughly halving the memory required by the optimizer states, relative to FP16. In
the same vein, AdaFactor [Shazeer and Stern, 2018] and CAME [Luo et al., 2023] reduce memory
cost by factorizing the second-order statistics, while the recent GaLore [Zhao et al., 2024] factorizes
the gradients themselves before they enter the optimizer state (but does not use error correction).
Importantly, these methods are heuristics: they do not provide theoretical guarantees under standard
assumptions,2 and in practice require careful tuning to preserve convergence [Luo et al., 2023]. By
contrast, our method is theoretically justified, and provides good practical convergence. Earlier work
by Anil et al. [2019] provides convergence guarantees for a compressed variant of Adagrad [Duchi
et al., 2010] called SM3, improving upon earlier work by Spring et al. [2019]. However, it is not
clear how to extend their approach to the popular Adam optimizer, and heuristic methods appear to
provide superior performance [Luo et al., 2023].

Conceptually, our work is related to error feedback mechanisms studied in distributed optimization,
e.g. [Seide et al., 2014, Alistarh et al., 2018, Karimireddy et al., 2019, Richtárik et al., 2021].
Specifically, Li et al. [2022] proved convergence of AdaGrad-like algorithms in conjunction with
error feedback, in a distributed environment. Our focus is different: minimizing memory costs in the
single-node setting: for this, we show that the error correction buffer can itself be compressed. We
provide an analysis for the resulting new algorithm, and efficient CUDA implementations.

More broadly, scaling adaptive or second-order optimizers to large models is a very active area.
Works such as GGT [Agarwal et al., 2019], Shampoo [Gupta et al., 2018] and M-FAC [Frantar et al.,

2GaLore [Zhao et al., 2024] does state convergence guarantees for a variant of the algorithm with fixed
projections, but this is under a strong “stable rank” assumption, which may not hold in practice.

2

2021] provided quadratic-space algorithms that are still feasible to execute for moderate-sized DNNs,
but will not scale for billion-parameter models. Follow-up work such as AdaHessian [Yao et al.,
2020], Sophia [Liu et al., 2023], Sketchy [Feinberg et al., 2023] and EFCP [Modoranu et al., 2023],
scaled these approaches via additional approximations. Of these, the closest work to ours is EFCP,
which uses sparsification plus standard error feedback to compress the gradient window employed in
the Fisher approximation of the Hessian. However, EFCP does not compress the error accumulator,
assumes a different optimization algorithm (Natural Gradient [Amari, 2016]), lacks convergence
guarantees, and does not scale to billion-parameter models.

3 The MICROADAM Algorithm
Notation. We consider a standard Adam-type algorithm, which we will augment for memory savings.
We will use f for the loss function, d for the model size, k for the gradient density (sparsity d− k),
θt and gt for the model parameters and gradient at step t respectively, ηt for the learning rate, λ for
the weight decay parameter, mt and vt for the first and second moment of the gradient, ϵ for the
numerical stability constant, β1 and β2 for the momentum coefficients for mt and vt respectively.
Furthermore, we use et for the error feedback (EF) vector, b the number of bits for EF quantization,
m for the sliding window size, G = (I,V) for the sliding window of size m× k that stores indices I
and values V selected by the Top-K operator.

Algorithm Description. We provide pseudocode in Algorithm 1 and highlight the parts related to
error feedback quantization in blue. The main idea is to compress the gradients via TopK sparsification
before they enter the optimizer state, and to correct for the inherent error by applying error feedback
et ∈ Rd. Instead of storing the optimizer state directly, we maintain a “sliding window” of highly-
sparse past gradients and dynamically re-compute the Adam statistics at each step based on this
window. Yet, this alone does not improve space, as the error buffer partially negates the benefits of
gradient compression. Instead, we prove that the error feedback accumulator can itself be compressed
via quantization.

In detail, at step t = 1, the error feedback e1 is completely zero, as initialized in line 2, and thus,
at line 5 the accumulator a1 will only contain the stochastic gradient g1. At line 6, we perform the
Top-K compression and only keep the top-1% of values V1 and their corresponding indices I1. The
compression is equivalent to choosing the top-1% values in the left and right tails (outliers) due
to the absolute value we apply on top of accumulator a. At line 7, we remove the outliers from
the accumulator because they will be transferred to the buffer matrix G. This step is equivalent to
e← a− Tk(a) found in theoretical results. After line 7, what is left in a is called the error feedback
(e.g. the weights which were not chosen by Top-k). At line 8, we compute the statistics δ and ∆
needed for quantization, and at line 9, we effectively quantize the accumulator (e.g. error feedback
after line 7). At line 10 we update the buffer G, in lines 11, 12 and 13 we compute the statistics m̂, v̂
(computed by squaring the entries of G element-wise) and update the model parameters.

For steps t ≥ 2, the only change compared to t = 1 is that error feedback e is not zero anymore.
Since the error is compressed, we need to decompress it and add it to the gradient. This process
happens at line 5 and it is the point where we feed back the error: the accumulator will store the
gradient whose direction is corrected by the error (e.g. the cumulative history of weights not chosen
by Top-k at the previous steps).

Properties and Limitations. We would like to point out that the resulting update ut = mt/(ϵ+
√
vt)

will always be highly sparse when the window size m is small. For illustration, if we use density
k = d/100 (e.g. 1% density equivalent to 99% sparsity) with m = 10 and suppose that all rows in
the indices matrix I are disjoint, then the overall density in the update ut will be 90%. The sparsity of
ut increases if rows in I have common values. MICROADAM yields good results for LLM finetuning
and pre-training computer vision models, as the experimental section shows. However, we noticed
the update ut of MICROADAM is too sparse to be able to provide good enough updates for LLM
pre-training. We believe this happens because the attention layers must receive dense updates to be
able to learn the correlations between words.

Dynamic Statistics. In ADAMSTATS procedure in Algorithm 2 we implement the unrolled recursion
of momentum zt ← βzt−1+(1−β)gt for the last m sparse gradients as zt ← (1−β)

∑t
i=t−m βt−igi

and we also perform the bias correction in the end. Because we compute m̂t and v̂t using the last
m sparse gradients in the window, in line 4 we dynamically determine the exponent r for the decay
factor βr based on the current optimization step t, ith row of the circular buffer G and the window size

3

m. The last gradient added to G will have r = 0, while the oldest gradient in G will have r = m− 1.
In the end, we will add the values βrVi to the buffer z at the corresponding indices Ii, which is a
fast operation because we only manipulate 1% of values at a time. We discuss the efficient CUDA
implementation in the Appendix.

Algorithm Intuition. To gain intuition, we illustrate the impact of compressing gradients via TopK
before they are incorporated into the optimizer state for Adam, both with and without error feedback
(EF). Figure 1 shows how EF fixes AdamW with Top-K compression. The plot on the left shows the
optimization trajectory of the original Adam optimizer. The center plot illustrates the convergence of
Top-K Adam when we only choose the largest coordinate from the accumulator (equivalent to 50%
sparsity since the problem is 2D). In the end, on the right side we show that adding EF to Top-K
Adam recovers the same optimization trajectory as the original Adam optimizer. Extrapolating to
higher dimensional problems, our MICROADAM approach helps recover the trajectory of the original
Adam optimizer, while using less memory. The results clearly show that EF is essential for fast
convergence. Besides, TopK with EF, which is a surrogate of MICROADAM, allows for competitive
convergence relative to the uncompressed baseline. In Appendix F, we discuss the implications of
Error Feedback applied to GaLore.

Algorithm 1 Pseudocode for MICROADAM
with quantized EF

1: Input: β1, β2, ϵ,G, T, d, k
2: m0, v0 ← 0d, 0d

δ1,∆1 ← 0, 0
e1 ← 04bd

3: for t = {1, 2, ..., T} do
4: gt ← ∇̃θf(θt)
5: at ← gt +Q−1(et, δt,∆t)
6: It,Vt ← Tk(|at|)
7: at[It]← 0
8: δt+1,∆t+1 ← min(at),max(at)
9: et+1 ← Q(at, δt+1,∆t+1)

10: Gi,: ← (It,Vt)
11: m̂t ← ADAMSTATS(β1,G)
12: v̂t ← ADAMSTATS(β2,G2)
13: θt+1 ← θt − ηt

m̂t

ϵ+
√
v̂t

14: i← (i+ 1)%m
15: end for

Algorithm 2 Adam Statistics, Quantization and
Inverse Quantization

1: procedure ADAMSTATS(β,G, t,m, d)
2: z ← 0d
3: for i ∈ {1, 2, ...,min(t,m)} do
4: r ← (t− i− 1)%m
5: z[Ii]← z[Ii] + βrVi
6: end for
7: return (1−β)z

1−βt

8: end procedure
1: procedure Q(x, δ,∆, b = 4)
2: u← ∆−δ

2b−1

3: xQ ← ⌊x−δ
u + 1

2⌋
4: return xQ

5: end procedure
1: procedure Q−1(xQ, δ,∆, b)
2: u← ∆−δ

2b−1

3: x← xQ · u+ δ
4: return x
5: end procedure

Figure 1: Optimization trajectories of Adam, TopK-Adam and TopK-Adam with EF applied on the
Rosenbrock function f(x, y) = (1− x)2 + 100(y − x2)2 starting from (x0, y0) = (− 1

2 , 1). Notice
the extremely “jagged” profile of TopK-Adam without EF, and the recovered convergence when EF
is added.

3.1 Efficient Implementation

A direct implementation (e.g., in Pytorch) of the previous algorithm would not bring significant
benefits, and would in fact might slow down optimization in terms of wall-clock time. To realize the
theoretical gains, we detail a GPU-aware implementation below.

4

Accumulator at. First, we do not use an additional accumulator tensor at; instead, we use a CUDA
kernel to dequantize the error buffer, and store the result in the grad attribute of the model parameters.
This allows us to accumulate the error feedback into the gradients, without allocating a full or half
precision d-dimensional array. Each component of the EF has 4 bits and the entire EF is stored in an
array of size d/2 of uint8 values.

Top-K. Since we run on LLMs with billions of parameters, naive storage of the sparse indices would
require using an int64 type for the indices matrix I, assuming that the Top-K operator is applied
globally to all the parameters in at. To avoid this cost, we apply Top-K in blocks of fixed size
Bd < 215 − 1 = 32767 and store block-relative indices in int16 format (during the development of
MICROADAM, PyTorch did not have support for uint16). Applying Top-K per row to at reshaped to
2D is not only faster, but provides the block-relative indices directly.

Computing Top-K in blocks also allows us to allocate and efficiently use CUDA shared memory
blocks to dynamically compute the statistics m̂t and v̂t for Adam, as described in the ADAMSTATS
procedure in Algorithm 2. We allocate the maximum possible shared memory for each thread block
and store m̂t (first half) and v̂t (second half) at consecutive locations in the shared memory. Once
these statistics are computed, it is easy to update the model parameters. Note that the block-relative
indices returned by Top-K will be directly used as indices in the shared memory array of CUDA
thread blocks to retrieve values from I and V .

Quantization metadata. Our approach also stores two additional vectors δ and ∆ used for quantiza-
tion. Since the quantization block size Bq is set to a very large value (e.g. 100K), the space required
for these two arrays becomes negligible in comparison to the buffer G and error feedback e.

Practical memory usage. We note that we apply MICROADAM per layer, and that the size of
quantization statistics δ and ∆ are allocated based on the layer size. Having many such small tensors
may result in slightly sub-optimal memory allocation from Pytorch. This is why our reported memory
usage can be higher than the theoretical usage for small models, in the 100M parameter range; these
effects disappear for billion-parameter models, where the savings are significant.

3.2 Memory footprint analysis for the optimizer states and comparison with other methods
We now compare the theoretical memory footprint of MICROADAM with AdamW [Loshchilov and
Hutter, 2019], AdamW-8 bits [Dettmers et al., 2021], and GaLore [Zhao et al., 2024], focusing
on memory usage of the optimizer states mt and vt, each of size d, expressed in bytes (B). For
concreteness, we report the practical memory usage for the optimizer state for a Llama-2 7B model
for each optimizer.

• AdamW stores states in float32 format (4 B per component), resulting in a total memory footprint
of 4d+ 4d = 8d (B), while using bfloat16 would result in 4d (B) memory. We will refer to these
memory footprints as MAW32 = 8d (B) = 50.21 (GB) and MAW16 = 4d (B) = 25.10 (GB).

• AdamW-8 bit stores states in 8-bit format (1 B per component), both with d components, with
memory footprint of MAW8 = d+ d = 2d (B) = 12.55 (GB).

• MICROADAM stores the error feedback e in 4-bit format (0.5 B per component) and the sliding
window G that stores the indices I in int16 and V in bfloat16 format. Both have m×k components,
each requiring 2 B per component. In the end, for m = 10 and k = d/100, the memory footprint
is MµA(m) = 0.5d+ 4mk (B) = 0.9d (B) = 5.65 (GB), that is, half of AdamW-8bit.

• GaLore. Given a neural network with L layers, where each layer has weight matrix Wi ∈ RAi×Bi

(shaped as a 2D matrix), the model size d =
∑L

i=1 AiBi. GaLore uses a rank-r compression via
the SVD composition as Wi = USV T , where U ∈ RAi×Ai and we choose the first r columns
of U as Ri ∈ RAi×r to project the gradient of Wi to the r-dimensional space. As a consequence,
the dimension d shrinks to dr =

∑L
i=1 Air = r

∑L
i=1 Ai, which represents the total number of

components to be stored in the GPU memory only for the projection matrices Ri. If we suppose
they are stored in bfloat16 (2 B per component), then the entire memory usage for low-rank
projection would be 2dr. Note that some layers in the model are rank-1 and they do not need
compression, but will still have associated states in Adam, which means they must be tan into
consideration when computing the theoretical memory (we will use ϵ1 for memory of rank-1 layers).
In addition, we have to store the states mt and vt for AdamW in bfloat16 format, which adds
another 4dr bytes. In sum, the total memory footprint of GaLore is MGLAW16(r) = 6dr+2ϵ1 (B),
while for the 8-bit version we get MGLAW8(r) = 4dr + 2ϵ1 (B). In the end, the practical

5

memory usage for Llama-2 7B is MGLAW8(256) = 1.36 (GB), MGLAW8(1024) = 5.43 (GB),
MGLAW16(256) = 2.04 (GB) and MGLAW8(1024) = 8.15 (GB).

Discussion. Assume our goal is to obtain a lower memory footprint compared to AdamW-8 bit. We
fix the gradient density to k = d/100 and we have to determine the number of gradients (window
size) m for MICROADAM in order to be competitive with AdamW-8 bit.

For this, we have to solve the equation MµA(m) = MAW8 for m, resulting in mmax = 37.5.
Specifically, if we use a gradient history of m < mmax gradients in G, MICROADAM will have
theoretical memory savings. We will see that, in practice, this history size m = 10 is more than
enough for good practical results. As entries in the window past this range are dampened extremely
significantly, their influence is negligible. In Appendix D, we provide Python code to compute the
theoretical memory usage for the three optimizers for Llama-2 7B.

4 Convergence Guarantees for MICROADAM

In this section, we present our theoretical framework. We begin by introducing and discussing the
analytical assumptions used in our theory, providing an analytical view of the proposed MICROADAM
algorithm, along with two theoretical convergence results.

4.1 Gradient and Error Compression
We now define two classes of compression operators widely used in the literature.
Assumption 1. The gradient compressor C : Rd → Rd is q-contractive with 0 ≤ q < 1, i.e.,

∥C(x)− x∥ ≤ q ∥x∥ , for any x ∈ Rd.

The compression we use in Algorithm 1 is the TopK compressor Tk selecting top k coordinates in
absolute value. This is known to be contractive with q =

√
1− k/d. Another popular contractive

compressor is the optimal low-rank projection of gradient shaped as a d× d matrix, in which case
q =

√
1−R/d where R is the projection rank.

The second class of compressors, which we use for the error feedback, requires unbiasedness and
relaxes the constant in the uniform bound.
Assumption 2. The error compressorQ : Rd → Rd is unbiased and ω-bounded with ω ≥ 0, namely,

E[Q(x)] = x, ∥Q(x)− x∥ ≤ ω ∥x∥ , for any x ∈ Rd.

One example of ω-bounded compressor, a version of which is used in Algorithm 2, is the randomized
rounding quantizer we employ, whose properties we provide below.
Lemma 1. Consider Algorithm 2 with randomized rounding, i.e., for a vector x ∈ Rd with δ =
mini xi and ∆ = maxi xi, let x̂i := ⌊xi−δ

u + ξ⌋u+ δ be the i-th coordinate of the quantized vector
x̂, where ξ ∼ U[0, 1] is the uniform random variable and u = ∆−δ

2b−1
is the quantization level. Then

E[x̂] = x, ∥x̂− x∥ ≤
√
d−2

2b−1
∆−δ√
∆2+δ2

∥x∥, for all x ∈ Rd.

Next, we provide an “analytical” view of our method in Algorithm 3. Essentially, we use the
contractive compressor C for compressing the error corrected gradient information gt + et, and the
unbiased compressor Q to compress the remaining compression error gt + et − C(gt + et).

Algorithm 3 MICROADAM: Analytical View

1: Input: parameters β1, β2 ∈ (0, 1), ϵ > 0, step-size η > 0, θ1 ∈ Rd, e1 = m0 = v0 = v̂0 = 0d
2: for t = {1, 2, ..., T} do
3: gt = ∇̃θf(θt) ⋄ Compute unbiased stochastic gradient
4: g̃t = C(gt + et) ⋄ Add accumulated error et and compress
5: et+1 = Q(et + gt − g̃t) ⋄ Update and compress the error
6: mt = β1mt−1 + (1− β1)g̃t ⋄ Update first-order gradient moment
7: vt = β2vt−1 + (1− β2)g̃

2
t ⋄ Update second-order gradient moment

8: v̂t = max(vt, v̂t−1) ⋄ Apply AMSGrad normalization
9: θt+1 = θt − η mt√

v̂t+ϵ
⋄ Update the model parameters

10: end for

6

It is clear from this description that our objective with these two compressors, C and Q, is to
approximate the dense gradient information gt + et using two compressed vectors: g̃t = C(gt + et)
and Q(gt + et − g̃t). However, in doing so, we inevitably lose some information about gt + et
depending on the degree of compression applied to each term. Thus, the condition (1 + ω)q < 1
required by our analysis can be seen as preventing excessive loss of information due to compression.

4.2 Convergence Guarantees for General Smooth Non-convex Functions
Next, we state our algorithm’s convergence guarantees under standard assumptions, stated below:
Assumption 3 (Lower bound and smoothness). The loss function f : Rd → R is lower bounded by
some f∗ ∈ R and L-smooth, i.e., ∥∇f(θ)−∇f(θ′)∥ ≤ L ∥θ − θ′∥, for any θ, θ′ ∈ Rd.

Assumption 4 (Unbiased and bounded stochastic gradient). For all iterates t ≥ 1, the stochastic
gradient gt is unbiased and uniformly bounded by a constant G ≥ 0, i.e., E[gt] = ∇f(θt), ∥gt∥ ≤ G.

Assumption 5 (Bounded variance). For all iterates t ≥ 1, the variance of the stochastic gradient gt
is uniformly bounded by some constant σ2 ≥ 0, i.e., E[∥gt −∇f(θt)∥2] ≤ σ2.

Main Result. The above assumptions are standard in the literature, e.g. [Défossez et al., 2022, Li
et al., 2022, Xie et al., 2023, Zhou et al., 2024a]. Under these conditions, if the two compressors
satisfy the basic condition (1 + ω)q < 1, we show:
Theorem 1. (Non-convex convergence rate) Let Assumptions 1, 2, 3, 4, 5 hold and qω := (1+ω)q <
1. Then, choosing η = min{ ϵ

4LC0
, 1√

T
}, MICROADAM (Algorithm 3) satisfies

1
T

∑T
t=1 E[∥∇f(θt)∥2] ≤ 2C0

(
f(θ1)−f∗

√
T

+
L(σ2+C2

2G
2)

ϵ
√
T

)
+O

(
G3(G+d)

T

)
with constants C0 :=

√
4(1+q2ω)3

(1−q2ω)2 G2 + ϵ and C2 := ωq(1 + 2qω
1−q2ω

).

Discussion. First, notice that the leading term 1√
T

of the rate is the optimal convergence speed
for non-convex stochastic gradient methods [Ghadimi and Lan, 2016]. Furthermore, the obtained
convergence rate O(1√

T
+ d

T) asymptotically matches the rate of uncompressed AMSGrad in the
stochastic non-convex setup [Zhou et al., 2024a]. Hence, the added compression framework of
the MICROADAM together with error feedback mechanism can slow down the convergence speed
only up to some constants including the dimension. Evidently, the additional constants C0 and
C2 affected by compression and appearing in the leading terms can be easily estimated once the
compressors are fixed. Besides, if we store the full error information without applying Q compressor
(i.e., ω = 0, qω = q), then MICROADAM reduces to the single-node Comp-AMS method by Li et al.
[2022] recovering the same convergence rate. The full proof is provided in the Appendix.

4.3 Convergence Rate for Non-Convex Functions under the PL Condition
Next, we show that we can obtain even stronger bounds when the objective satisfies the PL condition:
Assumption 6 (PL-condition). For some µ > 0 the loss f satisfies Polyak-Lojasiewicz (PL) inequality

∥∇f(θ)∥2 ≥ 2µ(f(θ)− f∗), for any θ ∈ Rd.

In this case, we can show:
Theorem 2. (PL convergence rate) Let Assumptions 1, 2, 3, 4, 5 and 6 hold, and qω < 1. Then,
choosing η = min{ ϵ

4LC0
, 2C0 log T

µT }, MICROADAM (Algorithm 3) satisfies

E[f(θT+1)]− f∗ ≤ 2 log T
T

(
LC2

0

µ
σ2+(C1+C2

2)G
2

µϵ + C0(1+C1)(1+d)G2

µ
√
ϵ

)
+ Õ

(
G4(G+d)

T 2

)
with constant C1 := β1

1−β1
(1 + C2) +

2qω
1−q2ω

.

Discussion. In contrast to the general non-convex setup, the study of non-convex analysis under the
PL condition for AMSGrad or Adam-type methods is much less extensive. The only work we found
analyzing the PL condition, which claims to be the first in this direction, focuses on Adam when
β2 → 1, achieving a convergence rate ofO(1

T) [He et al., 2023]. However, our MICROADAM is based
on AMSGrad normalization, and no constraint on β2 is imposed in the analysis. Therefore, similar to

7

the general non-convex case, we are able to achieve the best-known convergence rate in the leading
term, up to a logarithmic factor. The third, higher-order term has higher constant dependencies, but
they should be negligible as the term is dampened by T 2. Hence, in this case as well, the theory
predicts that the convergence rate of the algorithm should be similar to the uncompressed version,
modulo a constant that can be controlled using the compression parameters.

5 Experiments

We now validate our optimizer experimentally. We focus on comparing MICROADAM with Adam,
Adam-8bit, GaLore and CAME in the context of LLM finetuning on different tasks and with SGD,
Adam and AdamW-8bit in the context of ResNets on ImageNet. Concretely, we test our optimizer in
full finetuning (FFT) scenario on BERT-Base/Large [Devlin et al., 2018] and OPT-1.3B [Zhang et al.,
2022] on GLUE/MNLI and Llama2-7B/13B [Touvron et al., 2023] on the GSM8k math reasoning
dataset and on the Open-Platypus instruction tuning dataset, as well as pre-training ResNet models
on ImageNet. We provide full details regarding training settings hyper-parameters in Appendix B.

Finetuning results on GLUE/MNLI. We first test our integration of MICROADAM in HuggingFace
Transformers [Wolf et al., 2020] on moderate-sized language models such as BERT-Base/Large
(110M and 335M parameters) and OPT-1.3B, comparing with Adam, Adam-8bit, CAME and GaLore.
The results are shown in Table 1. Certain optimizers, notably CAME and GaLore, had numerical
stability issues across runs; for a fair comparison, we report the numbers for the run with maximum
accuracy. We emphasize that all methods were tuned using the same protocol.

The results show that MICROADAM achieves comparable memory usage to the state-of-the-art
heuristics Adam-8bit and GaLore, while being surprisingly lower than CAME on all tasks. The
memory savings for GaLore are more visible when the model size increases, which follows our
analysis of theoretical memory usage. However, we see that these gains come at a significant accuracy
cost for GaLore: across all tasks, it drops at least 1% accuracy relative to MICROADAM. For BERT-
Base we ran GaLore with a higher SVD re-computation frequency T = 20 (10× lower) and the
results did not improve, but its running time was much higher. Relative to 8bit Adam, MICROADAM
uses essentially the same memory, but achieves slightly better accuracy.

From these results, we conclude that MICROADAM can provide better accuracy relative to other
memory-efficient methods on moderate-sized models, at similar space costs. We show training loss
curves in Appendix C.

Table 1: Finetuning results on GLUE/MNLI. We report the entire memory usage read from the GPU
during training, that includes the optimizer state, activations and gradients. The asterisk flags the runs
for which one or two seeds did not converge (we report the run with maximum performance).

Model Metric MICROADAM
(m = 10)

Adam Adam-8b CAME GaLore
r = 256

train loss 0.2651 0.4228 0.3402 0.6431* 0.3908*
BASE accuracy 85.10% 83.53% 84.61% 76.13%* 83.82%*

(110M) memory 2.55 GB 2.70 GB 2.53 GB 2.69 GB 2.53 GB

train loss 0.2509 0.3857 0.2876 0.6658* 0.3768*
LARGE accuracy 86.17% 84.79% 86.18% 75.23%* 84.90%*
(335M) memory 5.98 GB 6.64 GB 6.04 GB 6.59 GB 5.85 GB

train loss 0.2122 0.2066 0.2611 0.4959 0.2831
OPT-1.3B accuracy 88.18% 87.90% 87.81% 83.15% 87.70

(1.3B) memory 15.28 GB 17.66 GB 15.00 GB 17.13 GB 13.66 GB

Finetuning results for LLaMA2 on GSM-8k. Next, we perform finetuning on Llama-2 7B/13B
on GSM-8k, a challenging grade-school-level mathematical reasoning dataset. The baseline model
obtains extremely low zero-shot accuracy on this task and therefore fine-tuning is necessary. In this
setup, we compare MICROADAM with Adam and Adam-8bit in terms of evaluation accuracy and
memory usage. In Table 2 we show our results for 3 training epochs, global batch size 32 with
micro-batch (per-device) size 1, max sequence length 512 on a single GPU, which are the standard

8

parameters for this task. We integrated our optimizer with the llm-foundry repository of MosaicML
and tested via lm-evaluation-harness.

For the 7B model, out results show that MICROADAM can allow accurate full fine-tuning of a 7B
model on this task using a single 40GB GPU. Moreover, MICROADAM preserves accuracy relative
to Adam, with lower memory usage than the well-optimized implementation of 8bit AdamW, and
marginally lower running time for the shorter gradient window m = 10. Increasing the window size
m to 20 gradients leads to slightly better accuracy, at the cost of higher runtime and space, but still in
the 40GB limit. Running GaLore in this setup was infeasible since using SVD decomposition for
all layers in the model was too slow. Preliminary experiments (with high runtimes) did not yield
competitive accuracy. We show training loss curves in Appendix C.

The results show that MICROADAM allows for full accuracy recovery on this task as well relative to
Adam, despite using 50% less memory. (The memory usage and runtime are very similar to those in
Table 2 and are therefore omitted from Table 3.) Moreover, MICROADAM obtains consistently better
accuracy relative to Adam-8b, especially on the more challenging ARC-c task.

Table 2: FFT results for Llama-2 7B/13B on GSM-8k.
LLaMA-2 size Optimizer Accuracy State Total Runtime

Adam 34.50% 25.1 GB 55.2 GB 1h 17m
7B Adam-8b 34.34% 12.55 GB 42.5 GB 1h 18m

MICROADAM (m = 10) 34.72% 5.65 GB 37.1 GB 1h 8m
MICROADAM (m = 20) 35.10% 8.25 GB 39.7 GB 1h 37m

Adam 47.08% 48.42 GB >80 GB 1h 20m
13B Adam-8b 45.19% 24.21 GB >80 GB 1h 17m

MICROADAM (m = 10) 44.88 % 10.9 GB 70 GB 1h 38m

Finetuning results for LLaMA2-7B on Open-Platypus. Finally, in Table 3 we present FFT results
with various optimizers on the popular instruction-tuning Open-Platypus dataset [Lee et al., 2023].
To ensure fair comparisons, we perform the same grid search for each optimizer to find the best
performing learning-rate, while keeping all other hyperparameters at their default values. We use
m = 10 gradients for the sliding window and gradient density k = 1%. Evaluations are conducted
following the standard few-shot setup of the Open LLM Leaderboard [Beeching et al., 2023] on the
following datasets: ARC-c [Clark et al., 2018], HellaSwag [Zellers et al., 2019], MMLU [Hendrycks
et al., 2021], and Winogrande [Sakaguchi et al., 2019].

Table 3: FFT results on instruction-following Open-Platypus [Lee et al., 2023] dataset. The results
show that MICROADAM fully recovers accuracy relative to baseline Adam, and outperforms the 8bit
variant, despite using less memory.

Optimizer Memory Average
Accuracy

ARC-c
25-shot

HellaSwag
10-shot

MMLU
5-shot

Winogrande
5-shot

AdamW 67.17 GB 62.10 52.56 77.38 45.53 72.93
Adam-8b 53.93 GB 61.84 51.96 77.51 44.11 73.79

MICROADAM 46.63 GB 62.36 53.07 77.46 45.04 73.87

Pre-training results for ResNets on ImageNet. In Table 4 we present our results for pre-training
(from scratch, randomly initialized weights) for ResNet-18/50 on ImageNet (see Figure 6 and Figure 7
in Appendix C). We compare our MICROADAM with SGD, Adam and AdamW and report the training
loss, validation accuracy and only the optimizer state memory because the total memory usage is
not an issue for ResNets on ImageNet (here we focus on the results to emphasize the pre-training
performance). For ResNet-18, AdamW reaches the lowest training loss, followed by AdamW-8bit,
MICROADAM and in the end MICROADAM. However, despite slightly larger loss, MICROADAM
yields the best result among all optimizers, with 2% more than the highly tuned SGD, while having
the lowest memory footprint for the optimizer states. For ResNet-50, AdamW-8bit reaches the lowest
training loss, followed by AdamW, MICROADAM and SGD. The validation accuracy for AdamW
and AdamW-8bit is surprisingly small compared to SGD and MICROADAM. As it is widely known

9

in the community, Adam variants have lower performance than SGD for Computer Vision tasks
and MICROADAM fixes this issue (see the Discussion section for an intuitive explanation for this
phenomenon).

Table 4: Pre-training results for ResNet-18 and ResNet-50 on ImageNet.
Model Metric SGD AdamW AdamW-8bit MICROADAM

Train Loss 1.416 1.087 1.104 1.218
ResNet-18 Accuracy 69.96% 69.83% 70.13% 71.86%

State Size 44.59 MB 89.18 MB 22.30 MB 10.03 MB

Train Loss 0.9770 0.5344 0.5158 0.7732
ResNet-50 Accuracy 76.24% 72.05% 72.48% 77.37%

State Size 97.49 MB 194.98 MB 48.75 MB 21.94 MB

Pre-training LLMs. In this section we explain why we do not include LLM pre-training results. Our
motivation is twofold. First, MICROADAM is mainly designed for low-memory finetuning, and the
experimental section shows that MICROADAM achieved this goal. Surprisingly, updating only 10%
of the weights at each step yields to significantly better performance compared to SGD for ResNets
on ImageNet. Secondly, our experiments on LLM pre-training showed difficulties in achieving the
same performance compared to AdamW-8bit. Our explanation is that projection matrices from the
attention layers must receive dense updates to learn the correlations between words. In contrast to the
convolutional filters for CV models, the weights in attention are much larger and try to capture global
correlations (features) between words, while the convolutional filters are smaller and capture local
features.

Discussion. In Appendix A we provide information about the optimization set, intuitive explanations
for the implicit regularization effect of MICROADAM, as well as an overview of our results.

6 Limitations and Broader Impact
The MICROADAM algorithm we propose is designed and tested with fine-tuning workloads in mind,
where the user aims to minimize the memory cost of optimizing over a powerful pre-trained model.
Additional work is needed to adapt our approach to the case of LLM pre-training, which presents a
different set of challenges, both in terms of implementation and optimization trajectory. We plan to
undertake this study in future work as the current implementation works for ResNets.

Another limitation we aim to address in future work is that we have only focused on sparsity as a
form of gradient projection. However, our theoretical analysis also applies to low-rank projection of
gradients. We believe that our practical implementation can be extended to this case as well, although
providing a general, accurate, and efficient implementation will require non-trivial efforts.

Our work introduces a new, accurate, and memory-efficient optimizer for fine-tuning LLMs. The
major positive impact of our approach is its ability to maintain performance while reducing memory
requirements, thereby lowering the cost of running experiments due to the reduced hardware expenses.
It is important to note that while our optimizer can enhance performance and reduce costs, we do not
have control over the neural network applications trained with it.

Acknowledgements
The authors thank Razvan Pascanu, Mahdi Nikdan and Soroush Tabesh for their valuable feedback,
the IT department from Institute of Science and Technology Austria for the hardware support and
Weights and Biases for the infrastructure to track all our experiments. Mher Safaryan has received
funding from the European Union’s Horizon 2020 research and innovation program under the Marie
Sklodowska-Curie grant agreement No 101034413.

References
N. Agarwal, B. Bullins, X. Chen, E. Hazan, K. Singh, C. Zhang, and Y. Zhang. Efficient full-matrix

adaptive regularization. In International Conference on Machine Learning, pages 102–110. PMLR,
2019.

10

D. Alistarh, T. Hoefler, M. Johansson, N. Konstantinov, S. Khirirat, and C. Renggli. The convergence
of sparsified gradient methods. In Advances in Neural Information Processing Systems, pages
5973–5983, 2018.

S.-i. Amari. Information geometry and its applications, volume 194. Springer, 2016.

R. Anil, V. Gupta, T. Koren, and Y. Singer. Memory efficient adaptive optimization. Advances in
Neural Information Processing Systems, 32, 2019.

E. Beeching, C. Fourrier, N. Habib, S. Han, N. Lambert, N. Rajani, O. Sanseviero, L. Tunstall, and
T. Wolf. Open llm leaderboard. https://huggingface.co/spaces/HuggingFaceH4/open_
llm_leaderboard, 2023.

P. Clark, I. Cowhey, O. Etzioni, T. Khot, A. Sabharwal, C. Schoenick, and O. Tafjord. Think you
have solved question answering? try arc, the ai2 reasoning challenge, 2018.

A. Défossez, L. Bottou, F. Bach, and N. Usunier. A simple convergence proof of adam and
adagrad. Transactions on Machine Learning Research, 2022. ISSN 2835-8856. URL
https://openreview.net/forum?id=ZPQhzTSWA7.

T. Dettmers, M. Lewis, S. Shleifer, and L. Zettlemoyer. 8-bit optimizers via block-wise quantization.
arXiv preprint arXiv:2110.02861, 2021.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding, 2018.

J. C. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic
optimization. J. Mach. Learn. Res., 12:2121–2159, 2010.

V. Feinberg, X. Chen, Y. J. Sun, R. Anil, and E. Hazan. Sketchy: Memory-efficient adaptive
regularization with frequent directions, 2023.

E. Frantar, E. Kurtic, and D. Alistarh. M-fac: Efficient matrix-free approximations of second-order
information, 2021.

S. Ghadimi and G. Lan. Accelerated gradient methods for nonconvex nonlinear and stochastic
programming. Mathematical Programming, 2016. ISSN 156(1-2):59–99.

V. Gupta, T. Koren, and Y. Singer. Shampoo: Preconditioned stochastic tensor optimization. In
International Conference on Machine Learning, pages 1842–1850. PMLR, 2018.

M. He, Y. Liang, J. Liu, and D. Xu. Convergence of adam for non-convex objectives: Relaxed
hyperparameters and non-ergodic case. Journal of Machine Learning Research, 2023.

D. Hendrycks, C. Burns, S. Basart, A. Zou, M. Mazeika, D. Song, and J. Steinhardt. Measuring
massive multitask language understanding, 2021.

S. P. Karimireddy, Q. Rebjock, S. U. Stich, and M. Jaggi. Error feedback fixes SignSGD and other
gradient compression schemes. In Proceedings of the Thirty-sixth International Conference on
Machine Learning, pages 3252–3261, 2019.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization, 2014.

A. N. Lee, C. J. Hunter, and N. Ruiz. Platypus: Quick, cheap, and powerful refinement of llms. arXiv
preprint arXiv:2308.07317, 2023.

X. Li, B. Karimi, and P. Li. On distributed adaptive optimization with gradient compression. arXiv
preprint arXiv:2205.05632, 2022.

H. Liu, Z. Li, D. Hall, P. Liang, and T. Ma. Sophia: A scalable stochastic second-order optimizer for
language model pre-training. arXiv preprint arXiv:2305.14342, 2023.

I. Loshchilov and F. Hutter. Decoupled weight decay regularization. In Proceedings of the Seventh
International Conference on Learning Representations, 2019.

11

https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://openreview.net/forum?id=ZPQhzTSWA7

Y. Luo, X. Ren, Z. Zheng, Z. Jiang, X. Jiang, and Y. You. Came: Confidence-guided adaptive memory
efficient optimization. arXiv preprint arXiv:2307.02047, 2023.

I.-V. Modoranu, A. Kalinov, E. Kurtic, and D. Alistarh. Error feedback can accurately compress
preconditioners. arXiv preprint arXiv:2306.06098, 2023.

S. J. Reddi, S. Kale, and S. Kumar. On the convergence of adam and beyond. arXiv preprint
arXiv:1904.09237, 2019.

P. Richtárik, I. Sokolov, and I. Fatkhullin. Ef21: A new, simpler, theoretically better, and practically
faster error feedback. Advances in Neural Information Processing Systems, 34:4384–4396, 2021.

K. Sakaguchi, R. L. Bras, C. Bhagavatula, and Y. Choi. WINOGRANDE: an adversarial winograd
schema challenge at scale, 2019.

F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu. 1-bit stochastic gradient descent and its application
to data-parallel distributed training of speech DNNs. In Fifteenth Annual Conference of the
International Speech Communication Association, 2014.

N. Shazeer and M. Stern. Adafactor: Adaptive learning rates with sublinear memory cost. In
International Conference on Machine Learning, pages 4596–4604. PMLR, 2018.

R. Spring, A. Kyrillidis, V. Mohan, and A. Shrivastava. Compressing gradient optimizers via
count-sketches. In International Conference on Machine Learning, pages 5946–5955. PMLR,
2019.

H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal,
E. Hambro, F. Azhar, A. Rodriguez, A. Joulin, E. Grave, and G. Lample. Llama: Open and efficient
foundation language models, 2023.

T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf, M. Fun-
towicz, J. Davison, S. Shleifer, P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. L. Scao, S. Gugger,
M. Drame, Q. Lhoest, and A. M. Rush. Transformers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Process-
ing: System Demonstrations, pages 38–45, Online, Oct. 2020. Association for Computational
Linguistics. URL https://www.aclweb.org/anthology/2020.emnlp-demos.6.

X. Xie, P. Zhou, H. Li, Z. Lin, and S. Yan. Adan: Adaptive nesterov momentum algorithm for faster
optimizing deep models, 2023.

Z. Yao, A. Gholami, S. Shen, K. Keutzer, and M. W. Mahoney. Adahessian: An adaptive second
order optimizer for machine learning. arXiv preprint arXiv:2006.00719, 2020.

R. Zellers, A. Holtzman, Y. Bisk, A. Farhadi, and Y. Choi. Hellaswag: Can a machine really finish
your sentence?, 2019.

S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen, C. Dewan, M. Diab, X. Li, X. V. Lin,
T. Mihaylov, M. Ott, S. Shleifer, K. Shuster, D. Simig, P. S. Koura, A. Sridhar, T. Wang, and
L. Zettlemoyer. Opt: Open pre-trained transformer language models, 2022.

J. Zhao, Z. Zhang, B. Chen, Z. Wang, A. Anandkumar, and Y. Tian. Galore: Memory-efficient llm
training by gradient low-rank projection. arXiv preprint arXiv:2403.03507, 2024.

D. Zhou, J. Chen, Y. Cao, Z. Yang, and Q. Gu. On the convergence of adaptive gradient methods for
nonconvex optimization. Transactions on Machine Learning Research, 2024a. ISSN 2835-8856.
URL https://openreview.net/forum?id=Gh0cxhbz3c. Featured Certification.

P. Zhou, X. Xie, Z. Lin, and S. Yan. Towards understanding convergence and generalization of
adamw. IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 1–8, 2024b. doi:
10.1109/TPAMI.2024.3382294.

12

https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://openreview.net/forum?id=Gh0cxhbz3c

Contents

1 Introduction 1

2 Related Work 2

3 The MICROADAM Algorithm 3

3.1 Efficient Implementation . 4

3.2 Memory footprint analysis for the optimizer states and comparison with other methods 5

4 Convergence Guarantees for MICROADAM 6

4.1 Gradient and Error Compression . 6

4.2 Convergence Guarantees for General Smooth Non-convex Functions 7

4.3 Convergence Rate for Non-Convex Functions under the PL Condition 7

5 Experiments 8

6 Limitations and Broader Impact 10

A Additional Explanations and Experimental Details 14

B Training Settings and Hyper-parameters 14

B.1 GLUE/MNLI . 14

B.2 GSM-8k. 15

B.3 ImageNet . 15

C Training Graphs 15

D Memory footprint for the optimizer state 16

E Deferred Proofs 18

E.1 Intermediate Lemmas . 18

E.2 Non-convex Analysis . 21

E.3 Analysis Under PL Condition . 26

E.4 Non-convex Analysis with Weight Decay . 30

F Error Feedback applied to GaLore 34

F.1 Behaviour of the Error Feedback Mechanism . 34

F.2 Consequences on Training . 35

13

A Additional Explanations and Experimental Details

Optimization set. The parameters included in the optimization set usually vary depending on the
model and optimizer type. For GLUE, we do not include the embeddings in the optimization set for
any of the optimizers because our experiments showed no significant difference when optimizing the
embeddings. Moreover, it is more fair for GaLore which would have an increased memory usage
due to the projection matrix for the embeddings. For LLaMa2 and ResNet models, we include all
layers in the optimization set, regardless of their type. This means that MICROADAM updates at most
10% of the weights in each layer. In the original work, GaLore was applied only to a subset of layers,
such as Q-, K-, V-, O-, up-, down- and gate-projection layers. Applying GaLore to all layers in the
same way as we do with MICROADAM would result in much larger memory usage because of the
projection matrices for the embeddings. Moreover, computing SVD for the embedding layer would
be infeasible. As a result, we omit the GaLore for LLaMa2 and ResNet experiments.

Implicit regularization. In our results so far, we observed MICROADAM having better performance
for a few LLM finetuning tasks, but especially for the ResNet/ImageNet results, where the difference
was statistically significant (around 1%). Our intuition for this behavior mainly comes from the
accuracy curves in Figure 6 and Figure 7. The trajectories of MICROADAM and SGD are typical for
regularized training. We hypothesize that MICROADAM has an implicit regularization mechanism
because the model update ut is 90% sparse, which leads to only updating 10% of the model
parameters at each step in each layer. In contrast to a 100% dense update ut, a sparse update
would not change the model parameters as much as a dense one. In the ResNet experiments, all
optimizers used the same regularization parameter λ = 1e− 4, but the accuracy graph shows that
MICROADAM is more regularized than SGD, while the graphs for AdamW and AdamW-8bit look
like the regularization does not have any effect.

Discussion. In summary, the experimental results have shown that MICROADAM can recover
the state-of-the-art accuracy of the the uncompressed Adam baseline, while providing significant
memory gains and matching wall-clock speed on billion-parameter models. Specifically, our approach
matches and outperforms Adam-8b and CAME both in terms of memory use and in terms of final
accuracy. Relative to the high-compression GaLore method, MICROADAM provides consistently
higher accuracy, as well as more stable practical convergence. We conclude that MICROADAM should
be a good alternative to Adam-8bit in memory-constrained settings, and that the empirical results
appear to validate our theoretical predictions.

B Training Settings and Hyper-parameters

In this section we provide details about the hyper-parameters that we used for each model and
dataset. We train all our models in bfloat16 format, tune the learning rates on a grid and report the
best accuracy among 3 seeds (7, 42 and 1234) and report the results for the best configuration that
converged.

All Adam variants use default parameters β1 = 0.9, β2 = 0.999, ϵ = 10−8 and the regularization
parameter λ is 0 for finetuning and 3e− 4 for ImageNet pre-training. MICROADAM uses a window
size of m = 10 gradients with k = 1% density (equivalent to 99% sparsity and quantization bucket
size is set to 64 for the error feedback.

For GaLore we use rank r = 256 and the SVD update interval is set to T = 200, as suggested by the
original paper. We run our experiments on NVidia GPUs A100-SXM4-80GB, H100-80GB and on
RTX 3090 with 24GB RAM in single GPU setup.

B.1 GLUE/MNLI

For GLUE/MNLI, we used the learning rate grid {1e− 6, 3e− 6, 5e− 6, 7e− 6, 1e− 5, 3e− 5, 5e−
5, 7e − 5} for all optimizers and models. Certain optimizers diverge for specific seeds. Next, we
provide some details about hyper-parameters for each optimizer individually.

MICROADAM. We use m = 10 gradients in the sliding window, k = 1% density (e.g. 99% sparsity)
and quantization bucket size 64 (we also tried 100 000, but this didn’t affect performance or memory
usage in a meaningful way).

14

Adam and Adam-8bit. All hyper-parameters mentioned above apply for these two main baseline
optimizers.

GaLore. We use rank r = 256 and SVD update interval T ∈ {20, 200}. In the original GaLore
paper, the authors tune both learning rate and in our experiments we keep scale fixed to value 1 and
augment the learning rate grid with the values {1e− 4, 3e− 4, 5e− 4, 7e− 4}.
CAME. This optimizer has some additional parameters that we keep to default values, such as
β3 = 0.9999. Instead of ϵ, it uses ϵ1 = 1e − 30 and ϵ2 = 1e − 16. The authors mention that the
learning rate should be much smaller than Adam’s and because of that we augment the learning rate
grid with the values {1e− 7, 3e− 7, 5e− 7, 7e− 7}.

B.2 GSM-8k.

For GSM-8k, we used the learning rate grid {1e − 5, 2e − 5, 3e − 5, 4e − 5, 5e − 5, 6e − 5, 7e −
5, 8e− 5, 9e− 5} and reported the model with the best evaluation accuracy. We found that different
versions for PyTorch, lm-eval-harness and llm-foundry have large variance in the results.

MICROADAM. We use similar settings as for GLUE/MNLI above in terms of other hyper-parameters.

B.3 ImageNet

For ImageNet, we integrate our MICROADAM in the FFCV repository, which is highly tuned for
ResNets and SGD. We use E = 100 epochs, batch size 1024, cosine learning rate schedule with
warmup and image resolution 224× 224 and precision bfloat16. We started from the initial learning
rate η = 1.024 tuned in the repository which scored highest accuracy for SGD. This learning rate
also worked well for MICROADAM, but it didn’t work for AdamW and AdamW-8bit. For these two
Adam variants we divided the learning rate by 2 until the models converged.

ResNet-18. For AdamW, the learning rate is η = 0.016 and for AdamW-8bit is η = 0.032.

ResNet-50. For AdamW, the learning rate is η = 0.008 and for AdamW-8bit is η = 0.008.

C Training Graphs

In this section we show training loss curves for BERT-Base, BERT-Large and OPT-1.3b on
GLUE/MNLI and Llama-2 7B/13B on GSM-8k and ResNet-18/50 on ImageNet.

Figure 2: Training curves for BERT-Base on GLUE/MNLI

0 50 100 150 200 250 300 350
step

0.2

0.4

0.6

0.8

1.0

tra
in

/lo
ss

Training Loss for BERT-Base
MicroAdam
AdamW-8bit
GaLore
AdamW
CAME

15

Figure 3: Training curves for BERT-Large on GLUE/MNLI

0 50 100 150 200 250 300 350
step

0.2

0.4

0.6

0.8

1.0

1.2
tra

in
/lo

ss
Training Loss for BERT-Large

MicroAdam
AdamW-8bit
GaLore
AdamW
CAME

Figure 4: Training curves for OPT-1.3B on GLUE/MNLI

0 50 100 150 200 250 300 350
step

0.2

0.4

0.6

0.8

1.0

1.2

tra
in

/lo
ss

Training Loss for OPT-1.3B
MicroAdam
AdamW-8bit
GaLore
AdamW
CAME

D Memory footprint for the optimizer state

In this section we provide a python script to simulate the memory usage for our optimizer’s state for
Llama2-7b model. Note that the theoretical memory usage will always be slightly lower than the
actual allocated memory on the GPU because PyTorch usually allocates more. To run this script, run
the following commands:

import math

d = 6 _738_415_616 # a c t u a l number o f p a r a m e t e r s f o r Llama −2 7b
k = math . c e i l (d / 100)
m = 10

M_AW32 = 8 * d / (2 ** 30)
M_AW16 = 4 * d / (2 ** 30)
M_AW8 = 2 * d / (2 ** 30)
M_muA = (0 . 5 * d + 4 * m * k) / (2 ** 30) # B t o GB

16

Figure 5: Training curves for Llama-2 7B on GSM-8k

0 100 200 300 400 500 600 700
step

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
lo

ss
/tr

ai
n/

to
ta

l
Training Loss for Llama-2 7B

MicroAdam
AdamW-8bit
AdamW

Figure 6: Pre-training for ResNet-18 on ImageNet

0 20 40 60 80 100
epoch

1

2

3

4

5

6

tra
in

 lo
ss

Training loss for ResNet-18/ImageNet
MicroAdam
AdamW-8bit
SGD
AdamW

0 20 40 60 80 100
epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

to
p

1

Validation accuracy for ResNet-18/ImageNet

MicroAdam
AdamW-8bit
SGD
AdamW

Figure 7: Pre-training for ResNet-50 on ImageNet

0 20 40 60 80 100
epoch

1

2

3

4

5

6

tra
in

 lo
ss

Training loss for ResNet-50/ImageNet
MicroAdam
SGD
AdamW-8bit
AdamW

0 20 40 60 80 100
epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

to
p

1

Validation accuracy for ResNet-50/ImageNet

MicroAdam
SGD
AdamW-8bit
AdamW

p r i n t (f ' {M_AW32= : . 2 f } GB ')
p r i n t (f ' {M_AW16= : . 2 f } GB ')
p r i n t (f ' {M_AW8= : . 2 f } GB ')
p r i n t (f ' {M_muA= : . 2 f } GB ')

GL_sumA = 1 _423_872 # sum_Ai from Llama −2 7B
e p s i l o n = 266 _240 # sum o f s i z e s f o r rank −1 l a y e r s

f o r b i t s , c o n s t in [(8 , 4) , (1 6 , 6)] :
f o r r ank in [2 5 6 , 1 0 2 4] :

d r = rank * GL_sumA
M_GLAW_rank = (c o n s t * d r + 2 * e p s i l o n) / (2 ** 30)
p r i n t (f 'M_GLAW{ b i t s } _ rank { rank }={M_GLAW_rank : . 2 f } GB ')

17

E Deferred Proofs

At time step t, let the uncompressed stochastic gradient be gt = ∇̃θf(θt), the error accumulator
be et, and the compressed gradient after the error correction be g̃t = C(gt + et). The second
moment computed by the compressed gradients is denoted as vt = β2vt−1 + (1 − β2)g̃

2
t , and

v̂t = max{v̂t−1, vt} is the AMSGrad normalization for the second-order momentum. Besides the
first-order gradient momentum mt used in the algorithm description, we define similar running
average sequence m′

t based on the uncompressed gradients gt.

mt = β1mt−1 + (1− β1)g̃t and m′
t = β1m

′
t−1 + (1− β1)gt,

Note that m′
t is used only in the analysis, we do not need to store or compute it. By construction we

have

mt = (1− β1)

t∑
τ=1

βt−τ
1 g̃τ , m′

t = (1− β1)

t∑
τ=1

βt−τ
1 gτ

Denote by ζt = et+1− (et+ gt− g̃t) = Q(et+ gt− g̃t)− (et+ gt− g̃t) the compression noise from
Q. Due to unbiasedness of the compressor Q (see Assumption 2), we have E[ζt | θt, gt, g̃t, et] = 0.
Also, from the update rule of et+1 we get et+1 = et + gt − g̃t + ζt. Moreover, we use the following
auxiliary sequences,

Et+1 := β1Et + (1− β1)et+1 = (1− β1)

t+1∑
τ=1

βt+1−τ
1 eτ .

Zt+1 := β1Zt + (1− β1)ζt+1 = (1− β1)

t+1∑
τ=1

βt+1−τ
1 ζτ .

E.1 Intermediate Lemmas

Lemma 1. Consider Algorithm 2 with randomized rounding, i.e., for a vector x ∈ Rd with δ =
mini xi and ∆ = maxi xi, let x̂i := ⌊xi−δ

u + ξ⌋u+ δ be the i-th coordinate of the quantized vector
x̂, where ξ ∼ U[0, 1] is the uniform random variable and u = ∆−δ

2b−1
is the quantization level. Then

E[x̂] = x, ∥x̂− x∥ ≤
√
d−2

2b−1
∆−δ√
∆2+δ2

∥x∥, for all x ∈ Rd.

Proof. The unbiasedness can be verified directly from the definition for each coordinate. Without
loss of generality assume that δ = x1 ≤ x2 ≤ · · · ≤ xd−1 ≤ xd = ∆. By construction of the
quantization, we have |x̂1 − x1| = |x̂d − xd| = 0 and |x̂i − xi| ≤ u for the remaining coordinates
2 ≤ i ≤ d− 1. Then

∥x̂− x∥2 =

d∑
i=1

|x̂i − xi|2 ≤ (d− 2)u2 ≤ (d− 2)u2

∆2 + δ2
∥x∥2,

which completes the proof.

Lemma 2. Under Assumptions 1-5, for all iterates t and T we have

∥m′
t∥ ≤ G, and

T∑
t=1

E[∥m′
t∥2] ≤ Tσ2 +

T∑
t=1

E[∥∇f(θt)∥2].

Proof. The first part follows from triangle inequality and the Assumption 4 on bounded stochastic
gradient:

∥m′
t∥ = (1− β1)

∥∥∥∥∥
t∑

τ=1

βt−τ
1 gτ

∥∥∥∥∥ ≤ (1− β1)

t∑
τ=1

βt−τ
1 ∥gτ∥ ≤ G.

For the second claim, the expected squared norm of average stochastic gradient can be bounded by

E
[
∥gt∥2

]
= E

[
∥gt −∇f(θt))∥2

]
+ E[∥∇f(θt)∥2] ≤ σ2 + E[∥∇f(θt)∥2], (1)

18

where we use Assumption 5 that gt is unbiased with bounded variance. Let gt,j denote the j-th
coordinate of gt. Applying Jensen’s inequality for the squared norm, we get

E[∥m′
t∥2] = E

∥∥∥∥∥(1− β1)

t∑
τ=1

βt−τ
1 gτ

∥∥∥∥∥
2


≤ (1− β1)

t∑
τ=1

βt−τ
1 E[∥gτ∥2]

≤ σ2 + (1− β1)

t∑
τ=1

βt−τ
1 E[∥∇f(θτ)∥2],

Summing over t = 1, . . . , T , we obtain
T∑

t=1

E[∥m′
t∥2] ≤ Tσ2 + (1− β1)

T∑
t=1

t∑
τ=1

βt−τ
1 E[∥∇f(θτ)∥2] ≤ Tσ2 +

T∑
t=1

E[∥∇f(θt)∥2],

which completes the proof.

Lemma 3. Let qω = (1 + ω)q < 1. Under Assumptions 1-5, for all iterates t we have

∥et∥2 ≤
4q2ω

(1− q2ω)
2
G2,

E[∥et+1∥2] ≤
4q2ω

(1− q2ω)
2
σ2 +

2q2ω
1− q2ω

t∑
τ=1

(
1 + q2ω

2

)t−τ

E[∥∇f(θτ)∥2].

Proof. We start by using Assumption 1, 2 on compression and Young’s inequality to get
∥et+1∥2 = ∥Q(gt + et − C(gt + et))∥2

≤ (1 + ω)2q2∥gt + et∥2

≤ q2ω(1 + ρ)∥et∥2 + q2ω

(
1 +

1

ρ

)
∥gt∥2

≤ 1 + q2ω
2
∥et∥2 +

2q2ω
1− q2ω

∥gt∥2, (2)

where (2) is derived by choosing ρ =
1−q2ω
2q2ω

and the fact that qω < 1. For the first claim we
recursively apply the obtained inequality and use bounded gradient Assumption 4. For the second
claim, initialization e1 = 0 and the obtained recursion imply

E[∥et+1∥2] ≤ 2q2ω
1− q2ω

t∑
τ=1

(
1 + q2ω

2

)t−τ

E[∥gτ∥2]

(1)

≤ 4q2ω
(1− q2ω)

2
σ2 +

2q2ω
1− q2ω

t∑
τ=1

(
1 + q2ω

2

)t−τ

E[∥∇f(θτ)∥2],

which concludes the lemma.

Lemma 4. Let qω = (1 + ω)q < 1. Under Assumptions 1-5, for all iterates t we have

∥ζt∥ ≤ ωq

(
1 +

2qω
1− q2ω

)
G, and ∥Zt∥ ≤ ωq

(
1 +

2qω
1− q2ω

)
G.

Proof. Using the bounds defining compressors and Lemma 3, we get
∥ζt∥ = ∥Q(et + gt − g̃t)− (et + gt − g̃t)∥

≤ ω∥et + gt − g̃t∥ = ω∥et + gt − C(et + gt)∥
≤ ωq∥et + gt∥
≤ ωq∥et∥+ ωq∥gt∥

≤ ωq

(
1 +

2qω
1− q2ω

)
G.

19

For the second claim, recall the definition of Zt and apply triangle inequality:

∥Zt∥ ≤ (1− β1)

t∑
τ=1

βt−τ∥ζτ∥ ≤ ωq

(
1 +

2qω
1− q2ω

)
G.

Lemma 5. For the moving average error sequence Et, it holds that
T∑

t=1

E[∥Et∥2] ≤
4Tq2ω

(1− q2ω)
2
σ2 +

4q2ω
(1− q2ω)

2

T∑
t=1

E[∥∇f(θt)∥2].

Proof. Let et,j be the j-th coordinate of et and denote

Kt :=

t∑
τ=1

(
1+q2ω

2

)t−τ

E[∥∇f(θτ)∥2].

Applying Jensen’s inequality and Lemma 3, we get

E[∥Et∥2] = E

∥∥∥∥∥(1− β1)

t∑
τ=1

βt−τ
1 eτ

∥∥∥∥∥
2


≤ (1− β1)

t∑
τ=1

βt−τ
1 E[∥eτ∥2]

≤ 4q2ω
(1− q2ω)

2
σ2 +

2q2ω(1− β1)

(1− q2ω)

t∑
τ=1

βt−τ
1 Kτ ,

Summing over t = 1, . . . , T and using the technique of geometric series summation leads to
T∑

t=1

E[∥Et∥2] ≤
4Tq2ω

(1− q2ω)
2
σ2 +

2q2ω(1− β1)

(1− q2ω)

T∑
t=1

t∑
τ=1

βt−τ
1 Kτ

≤ 4Tq2ω
(1− q2ω)

2
σ2 +

2q2ω
(1− q2ω)

T∑
t=1

Kt

=
4Tq2ω

(1− q2ω)
2
σ2 +

2q2ω
(1− q2ω)

T∑
t=1

t∑
τ=1

(
1 + q2ω

2

)t−τ

E[∥∇f(θτ)∥2]

≤ 4Tq2ω
(1− q2ω)

2
σ2 +

4q2ω
(1− q2ω)

2

T∑
t=1

E[∥∇f(θt)∥2],

The desired result is obtained.

Lemma 6. Let qω = (1 + ω)q < 1. Under Assumptions 1-5, for all iterates t ∈ [T] and coordinates
i ∈ [d], the following bound holds

v̂t,i ≤
4(1 + q2ω)

3

(1− q2ω)
2
G2.

Proof. Lemma 3 and Assumption 4 imply
∥g̃t∥2 = ∥C(gt + et)∥2

≤ ∥C(gt + et)− (gt + et) + (gt + et)∥2

≤ 2(q2 + 1)∥gt + et∥2

≤ 4(q2 + 1)

(
G2 +

4q2ω
(1− q2ω)

2
G2

)
=

4(1 + q2)(1 + q2ω)
2

(1− q2ω)
2

G2.

20

It’s then easy to show by the updating rule of v̂t, there exists a j ∈ [t] such that v̂t,i = vj,i. Then

v̂t,i = (1− β2)

j∑
τ=1

βj−τ
2 g̃2τ,i ≤

4(1 + q2)(1 + q2ω)
2

(1− q2ω)
2

G2,

which concludes the claim.

Lemma 7. For Dt :=
1√

v̂t−1+ϵ
− 1√

v̂t+ϵ
we have

T∑
t=1

∥Dt∥1 ≤
d√
ϵ
,

T∑
t=1

∥Dt∥2 ≤
d

ϵ
.

Proof. By the update rule, we have v̂t−1,i ≤ v̂t,i for any iterate t and coordinate i ∈ [d]. Therefore,
by the initialization v̂0 = 0, we get

T∑
t=1

∥Dt∥1 =

T∑
t=1

d∑
i=1

(
1√

v̂t−1,i + ϵ
− 1√

v̂t,i + ϵ

)
=

d∑
i=1

(
1√

v̂0,i + ϵ
− 1√

v̂T,i + ϵ

)
≤ d√

ϵ
.

For the sum of squared l2 norms, note the fact that for a ≥ b > 0, it holds that

(a− b)2 ≤ (a− b)(a+ b) = a2 − b2.

Thus,

T∑
t=1

∥Dt∥2 =

T∑
t=1

d∑
i=1

(
1√

v̂t−1,i + ϵ
− 1√

v̂t,i + ϵ

)2

≤
T∑

t=1

d∑
i=1

(
1

v̂t−1,i + ϵ
− 1

v̂t,i + ϵ

)
≤ d

ϵ
,

which gives the desired result.

E.2 Non-convex Analysis

Here we derive the convergence rate with fixed step-size η. The rate shown in the main part can be
obtained by plugging the expression of η shown after the proof.

Theorem 3. (Non-convex convergence rate) Let Assumptions 1, 2, 3, 4, 5 hold and qω := (1+ω)q <
1. Then, choosing any step-size η ≤ ϵ

4LC0
, MICROADAM (Algorithm 3) satisfies

1
T

∑T
t=1 E[∥∇f(θt)∥2] ≤ 2C0

(
f(θ1)−f∗

Tη + ηLσ2

ϵ +
ηLC2

2G
2

ϵ

+
η2L2C0C

2
1G

2

ϵ2 + (1+C1)G
2d

T
√
ϵ

+ η(1+2C1)C1LG2d
Tϵ

)
,

with constants C0 :=
√

4(1+q2ω)3

(1−q2ω)2 G2 + ϵ, C1 := β1

1−β1
(1 + C2) +

2qω
1−q2ω

, C2 := ωq(1 + 2qω
1−q2ω

).

Proof. Similar to the proof of Comp-AMS [Li et al., 2022], we define two virtual iterates θ′t and xt.

θ′t+1 := θt+1 − η
Et+1√
v̂t + ϵ

xt+1 := θ′t+1 − η
β1

1− β1

m′
t + Zt√
v̂t + ϵ

.

21

Then, we derive the recurrence relation for each sequence as follows:

θ′t+1 = θt+1 − η
Et+1√
v̂t + ϵ

= θt − η
(1− β1)

∑t
τ=1 β

t−τ
1 g̃τ + (1− β1)

∑t+1
τ=1 β

t+1−τ
1 eτ√

v̂t + ϵ

= θt − η
(1− β1)

∑t
τ=1 β

t−τ
1 (g̃τ + eτ+1) + (1− β)βt

1e1√
v̂t + ϵ

= θt − η
(1− β1)

∑t
τ=1 β

t−τ
1 (gτ + eτ + ζτ)√

v̂t + ϵ

= θt − η
(1− β1)

∑t
τ=1 β

t−τ
1 eτ√

v̂t + ϵ
− η

m′
t√

v̂t + ϵ
− η

Zt√
v̂t + ϵ

= θt − η
Et√

v̂t−1 + ϵ
− η

m′
t√

v̂t + ϵ
+ η

(
1√

v̂t−1 + ϵ
− 1√

v̂t + ϵ

)
Et − η

Zt√
v̂t + ϵ

= θ′t − η
m′

t√
v̂t + ϵ

+ η

(
1√

v̂t−1 + ϵ
− 1√

v̂t + ϵ

)
Et − η

Zt√
v̂t + ϵ

= θ′t − η
m′

t + Zt√
v̂t + ϵ

+ ηDtEt,

where we used the fact that g̃t + et+1 = gt + et + ζt with quantization noise ζt, and e0 = 0 at
initialization. Next, for the xt iterates we have

xt+1 = θ′t+1 − η
β1

1− β1

m′
t + Zt√
v̂t + ϵ

= θ′t − η
m′

t + Zt√
v̂t + ϵ

− η
β1

1− β1

m′
t + Zt√
v̂t + ϵ

+ ηDtEt

= θ′t − η
β1(m

′
t−1 + Zt−1) + (1− β1)(gt + ζt) +

β2
1

1−β1
(m′

t−1 + Zt−1) + β1(gt + ζt)
√
v̂t + ϵ

+ ηDtEt

= θ′t − η
β1

1− β1

m′
t−1 + Zt−1√

v̂t + ϵ
− η

gt + ζt√
v̂t + ϵ

+ ηDtEt

= xt − η
gt + ζt√
v̂t + ϵ

+ η
β1

1− β1
Dt(m

′
t−1 + Zt−1) + ηDtEt.

Next we apply smoothness (Assumption 3) of the loss function f over the iterates xt. From the
gradient Lipschitzness we have

f(xt+1) ≤ f(xt) + ⟨∇f(xt), xt+1 − xt⟩+
L

2
∥xt+1 − xt∥2.

22

Due to unbiasedness of the compressor Q (see Assumption 2), we have E[ζt|gt, g̃t, et, v̂t] = 0.
Taking expectation, we obtain

E[f(xt+1)]− E[f(xt)] ≤ −ηE
[〈
∇f(xt),

gt + ζt√
v̂t + ϵ

〉]
+ηE

[〈
∇f(xt),

β1

1− β1
Dt(m

′
t−1 + Zt−1) +DtEt

〉]
+
η2L

2
E

[∥∥∥∥ gt + ζt√
v̂t + ϵ

− β1

1− β1
Dt(m

′
t−1 + Zt−1)−DtEt

∥∥∥∥2
]

= −ηE
[〈
∇f(θt),

gt√
v̂t + ϵ

〉]
︸ ︷︷ ︸

I

(3)

+ ηE
[〈
∇f(xt),

β1

1− β1
Dt(m

′
t−1 + Zt−1) +DtEt

〉]
︸ ︷︷ ︸

II

+
η2L

2
E

[∥∥∥∥ gt + ζt√
v̂t + ϵ

− β1

1− β1
Dt(m

′
t−1 + Zt−1)−DtEt

∥∥∥∥2
]

︸ ︷︷ ︸
III

+ ηE
[〈
∇f(θt)−∇f(xt),

gt√
v̂t + ϵ

〉]
︸ ︷︷ ︸

IV

, (4)

In the following, we bound all the four terms highlighted above.

Bounding term I. We have

I = −ηE

[〈
∇f(θt),

gt√
v̂t−1 + ϵ

〉]
− ηE

[〈
∇f(θt),

(
1√

v̂t + ϵ
− 1√

v̂t−1 + ϵ

)
gt

〉]

≤ −ηE

[〈
∇f(θt),

∇f(θt)√
v̂t−1 + ϵ

〉]
+ ηG2E[∥Dt∥].

≤ − η√
4(1+q2ω)3

(1−q2ω)2 G2 + ϵ
E[∥∇f(θt)∥2] + ηG2E[∥Dt∥1], (5)

where we use Assumption 4, Lemma 6 and the fact that l2 norm is no larger than l1 norm.

Bounding term II. By the definition of Et and Zt, we know that

∥Et∥ ≤ (1− β1)

t∑
τ=1

βt−τ
1 ∥et∥ ≤

2qω
1− q2ω

G,

∥Zt∥ ≤ (1− β1)

t∑
τ=1

βt−τ
1 ∥ζt∥ ≤ ωq

(
1 +

2qω
1− q2ω

)
G.

23

Then we have

II ≤ ηE
[〈
∇f(θt),

β1

1− β1
Dt(m

′
t−1 + Zt−1) +DtEt

〉]
+ ηE

[〈
∇f(xt)−∇f(θt),

β1

1− β1
Dt(m

′
t−1 + Zt−1) +DtEt

〉]
≤ ηE

[
∥∇f(θt)∥

∥∥∥∥ β1

1− β1
Dt(m

′
t−1 + Zt−1) +DtEt

∥∥∥∥]
+ η2LE

[∥∥∥∥∥
β1

1−β1
m′

t−1 +
β1

1−β1
Zt−1 + Et√

v̂t−1 + ϵ

∥∥∥∥∥
∥∥∥∥ β1

1− β1
Dt(m

′
t−1 + Zt−1) +DtEt

∥∥∥∥
]

≤ ηC1G
2E[∥Dt∥1] +

η2C2
1LG

2

√
ϵ

E[∥Dt∥1], (6)

where C1 = β1

1−β1

(
1 + ωq

(
1 + 2qω

1−q2ω

))
+ 2qω

1−q2ω
. The second inequality is because of smoothness

of f(θ), and the last inequality is due to Lemma 3, Assumption 4 and the property of norms.

Bounding term III. This term can be bounded as follows:

III ≤ η2LE

[∥∥∥∥ gt + ζt√
v̂t + ϵ

∥∥∥∥2
]
+ η2LE

[∥∥∥∥ β1

1− β1
Dt(m

′
t−1 + Zt−1)−DtEt

∥∥∥∥2
]

≤ 2η2L

ϵ
E[∥gt −∇f(θt) +∇f(θt)∥2] +

2η2L

ϵ
E[∥ζt∥2] (7)

+ η2LE

[∥∥∥∥Dt

(
β1

1− β1
m′

t−1 +
β1

1− β1
Zt−1 − Et

)∥∥∥∥2
]

≤ 2η2L

ϵ
E[∥∇f(θt)∥2] +

2η2Lσ2

ϵ
+

2η2L

ϵ
ω2q2

(
1 +

2q

1− q2

)2

G2 + η2C2
1LG

2E[∥Dt∥2]

≤ 2η2L

ϵ
E[∥∇f(θt)∥2] +

2η2L(σ2 + C2
2G

2)

ϵ
+ η2C2

1LG
2E[∥Dt∥2], (8)

where C2 = ωq(1 + 2q
1−q2) and we used Assumption 5 that gt is unbiased with bounded variance σ2.

Bounding term IV. We have

IV = ηE

[〈
∇f(θt)−∇f(xt),

gt√
v̂t−1 + ϵ

〉]
(9)

+ ηE

[〈
∇f(θt)−∇f(xt),

(
1√

v̂t + ϵ
− 1√

v̂t−1 + ϵ

)
gt

〉]

≤ ηE

[〈
∇f(θt)−∇f(xt),

∇f(θt)√
v̂t−1 + ϵ

〉]
(10)

+ η2LE

[∥∥∥∥∥
β1

1−β1
m′

t−1 +
β1

1−β1
Zt−1 + Et√

v̂t−1 + ϵ

∥∥∥∥∥ ∥Dtgt∥

]
(a)

≤ ηρ

2ϵ
E[∥∇f(θt)∥2] +

η

2ρ
E[∥∇f(θt)−∇f(xt)∥2] +

η2C1LG
2

√
ϵ

E[∥Dt∥]

(b)

≤ ηρ

2ϵ
E[∥∇f(θt)∥2] +

η3L2

2ρ
E

∥∥∥∥∥
β1

1−β1
m′

t−1 +
β1

1−β1
Zt−1 + Et√

v̂t−1 + ϵ

∥∥∥∥∥
2
+

η2C1LG
2

√
ϵ

E[∥Dt∥1]

≤ ηρ

2ϵ
E[∥∇f(θt)∥2] +

η3L2

2ρ

C2
1G

2

ϵ
+

η2LC1G
2

√
ϵ

E[∥Dt∥1], (11)

where (a) is due to Young’s inequality and (b) is based on Assumption 3. Now integrating (5), (6),
(8), (11) into (4),

24

I ≤ − η

C0
E[∥∇f(θt)∥2] + ηG2E[∥Dt∥1]

II ≤ ηC1G
2E[∥Dt∥1] +

η2C2
1LG

2

√
ϵ

E[∥Dt∥1]

III ≤ η2L

ϵ
E[∥∇f(θt)∥2] +

η2L(σ2 + C2
2G

2)

ϵ
+ η2C2

1LG
2E[∥Dt∥2]

IV ≤ ηρ

2ϵ
E[∥∇f(θt)∥2] +

η3L2

2ρ

C2
1G

2

ϵ
+

η2LC1G
2

√
ϵ

E[∥Dt∥1],

and taking the telescoping summation over t = 1, . . . , T , we obtain

E[f(xT+1)− f(x1)]

≤
(
− η

C0
+

η2L

ϵ
+

ηρ

2ϵ

) T∑
t=1

E[∥∇f(θt)∥2] +
Tη2L(σ2 + C2

2G
2)

ϵ
+

Tη3L2C2
1G

2

2ρϵ

+

(
η(1 + C1)G

2 +
η2(1 + C1)C1LG

2

√
ϵ

) T∑
t=1

E[∥Dt∥1] + η2C2
1LG

2
T∑

t=1

E[∥Dt∥2].

Setting η ≤ ϵ
4LC0

and choosing ρ = ϵ
2C0

, we further arrive at

E[f(xT+1)− f(x1)] ≤ −
η

2C0

T∑
t=1

E[∥∇f(θt)∥2] +
Tη2L(σ2 + C2

2G
2)

ϵ

+
Tη3L2C0C

2
1G

2

ϵ2
+

η(1 + C1)G
2d√

ϵ
+

η2(1 + 2C1)C1LG
2d

ϵ
.

where the inequality follows from Lemma 7. Re-arranging terms, we get that

1

T

T∑
t=1

E[∥∇f(θt)∥2]

≤ 2C0

(
E[f(x1)− f(xT+1)]

Tη
+

ηL(σ2 + C2
2G

2)

ϵ
+

η2L2C0C
2
1G

2

ϵ2

)
+ 2C0

(
(1 + C1)G

2d

T
√
ϵ

+
η(1 + 2C1)C1LG

2d

Tϵ

)
≤ 2C0

(
f(θ1)− f∗

Tη
+

ηL(σ2 + C2
2G

2)

ϵ
+

η2L2C0C
2
1G

2

ϵ2

)
+ 2C0

(
(1 + C1)G

2d

T
√
ϵ

+
η(1 + 2C1)C1LG

2d

Tϵ

)
,

where in the last inequality we used x1 = θ1 and the lower bound f∗ ≤ f(θ) for all θ ∈ Rd.

25

To get the rate mentioned in the main part, choose η = min{ ϵ
4LC0

, 1√
T
} and continue

1

T

T∑
t=1

E[∥∇f(θt)∥2]

≤ 2C0

(
max

{
1,

4LC0

ϵ
√
T

}
f(θ1)− f∗
√
T

+
L(σ2 + C2

2G
2)

ϵ
√
T

+
L2C0C

2
1G

2

ϵ2T

)
+ 2C0

(
(1 + C1)G

2d

T
√
ϵ

+
(1 + 2C1)C1LG

2d

ϵT 3/2

)
≤ 2C0

(
f(θ1)− f∗
√
T

+
L(σ2 + C2

2G
2)

ϵ
√
T

)
+ 2C0

(
4LC0

ϵ

f(θ1)− f∗

T
+

L2C0C
2
1G

2

ϵ2T
+

(1 + C1)G
2d

T
√
ϵ

+
(1 + 2C1)C1LG

2d

ϵT 3/2

)
= 2C0

(
f(θ1)− f∗
√
T

+
L(σ2 + C2

2G
2)

ϵ
√
T

)
+O

(
G3(G+ d)

T

)
,

where in the second part of the rate we suppressed all the problem and compression dependent
constants.

E.3 Analysis Under PL Condition

As in the non-convex analysis, here we derive the convergence rate with fixed step-size η. The rate
shown in the main part can be obtained by plugging the expression of η.

Theorem 4. (Convergence rate under PL) Let Assumptions 1, 2, 3, 4, 5 and 6 hold, and qω < 1.
Then, choosing any step-size η ≤ ϵ

4LC0
, MICROADAM (Algorithm 3) satisfies

E[f(θT+1)]− f∗ ≤
(
1− ηµ

C0

)T
(f(θ1)− f∗) + η

(
LC0σ

2+LC0(C1+C2
2)G

2

µϵ + (1+C1)G
2d+C1G

2

√
ϵ

)
+ η2

(
3L2C0C

2
1G

2

2µϵ3/2
+ (1+2C1)C1LG2d

ϵ +
LC2

1G
2

2ϵ

)
.

Proof. We start from descent lemma

E[f(xt+1)]− f(xt)

≤ −ηE
[〈
∇f(xt),

gt + ζt√
v̂t + ϵ

〉]
+ ηE

[〈
∇f(xt),

β1

1− β1
Dt(m

′
t−1 + Zt−1) +DtEt

〉]
+

η2L

2
E

[∥∥∥∥ gt + ζt√
v̂t + ϵ

− β1

1− β1
Dt(m

′
t−1 + Zt−1)−DtEt

∥∥∥∥2
]

= −ηE
[〈
∇f(xt),

gt√
v̂t + ϵ

〉]
︸ ︷︷ ︸

I′

+ ηE
[〈
∇f(xt),

β1

1− β1
Dt(m

′
t−1 + Zt−1) +DtEt

〉]
︸ ︷︷ ︸

II

+
η2L

2
E

[∥∥∥∥ gt + ζt√
v̂t + ϵ

− β1

1− β1
Dt(m

′
t−1 + Zt−1)−DtEt

∥∥∥∥2
]

︸ ︷︷ ︸
III

. (12)

26

We bound part II and part III in the same way as it was done in the non-convex analysis. We now
provide a bound for part I ′:

I ′ =− ηE
[〈
∇f(xt),

gt√
v̂t + ϵ

〉]
=− ηE

[〈
∇f(xt),

gt√
v̂t−1 + ϵ

〉]
− ηE

[〈
∇f(xt), gt

(
1√

v̂t + ϵ
− 1√

v̂t−1 + ϵ

)〉]

=− ηE

[〈
∇f(xt),

gt −∇f(xt) +∇f(xt)√
v̂t−1 + ϵ

〉]

− ηE

[〈
∇f(xt), gt

(
1√

v̂t + ϵ
− 1√

v̂t−1 + ϵ

)〉]

=− ηE

[〈
∇f(xt),

∇f(xt)√
v̂t−1 + ϵ

〉]
− ηE

[〈
∇f(xt),

gt −∇f(xt)√
v̂t−1 + ϵ

〉]

− ηE

[〈
∇f(xt), gt

(
1√

v̂t + ϵ
− 1√

v̂t−1 + ϵ

)〉]
.

We further expand and bound this equation as follows:

I ′ ≤− η

C0
E
[
∥∇f(xt)∥2

]
− ηE

[〈
∇f(xt)−∇f(θt) +∇f(θt),

1√
v̂t−1 + ϵ

(∇f(θt)−∇f(xt))

〉]

− ηE

[〈
∇f(xt)−∇f(θt) +∇f(θt),

(
1√

v̂t + ϵ
− 1√

v̂t−1 + ϵ

)
gt

〉]
=− η

C0
E
[
∥∇f(xt)∥2

]
− ηE

[〈
∇f(xt)−∇f(θt),

1√
v̂t−1 + ϵ

(∇f(θt)−∇f(xt))

〉]

− ηE

[〈
∇f(θt),

1√
v̂t−1 + ϵ

(∇f(θt)−∇f(xt))

〉]

− ηE

[〈
∇f(xt)−∇f(θt),

(
1√

v̂t + ϵ
− 1√

v̂t−1 + ϵ

)
gt

〉]

− ηE

[〈
∇f(θt),

(
1√

v̂t + ϵ
− 1√

v̂t−1 + ϵ

)
gt

〉]
≤− η

C0
E
[
∥∇f(xt)∥2

]
+

η√
ϵ
E
[
∥∇f(xt)− f(θt)∥2

]
− ηE

[〈
∇f(θt),

1√
v̂t−1 + ϵ

(∇f(θt)−∇f(xt))

〉]
+ ηE [⟨∇f(xt)−∇f(θt), Dtgt⟩] + ηE [⟨∇f(θt), Dtgt⟩] .

Next, we use the Cauchy–Schwartz inequality to bound inner products above, L-smoothness inequality
to bound ∥∇f(xt) − ∇f(θt)∥ ≤ L∥xt − θt∥ ≤ ηLC1G√

ϵ
, and the inequality −∥a∥2 ≤ − 1

2∥b∥
2 +

27

∥a− b∥2 for the first term:

I ′ ≤− η

C0
E
[
∥∇f(xt)∥2

]
+

η√
ϵ
E
[
∥∇f(xt)− f(θt)∥2

]
+

ηG√
ϵ
E [∥∇f(θt)−∇f(xt)∥]

+ ηGE [∥∇f(xt)−∇f(θt)∥∥Dt∥] + ηG2E [∥Dt∥]

≤− η

2C0
E
[
∥∇f(xt)∥2

]
− η

2C0
E
[
∥∇f(xt)∥2

]
+

η√
ϵ

η2L2C2
1G

2

ϵ
+

η2LC1G
2

ϵ

+ ηG
ηLC1G√

ϵ
E [∥Dt∥1] + ηG2E [∥Dt∥1]

≤− η

2C0
E
[
∥∇f(xt)∥2

]
− η

4C0
E[∥∇f(θt)∥2] +

η

2C0
E[∥∇f(xt)−∇f(θt)∥2]

+
η3L2C2

1G
2

ϵ3/2
+

η2LC1G
2

ϵ
+

η2LC1G
2

√
ϵ

E [∥Dt∥1] + ηG2E [∥Dt∥1]

≤− η

2C0
E
[
∥∇f(xt)∥2

]
− η

4C0
E[∥∇f(θt)∥2]

+
3η3L2C2

1G
2

2ϵ3/2
+

η2LC1G
2

ϵ
+

η2LC1G
2

√
ϵ

E [∥Dt∥1] + ηG2E [∥Dt∥1] .

Plugging the obtained bound for I ′ with previously obtained bounds for II and III

II ≤ ηC1G
2E[∥Dt∥1] +

η2C2
1LG

2

√
ϵ

E[∥Dt∥1]

III ≤ η2L

ϵ
E[∥∇f(θt)∥2] +

η2L(σ2 + C2
2G

2)

ϵ
+ η2C2

1LG
2E[∥Dt∥2]

into (12) and using the step-size bound η ≤ ϵ
4LC0

we get

E[f(xt+1)]− E[f(xt)] ≤−
η

2C0
E
[
∥∇f(xt)∥2

]
− η

4C0
E[∥∇f(θt)∥2]

+
3η3L2C2

1G
2

2ϵ3/2
+

η2LC1G
2

ϵ
+

η2LC1G
2

√
ϵ

E [∥Dt∥1]

+ ηC1G
2E[∥Dt∥1] +

η2C2
1LG

2

√
ϵ

E[∥Dt∥1] + ηG2E [∥Dt∥1]

+
η2L

ϵ
E[∥∇f(θt)∥2] +

η2L(σ2 + C2
2G

2)

ϵ
+ η2C2

1LG
2E[∥Dt∥2]

≤− η

2C0
E
[
∥∇f(xt)∥2

]
+

η2Lσ2

ϵ
+

η2L(C1 + C2
2)G

2

ϵ

+ η(1 + C1)G
2E[∥Dt∥1] +

3η3L2C2
1G

2

2ϵ3/2

+
η2(1 + C1)C1LG

2

√
ϵ

E[∥Dt∥1] + η2C2
1LG

2E[∥Dt∥2]

≤− ηµ

C0
(E[f(xt)]− f∗) +

η2Lσ2

ϵ
+

η2L(C1 + C2
2)G

2

ϵ

+ η(1 + C1)G
2E[∥Dt∥1] +

η2(1 + C1)C1LG
2

√
ϵ

E[∥Dt∥1]

+ η2C2
1LG

2E[∥Dt∥2] +
3η3L2C2

1G
2

2ϵ3/2
,

28

where in the last inequality we applied PL condition from Assumption 6. After some reshuffling of
the terms, we obtain the following recursion:

E[f(xt+1)]− f∗ ≤
(
1− ηµ

C0

)
(E[f(xt)]− f∗) +

η2Lσ2

ϵ
+

η2L(C1 + C2
2)G

2

ϵ
+

3η3L2C2
1G

2

2ϵ3/2

+ η(1 + C1)G
2E[∥Dt∥1] +

η2(1 + C1)C1LG
2

√
ϵ

E[∥Dt∥1]

+ η2C2
1LG

2E[∥Dt∥2].

Notice that η ≤ ϵ
4LC0

≤ C0

4µ , so that the coefficient 1 − ηµ
C0
∈ (0, 1). Unrolling the recursion, we

arrive

E[f(xT+1)]− f∗ ≤
(
1− ηµ

C0

)T

(E[f(x1)]− f∗)

+

(
η2Lσ2

ϵ
+

η2L(C1 + C2
2)G

2

ϵ
+

3η3L2C2
1G

2

2ϵ3/2

) T∑
t=1

(
1− ηµ

C0

)t

+ η(1 + C1)G
2

T∑
t=1

(
1− ηµ

C0

)t

E[∥Dt∥1]

+
η2(1 + C1)C1LG

2

√
ϵ

T∑
t=1

(
1− ηµ

C0

)t

E[∥Dt∥1]

+ η2C2
1LG

2
T∑

t=1

(
1− ηµ

C0

)t

E[∥Dt∥2]. (13)

For the second sum above we upper bound it by its infinite sum as
T∑

t=1

(
1− ηµ

C0

)t

≤
∞∑
t=0

(
1− ηµ

C0

)t

=
C0

ηµ
.

For the other three sums we bound 1− ηµ
C0
≤ 1 and apply the bounds in Lemma 7:

T∑
t=1

(
1− ηµ

C0

)t

E[∥Dt∥1] ≤
T∑

t=1

E[∥Dt∥1] ≤
d√
ϵ
,

T∑
t=1

(
1− ηµ

C0

)t

E[∥Dt∥2] ≤
T∑

t=1

E[∥Dt∥2] ≤
d

ϵ
.

Plugging all this bounds into (13) and noticing that x1 = θ1, we finally get

E[f(xT+1)]− f∗ ≤
(
1− ηµ

C0

)T

(f(θ1)− f∗)

+
C0

ηµ

(
η2Lσ2

ϵ
+

η2L(C1 + C2
2)G

2

ϵ
+

3η3L2C2
1G

2

2ϵ3/2

)
+

η(1 + C1)G
2d√

ϵ
+

η2(1 + C1)C1LG
2d

ϵ
+

η2C2
1LG

2d

ϵ

≤
(
1− ηµ

C0

)T

(f(θ1)− f∗)

+ η

(
LC0σ

2

µϵ
+

LC0(C1 + C2
2)G

2

µϵ
+

(1 + C1)G
2d√

ϵ

)
+ η2

(
3L2C0C

2
1G

2

2µϵ3/2
+

(1 + C1)C1LG
2d

ϵ
+

C2
1LG

2d

ϵ

)
.

29

The obtained rate above is with respect to the virtual iterates xt that we defined for the purposes of
analysis. To convert this rate with respect to the iterates θt of the algorithm, we apply L-smoothness
to bound the functional difference:

|f(xt)− f(θt)| ≤ |⟨∇f(θt), xt − θt)⟩|+
L

2
∥xt − θt∥2 ≤

ηC1G
2

√
ϵ

+
η2LC2

1G
2

2ϵ
,

which implies

E[f(θT+1)]− f∗ ≤
(
1− ηµ

C0

)T

(f(θ1)− f∗)

+ η

(
LC0σ

2

µϵ
+

LC0(C1 + C2
2)G

2

µϵ
+

(1 + C1)G
2d√

ϵ
+

C1G
2

√
ϵ

)
+ η2

(
3L2C0C

2
1G

2

2µϵ3/2
+

(1 + C1)C1LG
2d

ϵ
+

C2
1LG

2d

ϵ
+

LC2
1G

2

2ϵ

)
and completes the proof.

To get the rate mentioned in the main part of the paper, we plug in the expression η =
min{ ϵ

4LC0
, 2C0 log T

µT } and collect higher order terms.

E[f(θT+1)]− f∗ ≤max

{
1

T 2
,
(
1− ϵµ

4L

)T}
(f(θ1)− f∗)

+
log T

T

2C0

µ

(
LC0σ

2

µϵ
+

LC0(C1 + C2
2)G

2

µϵ
+

(1 + C1)G
2d√

ϵ
+

C1G
2

√
ϵ

)
+

log2 T

T 2

4C2
0

µ2

(
3L2C0C

2
1G

2

2µϵ3/2
+

(1 + C1)C1LG
2d

ϵ
+

C2
1LG

2d

ϵ
+

LC2
1G

2

2ϵ

)
≤ 2 log T

T

(
LC2

0

µ

σ2 + (C1 + C2
2)G

2

µϵ
+

C0(1 + C1)(1 + d)G2

µ
√
ϵ

)
+ Õ

(
G4(G+ d)

T 2

)
.

E.4 Non-convex Analysis with Weight Decay

Algorithm 4 MICROADAMW (MICROADAM with Weight Decay)

1: Input: parameters β1, β2 ∈ (0, 1), ϵ > 0, step-size η > 0, θ1 ∈ Rd, e1 = m0 = v0 = v̂0 = 0d
2: for t = {1, 2, ..., T} do
3: gt = ∇̃θf(θt) ⋄ Compute unbiased stochastic gradient
4: g̃t = C(gt + et) ⋄ Add accumulated error et and compress
5: et+1 = Q(et + gt − g̃t) ⋄ Update and compress the error
6: mt = β1mt−1 + (1− β1)g̃t ⋄ Update first-order gradient moment
7: vt = β2vt−1 + (1− β2)g̃

2
t ⋄ Update second-order gradient moment

8: θt+1 = (1− ηtλ)θt − η mt√
vt+ϵ

⋄ Update the model parameters with weight decay
9: end for

Lemma 8. Under Assumptions 1-5, for all iterates of Algorithm 4 we have

E
[
∥mt −∇f(θt)∥2

]
≤
(
1− β1

2

)
E
[
∥mt−1 −∇f(θt−1)∥2

]
+

2

β1
L2E

[
∥θt − θt−1∥2

]
+ β1E∥∇f(θt)− g̃t∥2.

30

Proof. We start our proof from

E
[
∥mt −∇f(θt)∥2

]
=E

[
∥(1− β1)mt−1 + β1g̃t −∇f(θt)∥2

]
=E [∥(1− β1)mt−1 + (1− β1)∇f(θt−1)

− (1− β1)∇f(θt−1) + β1g̃t −∇f(θt)∥2
]

=E [∥(1− β1)mt−1 + (1− β1)∇f(θt−1)− (1− β1)∇f(θt)
− (1− β1)∇f(θt−1) + β1g̃t − β1∇f(θt)∥2

]
.

Using Jensen’s inequality we have

E
[
∥mt −∇f(θt)∥2

]
≤(1− β1)E

[
∥mt−1 −∇f(θt−1) +∇f(θt−1)−∇f(θt)∥2

]
+ β1E

[
∥g̃t −∇f(θt)∥2

]
.

Using Young’s inequality we have

E
[
∥mt −∇f(θt)∥2

]
≤(1− β1)(1 + b)E

[
∥mt−1 −∇f(θt−1)∥2

]
+ (1− β1)

(
1 +

1

b

)
E∥∇f(θt−1)− f(θt)∥2

+ β1E ∥∇f(θt)− g̃t∥2 .

Setting b = β1

2 we have (1− β1)
(
1 + β1

2

)
≤ 1− β1

2 and (1− β1)
(
1 + 2

β1

)
≤ 2

β1
:

E
[
∥mt −∇f(θt)∥2

]
≤
(
1− β1

2

)
E
[
∥mt−1 −∇f(θt−1)∥2

]
+

2

β1
E∥∇f(θt−1)− f(θt)∥2 + β1E ∥∇f(θt)− g̃t∥2 .

Combining this bound with L-smoothness we obtain

E
[
∥mt −∇f(θt)∥2

]
≤
(
1− β1

2

)
E
[
∥mt−1 −∇f(θt−1)∥2

]
+

2

β1
L2E∥θt−1 − θt∥2 + β1E ∥∇f(θt)− g̃t∥2 .

Lemma 9. Under Assumptions 1-5, for all iterates of Algorithm 4 we have

E
[
∥∇f(θt)− g̃t∥2

]
≤ 9E

[
∥et∥2

]
+ 6G2 + 3σ2.

Proof. We start from

E
[
∥∇f(θt)− g̃t∥2

]
=E

[
∥C(et + gt)−∇f(θt)∥2

]
=E

[
∥C(et + gt)− (et + gt) + (et + gt)−∇f(θt)∥2

]
≤3E

[
∥C(et + gt)− (et + gt)∥2

]
+ 3E

[
∥et∥2

]
+ 3E

[
∥∇f(θt)− gt∥2

]
.

Using definition of contractive compressor we have

E
[
∥∇f(θt)− g̃t∥2

]
≤ 3q2E

[
∥et + gt∥2

]
+ 3E

[
∥et∥2

]
+ 3E

[
∥∇f(θt)− gt∥2

]
.

Using Young’s inequality we have

E
[
∥∇f(θt)− g̃t∥2

]
≤ 6q2E

[
∥et∥2

]
+ 6q2E

[
∥gt∥2

]
+ 3E

[
∥et∥2

]
+ 3E

[
∥∇f(θt)− gt∥2

]
≤ 9E

[
∥et∥2

]
+ 6G2 + 3σ2.

31

Lemma 10. Under Assumptions 1-5, for all iterates of Algorithm 4 we have

E
[
∥et∥2

]
≤ (1 + ω)2q2

(1− (1 + ω)q)
2G

2

Proof. Using definition of contractive compressor we have

E
[
∥et+1∥2

]
= E

[
∥Q (et + gt − C(et + gt))∥2

]
≤ (1 + ω)2q2E

[
∥et + gt − C(et + gt)∥2

]
.

Using Young’s inequality we have

E
[
∥et+1∥2

]
≤ (1 + ω)2q2 (1 + a)E

[
∥et∥2

]
+ (1 + ω)2q2

(
1 +

1

a

)
E
[
∥gt∥2

]
.

We need to satisfy the following condition:

(1 + ω)2q2(1 + a) ≤ (1 + ω)q.

It holds for 0 ≤ ω, 0 ≤ q < 1, (1 + ω)q < 1 and a = 1
(1+ω)q − 1. Using this parameters we have

E
[
∥et+1∥2

]
≤ (1 + ω)qE

[
∥et∥2

]
+ (1 + ω)2q2

(
1

1− (1 + ω)q

)
∥gt∥2

≤ (1 + ω)qE
[
∥et∥2

]
+

(1 + ω)2q2

1− (1 + ω)q
E
[
∥gt∥2

]
.

Unrolling this recursion allows us to obtain

E
[
∥et+1∥2

]
≤ ((1 + ω)q)

t E
[
∥e1∥2

]
+

T∑
t=1

((1 + ω)q)
t (1 + ω)2q2

1− (1 + ω)q
G2

≤ ((1 + ω)q)
t E
[
∥e1∥2

]
+

1

1− (1 + ω)q

(1 + ω)2q2

1− (1 + ω)q
G2

≤ (1 + ω)2q2

(1− (1 + ω)q)
2G

2,

last inequality holds because e1 = 0.

Lemma 11. Under Assumptions 1-5, for all iterates of Algorithm 4 we have

E
[
∥g̃t∥2

]
≤ 4(1 + q2)

(
1 +

(1 + ω)2q2

(1− (1 + ω)q)2

)
G2.

Proof.

E
[
∥g̃t∥2

]
= E

[
∥C (gt + et)∥2

]
= E

[
∥C (gt + et)− (gt + et) + (gt + et)∥2

]
≤ 2E

[
∥C (gt + et)− (gt + et)∥2

]
+ 2E

[
∥gt + et∥2

]
≤ 2(1 + q2)E

[
∥gt + et∥2

]
.

Using Lemma 10 we obtain

E
[
∥g̃t∥2

]
≤ 4(1 + q2)

(
1 +

(1 + ω)2q2

(1− (1 + ω)q)2

)
G2.

32

Lemma 12 (From paper: Zhou et al. [2024b]). Let us consider the update rule:

θt+1 = (1− ηλ)θt − ηt
mt√
vt + ε

.

For brevity, we denote v̂t =
√
vt + ε. Also we define

ut := mt + λθt ⊗ v̂t,

where ⊗ denotes element-wise product. Moreover, we also define f̃ (θt) as follows:

f̃ (θt) = f(θt) + λt∥θt∥2v̂t
where λt =

λ
2

∑t
i=1

(
1−q
2

)i
for t > 0, λ0 = 0 with 0 < q < 1 and ∥θt∥v̂t =

√
⟨θt, v̂t ⊗ θt⟩. Also

let c1 ≤ ∥v̂t∥∞ < c2, then iterates of Algorithm 4 satisfy

f̃ (θt) ≤ f̃ (θt−1) +
ηt
2c1
∥∇f (θt−1)−mt−1∥2

− ηt
2c2

∥∥∥∇f̃ (θt−1)
∥∥∥2 − ηt

4c2
∥ut−1∥2 .

Lemma 13 (From paper: Zhou et al. [2024b]). Assume that cs,∞ ≤ ∥g̃t∥∞ ≤ c∞, then we have

∥mt∥∞ ≤ c∞, ∥vt + ϵ∥∞c2∞ + ϵ,

∥∥∥∥ (vt + ϵ)p

(vt+1 + ϵ)p

∥∥∥∥
∞
∈ [1− µ, 1 + µ] (∀p ∈ (0, 1)) ,

where µ =
β2c

2
∞

c2s,∞+ϵ .

Theorem 5. Let Assumptions 1 to 5 hold. Define Ψt = f̃(θt) +
ηt

2c1β1
E
[
∥mt −∇f(θt)∥2

]
. With

ηt = η ≤ β1c1
2L

√
c1
2c2

, Algorithm 4 satisfies

1

T

T∑
t=1

∥∥∥∇f̃ (θt−1)
∥∥∥2 ≤ 2c2

ηT
Ψ0

+
c2
c1

(
9

(
1 +

(1 + ω)2q2

(1− (1 + ω)q)
2

)
G2 + 6G2 + 3σ2

)
.

Proof. We start from main lemma and lemma for momentum, summing inequalities together we
obtain

f̃ (θt) + V E
[
∥mt −∇f(θt)∥2

]
≤ f̃ (θt−1) +

ηt
2c1
∥∇f (θt−1)−mt−1∥2

− ηt
2c2

∥∥∥∇f̃ (θt−1)
∥∥∥2 − ηt

4c2
∥ut−1∥2

+ V

(
1− β1

2

)
E
[
∥mt−1 −∇f(θt−1)∥2

]
+ V

2

β1
L2E∥θt−1 − θt∥2 + V β1E ∥∇f(θt)− g̃t∥2 .

Using previous lemmas we have

f̃ (θt) + V E
[
∥mt −∇f(θt)∥2

]
≤ f̃ (θt−1) +

ηt
2c1
∥∇f (θt−1)−mt−1∥2

− ηt
2c2

∥∥∥∇f̃ (θt−1)
∥∥∥2 − ηt

4c2
∥ut−1∥2

+ V

(
1− β1

2

)
E
[
∥mt−1 −∇f(θt−1)∥2

]
+ V

2

β1
L2E∥θt−1 − θt∥2

+ V β1

(
9

(
1 +

(1 + ω)2q2

(1− (1 + ω)q)
2

)
G2 + 6G2 + 3σ2

)
.

33

Using θt − θt−1 = −ηt ut−1

v̂t−1
we have

f̃ (θt) + V E
[
∥mt −∇f(θt)∥2

]
≤ f̃ (θt−1)−

(
ηt
4c2
− 2V L2η2t

β1c21

)
∥ut−1∥2

− ηt
2c2

∥∥∥∇f̃ (θt−1)
∥∥∥2

+

(
V

(
1− β1

2

)
+

ηt
2c1

)
E
[
∥mt−1 −∇f(θt−1)∥2

]
+ V β1

(
9

(
1 +

(1 + ω)2q2

(1− (1 + ω)q)
2

)
G2 + 6G2 + 3σ2

)
.

Using V = ηt

2c1β1
and Ψt = f̃(θt) +

ηt

2c1β1
E
[
∥mt −∇f(θt)∥2

]
we have

Ψt ≤ Ψt−1 −
ηt
4c2

(
1− 4c2L

2η2t
β2
1c

3
1

)
∥ut−1∥2

− ηt
2c2

∥∥∥∇f̃ (θt−1)
∥∥∥2

+
ηt
2c1

(
9

(
1 +

(1 + ω)2q2

(1− (1 + ω)q)
2

)
G2 + 6G2 + 3σ2

)
.

Using ηt = η ≤ β1c1
2L

√
c1
2c2

we have

Ψt ≤ Ψt−1 −
ηt
2c2

∥∥∥∇f̃ (θt−1)
∥∥∥2

+
η

2c1

(
9

(
1 +

(1 + ω)2q2

(1− (1 + ω)q)
2

)
G2 + 6G2 + 3σ2

)
.

Summing from t = 1 to T we have

1

T

T∑
t=1

∥∥∥∇f̃ (θt−1)
∥∥∥2 ≤ 2c2

ηT
Ψ0 +

c2
c1

(
9

(
1 +

(1 + ω)2q2

(1− (1 + ω)q)
2

)
G2 + 6G2 + 3σ2

)
.

Discussion. This result is similar to the one from Zhou et al. [2024b] in the non-convex case, where
the decay rate for the first term is O

(
1
T

)
and the second term is a non-vanishing O

(
β1

c2
c1
σ2
)
. In

our result, the non-vanishing term is proportional to O
(

c2
c1

(
σ2 +G2

))
.

A key difference is that our term is not proportional to β1. It is important to note that β1 typically
takes a value close to 1 in practical applications, meaning its influence on the bound is minimal.
Therefore, even though our result does not directly involve β1, the impact on the overall bound is not
significantly different.

Moreover, our bound includes an additional term proportional to G2, which represents the gradient
norm squared. This makes the bound slightly worse compared to the result in Zhou et al. [2024b].
However, this degradation is only by a constant factor, which means that while the theoretical bound
may be worse, the practical implications are often negligible.

In summary, our result aligns closely with previous findings, with differences primarily in the constant
factors and the presence of G2. Despite these differences, the practical performance remains largely
unaffected, ensuring that the bound remains robust and applicable in a variety of scenarios.

F Error Feedback applied to GaLore

F.1 Behaviour of the Error Feedback Mechanism

The GaLore low-rank updates introduced by [Zhao et al., 2024] enable the compression of optimizer
states by performing learning updates on a lower-dimensional subspace. In this approach, the

34

optimizer receives gradients projected on a defined learning subspace. Theoretical convergence
guarantees are provided under a “stable rank” assumption, where learning subspace is fixed during
training. However, in practice, convergence is attained by occasionally updating the learning subspace
and allowing full space learning to better align with the gradient trajectory during training.

Here, it is useful to draw an analogy with the TopK method, as the occasional updates of the learning
subspace resembles working with a fixed mask for many steps. Using a fixed mask would result
in discarding the same coordinates of the gradient at each step. Similarly, in the case of low-rank
updates, components orthogonal to the same learning subspace are discarded at each step.

The systematic nature of the information discarded by compression carries significant implications for
error feedback behavior. Over multiple steps, the error accumulates gradient components belonging
to the orthogonal space of the same learning subspace. Consequently, by linearity, the error itself
resides in the orthogonal space of this learning subspace. As a result, when the error is passed to the
accumulator, its projection onto the learning space is effectively disregarded until it is potentially
utilized at the specific step when the learning subspace is updated. Therefore, the behavior of error
feedback in the case of low-rank updates is non-standard: it accumulates gradient components over
numerous steps before unloading them all at once.

For a better understanding, we derive analytical evidence for the described behaviour by induction.
Let L be fixed learning subspace and assume that et−1 ∈ L⊥. Then, gradient passed to the optimizer
at step t is: CGaLore(at) = projL(at) = projL(et−1 + gt) = projL(gt) where error feedback is
discarded. Thus, et = at − CGaLore(at) = et−1 + gt − projL(gt) = et−1 + projL⊥(gt) ∈ L⊥

which completes the induction.

Assume now that learning subspace is updated every T steps, and denote Lt the learning subspace at
step t. Then, a similar induction leads to:

et =

t∑
i=1

t◦
j=i

projL⊥
j
(gi) =

t∑
i=1

⌊ t
T ⌋
◦

j=⌊ i
T ⌋
projL⊥

jT
(gi)

akT = projLkT
(gkT + ekT−1) = projLkT

(gkT) +

kT−1∑
i=1

projLkT
◦ (t◦

j=i
projL⊥

j
)(gi)

F.2 Consequences on Training

Such behaviour of the error feedback mechanism results in the dominance of the error norm over the
gradient norm. Before learning subspace updates, the error is the sum over past gradient components
that belong to the orthogonal of the current learning subspaces. Since these components represent
descent directions that were not used, they are not expected to compensate each other on average.
Consequently, between learning subspace updates, the error norm is expected to grow linearly.
Figure 8 provides evidence of such linear growth of the error norm during fine-tuning of RoBERTa-
base model on GLUE/MNLI task.

It implies that known analysis techniques [Alistarh et al., 2018, Karimireddy et al., 2019] of con-
vergence for the error feedback mechanism do not apply to GaLore. Indeed, such proofs rely on
the assumption that the compression operator is contractive, as it allows the error to be bounded.
Given a fixed vector, low-rank compression based on its singular value decomposition is a contraction
operator. However, in our case, the compression is based on a previously-computed singular value
decomposition and therefore may not be a contraction operator for newly computed gradients. The
extreme case being when the gradient is orthogonal to the learning subspace, in which case the
compression operator returns the null vector. Figure 8 shows that during training the error norm is
not on the same order of magnitude of the gradient norm.

The dominance of the error over the gradient also has effects on space exploration, as the learning
subspaces are computed from the singular value decomposition of the accumulator (i.e. the sum of
the gradient and the error). Since the main components of the accumulator belong to the orthogonal
of current learning subspaces, successive learning subspaces will tend to be orthogonal to each other.
This allows errors to be effectively passed to the optimizer, but all at once which can introduce
irregularities in the learning trajectory. However, it also implies that learning is performed on a
learning subspace that is suboptimal in terms of the direction of the gradient, but this may help

35

Figure 8: Dynamics of the norm of the error compared to norm of the gradient (of output of the 3rd
attention layer) during fine-tuning of RoBERTa-base model on GLUE/MNLI from surrogate GaLore
with error feedback optimizer. We used hyperparameters from [Zhao et al., 2024], i.e. batch size 16,
learning rate 0.00001, projection update gap 200, rank 4 and GaLore scale 4.

convergence by enforcing space exploration. See Figure 9 for examples of how induced orthogonality
of successive learning subspaces affects the learning trajectory.

Figure 9: Optimization trajectory for Adam, GaLore-Adam and GaLore-Adam-EF for ill-conditioned
function f(x, y) = cos(5π4 x) + sin(7π4 y) starting from (x0, y0) = (− 1

4 ,
1
4) (on first row) and for

Rosenbrock function starting from (x0, y0) = (− 1
2 , 1) (on second row).

36

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the abstract and introduction we introduce prior work on memory efficient
optimization and we claim that our work improves the memory usage while preserving the
performance. We provide theoretical and experimental justification for our algorithm that
reflect the claims in the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our work in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

37

Answer: [Yes]
Justification: We include brief theoretical justifications for our method in Section 4 and
include the complete proofs in the Appendix E.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We explain our experiments in Section 5 and provide the complete set of
hyper-parameters in Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

38

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide a zip file that contains the code for our optimizer.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide information about the training details in Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We do not provide error bars, but instead explain how we report the results in
Appendix B. Concretely, we run the same experiment with three different seeds and report
the one with best performance.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

39

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All these information can be found in Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, the research conducted in this paper conforms, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the broader impact of our work in Section 6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

40

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [No]

Justification: We do not release any models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We work with open source models that are publicly available and we cited
them properly.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

41

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide code and instructions on how to run the code in order to reproduce
our results.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects/
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

42

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

43

	Introduction
	Related Work
	The MicroAdam Algorithm
	Efficient Implementation
	Memory footprint analysis for the optimizer states and comparison with other methods

	Convergence Guarantees for MicroAdam
	Gradient and Error Compression
	Convergence Guarantees for General Smooth Non-convex Functions
	Convergence Rate for Non-Convex Functions under the PL Condition

	Experiments
	Limitations and Broader Impact
	Additional Explanations and Experimental Details
	Training Settings and Hyper-parameters
	GLUE/MNLI
	GSM-8k.
	ImageNet

	Training Graphs
	Memory footprint for the optimizer state
	Deferred Proofs
	Intermediate Lemmas
	Non-convex Analysis
	Analysis Under PL Condition
	Non-convex Analysis with Weight Decay

	Error Feedback applied to GaLore
	Behaviour of the Error Feedback Mechanism
	Consequences on Training

