‘ PDF Download
e DIGITAL Assocint
ACM sodaliontor acmopen }3 3651610.pdf
LIBRARY compig i pen) A 25)nuary 2026
Total Citations: 3
Total Downloads: 470

£ Latest updates: https://dl.acm.org/doi/10.1145/3651610
Published: 13 May 2024

RESEARCH-ARTICLE
Simple & Optimal Quantile Sketch: Combining
Greenwald-Khanna with Khanna-Greenwald

Citation in BibTeX format

ELENA GRIBELYUK, Princeton University, Princeton, NJ, United States

PACHARA SAWETTAMALYA, Princeton University, Princeton, NJ,
United States

HONGXUN WU, University of California, Berkeley, Berkeley, CA, United
States

HUACHENG YU, Princeton University, Princeton, NJ, United States

Open Access Support provided by:
Princeton University

University of California, Berkeley

Proceedings of the ACM on Management of Data, Volume 2, Issue 2 (May 2024)
https://doi.org/10.1145/3651610
EISSN: 2836-6573

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3651610
https://dl.acm.org/doi/10.1145/3651610
https://dl.acm.org/doi/10.1145/contrib-99661204056
https://dl.acm.org/doi/10.1145/institution-60003269
https://dl.acm.org/doi/10.1145/contrib-99661207514
https://dl.acm.org/doi/10.1145/institution-60003269
https://dl.acm.org/doi/10.1145/institution-60003269
https://dl.acm.org/doi/10.1145/contrib-99661206073
https://dl.acm.org/doi/10.1145/institution-60025038
https://dl.acm.org/doi/10.1145/institution-60025038
https://dl.acm.org/doi/10.1145/contrib-89758837857
https://dl.acm.org/doi/10.1145/institution-60003269
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60003269
https://dl.acm.org/doi/10.1145/institution-60025038
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3651610&targetFile=custom-bibtex&format=bibtex

Simple & Optimal Quantile Sketch: Combining
Greenwald-Khanna with Khanna-Greenwald

ELENA GRIBELYUK, Princeton University, USA
PACHARA SAWETTAMALYA, Princeton University, USA
HONGXUN WU, UC Berkeley, USA

HUACHENG YU, Princeton University, USA

Estimating the e-approximate quantiles or ranks of a stream is a fundamental task in data monitoring. Given
a stream x1, ..., X, from a universe U with total order, an additive-error quantile sketch M allows us to
approximate the rank of any query y € U up to additive en error.

In 2001, Greenwald and Khanna gave a deterministic algorithm (GK sketch) that solves the e-approximate
quantiles estimation problem using O(e~!log(en)) space [18]; recently, this algorithm was shown to be
optimal by Cormode and Vesley in 2020 [14]. However, due to the intricacy of the GK sketch and its analysis,
over-simplified versions of the algorithm are implemented in practical applications, often without any known
theoretical guarantees. In fact, it has remained an open question whether the GK sketch can be simplified
while maintaining the optimal space bound. In this paper, we resolve this open question by giving a simplified
deterministic algorithm that stores at most (2 + 0(1))e~!log(en) elements and solves the additive-error
quantile estimation problem; as a side benefit, our algorithm achieves a smaller constant factor than the
%e‘l log(en) space bound in the original GK sketch [18]. Our algorithm features an easier analysis and still
achieves the same optimal asymptotic space complexity as the original GK sketch.

Lastly, our simplification enables an efficient data structure implementation, with a worst-case runtime
of O(log(1/€) + loglog(en)) per-element for the ordinary e-approximate quantile estimation problem. Also,
for the related “weighted” quantile estimation problem, we give efficient data structures for our simplified
algorithm which guarantee a worst-case per-element runtime of O(log(1/€) + loglog(eWy, /wmin)), achieving
an improvement over the previous upper bound of [7].

CCS Concepts: » Theory of computation — Sketching and sampling,.
Additional Key Words and Phrases: quantiles, sketching, streaming

ACM Reference Format:

Elena Gribelyuk, Pachara Sawettamalya, Hongxun Wu, and Huacheng Yu. 2024. Simple & Optimal Quan-
tile Sketch: Combining Greenwald-Khanna with Khanna-Greenwald. Proc. ACM Manag. Data 2, 2 (PODS),
Article 109 (May 2024), 25 pages. https://doi.org/10.1145/3651610

1 INTRODUCTION

Computing the approximate ranks or quantiles with respect to a stream of elements is central to
our understanding of the distribution of massive datasets. In settings where the size of a dataset
exceeds the feasible amount of storage, streaming algorithms help to store specific information

Authors’ addresses: Elena Gribelyuk, Princeton University, NJ, USA, eg5539@princeton.edu; Pachara Sawettamalya, Prince-
ton University, NJ, USA, pachara@princeton.edu; Hongxun Wu, UC Berkeley, CA, USA, wuhx@berkeley.edu; Huacheng Yu,
Princeton University, NJ, USA, yuhch123@gmail.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 2836-6573/2024/5-ART109

https://doi.org/10.1145/3651610

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 109. Publication date: May 2024.

https://doi.org/10.1145/3651610
https://doi.org/10.1145/3651610

109:2 Elena Gribelyuk, Pachara Sawettamalya, Hongxun Wu, & Huacheng Yu

about the data, called the sketch, while not storing the entire data stream in memory. A natural
computational model for this setting is the streaming model [5].

In this work, we study the quantile estimation problem in the streaming model, wherein elements
X1, ..., X arrive one at a time, and we hope to estimate the rank of any query y € U up to additive-
error en after processing the stream into some data structure M. Note that the query may be
presented at any point in the stream, in which case we hope to approximate the rank of the query
element with respect to the stream seen so far. Furthermore, we focus our attention on comparison-
based algorithms, which are only allowed to compare elements via the total-ordering on universe
Uu.

There are multiple related definitions for the e-quantile-estimation problem in the streaming
literature. Alternatively, we may pose a query r € [n] and require the streaming algorithm to
return an element x such that |rank(x) — r| < en with respect to the stream observed so far. In
other formulations, the algorithm may be given advance knowledge of the specific query x* € U
that will be asked at the end. We note that all of these variants can be solved by solving the
harder all-quantiles e-approximate quantile estimation problem, which maintains an e-approximate
quantile estimate for every possible query x € U simultaneously. Formally, we define the problem
as follows:

Definition 1 (All-Quantiles Sketch). Given a stream of elements x1, ..., x,, arriving one at a time,
; — (t) ;
compute a sketch M and an estimator rank ~ such that for any query x € U presented at any time t

— (1)
in the stream, we have that [rank ~ (x) — rank?) (x)| < en, whererank(x) represents the true rank of
element x with respect to the stream elements observed so far.

Over the past 50 years, this problem has been studied under various formulations. The celebrated
median of medians algorithm by Blum et al. [9] finds the median of n elements from any universe
U with total order deterministically using 5.43n time and n space. Naturally, one might have hoped
for a sublinear-space algorithm for computing the exact median of n elements which appear in
a streaming fashion. Unfortunately, this was shown to be impossible: Munro and Paterson [23]
proved that any streaming algorithm that can make p passes over the input stream requires at least
Q(n'/?) space to find the exact median.

In many downstream applications, it suffices to find an approximate quantile, or more generally,
the e-approximate ¢-quantile for any ¢ € [0, 1]. To this end, Manku, Rajagopalan, and Lindsay
gave the first streaming algorithm for approximate quantiles with theoretical guarantee. The MRL
algorithm takes O(e ™' log?(en)) space. This is improved by Greenwald and Khanna [18]. They
proposed the intricate GK algorithm that achieves O(e™!log(en)) space. This bound was later
proved to be optimal for deterministic algorithms (even for the approximate median problem) by
Cormode and Vesley [14].

Moreover, if we allow algorithms to be randomized, one approach is to sample ©(e~!log(1/5))
elements from the stream and maintain them with using a GK sketch; this already gives an
O(e™!-(log(1/€)+loglog(1/6)))-space algorithm that correctly answers one e-approximate quantile
query with probability 1 — §. But, observe that this simple algorithm would require that the stream
length n is known in advance. A follow-up work by Felber and Ostrovsky [16] later showed that one
can achieve the same space bound without prior knowledge of the stream length n. Finally, Karnin,
Lang, and Liberty gave an improved algorithm (KLL sketch) that requires only O(e™!loglog(1/6))
space, and showed a matching lower bound [22]. Importantly, the deterministic GK sketch is
actually an essential component of both of these algorithms.

Deterministic streaming algorithms are interesting objects of study for their own sake. First,
when insisting that the algorithm must always succeed (meaning that § < 1/n!, as there are

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 109. Publication date: May 2024.

Simple & Optimal Quantile Sketch: Combining Greenwald-Khanna with Khanna-Greenwald 109:3

n! possible inputs), the lower bound in Karnin, Lang, and Liberty [22] shows that randomized
streaming algorithms cannot beat deterministic algorithms for approximate quantile estimation.
Additionally, there have been many recent works on the adversarially robust streaming model,
wherein an adversary may make queries at each time ¢ during the stream and selects future stream
elements after observing the previous outputs of the algorithm [4, 8, 17, 20, 24]. So, by making
repeated quantile queries to a randomized quantile sketch, an adaptive adversary may eventually
learn which elements were sampled by the randomized algorithm (i.e. the internal randomness of
the algorithm), and can select the rest of the input adversarially in order to break the error guarantee
of the streaming algorithm. This is very concerning, as it is known that many natural streaming
problems require Q(n) space if the computation is carried out by a deterministic algorithm. However,
luckily for us, the e-approximate quantile estimation problem admits sublinear-space solutions, and
deterministic algorithms are automatically adversarially robust due to their correctness guarantee
for all possible inputs.

In practice, the GK algorithm is quite popular. It is implemented in Spark-SQL [6] and also in
various third-party packages [1, 3, 21] for popular programming languages such as Java, R, and
Rust. However, since both the GK algorithm and its analysis are very intricate, what is actually
implemented is a (over)simplified variant. It is an open problem asked by Cormode and Yi in their
book [15] whether this variant has any nontrivial theoretical guarantee. Motivated by this, it was
asked in [14] if there is a simpler algorithm without intricate merging of tuples achieves the optimal
space bound. Similar questions are also asked as Problem 2 of “List of Open Problems in Sublinear
Algorithms” [2]. Prior to our work, Assadi et al. [7] took a step towards resolving this open problem
by proposing a simplified version of GK algorithm that requires O(e~! log?(en)) space (note: this
is the same space bound as the MRL algorithm). However, it was still open to construct a simplified
algorithm that achieves the optimal space bound of O(¢™!logn).

Lastly, the recent work of [7] also gave a non-trivial generalization of the approximate quantile
estimation problem for weighted streams. In this setting, each stream element x; carries a weight
w(x;), and the rank of any query y € U is calculated with respect to the weights of stream elements;
that is, rank(y) = X, <, w(x;). Specifically, the problem statement is as follows:

Definition 2 (All-Quantiles Sketch for Weighted Streams). Given a input stream of pairs (x1, w(x1)),
(22, W(x3)), - - ., (xn, w(x)) arriving one at a time, let Y.i_, w(x;) = W; denote the total weight for

the first t elements. An all-quantile sketch approximates the rank of query x € U with rm(([) (x)
such that |r;a<(t)(x) —rank! (x)| < eW,.

We note that by simply interpreting each (x;, w(x;)) as x; appearing w(x;) times consecutively
in the stream and inserting each copy of x; into our sketch (M;, Z;) one-by-one, we would trivially
obtain an e-quantile summary using O(e™! log(eW,,)) space for the weighted stream setting. How-
ever, the major disadvantage of inserting w(x;) copies of x; one-at-a-time is that the insertion-time
for each element (x;, w(x;)) scales linearly with the weight of x;. To this end, the algorithm of [7]

2
achieved a worst-case runtime of O(log(1/¢) + loglog(eW,,) + W) per-element. In ??, we
show that our algorithm can be extended to solve this general problem on weighted streams as
well.

1.1 Our Results

In this work, we propose a variant of GK sketch that is both simple and optimal, storing at most
@ log(en) elements. In fact, this improves upon the constant factor of 1! of the original GK
sketch [18]. At a high-level, the original GK sketch maintains a set of representatives {e;}, such
that each element x; that appears in the stream is represented by some e,, (x; may itself be a

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 109. Publication date: May 2024.

109:4 Elena Gribelyuk, Pachara Sawettamalya, Hongxun Wu, & Huacheng Yu

representative stored in sketch M, or it may have been deleted earlier and is now represented by
some other stream element ey,). Furthermore, at each time step, the GK sketch decides whether
to merge two adjacent representatives in memory (e;, €;+1) such that the algorithm maintains an
additive-error of et at all times ¢ € [n] — this inherently limits the number of elements x; that one
e; can represent. Additionally, when merging (e;, e;+1), the GK algorithm always keeps the larger
representative e;;; of the two sets, and uses it to represent the set of elements that were.

There are two involved components in the original GK algorithm:

(1) First, the authors define the notion of a band value for each element e; € M;; by grouping
elements into a small number of “bands,.” each of which contains elements with similar
insertion times, the original GK algorithm keeps track of some measure of how accurate our
current estimate for the rank of each x € U would be.

(2) Second, the authors merge representatives e; according to a particular tree structure over the
sets of elements covered by each representative e;. To achieve the optimal space bound, their
algorithm must merge all the sets in an entire subtree when certain invariants are satisfied.
This approach inherently complicates the implementation of the GK sketch.

Roughly speaking, the analysis of the original GK algorithm can be divided into handling an
“easy case” and a “hard case” Both of the components described above are essential for resolving
the hard case. In attempt to simplify previous approaches, in Section 3, we begin our journey with
a (over)simplified version of the GK algorithm. This version achieves the optimal space bound for
the easy case, but has no space guarantees for the hard case. However, in Section 4, we show that
by combining this over-simplified algorithm with its “mirroring,” we are able to avoid dealing with
the hard case entirely. Here, the mirroring of a GK sketch is obtained by flipping the total ordering
of the universe U, and maintaining a second GK sketch over the flipped ordering. Additionally,
while the original GK sketch maintains the invariant that each representative e¢; is larger than the
set of elements that it represents, our algorithm maintains the property that the representative
element e; is always the oldest element among those it represents. This change allows for a more
intuitive algorithm, since, as we will see later, older elements give rise to smaller margins of error.

Lastly, we provide efficient data structures for our algorithms in both the unweighted and
weighted streaming settings. In particular, since our algorithm only ever merges pairs of adjacent
elements, we simplify the implementation of [7] and obtain a worst-case running-time per element
of O(log(1/e) + loglog(et)) for unweighted streams, and O(log(1/¢) + loglog(eW,,/wmin)) for
weighted streams. Note that this improves upon the worst-case per-element running time of [7]
in the weighted streaming setting; since their algorithm relied on merging long “segments” of
representatives during each compression step, their algorithm obtained a worst-case per-element
runtime of O(log(1/e) + log log(eW,) + 2E-LWa)

Overall, our algorithm achieves both simplicity and optimality. We also present a novel potential
analysis which circumvents the technical difficulties introduced in the GK sketch.

1.2 Further Related Works

Although in this work we focused only on comparison-based algorithms, there are non-comparison-
based algorithms [10, 13, 25] that depend on the universe U. For example, the q-digest [25]
algorithm by Shrivastava et al. uses O(e~! log |U|) words of memory. Note for non-comparison-
based algorithms, one has to assume the prior knowledge of the universe U, which limits their
application to floating point numbers in practice. Another difference is that for comparison-based
model, we are counting the memory usage by the number of elements stored. But in the non-
comparison-based model, there is a difference between the number of words used and the number
of bits. This makes the comparison-based model a more generic model in theory.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 109. Publication date: May 2024.

Simple & Optimal Quantile Sketch: Combining Greenwald-Khanna with Khanna-Greenwald 109:5

Another interesting problem is the biased quantile problem, which instead of asking for a
[¢ — €, ¢ + €] quantile (absolute error), the problem asks for a [(1 — €)@, (1 + €)¢] quantile (relative
error). There is a line of research on streaming biased quantiles [11, 12, 14, 19, 26, 27]. The state

of the artisa O (6_1 log'~ (en) - \/log(log(en)/eé))-space randomized algorithm [11] by Cormode

et al. It worth mentioning that Cormode and Vesley proved that any deterministic streaming
algorithm for biased quantile requires Q(e~!log?(en)) space. Hence, this randomized algorithm
provably outperforms all deterministic ones. On the other hand, the GK algorithm does not seem
to straightforwardly extend to biased quantiles. The state of the art deterministic algorithm is the
one by Zhang and Wang [26] that takes O(e ™" log®(en)) space. It is an open problem to close this
gap for deterministic quantiles or to extend the GK algorithm to this setting.

2 PRELIMINARIES

Let U be the universe of elements with total order <. For any two elements x,y € U, we write
x < y to denote that x has smaller rank than y in U. For a set of elements S C U, we say x < S
when for all y € S, we have x < y. We also denote >, <, > analogously. Without loss of generality,
we assume that all the elements in the input stream are distinct elements in U.

Comparison-based model. In the comparison-based model, at any time ¢, the memory of a stream-
ing algorithm is a tuple (M, I;) where M, C U is a subset of elements (i.e. representatives), and I
contains arbitrary auxiliary information. At any time ¢, the algorithm may perform comparisons
between any two elements in M,. We note that the memory usage of the algorithm is measured by
the size of | M;| only.

2.1 The Basic Setup

We first provide a general overview of the original construction for our GK-based algorithm. This
closely mimics the setup in [18].

Representatives. At any time t, let S) = {xy, ..., x;} be the set of elements that have appeared in
the stream so far. At a high level, the GK sketch maintains a partition of S*) into a disjoint union
of sets and stores the largest element of each set in M, as the representative of that set. We use
ei(t) to denote the i smallest element in M, at time ¢. Likewise, Sl.(t) denotes the set of elements
i(t) € M, at time t. We note that ei(t)
will actually exclude el.(t) from Si(t) for convenience. Also, to simplify our notation, we omit the
superscript (t) when it is clear from the context and simply write ¢; and S;.

By this construction, we see that

represented by e itself is also in Si(t); later in our work, we

e; > S;, Ve € Mt. (AO)
This enforces a partition S*) = Ue,em, Si at each time-step . See Figure 1 for visual illustration.

Tuples. To maintain the error guarantee of the algorithm, the GK sketch also stores the following
additional information in 7;.

Definition 3 (Tuples). For every representative el.(t) € M, the GK sketch stores a tuple (glm, Alm)
in the auxiliary memory I;. We define gl@, Agt)

. ggt) — |Si(t)| is the number of elements in the set Si(t) which is represented by stream element

o).

as follows:

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 109. Publication date: May 2024.

109:6 Elena Gribelyuk, Pachara Sawettamalya, Hongxun Wu, & Huacheng Yu

Insertion Time
4 —e
3 —_—e
2 ° €
Si
1 ® €
‘ ‘ ‘ ‘ ‘ ‘ Universe
1 2 3 4 5 6 7 8 9

Fig. 1. GK sketch. Every node here corresponds to a representative e; € M;, while the line segment corre-
sponds to the set of elements S; it represents. We can see that we always have e; > S;. Some elements in S;
may even be smaller than some other representative e; € M; that are smaller than e;.

. Agt) is an upper bound on the number of elements e such that e is smaller than representative e;,
but belongs to set S; fore; > e; (informally, this serves as a measure of “uncertainty” for our
rank estimate). More concretely,

I M|
Z {ee€S;|e<e}| <A (A1)
j=itl

Jumping ahead, this will be one of the invariants maintained throughout the GK algorithm.

The following property is straightforward but crucial to GK sketch:

Observation 4. For any element e; € M, let rank?) (e;) be the rank of e; with respect to the stream

inserted until time t. Then, we see that rlgflil(e,) < rank(t)(el) < r(t) (e;), where rliflil(e,) = Zl lgj(t)

and rmax(e) = rt) (e;) + A() . (We omit the superscript (t) when it is clear from the context.)

min

PRrOOF. Since S*) = Ue,e M, Si is a partition of the elements inserted so far, we know that

|Mt |Mt|
rank® (¢;) = Z HeeS;lexe}| = Z'S | + Z HeeS;|e<e}l
j=1 j=it+l

where the last equality follows from the following case discussion: Forall j < i, wehave S; < e; < e;.
So the entire sets S; are counted. For all j > i, as i is a representative itself, it is not in S;. We can
then safely change e < e; toe < e;.

The first term here equals exactly ryy(e;). By the invariant (A1), the second term is at least 0
and at most A;. This finishes the proof. O

The main GK sketch invariant. To facilitate the additive-error guarantee, the GK sketch maintains
the following invariant at each time-step t € [n]:

gi + A; < et, Ve; € Mt (AZ)

Claim 5. As long as the invariant (A2) holds, GK sketch can answer any € /2-approximate ¢-quantile
query correctly.

Proor. Consider any two adjacent elements e; and e;;; in M;, by Observation 4, the rank of
e; is at least ryn(e;) = 23-:1 gj, and the rank of e;jy; is at most rmax(€is1) = rmin(€i+1) + Aip1 =
Fmin(€i) + gir1 + Air1 < rmin(e;) + €t (by the invariant (A2)). As a result, any two adjacent elements
in M; can be at most et rank apart.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 109. Publication date: May 2024.

Simple & Optimal Quantile Sketch: Combining Greenwald-Khanna with Khanna-Greenwald 109:7

Let i be the largest index such that ry;,(e;) < (¢ — €/2)t. We know that the rank of e;;; must
be between (¢ — €/2)t and (¢ + €/2)t. Therefore, we can simply return e;;; as the answer. (In the
corner case where such i does not exist, we simply return the smallest element in the sketch.) O

Indeed, to approximate the rank of any query x € U, we can simply find the smallest element

e; € M; such that e; < x < e;4; and return rm((t) (x) = ;:1 g;. Thus, it remains for us to show
how to maintain the invariant (A2). We provide an overview of this in the following sections.
We note that the original GK sketch also relies on two other more-involved ingredients, such as
“band-values” and maintaining an implicit tree structure over the representatives, which we discuss
in Section 3.3. Readers may also refer to Appendix A for the procedure of the original GK sketch.

3 WARM UP: AN (OVER)SIMPLIFIED GK ALGORITHM

In this section, we present a toy algorithm that maintains the invariant (A2) but may use unbounded
space. This serves as an important starting point for our work. Along the way, we will specify other
invariants of the algorithm that help us achieve the additive-error guarantee and O(e™! log(en))
space bound. For a summary of all of the invariants, the reader may refer to Table 1.

3.1 Our Motivation: The Toy Algorithm

Recall that at time ¢, the GK sketch maintains a tuple (g;, A;) for every representative e; € M;. In
this toy algorithm, we also add attribute ¢; to form a triple (g;, A;, t;), where t; is the insertion time
of element e;.

Insertion. First, we explain how to insert a new element into the GK sketch. Consider the time ¢
where we insert the ™ stream element x;. First, let M; = M;_; U {x;}. Suppose that x; is the i-th
smallest element in M;; that is x; = e;. We create a new singleton set S; = {x;}. Moreover, for the
triple (g, Aj, t;), we define g; = |S;| = 1 and t; = t. We also set A; = gi11 + Ajy1 — 1 (which we will
justify below). For the pseudocode, see Algorithm 1.

Algorithm 1: Inserting a new element x; at time ¢ (toy algorithm)
1 My — M1 U {x}.

2 Let i be the rank of x; in M,.

3 (95, A ti) «— (1, Gi1 + Aja — 1,1).

The following claim justifies our choice to set A; := gj41 + Aj41 — 1 for the newly-inserted element
€.

Claim 6. Upon the insertion of element e;, we have

M|
Z HeeSjle<e}| <gir+Ai—1
Jj=i+l

As a corollary, the invariant (A1) is maintained after insertion.

Proor. Let e be any element such that e € S; for j > i and e < e;. We do casework on j. If
j =i+ 1, then we must have e € Si;1 \ {ei+1}. On the other hand, if j > i + 1, as e < e¢;, it must also

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 109. Publication date: May 2024.

109:8 Elena Gribelyuk, Pachara Sawettamalya, Hongxun Wu, & Huacheng Yu

be the case that e < e;,1. As a result, we have

M| I M|
HeeSile<e)l = eeSmle<eall+) Hees;|e<ell
Jj=it+l Jj=it2
[M|
< ISui \ e} + D I{e€8j e <ewll
j=i+2
< giv1 — 1+ Ay

]

Compression. As insertion creates new singleton sets, the total number of representatives | M;|
increases by 1. After each insertion, we need an operation to again reduce | M| if it becomes too
large. The idea is to check every pair (e;, €;41) and merge consecutive elements when possible.

Definition 7 (Mergeable pairs). We say that two consecutive elements in memory (e;, ej41) are
mergeable if both of the following conditions hold:

(1) gi +giv1 + Al‘+1 < e€t.
This condition guarantees that after merging two adjacent elements (e;, e;+1) in memory M,
the invariant (A2) is still maintained. This is crucial to obtain the additive-error guarantee.
(2) ti > tisq.
The second condition guarantees that the sets represented by e; will only be represented by an
elder representative e;11 (i.e. a representative that was inserted earlier in the stream). Intuitively,
as Claim 6 guarantees that A; < €t;, so the elder representative e;y1 will have smaller A;yq. This
is beneficial to us', since we will see in future sections that after merging any two elements
(ej, €i+1), the A-value of the new set can only increase.

To merge any pair of consecutive elements (e;, ;11) stored in M;, we first merge S; into S;1.
Then, the larger representative e;;; becomes the representative for the new set, and we update

gi+1 < gi + gi+1 accordingly. Since A;4 is defined as an upper bound on ZL/:\:(ilz [{e €S;|e < e}l
A1 is not affected by this merge and remains unchanged. Finally, we remove e; from memory M,
and delete the tuple (g;, Aj, t;) from I;. The original e;;; becomes the i-th smallest element, and we

shift the indices of the tuples accordingly. See Algorithm 2 for the pseudocode of this operation.

Algorithm 2: Try to merge e; and e;;; (toy algorithm)

1 Let e, e;41 € M, be two adjacent elements in memory.
2 if t; > tiy1 then
3 if g; + git1 + Aiy1 < et then

4 Ji+1 < gi + gir1. /* Merge S; into Siiq. */
5 Ajy1 and t;4 remain unchanged.
6 Remove ¢; from M, and tuple (g;, A;) from 1;.

Recall that in the “if” condition (Line 2), we use the exact insertion-time t;. We observe that this
is different from the original GK algorithm, which uses band, (e;) in place of ¢; here. Now, we make
the following observation:

1As asked in the book by Cormode and Yi [15], it is open whether the variant of GK algorithm without condition (b) has
any space guarantee.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 109. Publication date: May 2024.

Simple & Optimal Quantile Sketch: Combining Greenwald-Khanna with Khanna-Greenwald 109:9

Observation 8 (The representative element is always the oldest.). Lett" denote the insertion time
of element x;.. Then, for any time t, we have that

t' > ti, Ve; € Mt, xp €S (A3)

Proor. We use induction on t. The base case t = 1 is trivial since the stream only has one
element; thus, there is only one element being stored in M;.

For the inductive step, assume that for all e; € M; and x € S;, we have that ¢’ > t;. Consider
time-step ¢ + 1. It suffices to show that any insert or merge operations that occurred between time
t and time ¢ + 1 will maintain this property. Note that if the operation at time ¢ is an insertion, this
holds trivially since if we insert an element i, then S; = {i} and no changes occur to other tuples
stored in memory. In the case that a merge operation occurs at time ¢, suppose that we merge S;
into S;41. Since t; > t;11 and the merged element uses i + 1 as a representative (which is the older of
the two), any x € S; U Siy1 has ' > min {#;, tiy1} = tis1. This means after merging, this property is
maintained as desired. O

We observe that Observation 8 holds in our toy algorithm, but this is not true for the original GK
algorithm. In summary, we have introduced the following invariants (Table 1). It is easy to verify
that these invariants are all maintained throughout the toy algorithm.

(AO) e = Si, Ve,- € Mt.
M|

(A1) D Heesile<e} <A Ve, € M,
J=i+l

(A2) gi + A; < et, Ve; € Mt

(A3) t’ > t, Vei € M[, Xy € Si

Table 1. Invariants of the toy algorithm.

Here (A0) holds by definition, while (A1), (A2), (A3) holds by Claim 6, Line 3 of Algorithm 2, and
Observation 8 respectively.

We briefly recall the definition of mergeable pairs given in Definition 7: namely, if a pair (e;, ;1) €
M, cannot be merged, it must be that either

o Case 1: ¢; is actually the elder representative among (e;, €;+1) and thus S; cannot be merged
into S;41 (4 < tiz1), or
e Case 2: performing the merge operation would make us fail to satisfy the invariant (A1)
(gi + gir1 + Aigy > €t).
In the next few subsections, we will refer to Case 1 as the hard case, and we consider Case 2 to
be the easy case of the GK sketch analyses of both [18] and [7].

3.2 The Easy Case: a Novel Potential Analysis

In this subsection, we will prove that our toy algorithm “half works,” i.e. it solves the easy case of
the GK sketch analysis, but provides no space guarantees for the hard case. Specifically, we show
that there can be only a bounded number of pairs (e;, €;+1) in M; with t; > t;;. However, for our
toy algorithm, it is possible for it to maintain an unbounded number of such non-mergeable pairs
(ej, ei41) in the hard case. We prove this formally in the following lemma, which proceeds via a
potential-based argument. We defer the proof of this lemma to Appendix B.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 109. Publication date: May 2024.

109:10 Elena Gribelyuk, Pachara Sawettamalya, Hongxun Wu, & Huacheng Yu

Lemma 9. At any timet, the number of non-mergeable pairs (e;, e;41) in M, witht; > t;y; is at most
(2+0(1)) log(et)
——

3.3 Handling the Hard Case: Some Heavy Lifting

Before proceeding to our algorithm, we provide some background on the previous tools that were
used to upper bound the number of not mergeable pairs (e;, e;11) € M; where t; < tiy1. As we
discussed previously, our naive toy algorithm does not provide any guarantees for the hard case.
Indeed, this is not surprising, as the original GK sketch [18] handles the hard case with its two
most involved components, which we will discuss in greater detail below. Note that our algorithm
completely avoids this hard case, so these components are not needed for our new algorithm. For
the complete procedure of the original GK sketch, readers may refer to Appendix A.

Band-values. To start, the authors define the notion of a band-value for every stored element
e; € M;, where band;(e;) ~ log,(e(t —t; + 1)) (defined according to some rounding scheme).
Notably, previous works used band-values in place of keeping track of exact insertion-times t;
directly for each element e;: so, to be more precise, the “hard” case of [18] and [7] was actually the
case that band,(e;) > band, (e;;+1) (i.e. this corresponds to the case when e; is older than e;,;, just as
we defined in our hard case). But, one might wonder: why keep track of a more-complicated quantity
like band, (e;) in lieu of a simple quantity like an insertion-time #;? Intuitively, by introducing
band-values, the authors prevent the worst-case that M; consists of an arbitrary long chain of
representatives with strictly-increasing insertion times (i.e. t; < t;41 for every e; in the chain), since
any chain of representative elements with strictly-increasing band-values can have length at most
log(en).

In fact, this idea motivated a simplified algorithm in Assadi et al.[7], which requires O(e ! log®(en))
space. However, for the analysis to go through, their rounding scheme must guarantee a consis-
tency condition: for any e; # e;, once the band values equal, they will always be equal. Namely,
once band,(e;) = band,(e;) for some t, for all ¢’ > ¢, we must have band, (i) = band, (j). This
requirement adds extra complication to their algorithm.

Tree representation. To achieve the optimal space complexity, the GK algorithm constructs
a tree structure over the elements in M; [18]. Instead of simply trying to merge adjacent pairs
(e, ei+1) € M;, the GK algorithm tries to merge all elements belonging to the same subtree. A priori,
it is not clear that this is necessary, but it appears to be essential for their analysis. Alternatively, a
variant of the GK algorithm presented in [7] made an attempt to simplify this tree-based merging
pattern by introducing the concept of a segment. Here, for any element e; stored in memory, the
authors try to merge e; along wtih its entire segment seg(e;) = {e; : band;(e;) < band,(e;)}, as
long as appropriate additive-error guarantees are met. While this approach provides a conceptual
simplification of the original algorithm, it heavily relies on merging long segments of elements to
show the optimal space bound.

4 COMBINING GK SKETCH WITH ANOTHER “MIRRORED” GK SKETCH

In this section, we present our simplified algorithm and its partial analysis (some proofs are deferred
to the Appendix). In our work, we eliminate the need for band-values, and provide an algorithm
that does not require a tree-based merging pattern nor segment-based merging pattern. In fact,
our algorithm only ever performs merges between pairs of adjacent elements stored in memory.
This significantly simplifies our data structure implementation of the algorithm, and gives rise to
a short and clean analysis. To our knowledge, our algorithm is the first e-approximate quantile
summary with this property that achieves the optimal O(e~! log(en)) space.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 109. Publication date: May 2024.

Simple & Optimal Quantile Sketch: Combining Greenwald-Khanna with Khanna-Greenwald 109:11

THEOREM 10. For any € > 0 and a stream of length n, our algorithm maintains an e-approximate
quantile summary while keeping (2 + 0(1))e~ log(en) elements in M,.

Intuition. Our algorithm is based on the following simple intuition that has been overlooked
for over 20 years. Recall that the easy case (Section 3.2) is to upper bound the number of pairs
(e, €i+1) in M; with t; < t;;1. The hard case (Section 3.3) is to upper bound the number of pairs
with t; > tiy1-

Now, consider the following thought experiment: suppose we reverse the total order < of the
universe U by defining x <ey y if and only if x > y. Then, we examine the result of running our
toy algorithm on the input stream xy, ..., x,, equipped with this reversed total ordering on U. By
symmetry, it is clear that running GK sketch with the reversed total order will maintain a set of
representatives e; € M, corresponding tuples (g;, A;, t;) such that representative e; is the smallest
element in S; (recall: representatives e; used to always be the largest element in S; in the original GK
sketch). Due to this swapped total ordering, we then see that the hard case (that ¢; < t;41) will now
become the easy case (¢; > t;41). So, by combining the original toy algorithm with the “mirrored”
algorithm, one might hope to completely avoid dealing with the hard case.

Finally, as we later point out in Remark 14, there is an alternate interpretation of our algorithm.
Instead of using the largest element of each set S; as the representative like the GK sketch, our
algorithm can be seen as using the oldest element (the earliest inserted element) of each set as
representative.

4.1 Our Algorithm

In our final algorithm, we split our input stream into two disjoint sets, one maintained by the toy
algorithm and one maintained by its mirroring. However, we will use the same set of representatives
for these two algorithms, though one key difference (from the toy algorithm) is that we no longer
store the representative e; in S;.

Representatives and Tuples. Formally, let M, be the set of representatives stored in memory at
time t. For every element e; € M, e; simultaneously represents both the set S; (that satisfies S; < e;)
and set S; (that satisfies ¢; < S;). Importantly, we note that e; itself is not contained in either set
Si or S7. Additionally, we denote S = Ujeim,1S: and S = Uie M,[1S;- We may omit the
superscript (¢) whenever it is clear from context. Observe that the stream {x, ..., x;} inserted by
time ¢ can be partitioned as S U S°(*) U M.

For each e; € M;, we define two triples (g;, A;, t;) and (g7, A}, t;), which we store in the auxiliary
memory I;. As before, we consider g; = |S;| and g; = |S;|. Similarly, we interpret A; and A? to be a
measure of uncertainty for our rank estimate; more formally, A; and A} are defined to satisfy

IM,] i—-1
Z|{e€5j|e<ei}|§Ai and Z|{ees;|e>ei}|gA;?
j=itl j=1

respectively. See Figure 2 for an example.

Insertion. To insert the t stream element x; into sketch M, we let M; = M,_; U {x;}. Suppose

x; is the i smallest element in M,. This insertion introduces new sets S;, S;, which will contain
other stream elements that are represented by x;. In particular, when x; is first inserted into M,, we
have that S; = S7 = (. We then initialize the auxiliary information tuples (g;, A;, ¢;) and (g7, A3, t;)
as follows:
e g-values: Since g; < [S;| and g; « |S7|, we initialize g; = 0 and g} = 0, as e; does not
represent any other stream elements upon its insertion.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 109. Publication date: May 2024.

109:12 Elena Gribelyuk, Pachara Sawettamalya, Hongxun Wu, & Huacheng Yu

Insertion Time Insertion Time
4 —e 4 ~—
3 —e 3 ~—
S; S
2 —_— 2 e e——
1 —_— 1 -
Universe Universe
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
(a) The toy algorithm. (b) Its mirroring algorithm.
Insertion Time
4
3 _——
Si 57
2
€
1
Universe
1 2 3 4 5 6 7 8 9

(c) The Final Algorithm.

Fig. 2. Note these two sketches share the same set of representatives M; = {2,4,5,7}. Each element ¢; is
simultaneously the representative of two sets, S; and S;.

e A-value: As in our toy algorithm, for A; and A7, we set A; = g;11 + Ayyq. For A7, we let
A = g7 |+ A?_; note that e; inherits its value for A} from the (i — 1)-th smallest element,
due to the reversed total order on U in our mirrored sets S;.

o t;: finally, we let t; « t represent the time of insertion for e; = x;, as before.

The insertion operation for any new stream element x; is also summarized in Algorithm 1,
provided below.

Algorithm 3: Inserting a new element x; at time ¢ (Our algorithm)
1 My — M1 U{x:}.

2 Suppose x; is the i'" smallest element in M.

3 Set (gi, Ai1;) (0, Gis1 + A1, 1).

a Set (g7, A7, ;) « (0,97_, + A7 |,).

Compression. Next, we describe the procedure to merge any two adjacent elements (e;, €;41).
With this in mind, we provide the full algorithm for merging any pair (e;, e;41) below.

Definition 11 (Mergeable pairs). At any time t, we say that that a pair of consecutive elements
(ei, eiy1) is mergeable if one of the following is satisfied:

(1) ti > tivg andgi +g? +gi+v1 + Ajy1 +1 < €t, or
(2) t; < tipg and g7 + gi + g5, + A7 +1 < et

Otherwise, we say (e;, ei+1) is not mergeable.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 109. Publication date: May 2024.

Simple & Optimal Quantile Sketch: Combining Greenwald-Khanna with Khanna-Greenwald 109:13

Algorithm 4: Merging e;, e;+; (Our algorithm)

1 Let e;, ;41 € M, be two adjacent elements in memory.
2 if t; > tiy1 then

3 if gi + g7 + gix1 + Aj1 +1 < et then

4 gi+1 < §i + 97 + girs1 + 1. /% Merge 5;US? U {e;} into Sy */
5 Remove e; from M; and tuples (g;, A;) and (g7, A?) from Z;.

¢ else

7 if g7, + gis1 +g; + A7 +1 < et then

8 g7 g5y +gir1 +g; +1. /% Merge S7,, USiy1 U{eipq} into S7 */
9 Remove e;y; from M; and tuples (gi11, Aiy1) and (g3, , A7,,) from ;.

Remark 12. When we compute gi1 < g; +g; +gi+1 (as in Algorithm 4 above), this can be interpreted
as combining sets S;US? U{e;} into S;.1, and removing e; (and its auxiliary information) from memory.
However, it is important to remember that we never actually store the sets S; throughout the algorithm,
and we refer to them only for intuition and clarity of our analysis.

Invariants. Just as we had in the toy algorithm (Table 1), we need to ensure that the following
invariants are maintained throughout the algorithm.

(BO) Si<e < S;), Ve; € Mt
M|

(B1) Z HeeS;|e<e} <A Ve; € M,
J=i+l

i-1
and Z [{e €S} | e > e}| <A,
=
(B2) gi+A; <et and g;+A] <et, Ve; € M,
(B3) t' >t Ve; € My, xp € S;US;

Table 2. Invariants of our algorithm.

Lemma 13. All invariants in Table 2 hold throughout our algorithm.

In fact, all invariants (other than (B0)) follow easily from the construction of our algorithm. So,
we defer the proof of this lemma to the Appendix C. The proof that (B0) holds is crucial, and is
presented in Section 4.2.

Remark 14 (The oldest element represents the set.). We note that if C; = S; US7 U{e;} is viewed as a
single set of elements represented by e; in both sketches, invariant (B3) says that e; is always the oldest
element in this set, i.e. e; has the smallest insertion time t; < t; for all e; € C;. Thus, our algorithm can
also be understood as using the oldest element of each set as the representative. In contrast, the original
GK algorithm defines the representative of each set to be the largest element.

4.2 Correctness

In this section, we will address the following two major components that certify the correctness of
the algorithm.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 109. Publication date: May 2024.

109:14 Elena Gribelyuk, Pachara Sawettamalya, Hongxun Wu, & Huacheng Yu

o Proof of invariant (BO). In Algorithm 4, we move elements around these two sketches by, for
example, merging S; U S; into S;;;. This may be worrying, as such an operation seems to be
capable of breaking our invariant (B0).

o Answering rank queries. After processing the stream, our sketch will be presented with any
element x € U, and must return r?ia((x) € [rank(x) — en,rank(x) + en]. Currently, since
our algorithm now uses two GK sketches, it might not be clear how we should define our
estimator rank.

Proof of invariant (B0). To prove that (B0) holds, we first need the following claim:
Claim 15. At any time t and representatives e;, e; € M; such that e; < e;, we have
ift; > t;, thenS; <e; and ift; <tj, thenS; > e;.

ProoF. Suppose t; > t;. Consider any stream element x,» € S7. By invariant (B3), we know that
o>t > tj.z At time t’ (its insertion of x;-), the representative e; is already in M;.

Since we only merge adjacent representatives and now x, € S; at time ¢, we must have x; < e;.
Otherwise, e; should have been merged with e; first. The other part follows from a symmetric
proof. O

Lemma 16. Invariant (B0) holds throughout our algorithm.

Proor. We use induction and consider each insertion and merge. Suppose that the invariant
(B0) holds before the operation. For an insertion, it is easy because upon inserting e;, we shall have
5 =8=0.

Now suppose that we merge (e;, €;+1). Due to symmetry, we focus only on the case where
ti > ti1. In this case, we merge S; U S} into S;41. By the inductive hypothesis, (B0) holds before this
merge, and we have S; < e; < ej4; and S;41 < ej4q. From Claim 15, we have S? < e;y;. Therefore,
S;US? U St < ey as desired. O

Answering rank queries. Now, we will prove that our sketch can answer rank queries within
the additive-error guarantee. Before we show this, we first need to show an analogous claim to
Observation 4.

Observation 17. For any elemente; € M,, let rank®) (e;) be the rank of e; with respect to the stream

inserted until time t. Then, we see that rr(lfi)n(ei) < rank' (¢;) < rr(nt;x(ei), where

i i-1 i i-1
r (e) = i+Zgj+Zgj-—A? and k(e = i+Zgj+Ai+Z!];-
P S J=1 =l

Proor. We define rankg) (e;) to be the number of elements in S = [, ¢ o, S; that are smaller
than e;, that is rankg)(ei) ={e € Uejem, Sj I € < e;}. Similarly, we define rankgo) (e;) = {e €

UejeMt Sj‘? | e < e;}. Then we have rank?) (e;) = rankg) (e,-)+rankgo) (e;)+i.(Noteey, ez,...,ei—1,€;
are not in these S;’s and S;?’s.)

We know that
M| i M|
t
rank(() =) [HeeSile<ell = YIS+) lees;le<all
Jj=1 J=1 Jj=i+l

2We remark that the proof of (B3) is starightforward and do not depend on (B0).

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 109. Publication date: May 2024.

Simple & Optimal Quantile Sketch: Combining Greenwald-Khanna with Khanna-Greenwald 109:15

The second term is lower bounded by 0 and upper bounded by A;. Similarly, due to the fact that for
all j > i,e; < S}?, we have

M i-1
rank?) (¢;) = Z {eeSS|e<e}l= Z 2]~ {e € 5 | e < e;}-
j=1 j=1

The sum of the second term is upper bounded by 0 and lower bounded by —A?. Putting these
together, we get

i-1

i i i-1
Zgj < rankg)(ei) <A+ Zgj and Zg;’ - A7 < rankgo) (e;) < Zg}’
=1

Jj=1 Jj=1 j=1
Since rank'*) (¢;) = rankg) (e;) + rankgo) (e;) + i, this concludes the proof. O

Lemma 18. As long as invariant (B2) holds at time t, our sketch can answer any rank query x € U
with et additive error.

J— (2) ; (1) 1) =1
Proor. Leti € [|M;|] suchthate; < x < e;;;. We claim that estimator rank; (x) = w

obtains an e-approximation to rank?) (x). Since, e; < x < ej41 , from Observation 17 we must have
rlgfiil(e,-) < rank® (¢;) < rank® (x) < rank® (e;1) = 1 < ') (e141) — 1. Hence,
rr(nta)x(eiﬂ) -1- réfiil(ei) B (i1 + Ai1) + (g7 + A7) < et

2 - 2 -

|r§ﬁ((t) (x) — rank” (x)| <
following the invariant (B2).)

4.3 Space Analysis

In this section, we adapt the potential argument of Section 3.2 and finish the proof of Theorem 10.
Recall Definition 11 of mergeable pairs. The following lemma upper bounds the number of non-
mergable pairs at any time ¢, thus proving the space bound of our algorithm.

Lemma 19. At any time t, the total number of non-mergeable pairs (e;, eiy1) in M; is at most
(2+0(1)) log(et)
—

Proor. For any stream element x; inserted at time ¢’ < ¢ (which might no longer reside in the
memory), we assign it a potential given by

P (1) = m

On the one hand, the total potential of all elements is bounded. Since there is at most one e; € M,
with t; = t, we only focus on elements inserted strictly before time ¢.

t—1 t—1

pr,/ (1) = Z L _ (I+o(1)) log(et)

4
— Hl+e(t-t) €

This step is exactly the same as that of Lemma 9. On the other hand, for any pair (e;, e;+1) that is
non-mergeable. We want to prove that the total potential in 5; U S} U S;41 U S7,; U {e;, €41} is high.
Let us focus on the case where t; > t;;1. In this case, we know that g; + g7 + giy1 + Ajy1 +1 > €t

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 109. Publication date: May 2024.

109:16 Elena Gribelyuk, Pachara Sawettamalya, Hongxun Wu, & Huacheng Yu

Efficient Data Structures for Our Algorithm

First of all, one can maintain M; and tuples in J; using a binary search tree (BST). This allows
the insertion / deletion of M; and 7; in O(log | M;|) time. Given e;, it also supports access to
predecessor / successor (e;_1 / €;41) in the same running time.

Then, let g be a priority queue that maintains items of form (d, (e;, ej+1)), where d is a number
used as the key, and (e}, ej,1) are always two adjacent elements of M;. The item with smallest d
is always at the top of g.

Initially, g is empty. Every time there is an insertion x;, we run the following:

(1) Insert x; using Algorithm 3. Suppose that x, becomes the i smallest element in M,.

(2) Delete the old item in g that corresponds to (e;_1, €j+1). Then if t; > t;11, insert a new item
(9i + g7 + gis1 + Aiy1 + 1, (&5, €i41)). Otherwise, t; < t;4q, and insert (g7, , + gi+1 + g7 + A7 +
1, (e;, ei+1)). We also insert a new item for (e;_1, ;) defined in a similar way.

(3) Suppose that the top item in q is (d, (ej, ej+1)). If d < et, we remove the top item from q
and merge e; and ej;. After the merge, we update g accordingly.’(Note we only perform
this merge once per insertion.)

Table 3. Our algorithm with efficient update time.

because (e;, ei41) is non-mergeable. Then:

1) > .
Py (1) = 1+e(t—1t)
xp €5;US7US141US7, U ei i1 } xpr €S;US7USir1U{ei eiv1 }
i +g; + Giv1 +2
JiT9i T2 (Invariant (B3) and t; > t;41)
1+e(t —ti1)
> 1.

Here, the last step follows since A4 < €t;1 by invariant (B2) and g; + g7 + gir1 + 1 > €t — Ayyy.
From symmetry, we know that in the case when t; < t;,1, the total potential in the non-mergable
pair (e;, e;+1) isalso at least 1. Each e;, S;, S; contributes to the potential of at most two non-mergeable

pairs. As a result, there can be at most w many non-mergeable pairs in M,. O

4.4 Efficient Data Structures for our Algorithm

In this section, we demonstrate a simple and efficient data structure implementation of our algorithm.
See Table 3 for our implementation. Since our algorithm only checks whether adjacent pairs can be
merged, it is much easier to implement compared to previous works. For weighted streams, this
allows for an improvement in the time complexity. (See Lemma 24.)

(2+0(1)) log(et)
M| £ —————

Lemma 20. The space complexity of our implementation is at any time t.

PRrOOF. Suppose t’ < t is the last time we did not perform a merge operation. Between ¢’ and ¢,
the size of the sketch does not increase (| M;| < | My|). This is because each time we insert a new
representative, there is always a merge operation performed. At time ¢’, because the top item in the
priority queue q is not a mergeable pair, there is no mergeable pair in M. Hence, by Lemma 19,

(2+0(1)) log(et)
€

there can be at most elements in M. m]

Lemma 21. Our algorithm has worst-case per-element running time O(log(1/€) + loglog(et)).

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 109. Publication date: May 2024.

Simple & Optimal Quantile Sketch: Combining Greenwald-Khanna with Khanna-Greenwald 109:17

PRroOF. A priority queue supports insertion / deletion and update in O(log |q|) time, where |q| is
the number of elements in it. From the implementation, we know that |q| < | M;|— 1. Anytime there
are at most M items in g, and after every insertion, we only perform the O(1) priority
queue operation. Hence, the running time is worst case O(log(1/e¢) + loglog(et)) per element.
Similarly, the running time of the BST is O(log | M;|) per element, which equals the same running

time. m}

5 GENERALIZATION FOR WEIGHTED STREAMS

Next, we consider a variant of the quantile estimation problem, where each stream element x;
appears together with a weight w(x;). Recently, the work of Assadi et al. [7] gave a nontrivial
generalization of the GK sketch to weighted streams. Our approach also smoothly generalizes
to weighted streams. Intuitively, we may interpret a stream element (x;, w(x;)) by considering
x; to appear w(x;) times consecutively in the stream. For notational convenience, we let W; =
Y w(xy) and w(S) = Y cs w(x) for any set S C U. Additionally, we note that if e; € M, is
an element such that e; < x < e;;1, then the exact rank of query x with respect to the stream is
given by rank?) (x) = 23:1 w(e;) + 1. Now, we consider the following generalized all-quantiles
estimation problem:

Definition 22 (All-Quantiles Sketch for Weighted Streams). Given a input stream of pairs (x1, w(x1)),
(22, W(x3)), - - ., (xn, w(x)) arriving one at a time, let Y.'_, w(x;) = W; denote the total weight for
the first t elements. An all-quantiles sketch approximates the rank of any query x € U with r;rﬁ((t) (x)
such that |r§r§<(t)(x) —rankV (x)| < eW,.

The following theorem extends our previous result to the weighted streaming setting.

THEOREM 23. Suppose that the minimum weight of the elements is Wy, There is a deterministic
(2+0(1)) log(€- Wi / Winin)
€

comparison-based all-quantile sketch for weighted streams using space.

5.1 Our algorithm for the weighted stream setting

In this section, we highlight essential changes to extend our algorithm to the weighted setting.

Representatives and Tuples. First of all, the representatives in M; and the sets S;, S are defined
in the same way as the unweighted case. Recall that e; is the i'" smallest element stored in the
memory M;. As before, we maintain the invariant S; < e; < S7, and we store tuples of attributes

for each representative e;, defined as follows:

e G-values: In the weighted case, we let G; = w(S;) and G} = w(S;). Note that both G; and
G; exclude the weight contributed by element e; itself.
¢ A-values: For any element e¢; € M;, we define A; and A? to be upper bounds satisfying

Z w({eeS;|e<i}) <A; and Z w({e €S |e>i}) <A
JEMj>i JEMj<i
As before, we also maintain the insertion-time #; for each representative e;. We now describe the
insertion and compression operations for our quantile summary in the weighted stream setting.

3To be more precise, suppose t; > tj;1 and e; is the representative of the new set. Before merging, we have
ej_1,ej,ej11,ej12 € M;. Afterwards, we have ej_1,ej,ej42 € M;. We already removed the top item (d, (ej,ej41))
and need to further remove the items that corresponds to (ej41, ej42) from g. Then update the item that corresponds to
(ej-1,€;) as the g value of e; changes. Finally, we need to add to g a new item for (e;, ej2).

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 109. Publication date: May 2024.

109:18 Elena Gribelyuk, Pachara Sawettamalya, Hongxun Wu, & Huacheng Yu

Insertion. This part of the algorithm stays almost the same. When inserting x, which is ranked
the i in M,, we set G; = Gy = 0and A; = Gy + Ay, A} = G, + A]_,. Finally, we set the
insertion time t; = t.

Compression. The only change in compression is that we need to replace g; + g; + gi+1 + 1 with
Gi + G} + Giy1 + w(e;) (as well as a similar replacement for the other symmetric case).

Algorithm 5: Merging e;, ;41 (Simpler Algorithm for Weighted Streams)

1 Let (e;, e41) € M; be two adjacent elements in memory at time ¢.
2 if t; > tiy1 then

3 if G; + GlO +Gjyq + w(ei) + Ajy1 < €W, then

4 Giz1 < G+ Gf + w(el-) + Gjyq.

5 Remove e; from M, and tuples (G, A;), (G;, A?) from Z;.

6 else

7 if G}, + Giy1 + G + w(ejyq) + A} < eW; then

8 G} « G}, + Giy1 +w(ei1) + Gy

9 Remove e;y1 from M; and tuples (Gii1, Ajy1), (G;,p5 A3,,) from I;.

Invariants. The invariants are mostly unchanged compared to the unweighted setting. See Table 4.

Efficient and simplified implementation. Our algorithm for the weighted case can be implemented
in the same way as in the unweighted setting, which is described in Section 4.4. Note that our result

(stated formally below) improves upon the O (log(l /e) +loglog(eW,) + bgzi—flw”)) per-element

running time of Assadi et al. [7], in the regime where the total weight W, > n. This improvement
directly results from the fact that our algorithm only merges adjacent pairs of elements.

Lemma 24. Suppose that there are n elements in the stream and the minimum weight of the elements

IS Win. Our algorithm can be implemented in O(log(1/€) + loglog(eW,,/Win)) worst case update
time per element.

We defer the proofs of correctness and space analysis to the Appendix D, as they closely follow
the proofs for the unweighted setting.

(CO) S;<e < S;-J, Ve; € Mt
[M]

(C1) Z w{eeS;|e<e}) <A Ve; € M,
Jj=it+l

i-1

and Zw({e € S;? | e>e}) <A;,
J=1
(C2) Gi+A;<eW, and G;+A] <eW, Ve; € M,

(C3) t' > ti, Ve; € Mt, xp € 5; U Sf

Table 4. Invariants of our algorithm for the weighted streaming setting.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 109. Publication date: May 2024.

Simple & Optimal Quantile Sketch: Combining Greenwald-Khanna with Khanna-Greenwald 109:19

REFERENCES

(1]

[10]
[11]
[12]

[13]

[14]

[15]
[16]

[17]
[18]
[19]

[20]
[21]
[22]
[23]
[24]

[25]

[26]

[n.d.]. GKQuantiles Class - Micrometer Core 0.11.0.RELEASE Documentation. https://www.javadoc.io/doc/io.
micrometer/micrometer-core/0.11.0. RELEASE/io/micrometer/core/instrument/stats/quantile/GKQuantiles.html. Ac-
cessed: 2023-11-15.

[n.d.]. Problem 2: Quantiles - Open Problems in Sublinear Algorithms. https://sublinear.info/index.php?title=Open_
Problems:2. Suggested by Graham Cormode, Source: Kanpur 2006, Accessed: 2023-11-15.

[n.d.]. quantiles Crate Documentation - Rust. https://docs.rs/quantiles/latest/quantiles/. Accessed: 2023-11-15.
Noga Alon, Omri Ben-Eliezer, Yuval Dagan, Shay Moran, Moni Naor, and Eylon Yogev. 2021. Adversarial laws of large
numbers and optimal regret in online classification. In Proceedings of the 53rd Annual ACM SIGACT Symposium on
Theory of Computing. 447-455.

Noga Alon, Yossi Matias, and Mario Szegedy. 1996. The space complexity of approximating the frequency moments. In
Proceedings of the twenty-eighth annual ACM symposium on Theory of computing. 20-29.

Michael Armbrust, Reynold S Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K Bradley, Xiangrui Meng, Tomer Kaftan,
Michael J Franklin, Ali Ghodsi, et al. 2015. Spark sql: Relational data processing in spark. In Proceedings of the 2015
ACM SIGMOD international conference on management of data. 1383-1394.

Sepehr Assadi, Nirmit Joshi, Milind Prabhu, and Vihan Shah. 2023. Generalizing Greenwald-Khanna Streaming
Quantile Summaries for Weighted Inputs. arXiv preprint arXiv:2303.06288 (2023).

Omri Ben-Eliezer, Rajesh Jayaram, David P. Woodruff, and Eylon Yogev. 2020. A Framework for Adversarially Robust
Streaming Algorithms. In Proceedings on Database Systems. arXiv:2003.14265 [cs.DS]

Manuel Blum, Robert W. Floyd, Vaughan R. Pratt, Ronald L. Rivest, Robert Endre Tarjan, et al. 1973. Time bounds for
selection. J. Comput. Syst. Sci. 7, 4 (1973), 448-461.

Andrej Brodnik, Alejandro Lopez-Ortiz, Venkatesh Raman, and Alfredo Viola. 2013. Space-Efficient Data Structures,
Streams, and Algorithms. Springer.

Graham Cormode, Zohar Karnin, Edo Liberty, Justin Thaler, and Pavel Vesely. 2021. Relative error streaming quantiles.
In Proceedings of the 40th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems. 96—108.
Graham Cormode, Flip Korn, Shanmugavelayutham Muthukrishnan, and Divesh Srivastava. 2006. Space-and time-
efficient deterministic algorithms for biased quantiles over data streams. In Proceedings of the twenty-fifth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems. 263-272.

Graham Cormode and Shan Muthukrishnan. 2005. An improved data stream summary: the count-min sketch and its
applications. Journal of Algorithms 55, 1 (2005), 58-75.

Graham Cormode and Pavel Vesely. 2020. A tight lower bound for comparison-based quantile summaries. In Proceedings
of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems. 81-93.

Graham Cormode and Ke Yi. 2020. Small summaries for big data. Cambridge University Press.

David Felber and Rafail Ostrovsky. 2017. A Randomized Online Quantile Summary in O((1/¢) log(1/e)) Words.
Theory of Computing 13, 1 (2017), 1-17.

Anna C Gilbert, Brett Hemenway, Atri Rudra, Martin J Strauss, and Mary Wootters. 2012. Recovering simple signals.
In 2012 Information Theory and Applications Workshop. IEEE, 382-391.

Michael Greenwald and Sanjeev Khanna. 2001. Space-efficient online computation of quantile summaries. ACM
SIGMOD Record 30, 2 (2001), 58—66.

Anupam Gupta and Francis X. Zane. 2003. Counting Inversions in Lists. In Proceedings of the Fourteenth Annual
ACM-SIAM Symposium on Discrete Algorithms (Baltimore, Maryland) (SODA ’03). Society for Industrial and Applied
Mathematics, USA, 253-254.

Moritz Hardt and David P Woodruff. 2013. How robust are linear sketches to adaptive inputs?. In Proceedings of the
forty-fifth annual ACM symposium on Theory of computing. 121-130.

Hemant Ishwaran, Udaya B Kogalur, and Maintainer Udaya B Kogalur. 2023. Package ‘randomForestSRC’. breast 6, 1
(2023), 854.

Zohar Karnin, Kevin Lang, and Edo Liberty. 2016. Optimal quantile approximation in streams. In 2016 ieee 57th annual
symposium on foundations of computer science (focs). IEEE, 71-78.

J Ian Munro and Mike S Paterson. 1980. Selection and sorting with limited storage. Theoretical computer science 12, 3
(1980), 315-323.

Moni Naor and Eylon Yogev. 2015. Bloom filters in adversarial environments. In Annual Cryptology Conference.
Springer, 565-584.

Nisheeth Shrivastava, Chiranjeeb Buragohain, Divyakant Agrawal, and Subhash Suri. 2004. Medians and beyond: new
aggregation techniques for sensor networks. In Proceedings of the 2nd international conference on Embedded networked
sensor systems. 239-249.

Qi Zhang and Wei Wang. 2007. An efficient algorithm for approximate biased quantile computation in data streams. In
Proceedings of the sixteenth ACM conference on Conference on information and knowledge management. 1023-1026.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 109. Publication date: May 2024.

https://www.javadoc.io/doc/io.micrometer/micrometer-core/0.11.0.RELEASE/io/micrometer/core/instrument/stats/quantile/GKQuantiles.html
https://www.javadoc.io/doc/io.micrometer/micrometer-core/0.11.0.RELEASE/io/micrometer/core/instrument/stats/quantile/GKQuantiles.html
https://sublinear.info/index.php?title=Open_Problems:2
https://sublinear.info/index.php?title=Open_Problems:2
https://docs.rs/quantiles/latest/quantiles/
https://arxiv.org/abs/2003.14265

109:20 Elena Gribelyuk, Pachara Sawettamalya, Hongxun Wu, & Huacheng Yu

[27] Ying Zhang, Xuemin Lin, Jian Xu, Flip Korn, and Wei Wang. 2006. Space-efficient relative error order sketch over data
streams. In 22nd International Conference on Data Engineering (ICDE’06). IEEE, 51-51.

A THE ORIGINAL GK SKETCH

For completeness, we present the procedure of the original GK sketch of [18]. In addition to the
basic ingredients from Section 2.1, the original GK sketch also relies on the following more-involved
components, which we briefly discussed in Section 3.3.

Bands. First, the GK sketch divides all tuples into “bands”™: in particular, at any time ¢ and for any
e; € M;, the authors define band, (e;) to be an integer that satisfies the following two properties:

e Scale: band,(e;) ~ log, (et — A;);
o Consistency: for any two elements e; and e, if band, (e;) = band,(e;) at time ¢, for all future
t' > t, we always have band, (e;) = band, (e;).

To satisfy the two properties above, the band value is defined as
band;(e;) = min{a € Z | [et] — A; < 2% + | et] mod 2%}.

Observe that this definition clearly satisfies the first property. Intuitively, the second one holds,
since we can equivalently write

band;(e;) = min{a € Z | |et] — 2% — | et] mod 2% < A;}.

So, we note that the a"-band contains all elements i with A; € (|et] — 2% — | et] mod 2%, | et] —
2471 — | et| mod 2%7!]. Roughly speaking, the | et| mod 2% term cancels out the increase of | et]
and keeps the boundary static. For a detailed proof that this definition satisfies the consistency
property, readers may refer to the original paper [18].

Tree Structure and g*-values. The idea of bands alone can only give a suboptimal space complexity
of O(log(en)?/e). To achieve optimal space complexity, the original GK sketch and prior work need
to arrange the elements in M; into a tree structure.

For any element e; € M,, its parent on the tree is defined as

parent,(e;) = min{e; | j > i and band,(e;) > band, (e;)}.

If no such element e; exists, define the parent, (e;) to be a special tree root R. Crucially, this tree
structure maintains the invariant that the collection of all descendants of any node e; forms a
continuous interval of elements in M;, i.e. e;, e11,.. ., e;. Then, g;f is defined as the sum of the
g-values of all these descendants, i.e. g; = gi + gix1 + - +gj.

Algorithm 6: Compress the subtrees of e; and e;.1 (GK sketch [18])

1 Let e, e;41 € M, be two adjacent elements in memory.
2 if band;(e;) < band;(e;;;) then

3 if g + giz1 + Aiy1 < et then

Jir1 < g; + gir1-

Ajy1 and t;4 remain unchanged.

A G e

Remove all descendants of e; (including itself) from M; and remove the
corresponding tuples from 7;.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 109. Publication date: May 2024.

Simple & Optimal Quantile Sketch: Combining Greenwald-Khanna with Khanna-Greenwald 109:21

Procedure. Finally, we are ready to present the algorithm of the original GK sketch, which crucially
relied on the two components defined above (in addition to g— and A-values, as we described in
Section 2.1). To insert a new stream element x;, the insertion procedure is the same as Algorithm 1.
But, the algorithm to merge pairs stored in M; is more complex: after every 1/e insertions, the
original GK sketch performs the compression procedure (see Algorithm 6) for each element e; € M;.

Importantly, we highlight that, unlike our simplified algorithm, it does not suffice to only consider
merging adjacent elements e; and e;;; in the original GK sketch. Instead, the algorithm of [18]
must check the entire subtree of ¢; and e;;;. However, it is not clear why merging entire subtrees
should be necessary, and indeed, we give a simplified algorithm that avoids both the complex tree
structure and the band-values entirely. We note that this tree structure makes implementing the
original GK sketch quite difficult, and this is the main reason why the original GK sketch (with
theoretical guarantees) is often not implemented in practice.

B PROOF OF LEMMA 9

To prove Lemma 9, we first need the following observation.

Observation 25. At any timet in the algorithm, we always have A;1 < €tiyg — 1.

gir1 = 1 since we just inserted e;;1, we have A;;; < ety — 1. Then since the A value is always
unchanged during merging, the inequality continues to hold. O

Proor. When we insert e;;; at time t;;1, by Invariant (A1), we know that g;1; + A4 < et. As

ProoF. (Proof of Lemma 9) We associate with each element x;/ in the input stream (not necessarily

a representative) a potential
Pro (1) = 1+e(t—t)

Note that this potential changes over time t. The recently inserted representatives weigh more
than the old representatives.

On the one hand, we have an upper bound on the total potential of all elements inserted before
t. (Note there is only one set S; containing x;. So it is without loss of generality to consider only
elements inserted strictly before ¢.)

-1 -1
1 (1+0(1)) log(et)
Z:px"(t):z:1+e(t—t’): € '
=1 =1
- — - 1+[et] 1 _ (1+0(1)) log(et)
The last step holds because Y5, WLV) =Y < Loy el o S oeel

On the other hand, for any pair (i, i + 1) that is non-mergeable and ¢; > t;;1, we want to prove
that the sets represented by them have a large total potential. For any such pair (i, i + 1), we must
have g; + gi+1 + Aiy1 > €t. The following observation upper bounds Ajy;.

Hence, we know that g; + gis1 > 1+ €(t — tj11). As a result,

1
Z P, (1) = Z Tret—1)

Xy €SiUSin1 Xy €5iUSi1
S;iUS;
> 1S: .”l' (Invariant (A3))
1+ G(I - mll’l(ti, ti+1))
gi + gi+1
> ————— b >t
1+€(t—ti+1) (' l+1)
>1 (Observation (25))

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 109. Publication date: May 2024.

109:22 Elena Gribelyuk, Pachara Sawettamalya, Hongxun Wu, & Huacheng Yu

To conclude the proof, the total potential is w and each not-mergeable pair with

t; > tiy1 has potential at least 1. Since each e; may belong to two such pairs, there can be at most

C MISSING PROOFS FROM SECTION 4

We have shown, via Section 4.2, that invariant (B0) holds throughout the algorithm. Thus, it remains
showing that invariants (B1), (B2), and (B3) are all maintained by our simplified algorithm for the
unweighted stream setting.

Lemma 26. Invariants (B1), (B2), and (B3) stated in Table 2 hold throughout the runtime of our
algorithm.

Proor. To show that these invariants are maintained throughout our algorithm, we will show
that they are each maintained after insertion and compression operations.

(1) Invariant (B1): Ve; € My, 221 |{e € Sjle < e} < Ay and 1} [{e € S3le > e;}] < AS.

First, suppose we insert a new element x; which is the i"-smallest element in M,. Then, we
set A; = giy1 + Aj1q. Since Ay was already a valid upper bound on the number of elements
e € Sjfor j > i+ 2 such that e < ¢; and g;4; is the number of other elements that are
represented by ey, it follows directly that Ye; € M,, lei\/l‘;ll [{e € Sjle < e;}| < A; upon
insertion (this is also shown for the toy algorithm in Claim 6). The analogous inequality for
A? follows by a similar argument.
Next, suppose two adjacent elements (e;, e;+1) € M, are mergeable and we perform a
compression operation. There are two cases here: if t; > t;,1, we set giy1 < g;i + g7 + gis1 + 1
and leave A; unchanged; moreover, we interpret this as merging sets S; U S7 U {e;} into S;4;.
In fact, we can see that invariant (B1) directly carries over from before the merge operation,
so the claim follows by induction. The case that #; < t;;; can be shown similarly.

(2) Invariant (B2): Ve; € M;, g; + A; < et and g7 + A} < et.

For any insertion x; which is the i"_gmallest element in M,, we initialize gi =0,5; =0, and
set A; = giy1 + Aji1. Then, it follows trivially that g; + A; = gi+1 + Aiy1 < €t. Likewise, by
initializing the “mirrored” attributes as g7 = 0, S; = 0, and A7 = g7_, + A;_,, we also have
that g7 + A} = g7_, +A]_| < et.

Now, we show that this property is preserved after compressing a mergeable pair of adjacent
elements (e;, e;11) € M;. For simplicity, we consider the case that t; > t;1; and we set
Jis1 < gi+g; +gir1+1 (the other case that t;;; > t; will be symmetric). In fact, by the definition
of our algorithm, we can merge (e;, e;41) (With t; > t;41) only if g; + g7 + gis1 + Ajyq < €t; this
requirement enforces the property that, after merging, we maintain g;+1 + A;+1 < €t (and the
tuples for all other elements are unchanged).

(3) Invariant (B3): Vx € S; US;, t’ > t;, where t; is the insertion time of representative e;.

Suppose we insert an element x; which is the i"-smallest element in M,. Then, by definition,
we set g; = g7 = 0, and think of S; = S7 = 0; also, we initialize t; < t. So, at the time of
insertion, this invariant is trivially satisfied.
Now, we check that this property is maintained after any merge operation. Suppose (e;, ei+1) €
M, is a mergeable pair of adjacent elements, and we assume that the invariant holds at time
t — 1. Importantly, we recall that our algorithm works as follows: if #; > #;;; and merging
would not disrupt the additive-error guarantee, then we merge S; U S; into S;,;. Since the
invariant held at ¢t — 1, we know that every x € S; U S had t, > t;; thus, it follows that
ty > t; > tiyq for every x € S;i after merging. Likewise, we can argue the case that ¢; < tj4;
via a very similar argument.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 109. Publication date: May 2024.

Simple & Optimal Quantile Sketch: Combining Greenwald-Khanna with Khanna-Greenwald 109:23

This completes the proof. O

D MISSING PROOFS FROM SECTION 5

In this section, we show that the generalization of our algorithm to weighted streams illustrated in
Section 5 preserves correctness of approximation and desirable space usages. Our proofs follow
closely from those in Section 4.3 and 4.2.

D.1 Correctness

We first discuss the correctness of our algorithm for weighted streams. With the same proofs as
Lemma 26, we can show that the invariants (C0) , (C1), (C2), and (C3) are maintained. For the sake
of succinctness, we shall omit these proofs.

Crucially, we need to justify answering rank query in the weighted setting. Note that they follow
closely the proofs of Observation 17 and Lemma 18.

Observation 27. For any elemente; € M,, let rank(?) (e;) be the rank of e; with respect to the stream

inserted until time t. Then, we see that réfi)n(ei) < rank (¢;) < rr(,fgx(ei), where

i i i

i i-1 i i-1

rl(rfiil(ei) = Zw(ej)+ZGj+ZG;—A? and rrgf;x(ei) = Zw(ej)+ZGj+A,~+ZG;.
j=1 j=1 j=1 Jj=1 Jj=1 J=1

Proor. We define rankg) (e;) to be the total weights of elements in [, ¢ o1, S; that are smaller

than e;, that is rankg)(ei) = w({e € Ue,em, S | e < e;}). Similarly, we define rankgo) (e;) =

w({e € UejeMz S;.’ | e < e;}). Then we have rank(t)(e,-) = rankg)(ei) + rankéi)(e,-) + Z;,:l wi(ej).

(Note ey, ey, ..., e;_1, ¢; are not in these S;’s and S;’s.)
We know that
[M|
rankg)(el—) = Z w({eeS;|e<e})

j=1

i [M|

= ZW(SJ') + Z w({eeS;|e<e}).
j=1 j=itl

The second term is lower bounded by 0 and upper bounded by A;. Similarly, due to the fact that
forall j > i, e < S;?, we have

[Ml i-1
rankgo (e;) = Z w({e€S]|e<e}) = ZW(S;) -w({eeS;|e<e})/
Jj=1 j=1

The sum of the second term is upper bounded by 0 and lower bounded by —A;.
Putting these together, we get

i i i-1 i-1
ZGJ- < rankg)(ei) <A+ ZG]- and Z G; - A7 < rank(Sto)(e,-) < Z G;.
= =1 =1 J=1

Together with rank?) (e;) = rankg) (e;) + rankéi) (e;) + Zj,:l w(ej), this finishes the proof.)

Lemma 28. As long as the invariant (C2) holds at time t, our sketch can answer any rank query
x € U with eW, additive error.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 109. Publication date: May 2024.

109:24 Elena Gribelyuk, Pachara Sawettamalya, Hongxun Wu, & Huacheng Yu

Proor. Let i € [|M;]|] such that e; < x < e;;;. We claim that the estimator rm(t(x) =

r (e)+rid) (ein) —wlei)
2

obtains an e-approximation to rank® (x).

Since, e; < x < ejy1 , from Observation 17 we must have rr(lfiil(ei) < rank' (¢;) < rank® (x) <
rank(”(em) —w(ep1) < rr(nta)x(em) — w(ei+1). Hence,
(t) ()
— Foax (€iv1) — w(eir1) — 7 (e;
|rank(t) (x) - rank(t)(x)l < max (€i+1) (2 i+1) mln(i)
(G + D) + (G + A7)
B 2
< eW;
following the invariant (B2).)

D.2 Space Analysis

In this section, we adapt the potential argument of Section 3.2 and finish the proof of Theorem 10.
The most important change is the change in the potential function. Recall that wy, is the smallest
weight of all elements.

Lemma 29. At any timet, the total number of pairs (e;, ei+1) in M, that cannot be merged is at most
(2+0(1)) log(e'Wt/Wmin)
- .

Proor. For any stream element x;- inserted at time ¢’ < t (which might no longer reside in the
memory), we assign it a potential given by
w(xy)
Winin + €(W; — Wy _1) .
On the one hand, the total potential of all elements is bounded. Since there is at most one e; € M,
with t; = t, we only focus on elements inserted strictly before time ¢.

Dx, (t) =

fz‘l o= wixr) . (1+0(1)) log(e W,/ Winin)
=1 Py =1 Wmin + E(VV} - ‘/Vt/—l) h €

where the final inequality follows from Fact 31 in Appendix E.
On the other hand, for any pair (e;, e;41) that is not mergeable, we want to prove that the total
potential in §; U S? U S;11 U S?,; U {e;, 541} is high. Focusing on the case where t; > t;,1, we know

that g; + g7 + gis1 + Aiy1 + w(e;) > €W,. Then, we have that

w(xy)
Py (1) = Wnin + €(W; — Wy _y)
Xyt ES[US?USH] US§+1U{€[,€L‘+1} Xyt ES[US?US[H U{ei,ei+1 } min ¢ -1
Gi+ G} + Gy +w(e;) + w(eirr)
h Wmin+€(vvt _Mi+1—1)
(Invariant (C3) and t; > tj41)
w(eir1) + €Wy — A;
> (eis1) ! s (Non-mergeability)
Wmin + E(M/t - Mftm—l)
Wmnin + GVV} - Ai+1 (W > W)
B Wnin + G(Wt - th—1) I
>1

Here, the last step follows from the fact that, when we insert e;;;, by invariant (C2), we have
Ai+1 = Gi + Ai < EVVtH]—L

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 109. Publication date: May 2024.

Simple & Optimal Quantile Sketch: Combining Greenwald-Khanna with Khanna-Greenwald 109:25

From symmetry, we see that in the case when #; < t;;, the total potential for any not mergeable

pair (e;, e;41) is also at least 1. Also, e;, S;, S; contributes to the potential of at most two not mergeable

pairs. As a result, there can be at most (2ro() IOge(e'W’/ Wiain) many not mergeable pairs in M;, as

desired. m]

Corollary 30. When all weights w; < poly(n), the space required for our e-approximate quantile
summary on weighted streams is at most O(e™ ! log(en)).

E MISCELLANEOUS
In this part, we provide the omitted proof for Fact 31.

Fact 31. Foranyay,...,a; € R* and ap < min{ay, ..., a;}, we have
t

ag 1+0(1) €-(ay+...+a;)
Z < log .
£ ag + elag +...+a;) € ap
Proor. First, we upper bound each term ———2——_ Observe that

ap+e(ag+...+az)

ag 1

T
ap+e(ag +...+a;) —ag+ elag + ...+ ay)

eay

IN
=

Z ag+e(ar +...+a)+v

v=1

1+0(1) 1 ao+e(ar +...+ay)
0
ag + €(ager + ... +az)

where the last inequality follows by making a change of variables and applying the fact that
- % = (1+0(1)) log(t). Summing over all k € [t] and applying the term-wise upper bound from
above, we see that

2 ag < 1+0(1) Zt:log ap+e(ag +...+ay)
ag+e(ap+...+az) — € P ag + €(agyr + ... + az)

k=1
1+0(1) (e(a1+...+at))
log

€ ap

as desired.]

Received December 2023; revised February 2024; accepted March 2024

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 109. Publication date: May 2024.

	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Further Related Works

	2 Preliminaries
	2.1 The Basic Setup

	3 Warm up: An (over)simplified GK algorithm
	3.1 Our Motivation: The Toy Algorithm
	3.2 The Easy Case: a Novel Potential Analysis
	3.3 Handling the Hard Case: Some Heavy Lifting

	4 Combining GK sketch with another ``mirrored'' GK sketch
	4.1 Our Algorithm
	4.2 Correctness
	4.3 Space Analysis
	4.4 Efficient Data Structures for our Algorithm

	5 Generalization for weighted streams
	5.1 Our algorithm for the weighted stream setting

	References
	A The original GK sketch
	B Proof of Lemma 9
	C Missing Proofs from Section 4
	D Missing Proofs from Section 5
	D.1 Correctness
	D.2 Space Analysis

	E Miscellaneous

