
.

.

Latest updates: hps://dl.acm.org/doi/10.1145/3651610
.

.

RESEARCH-ARTICLE

Simple & Optimal antile Sketch: Combining
Greenwald-Khanna with Khanna-Greenwald

ELENA GRIBELYUK, Princeton University, Princeton, NJ, United States
.

PACHARA SAWETTAMALYA, Princeton University, Princeton, NJ,
United States
.

HONGXUN WU, University of California, Berkeley, Berkeley, CA, United
States
.

HUACHENG YU, Princeton University, Princeton, NJ, United States
.

.

.

Open Access Support provided by:
.

Princeton University
.

University of California, Berkeley
.

PDF Download
3651610.pdf
25 January 2026
Total Citations: 3
Total Downloads: 470
.

.

Published: 13 May 2024
.

.

Citation in BibTeX format
.

.

Proceedings of the ACM on Management of Data, Volume 2, Issue 2 (May 2024)
hps://doi.org/10.1145/3651610

EISSN: 2836-6573

.

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3651610
https://dl.acm.org/doi/10.1145/3651610
https://dl.acm.org/doi/10.1145/contrib-99661204056
https://dl.acm.org/doi/10.1145/institution-60003269
https://dl.acm.org/doi/10.1145/contrib-99661207514
https://dl.acm.org/doi/10.1145/institution-60003269
https://dl.acm.org/doi/10.1145/institution-60003269
https://dl.acm.org/doi/10.1145/contrib-99661206073
https://dl.acm.org/doi/10.1145/institution-60025038
https://dl.acm.org/doi/10.1145/institution-60025038
https://dl.acm.org/doi/10.1145/contrib-89758837857
https://dl.acm.org/doi/10.1145/institution-60003269
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60003269
https://dl.acm.org/doi/10.1145/institution-60025038
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3651610&targetFile=custom-bibtex&format=bibtex

Simple & OptimalQuantile Sketch: Combining
Greenwald-Khanna with Khanna-Greenwald
ELENA GRIBELYUK, Princeton University, USA

PACHARA SAWETTAMALYA, Princeton University, USA

HONGXUN WU, UC Berkeley, USA

HUACHENG YU, Princeton University, USA

Estimating the 𝜖-approximate quantiles or ranks of a stream is a fundamental task in data monitoring. Given

a stream 𝑥1, ..., 𝑥𝑛 from a universe U with total order, an additive-error quantile sketch M allows us to

approximate the rank of any query 𝑦 ∈ U up to additive 𝜖𝑛 error.

In 2001, Greenwald and Khanna gave a deterministic algorithm (GK sketch) that solves the 𝜖-approximate

quantiles estimation problem using 𝑂 (𝜖−1 log(𝜖𝑛)) space [18]; recently, this algorithm was shown to be

optimal by Cormode and Vesleý in 2020 [14]. However, due to the intricacy of the GK sketch and its analysis,

over-simplified versions of the algorithm are implemented in practical applications, often without any known

theoretical guarantees. In fact, it has remained an open question whether the GK sketch can be simplified

while maintaining the optimal space bound. In this paper, we resolve this open question by giving a simplified

deterministic algorithm that stores at most (2 + 𝑜 (1))𝜖−1 log(𝜖𝑛) elements and solves the additive-error

quantile estimation problem; as a side benefit, our algorithm achieves a smaller constant factor than the

11

2
𝜖−1 log(𝜖𝑛) space bound in the original GK sketch [18]. Our algorithm features an easier analysis and still

achieves the same optimal asymptotic space complexity as the original GK sketch.

Lastly, our simplification enables an efficient data structure implementation, with a worst-case runtime

of 𝑂 (log(1/𝜖) + log log(𝜖𝑛)) per-element for the ordinary 𝜖-approximate quantile estimation problem. Also,

for the related “weighted” quantile estimation problem, we give efficient data structures for our simplified

algorithm which guarantee a worst-case per-element runtime of 𝑂 (log(1/𝜖) + log log(𝜖𝑊𝑛/𝑤min)), achieving
an improvement over the previous upper bound of [7].

CCS Concepts: • Theory of computation→ Sketching and sampling.

Additional Key Words and Phrases: quantiles, sketching, streaming

ACM Reference Format:
Elena Gribelyuk, Pachara Sawettamalya, Hongxun Wu, and Huacheng Yu. 2024. Simple & Optimal Quan-

tile Sketch: Combining Greenwald-Khanna with Khanna-Greenwald. Proc. ACM Manag. Data 2, 2 (PODS),
Article 109 (May 2024), 25 pages. https://doi.org/10.1145/3651610

1 INTRODUCTION
Computing the approximate ranks or quantiles with respect to a stream of elements is central to

our understanding of the distribution of massive datasets. In settings where the size of a dataset

exceeds the feasible amount of storage, streaming algorithms help to store specific information

Authors’ addresses: Elena Gribelyuk, Princeton University, NJ, USA, eg5539@princeton.edu; Pachara Sawettamalya, Prince-

ton University, NJ, USA, pachara@princeton.edu; Hongxun Wu, UC Berkeley, CA, USA, wuhx@berkeley.edu; Huacheng Yu,

Princeton University, NJ, USA, yuhch123@gmail.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 2836-6573/2024/5-ART109

https://doi.org/10.1145/3651610

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 109. Publication date: May 2024.

https://doi.org/10.1145/3651610
https://doi.org/10.1145/3651610

109:2 Elena Gribelyuk, Pachara Sawettamalya, Hongxun Wu, & Huacheng Yu

about the data, called the sketch, while not storing the entire data stream in memory. A natural

computational model for this setting is the streaming model [5].
In this work, we study the quantile estimation problem in the streaming model, wherein elements

𝑥1, ..., 𝑥𝑛 arrive one at a time, and we hope to estimate the rank of any query 𝑦 ∈ U up to additive-

error 𝜖𝑛 after processing the stream into some data structureM. Note that the query may be

presented at any point in the stream, in which case we hope to approximate the rank of the query

element with respect to the stream seen so far. Furthermore, we focus our attention on comparison-
based algorithms, which are only allowed to compare elements via the total-ordering on universe

U.

There are multiple related definitions for the 𝜖-quantile-estimation problem in the streaming

literature. Alternatively, we may pose a query 𝑟 ∈ [𝑛] and require the streaming algorithm to

return an element 𝑥 such that |rank(𝑥) − 𝑟 | ≤ 𝜖𝑛 with respect to the stream observed so far. In

other formulations, the algorithm may be given advance knowledge of the specific query 𝑥∗ ∈ U
that will be asked at the end. We note that all of these variants can be solved by solving the

harder all-quantiles 𝜖-approximate quantile estimation problem, which maintains an 𝜖-approximate

quantile estimate for every possible query 𝑥 ∈ U simultaneously. Formally, we define the problem

as follows:

Definition 1 (All-Quantiles Sketch). Given a stream of elements 𝑥1, ..., 𝑥𝑛 arriving one at a time,

compute a sketchM and an estimator r̂ank
(𝑡)

such that for any query 𝑥 ∈ U presented at any time 𝑡

in the stream, we have that |r̂ank
(𝑡)
(𝑥) − rank(𝑡) (𝑥) | ≤ 𝜖𝑛, where rank(𝑥) represents the true rank of

element 𝑥 with respect to the stream elements observed so far.

Over the past 50 years, this problem has been studied under various formulations. The celebrated

median of medians algorithm by Blum et al. [9] finds the median of 𝑛 elements from any universe

U with total order deterministically using 5.43𝑛 time and 𝑛 space. Naturally, one might have hoped

for a sublinear-space algorithm for computing the exact median of 𝑛 elements which appear in

a streaming fashion. Unfortunately, this was shown to be impossible: Munro and Paterson [23]

proved that any streaming algorithm that can make 𝑝 passes over the input stream requires at least

Ω(𝑛1/𝑝) space to find the exact median.

In many downstream applications, it suffices to find an approximate quantile, or more generally,

the 𝜖-approximate 𝜙-quantile for any 𝜙 ∈ [0, 1]. To this end, Manku, Rajagopalan, and Lindsay

gave the first streaming algorithm for approximate quantiles with theoretical guarantee. The MRL

algorithm takes 𝑂 (𝜖−1 log2 (𝜖𝑛)) space. This is improved by Greenwald and Khanna [18]. They

proposed the intricate GK algorithm that achieves 𝑂 (𝜖−1 log(𝜖𝑛)) space. This bound was later

proved to be optimal for deterministic algorithms (even for the approximate median problem) by

Cormode and Vesleý [14].

Moreover, if we allow algorithms to be randomized, one approach is to sample Θ(𝜖−1 log(1/𝛿))
elements from the stream and maintain them with using a GK sketch; this already gives an

𝑂 (𝜖−1·(log(1/𝜖)+log log(1/𝛿)))-space algorithm that correctly answers one 𝜖-approximate quantile

query with probability 1 − 𝛿 . But, observe that this simple algorithm would require that the stream

length 𝑛 is known in advance. A follow-up work by Felber and Ostrovsky [16] later showed that one

can achieve the same space bound without prior knowledge of the stream length 𝑛. Finally, Karnin,

Lang, and Liberty gave an improved algorithm (KLL sketch) that requires only 𝑂 (𝜖−1 log log(1/𝛿))
space, and showed a matching lower bound [22]. Importantly, the deterministic GK sketch is

actually an essential component of both of these algorithms.

Deterministic streaming algorithms are interesting objects of study for their own sake. First,

when insisting that the algorithm must always succeed (meaning that 𝛿 < 1/𝑛!, as there are

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 109. Publication date: May 2024.

Simple & Optimal Quantile Sketch: Combining Greenwald-Khanna with Khanna-Greenwald 109:3

𝑛! possible inputs), the lower bound in Karnin, Lang, and Liberty [22] shows that randomized

streaming algorithms cannot beat deterministic algorithms for approximate quantile estimation.

Additionally, there have been many recent works on the adversarially robust streaming model,
wherein an adversary may make queries at each time 𝑡 during the stream and selects future stream

elements after observing the previous outputs of the algorithm [4, 8, 17, 20, 24]. So, by making

repeated quantile queries to a randomized quantile sketch, an adaptive adversary may eventually

learn which elements were sampled by the randomized algorithm (i.e. the internal randomness of

the algorithm), and can select the rest of the input adversarially in order to break the error guarantee

of the streaming algorithm. This is very concerning, as it is known that many natural streaming

problems require Ω(𝑛) space if the computation is carried out by a deterministic algorithm. However,

luckily for us, the 𝜖-approximate quantile estimation problem admits sublinear-space solutions, and

deterministic algorithms are automatically adversarially robust due to their correctness guarantee

for all possible inputs.

In practice, the GK algorithm is quite popular. It is implemented in Spark-SQL [6] and also in

various third-party packages [1, 3, 21] for popular programming languages such as Java, R, and

Rust. However, since both the GK algorithm and its analysis are very intricate, what is actually

implemented is a (over)simplified variant. It is an open problem asked by Cormode and Yi in their

book [15] whether this variant has any nontrivial theoretical guarantee. Motivated by this, it was

asked in [14] if there is a simpler algorithm without intricate merging of tuples achieves the optimal

space bound. Similar questions are also asked as Problem 2 of “List of Open Problems in Sublinear

Algorithms” [2]. Prior to our work, Assadi et al. [7] took a step towards resolving this open problem

by proposing a simplified version of GK algorithm that requires 𝑂 (𝜖−1 log2 (𝜖𝑛)) space (note: this
is the same space bound as the MRL algorithm). However, it was still open to construct a simplified

algorithm that achieves the optimal space bound of 𝑂 (𝜖−1 log𝑛).
Lastly, the recent work of [7] also gave a non-trivial generalization of the approximate quantile

estimation problem for weighted streams. In this setting, each stream element 𝑥𝑖 carries a weight

𝑤 (𝑥𝑖), and the rank of any query𝑦 ∈ U is calculated with respect to the weights of stream elements;

that is, rank(𝑦) = ∑
𝑥𝑖⪯𝑦𝑤 (𝑥𝑖). Specifically, the problem statement is as follows:

Definition 2 (All-Quantiles Sketch forWeighted Streams). Given a input stream of pairs (𝑥1,𝑤 (𝑥1)),
(𝑥2,𝑤 (𝑥𝑤)), . . . , (𝑥𝑛,𝑤 (𝑥𝑛)) arriving one at a time, let

∑𝑡
𝑖=1𝑤 (𝑥𝑖) =𝑊𝑡 denote the total weight for

the first 𝑡 elements. An all-quantile sketch approximates the rank of query 𝑥 ∈ U with r̂ank

(𝑡)
(𝑥)

such that |r̂ank
(𝑡)
(𝑥) − rank(𝑡) (𝑥) | ≤ 𝜖𝑊𝑡 .

We note that by simply interpreting each (𝑥𝑖 ,𝑤 (𝑥𝑖)) as 𝑥𝑖 appearing𝑤 (𝑥𝑖) times consecutively

in the stream and inserting each copy of 𝑥𝑖 into our sketch (M𝑡 ,I𝑡) one-by-one, we would trivially
obtain an 𝜖-quantile summary using 𝑂 (𝜖−1 log(𝜖𝑊𝑛)) space for the weighted stream setting. How-

ever, the major disadvantage of inserting𝑤 (𝑥𝑖) copies of 𝑥𝑖 one-at-a-time is that the insertion-time

for each element (𝑥𝑖 ,𝑤 (𝑥𝑖)) scales linearly with the weight of 𝑥𝑖 . To this end, the algorithm of [7]

achieved a worst-case runtime of 𝑂 (log(1/𝜖) + log log(𝜖𝑊𝑛) + log
2 (𝜖𝑊𝑛)
𝜖𝑛

) per-element. In ??, we
show that our algorithm can be extended to solve this general problem on weighted streams as

well.

1.1 Our Results
In this work, we propose a variant of GK sketch that is both simple and optimal, storing at most

2+𝑜 (1)
𝜖

log(𝜖𝑛) elements. In fact, this improves upon the constant factor of
11

2
of the original GK

sketch [18]. At a high-level, the original GK sketch maintains a set of representatives {𝑒𝑖 }, such
that each element 𝑥𝑡 that appears in the stream is represented by some 𝑒𝑥𝑡 (𝑥𝑡 may itself be a

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 109. Publication date: May 2024.

109:4 Elena Gribelyuk, Pachara Sawettamalya, Hongxun Wu, & Huacheng Yu

representative stored in sketchM, or it may have been deleted earlier and is now represented by

some other stream element 𝑒𝑥𝑡). Furthermore, at each time step, the GK sketch decides whether

to merge two adjacent representatives in memory (𝑒𝑖 , 𝑒𝑖+1) such that the algorithm maintains an

additive-error of 𝜖𝑡 at all times 𝑡 ∈ [𝑛] – this inherently limits the number of elements 𝑥𝑖 that one

𝑒 𝑗 can represent. Additionally, when merging (𝑒𝑖 , 𝑒𝑖+1), the GK algorithm always keeps the larger

representative 𝑒𝑖+1 of the two sets, and uses it to represent the set of elements that were.

There are two involved components in the original GK algorithm:

(1) First, the authors define the notion of a band value for each element 𝑒𝑖 ∈ M𝑡 ; by grouping

elements into a small number of “bands,” each of which contains elements with similar

insertion times, the original GK algorithm keeps track of some measure of how accurate our
current estimate for the rank of each 𝑥 ∈ U would be.

(2) Second, the authors merge representatives 𝑒𝑖 according to a particular tree structure over the
sets of elements covered by each representative 𝑒𝑖 . To achieve the optimal space bound, their

algorithm must merge all the sets in an entire subtree when certain invariants are satisfied.

This approach inherently complicates the implementation of the GK sketch.

Roughly speaking, the analysis of the original GK algorithm can be divided into handling an

“easy case” and a “hard case.” Both of the components described above are essential for resolving

the hard case. In attempt to simplify previous approaches, in Section 3, we begin our journey with

a (over)simplified version of the GK algorithm. This version achieves the optimal space bound for

the easy case, but has no space guarantees for the hard case. However, in Section 4, we show that

by combining this over-simplified algorithm with its “mirroring,” we are able to avoid dealing with

the hard case entirely. Here, the mirroring of a GK sketch is obtained by flipping the total ordering

of the universeU, and maintaining a second GK sketch over the flipped ordering. Additionally,

while the original GK sketch maintains the invariant that each representative 𝑒𝑖 is larger than the

set of elements that it represents, our algorithm maintains the property that the representative

element 𝑒𝑖 is always the oldest element among those it represents. This change allows for a more

intuitive algorithm, since, as we will see later, older elements give rise to smaller margins of error.

Lastly, we provide efficient data structures for our algorithms in both the unweighted and

weighted streaming settings. In particular, since our algorithm only ever merges pairs of adjacent

elements, we simplify the implementation of [7] and obtain a worst-case running-time per element

of 𝑂 (log(1/𝜖) + log log(𝜖𝑡)) for unweighted streams, and 𝑂 (log(1/𝜖) + log log(𝜖𝑊𝑛/𝑤min)) for
weighted streams. Note that this improves upon the worst-case per-element running time of [7]

in the weighted streaming setting; since their algorithm relied on merging long “segments” of

representatives during each compression step, their algorithm obtained a worst-case per-element

runtime of 𝑂 (log(1/𝜖) + log log(𝜖𝑊𝑛) + log
2 (𝜖𝑊𝑛)
𝜖𝑛

).
Overall, our algorithm achieves both simplicity and optimality. We also present a novel potential

analysis which circumvents the technical difficulties introduced in the GK sketch.

1.2 Further Related Works
Although in this work we focused only on comparison-based algorithms, there are non-comparison-

based algorithms [10, 13, 25] that depend on the universe U. For example, the q-digest [25]

algorithm by Shrivastava et al. uses 𝑂 (𝜖−1 log |U|) words of memory. Note for non-comparison-

based algorithms, one has to assume the prior knowledge of the universeU, which limits their

application to floating point numbers in practice. Another difference is that for comparison-based

model, we are counting the memory usage by the number of elements stored. But in the non-

comparison-based model, there is a difference between the number of words used and the number

of bits. This makes the comparison-based model a more generic model in theory.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 109. Publication date: May 2024.

Simple & Optimal Quantile Sketch: Combining Greenwald-Khanna with Khanna-Greenwald 109:5

Another interesting problem is the biased quantile problem, which instead of asking for a

[𝜙 − 𝜖, 𝜙 + 𝜖] quantile (absolute error), the problem asks for a [(1 − 𝜖)𝜙, (1 + 𝜖)𝜙] quantile (relative
error). There is a line of research on streaming biased quantiles [11, 12, 14, 19, 26, 27]. The state

of the art is a 𝑂

(
𝜖−1 log1.5 (𝜖𝑛) ·

√︁
log(log(𝜖𝑛)/𝜖𝛿)

)
-space randomized algorithm [11] by Cormode

et al. It worth mentioning that Cormode and Vesleý proved that any deterministic streaming

algorithm for biased quantile requires Ω(𝜖−1 log2 (𝜖𝑛)) space. Hence, this randomized algorithm

provably outperforms all deterministic ones. On the other hand, the GK algorithm does not seem

to straightforwardly extend to biased quantiles. The state of the art deterministic algorithm is the

one by Zhang and Wang [26] that takes 𝑂 (𝜖−1 log3 (𝜖𝑛)) space. It is an open problem to close this

gap for deterministic quantiles or to extend the GK algorithm to this setting.

2 PRELIMINARIES
LetU be the universe of elements with total order ≺. For any two elements 𝑥,𝑦 ∈ U, we write

𝑥 ≺ 𝑦 to denote that 𝑥 has smaller rank than 𝑦 inU. For a set of elements 𝑆 ⊆ U, we say 𝑥 ≺ 𝑆

when for all 𝑦 ∈ 𝑆 , we have 𝑥 ≺ 𝑦. We also denote ≻, ⪯, ⪰ analogously. Without loss of generality,

we assume that all the elements in the input stream are distinct elements inU.

Comparison-based model. In the comparison-based model, at any time 𝑡 , the memory of a stream-

ing algorithm is a tuple (M𝑡 , 𝐼𝑡) whereM𝑡 ⊆ U is a subset of elements (i.e. representatives), and 𝐼𝑡
contains arbitrary auxiliary information. At any time 𝑡 , the algorithm may perform comparisons

between any two elements inM𝑡 . We note that the memory usage of the algorithm is measured by

the size of |M𝑡 | only.

2.1 The Basic Setup
We first provide a general overview of the original construction for our GK-based algorithm. This

closely mimics the setup in [18].

Representatives. At any time 𝑡 , let S (𝑡) = {𝑥1, ..., 𝑥𝑡 } be the set of elements that have appeared in

the stream so far. At a high level, the GK sketch maintains a partition of S (𝑡) into a disjoint union

of sets and stores the largest element of each set inM𝑡 as the representative of that set. We use

𝑒
(𝑡)
𝑖

to denote the 𝑖th smallest element inM𝑡 at time 𝑡 . Likewise, 𝑆
(𝑡)
𝑖

denotes the set of elements

represented by 𝑒
(𝑡)
𝑖
∈ M𝑡 at time 𝑡 . We note that 𝑒

(𝑡)
𝑖

itself is also in 𝑆
(𝑡)
𝑖

; later in our work, we

will actually exclude 𝑒 (𝑡)
𝑖

from 𝑆
(𝑡)
𝑖

for convenience. Also, to simplify our notation, we omit the

superscript (𝑡) when it is clear from the context and simply write 𝑒𝑖 and 𝑆𝑖 .

By this construction, we see that

𝑒𝑖 ⪰ 𝑆𝑖 , ∀𝑒𝑖 ∈ M𝑡 . (A0)

This enforces a partition S (𝑡) = ⋃
𝑒𝑖 ∈M𝑡

𝑆𝑖 at each time-step 𝑡 . See Figure 1 for visual illustration.

Tuples. To maintain the error guarantee of the algorithm, the GK sketch also stores the following

additional information in I𝑡 .

Definition 3 (Tuples). For every representative 𝑒 (𝑡)
𝑖
∈ M𝑡 , the GK sketch stores a tuple (𝑔 (𝑡)

𝑖
,Δ(𝑡)

𝑖
)

in the auxiliary memory I𝑡 . We define 𝑔 (𝑡)
𝑖

,Δ(𝑡)
𝑖

as follows:

• 𝑔 (𝑡)
𝑖
← |𝑆 (𝑡)

𝑖
| is the number of elements in the set 𝑆 (𝑡)

𝑖
which is represented by stream element

𝑒
(𝑡)
𝑖

.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 109. Publication date: May 2024.

109:6 Elena Gribelyuk, Pachara Sawettamalya, Hongxun Wu, & Huacheng Yu

1 2 3 4 5 6 7 8 9

1

2

3

4

𝑒 𝑗

𝑆𝑖
𝑒𝑖

Universe

Insertion Time

Fig. 1. GK sketch. Every node here corresponds to a representative 𝑒𝑖 ∈ M𝑡 , while the line segment corre-
sponds to the set of elements 𝑆𝑖 it represents. We can see that we always have 𝑒𝑖 ≻ 𝑆𝑖 . Some elements in 𝑆𝑖
may even be smaller than some other representative 𝑒 𝑗 ∈ M𝑡 that are smaller than 𝑒𝑖 .

• Δ(𝑡)
𝑖

is an upper bound on the number of elements 𝑒 such that 𝑒 is smaller than representative 𝑒𝑖 ,
but belongs to set 𝑆 𝑗 for 𝑒 𝑗 ≻ 𝑒𝑖 (informally, this serves as a measure of “uncertainty” for our
rank estimate). More concretely,

|M𝑡 |∑︁
𝑗=𝑖+1
|{𝑒 ∈ 𝑆 𝑗 | 𝑒 ≺ 𝑒𝑖 }| ≤ Δ𝑖 (A1)

Jumping ahead, this will be one of the invariants maintained throughout the GK algorithm.

The following property is straightforward but crucial to GK sketch:

Observation 4. For any element 𝑒𝑖 ∈ M𝑡 , let rank(𝑡) (𝑒𝑖) be the rank of 𝑒𝑖 with respect to the stream
inserted until time 𝑡 . Then, we see that 𝑟 (𝑡)

min
(𝑒𝑖) ≤ rank

(𝑡) (𝑒𝑖) ≤ 𝑟
(𝑡)
max
(𝑒𝑖), where 𝑟 (𝑡)

min
(𝑒𝑖) B

∑𝑖
𝑗=1 𝑔

(𝑡)
𝑗

and 𝑟 (𝑡)
max
(𝑒𝑖) B 𝑟

(𝑡)
min
(𝑒𝑖) + Δ(𝑡)𝑖

. (We omit the superscript (𝑡) when it is clear from the context.)

Proof. Since S (𝑡) = ∪𝑒𝑖 ∈M𝑡
𝑆𝑖 is a partition of the elements inserted so far, we know that

rank
(𝑡) (𝑒𝑖) =

|M𝑡 |∑︁
𝑗=1

|{𝑒 ∈ 𝑆 𝑗 | 𝑒 ⪯ 𝑒𝑖 }| =
𝑖∑︁
𝑗=1

|𝑆 𝑗 | +
|M𝑡 |∑︁
𝑗=𝑖+1
|{𝑒 ∈ 𝑆 𝑗 | 𝑒 ≺ 𝑒𝑖 }|

where the last equality follows from the following case discussion: For all 𝑗 ≤ 𝑖 , we have 𝑆 𝑗 ⪯ 𝑒 𝑗 ⪯ 𝑒𝑖 .

So the entire sets 𝑆 𝑗 are counted. For all 𝑗 > 𝑖 , as 𝑖 is a representative itself, it is not in 𝑆 𝑗 . We can

then safely change 𝑒 ⪯ 𝑒𝑖 to 𝑒 ≺ 𝑒𝑖 .

The first term here equals exactly 𝑟min (𝑒𝑖). By the invariant (A1), the second term is at least 0

and at most Δ𝑖 . This finishes the proof. □

The main GK sketch invariant. To facilitate the additive-error guarantee, the GK sketch maintains

the following invariant at each time-step 𝑡 ∈ [𝑛]:
𝑔𝑖 + Δ𝑖 ≤ 𝜖𝑡, ∀𝑒𝑖 ∈ M𝑡 (A2)

Claim 5. As long as the invariant (A2) holds, GK sketch can answer any 𝜖/2-approximate 𝜙-quantile
query correctly.

Proof. Consider any two adjacent elements 𝑒𝑖 and 𝑒𝑖+1 inM𝑡 , by Observation 4, the rank of

𝑒𝑖 is at least 𝑟min (𝑒𝑖) =
∑𝑖

𝑗=1 𝑔 𝑗 , and the rank of 𝑒𝑖+1 is at most 𝑟max (𝑒𝑖+1) = 𝑟min (𝑒𝑖+1) + Δ𝑖+1 =

𝑟min (𝑒𝑖) + 𝑔𝑖+1 + Δ𝑖+1 ≤ 𝑟min (𝑒𝑖) + 𝜖𝑡 (by the invariant (A2)). As a result, any two adjacent elements

inM𝑡 can be at most 𝜖𝑡 rank apart.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 109. Publication date: May 2024.

Simple & Optimal Quantile Sketch: Combining Greenwald-Khanna with Khanna-Greenwald 109:7

Let 𝑖 be the largest index such that 𝑟min (𝑒𝑖) ≤ (𝜙 − 𝜖/2)𝑡 . We know that the rank of 𝑒𝑖+1 must

be between (𝜙 − 𝜖/2)𝑡 and (𝜙 + 𝜖/2)𝑡 . Therefore, we can simply return 𝑒𝑖+1 as the answer. (In the

corner case where such 𝑖 does not exist, we simply return the smallest element in the sketch.) □

Indeed, to approximate the rank of any query 𝑥 ∈ U, we can simply find the smallest element

𝑒𝑖 ∈ M𝑡 such that 𝑒𝑖 ⪯ 𝑥 ≺ 𝑒𝑖+1 and return r̂ank

(𝑡)
(𝑥) = ∑𝑖

𝑗=1 𝑔 𝑗 . Thus, it remains for us to show

how to maintain the invariant (A2). We provide an overview of this in the following sections.

We note that the original GK sketch also relies on two other more-involved ingredients, such as

”band-values” and maintaining an implicit tree structure over the representatives, which we discuss

in Section 3.3. Readers may also refer to Appendix A for the procedure of the original GK sketch.

3 WARM UP: AN (OVER)SIMPLIFIED GK ALGORITHM
In this section, we present a toy algorithm that maintains the invariant (A2) but may use unbounded

space. This serves as an important starting point for our work. Along the way, we will specify other

invariants of the algorithm that help us achieve the additive-error guarantee and 𝑂 (𝜖−1 log(𝜖𝑛))
space bound. For a summary of all of the invariants, the reader may refer to Table 1.

3.1 Our Motivation: The Toy Algorithm
Recall that at time 𝑡 , the GK sketch maintains a tuple (𝑔𝑖 ,Δ𝑖) for every representative 𝑒𝑖 ∈ M𝑡 . In

this toy algorithm, we also add attribute 𝑡𝑖 to form a triple (𝑔𝑖 ,Δ𝑖 , 𝑡𝑖), where 𝑡𝑖 is the insertion time

of element 𝑒𝑖 .

Insertion. First, we explain how to insert a new element into the GK sketch. Consider the time 𝑡

where we insert the 𝑡 th stream element 𝑥𝑡 . First, letM𝑡 =M𝑡−1 ∪ {𝑥𝑡 }. Suppose that 𝑥𝑡 is the 𝑖-th
smallest element inM𝑡 ; that is 𝑥𝑡 = 𝑒𝑖 . We create a new singleton set 𝑆𝑖 = {𝑥𝑡 }. Moreover, for the

triple (𝑔𝑖 ,Δ𝑖 , 𝑡𝑖), we define 𝑔𝑖 = |𝑆𝑖 | = 1 and 𝑡𝑖 = 𝑡 . We also set Δ𝑖 = 𝑔𝑖+1 + Δ𝑖+1 − 1 (which we will

justify below). For the pseudocode, see Algorithm 1.

Algorithm 1: Inserting a new element 𝑥𝑡 at time 𝑡 (toy algorithm)

1 M𝑡 ←M𝑡−1 ∪ {𝑥𝑡 }.
2 Let 𝑖 be the rank of 𝑥𝑡 inM𝑡 .

3 (𝑔𝑖 ,Δ𝑖 , 𝑡𝑖) ← (1, 𝑔𝑖+1 + Δ𝑖+1 − 1, 𝑡).

The following claim justifies our choice to set Δ𝑖 := 𝑔𝑖+1 +Δ𝑖+1 − 1 for the newly-inserted element

𝑒𝑖 .

Claim 6. Upon the insertion of element 𝑒𝑖 , we have

|M𝑡 |∑︁
𝑗=𝑖+1
|{𝑒 ∈ 𝑆 𝑗 | 𝑒 ≺ 𝑒𝑖 }| ≤ 𝑔𝑖+1 + Δ𝑖+1 − 1.

As a corollary, the invariant (A1) is maintained after insertion.

Proof. Let 𝑒 be any element such that 𝑒 ∈ 𝑆 𝑗 for 𝑗 > 𝑖 and 𝑒 ≺ 𝑒𝑖 . We do casework on 𝑗 . If

𝑗 = 𝑖 + 1, then we must have 𝑒 ∈ 𝑆𝑖+1 \ {𝑒𝑖+1}. On the other hand, if 𝑗 > 𝑖 + 1, as 𝑒 ≺ 𝑒𝑖 , it must also

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 109. Publication date: May 2024.

109:8 Elena Gribelyuk, Pachara Sawettamalya, Hongxun Wu, & Huacheng Yu

be the case that 𝑒 ≺ 𝑒𝑖+1. As a result, we have

|M𝑡 |∑︁
𝑗=𝑖+1
|{𝑒 ∈ 𝑆 𝑗 | 𝑒 ≺ 𝑒𝑖 }| = |{𝑒 ∈ 𝑆𝑖+1 | 𝑒 ≺ 𝑒𝑖 }| +

|M𝑡 |∑︁
𝑗=𝑖+2
|{𝑒 ∈ 𝑆 𝑗 | 𝑒 ≺ 𝑒𝑖 }|

≤ |𝑆𝑖+1 \ {𝑒𝑖+1}| +
|M𝑡 |∑︁
𝑗=𝑖+2
|{𝑒 ∈ 𝑆 𝑗 | 𝑒 ≺ 𝑒𝑖+1}|

≤ 𝑔𝑖+1 − 1 + Δ𝑖+1 .

□

Compression. As insertion creates new singleton sets, the total number of representatives |M𝑡 |
increases by 1. After each insertion, we need an operation to again reduce |M𝑡 | if it becomes too

large. The idea is to check every pair (𝑒𝑖 , 𝑒𝑖+1) and merge consecutive elements when possible.

Definition 7 (Mergeable pairs). We say that two consecutive elements in memory (𝑒𝑖 , 𝑒𝑖+1) are
mergeable if both of the following conditions hold:
(1) 𝑔𝑖 + 𝑔𝑖+1 + Δ𝑖+1 ≤ 𝜖𝑡 .

This condition guarantees that after merging two adjacent elements (𝑒𝑖 , 𝑒𝑖+1) in memoryM𝑡 ,
the invariant (A2) is still maintained. This is crucial to obtain the additive-error guarantee.

(2) 𝑡𝑖 > 𝑡𝑖+1.
The second condition guarantees that the sets represented by 𝑒𝑖 will only be represented by an
elder representative 𝑒𝑖+1 (i.e. a representative that was inserted earlier in the stream). Intuitively,
as Claim 6 guarantees that Δ𝑖 ≤ 𝜖𝑡𝑖 , so the elder representative 𝑒𝑖+1 will have smaller Δ𝑖+1. This
is beneficial to us1, since we will see in future sections that after merging any two elements
(𝑒𝑖 , 𝑒𝑖+1), the Δ-value of the new set can only increase.

To merge any pair of consecutive elements (𝑒𝑖 , 𝑒𝑖+1) stored inM𝑡 , we first merge 𝑆𝑖 into 𝑆𝑖+1.
Then, the larger representative 𝑒𝑖+1 becomes the representative for the new set, and we update

𝑔𝑖+1 ← 𝑔𝑖 +𝑔𝑖+1 accordingly. Since Δ𝑖+1 is defined as an upper bound on

∑ |M𝑡 |
𝑗=𝑖+2 |{𝑒 ∈ 𝑆 𝑗 | 𝑒 ≺ 𝑒𝑖+1}|,

Δ𝑖+1 is not affected by this merge and remains unchanged. Finally, we remove 𝑒𝑖 from memoryM𝑡

and delete the tuple (𝑔𝑖 ,Δ𝑖 , 𝑡𝑖) from I𝑡 . The original 𝑒𝑖+1 becomes the 𝑖-th smallest element, and we

shift the indices of the tuples accordingly. See Algorithm 2 for the pseudocode of this operation.

Algorithm 2: Try to merge 𝑒𝑖 and 𝑒𝑖+1 (toy algorithm)

1 Let 𝑒𝑖 , 𝑒𝑖+1 ∈ M𝑡 be two adjacent elements in memory.

2 if 𝑡𝑖 > 𝑡𝑖+1 then
3 if 𝑔𝑖 + 𝑔𝑖+1 + Δ𝑖+1 ≤ 𝜖𝑡 then
4 𝑔𝑖+1 ← 𝑔𝑖 + 𝑔𝑖+1. /* Merge 𝑆𝑖 into 𝑆𝑖+1. */

5 Δ𝑖+1 and 𝑡𝑖+1 remain unchanged.

6 Remove 𝑒𝑖 fromM𝑡 and tuple (𝑔𝑖 ,Δ𝑖) from I𝑡 .

Recall that in the “if” condition (Line 2), we use the exact insertion-time 𝑡𝑖 . We observe that this

is different from the original GK algorithm, which uses band𝑡 (𝑒𝑖) in place of 𝑡𝑖 here. Now, we make

the following observation:

1
As asked in the book by Cormode and Yi [15], it is open whether the variant of GK algorithm without condition (b) has

any space guarantee.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 109. Publication date: May 2024.

Simple & Optimal Quantile Sketch: Combining Greenwald-Khanna with Khanna-Greenwald 109:9

Observation 8 (The representative element is always the oldest.). Let 𝑡 ′ denote the insertion time
of element 𝑥𝑡 ′ . Then, for any time 𝑡 , we have that

𝑡 ′ ≥ 𝑡𝑖 , ∀𝑒𝑖 ∈ M𝑡 , 𝑥𝑡 ′ ∈ 𝑆𝑖 (A3)

Proof. We use induction on 𝑡 . The base case 𝑡 = 1 is trivial since the stream only has one

element; thus, there is only one element being stored inM1.

For the inductive step, assume that for all 𝑒𝑖 ∈ M𝑡 and 𝑥𝑡 ′ ∈ 𝑆𝑖 , we have that 𝑡 ′ ≥ 𝑡𝑖 . Consider

time-step 𝑡 + 1. It suffices to show that any insert or merge operations that occurred between time

𝑡 and time 𝑡 + 1 will maintain this property. Note that if the operation at time 𝑡 is an insertion, this

holds trivially since if we insert an element 𝑖 , then 𝑆𝑖 = {𝑖} and no changes occur to other tuples

stored in memory. In the case that a merge operation occurs at time 𝑡 , suppose that we merge 𝑆𝑖
into 𝑆𝑖+1. Since 𝑡𝑖 > 𝑡𝑖+1 and the merged element uses 𝑖 + 1 as a representative (which is the older of

the two), any 𝑥𝑡 ′ ∈ 𝑆𝑖 ∪ 𝑆𝑖+1 has 𝑡 ′ ≥ min {𝑡𝑖 , 𝑡𝑖+1} = 𝑡𝑖+1. This means after merging, this property is

maintained as desired. □

We observe that Observation 8 holds in our toy algorithm, but this is not true for the original GK

algorithm. In summary, we have introduced the following invariants (Table 1). It is easy to verify

that these invariants are all maintained throughout the toy algorithm.

(A0) 𝑒𝑖 ⪰ 𝑆𝑖 , ∀𝑒𝑖 ∈ M𝑡 .

(A1)

|M𝑡 |∑︁
𝑗=𝑖+1
|{𝑒 ∈ 𝑆 𝑗 | 𝑒 ≺ 𝑒𝑖 }| ≤ Δ𝑖 ∀𝑒𝑖 ∈ M𝑡

(A2) 𝑔𝑖 + Δ𝑖 ≤ 𝜖𝑡, ∀𝑒𝑖 ∈ M𝑡

(A3) 𝑡 ′ ≥ 𝑡𝑖 , ∀𝑒𝑖 ∈ M𝑡 , 𝑥𝑡 ′ ∈ 𝑆𝑖
Table 1. Invariants of the toy algorithm.

Here (A0) holds by definition, while (A1), (A2), (A3) holds by Claim 6, Line 3 of Algorithm 2, and

Observation 8 respectively.

We briefly recall the definition ofmergeable pairs given in Definition 7: namely, if a pair (𝑒𝑖 , 𝑒𝑖+1) ∈
M𝑡 cannot be merged, it must be that either

• Case 1: 𝑒𝑖 is actually the elder representative among (𝑒𝑖 , 𝑒𝑖+1) and thus 𝑆𝑖 cannot be merged

into 𝑆𝑖+1 (𝑡𝑖 < 𝑡𝑖+1), or
• Case 2: performing the merge operation would make us fail to satisfy the invariant (A1)

(𝑔𝑖 + 𝑔𝑖+1 + Δ𝑖+1 > 𝜖𝑡).

In the next few subsections, we will refer to Case 1 as the hard case, and we consider Case 2 to

be the easy case of the GK sketch analyses of both [18] and [7].

3.2 The Easy Case: a Novel Potential Analysis
In this subsection, we will prove that our toy algorithm “half works,” i.e. it solves the easy case of

the GK sketch analysis, but provides no space guarantees for the hard case. Specifically, we show

that there can be only a bounded number of pairs (𝑒𝑖 , 𝑒𝑖+1) inM𝑡 with 𝑡𝑖 > 𝑡𝑖+1. However, for our
toy algorithm, it is possible for it to maintain an unbounded number of such non-mergeable pairs

(𝑒𝑖 , 𝑒𝑖+1) in the hard case. We prove this formally in the following lemma, which proceeds via a

potential-based argument. We defer the proof of this lemma to Appendix B.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 109. Publication date: May 2024.

109:10 Elena Gribelyuk, Pachara Sawettamalya, Hongxun Wu, & Huacheng Yu

Lemma 9. At any time 𝑡 , the number of non-mergeable pairs (𝑒𝑖 , 𝑒𝑖+1) inM𝑡 with 𝑡𝑖 > 𝑡𝑖+1 is at most
(2+𝑜 (1)) log(𝜖𝑡)

𝜖
.

3.3 Handling the Hard Case: Some Heavy Lifting
Before proceeding to our algorithm, we provide some background on the previous tools that were

used to upper bound the number of not mergeable pairs (𝑒𝑖 , 𝑒𝑖+1) ∈ M𝑡 where 𝑡𝑖 < 𝑡𝑖+1. As we
discussed previously, our naive toy algorithm does not provide any guarantees for the hard case.

Indeed, this is not surprising, as the original GK sketch [18] handles the hard case with its two

most involved components, which we will discuss in greater detail below. Note that our algorithm

completely avoids this hard case, so these components are not needed for our new algorithm. For

the complete procedure of the original GK sketch, readers may refer to Appendix A.

Band-values. To start, the authors define the notion of a band-value for every stored element

𝑒𝑖 ∈ M𝑡 , where band𝑡 (𝑒𝑖) ≈ log
2
(𝜖 (𝑡 − 𝑡𝑖 + 1)) (defined according to some rounding scheme).

Notably, previous works used band-values in place of keeping track of exact insertion-times 𝑡𝑖
directly for each element 𝑒𝑖 : so, to be more precise, the “hard” case of [18] and [7] was actually the

case that band𝑡 (𝑒𝑖) > band𝑡 (𝑒𝑖+1) (i.e. this corresponds to the case when 𝑒𝑖 is older than 𝑒𝑖+1, just as
we defined in our hard case). But, one might wonder: why keep track of a more-complicated quantity

like band𝑡 (𝑒𝑖) in lieu of a simple quantity like an insertion-time 𝑡𝑖? Intuitively, by introducing

band-values, the authors prevent the worst-case thatM𝑡 consists of an arbitrary long chain of

representatives with strictly-increasing insertion times (i.e. 𝑡𝑖 < 𝑡𝑖+1 for every 𝑒𝑖 in the chain), since

any chain of representative elements with strictly-increasing band-values can have length at most

log(𝜖𝑛).
In fact, this ideamotivated a simplified algorithm inAssadi et al.[7], which requires𝑂 (𝜖−1 log2 (𝜖𝑛))

space. However, for the analysis to go through, their rounding scheme must guarantee a consis-

tency condition: for any 𝑒𝑖 ≠ 𝑒 𝑗 , once the band values equal, they will always be equal. Namely,

once band𝑡 (𝑒𝑖) = band𝑡 (𝑒 𝑗) for some 𝑡 , for all 𝑡 ′ > 𝑡 , we must have band𝑡 ′ (𝑖) = band𝑡 ′ (𝑗). This
requirement adds extra complication to their algorithm.

Tree representation. To achieve the optimal space complexity, the GK algorithm constructs

a tree structure over the elements inM𝑡 [18]. Instead of simply trying to merge adjacent pairs

(𝑒𝑖 , 𝑒𝑖+1) ∈ M𝑡 , the GK algorithm tries to merge all elements belonging to the same subtree. A priori,

it is not clear that this is necessary, but it appears to be essential for their analysis. Alternatively, a

variant of the GK algorithm presented in [7] made an attempt to simplify this tree-based merging

pattern by introducing the concept of a segment. Here, for any element 𝑒𝑖 stored in memory, the

authors try to merge 𝑒𝑖 along wtih its entire segment seg(𝑒𝑖) = {𝑒 𝑗 : band𝑡 (𝑒 𝑗) < band𝑡 (𝑒𝑖)}, as
long as appropriate additive-error guarantees are met. While this approach provides a conceptual

simplification of the original algorithm, it heavily relies on merging long segments of elements to

show the optimal space bound.

4 COMBINING GK SKETCHWITH ANOTHER “MIRRORED” GK SKETCH
In this section, we present our simplified algorithm and its partial analysis (some proofs are deferred

to the Appendix). In our work, we eliminate the need for band-values, and provide an algorithm

that does not require a tree-based merging pattern nor segment-based merging pattern. In fact,

our algorithm only ever performs merges between pairs of adjacent elements stored in memory.

This significantly simplifies our data structure implementation of the algorithm, and gives rise to

a short and clean analysis. To our knowledge, our algorithm is the first 𝜖-approximate quantile

summary with this property that achieves the optimal 𝑂 (𝜖−1 log(𝜖𝑛)) space.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 109. Publication date: May 2024.

Simple & Optimal Quantile Sketch: Combining Greenwald-Khanna with Khanna-Greenwald 109:11

Theorem 10. For any 𝜖 > 0 and a stream of length 𝑛, our algorithm maintains an 𝜖-approximate
quantile summary while keeping (2 + 𝑜 (1))𝜖−1 log(𝜖𝑛) elements inM𝑡 .

Intuition. Our algorithm is based on the following simple intuition that has been overlooked

for over 20 years. Recall that the easy case (Section 3.2) is to upper bound the number of pairs

(𝑒𝑖 , 𝑒𝑖+1) inM𝑡 with 𝑡𝑖 < 𝑡𝑖+1. The hard case (Section 3.3) is to upper bound the number of pairs

with 𝑡𝑖 > 𝑡𝑖+1.
Now, consider the following thought experiment: suppose we reverse the total order ≺ of the

universeU by defining 𝑥 ≺rev 𝑦 if and only if 𝑥 ≻ 𝑦. Then, we examine the result of running our

toy algorithm on the input stream 𝑥1, ..., 𝑥𝑛 equipped with this reversed total ordering onU. By

symmetry, it is clear that running GK sketch with the reversed total order will maintain a set of

representatives 𝑒𝑖 ∈ M𝑡 corresponding tuples (𝑔𝑖 ,Δ𝑖 , 𝑡𝑖) such that representative 𝑒𝑖 is the smallest
element in 𝑆𝑖 (recall: representatives 𝑒𝑖 used to always be the largest element in 𝑆𝑖 in the original GK

sketch). Due to this swapped total ordering, we then see that the hard case (that 𝑡𝑖 < 𝑡𝑖+1) will now
become the easy case (𝑡𝑖 > 𝑡𝑖+1). So, by combining the original toy algorithm with the “mirrored”

algorithm, one might hope to completely avoid dealing with the hard case.

Finally, as we later point out in Remark 14, there is an alternate interpretation of our algorithm.

Instead of using the largest element of each set 𝑆𝑖 as the representative like the GK sketch, our

algorithm can be seen as using the oldest element (the earliest inserted element) of each set as

representative.

4.1 Our Algorithm
In our final algorithm, we split our input stream into two disjoint sets, one maintained by the toy

algorithm and one maintained by its mirroring. However, we will use the same set of representatives

for these two algorithms, though one key difference (from the toy algorithm) is that we no longer

store the representative 𝑒𝑖 in 𝑆𝑖 .

Representatives and Tuples. Formally, letM𝑡 be the set of representatives stored in memory at

time 𝑡 . For every element 𝑒𝑖 ∈ M𝑡 , 𝑒𝑖 simultaneously represents both the set 𝑆𝑖 (that satisfies 𝑆𝑖 ≺ 𝑒𝑖)

and set 𝑆◦𝑖 (that satisfies 𝑒𝑖 ≺ 𝑆◦𝑖). Importantly, we note that 𝑒𝑖 itself is not contained in either set

𝑆𝑖 or 𝑆
◦
𝑖 . Additionally, we denote S (𝑡) = ∪𝑖∈[|M𝑡 |]𝑆𝑖 and S◦(𝑡) = ∪𝑖∈[|M𝑡 |]𝑆

◦
𝑖 . We may omit the

superscript (𝑡) whenever it is clear from context. Observe that the stream {𝑥1, ..., 𝑥𝑡 } inserted by

time 𝑡 can be partitioned as S (𝑡) ∪ S◦(𝑡) ∪M𝑡 .

For each 𝑒𝑖 ∈ M𝑡 , we define two triples (𝑔𝑖 ,Δ𝑖 , 𝑡𝑖) and (𝑔◦𝑖 ,Δ◦𝑖 , 𝑡𝑖), which we store in the auxiliary

memory I𝑡 . As before, we consider 𝑔𝑖 = |𝑆𝑖 | and 𝑔◦𝑖 = |𝑆◦𝑖 |. Similarly, we interpret Δ𝑖 and Δ◦𝑖 to be a

measure of uncertainty for our rank estimate; more formally, Δ𝑖 and Δ◦𝑖 are defined to satisfy

|M𝑡 |∑︁
𝑗=𝑖+1
|{𝑒 ∈ 𝑆 𝑗 | 𝑒 ≺ 𝑒𝑖 }| ≤ Δ𝑖 and

𝑖−1∑︁
𝑗=1

|{𝑒 ∈ 𝑆◦𝑗 | 𝑒 ≻ 𝑒𝑖 }| ≤ Δ◦𝑖

respectively. See Figure 2 for an example.

Insertion. To insert the 𝑡 th stream element 𝑥𝑡 into sketchM𝑡 , we letM𝑡 =M𝑡−1 ∪ {𝑥𝑡 }. Suppose
𝑥𝑡 is the 𝑖

th
smallest element inM𝑡 . This insertion introduces new sets 𝑆𝑖 , 𝑆

◦
𝑖 , which will contain

other stream elements that are represented by 𝑥𝑡 . In particular, when 𝑥𝑡 is first inserted intoM𝑡 , we

have that 𝑆𝑖 = 𝑆◦𝑖 = ∅. We then initialize the auxiliary information tuples (𝑔𝑖 ,Δ𝑖 , 𝑡𝑖) and (𝑔◦𝑖 ,Δ◦𝑖 , 𝑡𝑖)
as follows:

• 𝑔-values: Since 𝑔𝑖 ← |𝑆𝑖 | and 𝑔◦𝑖 ← |𝑆◦𝑖 |, we initialize 𝑔𝑖 = 0 and 𝑔◦𝑖 = 0, as 𝑒𝑖 does not

represent any other stream elements upon its insertion.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 109. Publication date: May 2024.

109:12 Elena Gribelyuk, Pachara Sawettamalya, Hongxun Wu, & Huacheng Yu

1 2 3 4 5 6 7 8 9

1

2

3

4

𝑆𝑖
𝑒𝑖

Universe

Insertion Time

(a) The toy algorithm.

1 2 3 4 5 6 7 8 9

1

2

3

4

𝑆◦𝑖
𝑒𝑖

Universe

Insertion Time

(b) Its mirroring algorithm.

1 2 3 4 5 6 7 8 9

1

2

3

4

𝑆◦𝑖𝑆𝑖

𝑒𝑖

Universe

Insertion Time

(c) The Final Algorithm.

Fig. 2. Note these two sketches share the same set of representativesM𝑡 = {2, 4, 5, 7}. Each element 𝑒𝑖 is
simultaneously the representative of two sets, 𝑆𝑖 and 𝑆◦𝑖 .

• Δ-value: As in our toy algorithm, for Δ𝑖 and Δ◦𝑖 , we set Δ𝑖 = 𝑔𝑖+1 + Δ𝑖+1. For Δ◦𝑖 , we let

Δ◦𝑖 = 𝑔◦𝑖−1 + Δ◦𝑖−1; note that 𝑒𝑖 inherits its value for Δ◦𝑖 from the (𝑖 − 1)-th smallest element,

due to the reversed total order onU in our mirrored sets 𝑆◦𝑖 .
• 𝑡𝑖 : finally, we let 𝑡𝑖 ← 𝑡 represent the time of insertion for 𝑒𝑖 = 𝑥𝑡 , as before.

The insertion operation for any new stream element 𝑥𝑡 is also summarized in Algorithm 1,

provided below.

Algorithm 3: Inserting a new element 𝑥𝑡 at time 𝑡 (Our algorithm)

1 M𝑡 ←M𝑡−1 ∪ {𝑥𝑡 }.
2 Suppose 𝑥𝑡 is the 𝑖

th
smallest element inM𝑡 .

3 Set (𝑔𝑖 ,Δ𝑖 , 𝑡𝑖) ← (0, 𝑔𝑖+1 + Δ𝑖+1, 𝑡).
4 Set (𝑔◦𝑖 ,Δ◦𝑖 , 𝑡𝑖) ← (0, 𝑔◦𝑖−1 + Δ◦𝑖−1, 𝑡).

Compression. Next, we describe the procedure to merge any two adjacent elements (𝑒𝑖 , 𝑒𝑖+1).
With this in mind, we provide the full algorithm for merging any pair (𝑒𝑖 , 𝑒𝑖+1) below.

Definition 11 (Mergeable pairs). At any time 𝑡 , we say that that a pair of consecutive elements
(𝑒𝑖 , 𝑒𝑖+1) is mergeable if one of the following is satisfied:
(1) 𝑡𝑖 > 𝑡𝑖+1 and 𝑔𝑖 + 𝑔◦𝑖 + 𝑔𝑖+1 + Δ𝑖+1 + 1 ≤ 𝜖𝑡 , or
(2) 𝑡𝑖 < 𝑡𝑖+1 and 𝑔◦𝑖 + 𝑔𝑖 + 𝑔◦𝑖+1 + Δ◦𝑖 + 1 ≤ 𝜖𝑡 .

Otherwise, we say (𝑒𝑖 , 𝑒𝑖+1) is not mergeable.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 109. Publication date: May 2024.

Simple & Optimal Quantile Sketch: Combining Greenwald-Khanna with Khanna-Greenwald 109:13

Algorithm 4:Merging 𝑒𝑖 , 𝑒𝑖+1 (Our algorithm)

1 Let 𝑒𝑖 , 𝑒𝑖+1 ∈ M𝑡 be two adjacent elements in memory.

2 if 𝑡𝑖 > 𝑡𝑖+1 then
3 if 𝑔𝑖 + 𝑔◦𝑖 + 𝑔𝑖+1 + Δ𝑖+1 + 1 ≤ 𝜖𝑡 then
4 𝑔𝑖+1 ← 𝑔𝑖 + 𝑔◦𝑖 + 𝑔𝑖+1 + 1. /* Merge 𝑆𝑖 ∪ 𝑆◦𝑖 ∪ {𝑒𝑖 } into 𝑆𝑖+1 */

5 Remove 𝑒𝑖 fromM𝑡 and tuples (𝑔𝑖 ,Δ𝑖) and (𝑔◦𝑖 ,Δ◦𝑖) from I𝑡 .

6 else
7 if 𝑔◦𝑖+1 + 𝑔𝑖+1 + 𝑔◦𝑖 + Δ◦𝑖 + 1 ≤ 𝜖𝑡 then
8 𝑔◦𝑖 ← 𝑔◦𝑖+1 + 𝑔𝑖+1 + 𝑔◦𝑖 + 1. /* Merge 𝑆◦𝑖+1 ∪ 𝑆𝑖+1 ∪ {𝑒𝑖+1} into 𝑆◦𝑖 */

9 Remove 𝑒𝑖+1 fromM𝑡 and tuples (𝑔𝑖+1,Δ𝑖+1) and (𝑔◦𝑖+1,Δ◦𝑖+1) from I𝑡 .

Remark 12. When we compute 𝑔𝑖+1 ← 𝑔𝑖 +𝑔◦𝑖 +𝑔𝑖+1 (as in Algorithm 4 above), this can be interpreted
as combining sets 𝑆𝑖 ∪𝑆◦𝑖 ∪{𝑒𝑖 } into 𝑆𝑖+1, and removing 𝑒𝑖 (and its auxiliary information) from memory.
However, it is important to remember that we never actually store the sets 𝑆𝑖 throughout the algorithm,
and we refer to them only for intuition and clarity of our analysis.

Invariants. Just as we had in the toy algorithm (Table 1), we need to ensure that the following

invariants are maintained throughout the algorithm.

𝑆𝑖 ≺ 𝑒𝑖 ≺ 𝑆◦𝑖 , ∀𝑒𝑖 ∈ M𝑡(B0)

|M𝑡 |∑︁
𝑗=𝑖+1
|{𝑒 ∈ 𝑆 𝑗 | 𝑒 ≺ 𝑒𝑖 }| ≤ Δ𝑖 ∀𝑒𝑖 ∈ M𝑡(B1)

and

𝑖−1∑︁
𝑗=1

|{𝑒 ∈ 𝑆◦𝑗 | 𝑒 ≻ 𝑒𝑖 }| ≤ Δ◦𝑖 ,

𝑔𝑖 + Δ𝑖 ≤ 𝜖𝑡 and 𝑔◦𝑖 + Δ◦𝑖 ≤ 𝜖𝑡, ∀𝑒𝑖 ∈ M𝑡(B2)

𝑡 ′ ≥ 𝑡𝑖 , ∀𝑒𝑖 ∈ M𝑡 , 𝑥𝑡 ′ ∈ 𝑆𝑖 ∪ 𝑆◦𝑖(B3)

Table 2. Invariants of our algorithm.

Lemma 13. All invariants in Table 2 hold throughout our algorithm.

In fact, all invariants (other than (B0)) follow easily from the construction of our algorithm. So,

we defer the proof of this lemma to the Appendix C. The proof that (B0) holds is crucial, and is

presented in Section 4.2.

Remark 14 (The oldest element represents the set.). We note that if𝐶𝑖 = 𝑆𝑖 ∪𝑆◦𝑖 ∪{𝑒𝑖 } is viewed as a
single set of elements represented by 𝑒𝑖 in both sketches, invariant (B3) says that 𝑒𝑖 is always the oldest
element in this set, i.e. 𝑒𝑖 has the smallest insertion time 𝑡𝑖 < 𝑡 𝑗 for all 𝑒 𝑗 ∈ 𝐶𝑖 . Thus, our algorithm can
also be understood as using the oldest element of each set as the representative. In contrast, the original
GK algorithm defines the representative of each set to be the largest element.

4.2 Correctness
In this section, we will address the following two major components that certify the correctness of

the algorithm.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 109. Publication date: May 2024.

109:14 Elena Gribelyuk, Pachara Sawettamalya, Hongxun Wu, & Huacheng Yu

• Proof of invariant (B0). In Algorithm 4, we move elements around these two sketches by, for

example, merging 𝑆𝑖 ∪ 𝑆◦𝑖 into 𝑆𝑖+1. This may be worrying, as such an operation seems to be

capable of breaking our invariant (B0).

• Answering rank queries. After processing the stream, our sketch will be presented with any

element 𝑥 ∈ U, and must return r̂ank(𝑥) ∈ [rank(𝑥) − 𝜖𝑛, rank(𝑥) + 𝜖𝑛]. Currently, since
our algorithm now uses two GK sketches, it might not be clear how we should define our

estimator r̂ank.

Proof of invariant (B0). To prove that (B0) holds, we first need the following claim:

Claim 15. At any time 𝑡 and representatives 𝑒𝑖 , 𝑒 𝑗 ∈ M𝑡 such that 𝑒𝑖 ≺ 𝑒 𝑗 , we have

if 𝑡𝑖 > 𝑡 𝑗 , then 𝑆◦𝑖 ≺ 𝑒 𝑗 and if 𝑡𝑖 < 𝑡 𝑗 , then 𝑆𝑖 ≻ 𝑒 𝑗 .

Proof. Suppose 𝑡𝑖 > 𝑡 𝑗 . Consider any stream element 𝑥𝑡 ′ ∈ 𝑆◦𝑖 . By invariant (B3), we know that

𝑡 ′ > 𝑡𝑖 > 𝑡 𝑗 .
2
At time 𝑡 ′ (its insertion of 𝑥𝑡 ′), the representative 𝑒 𝑗 is already inM𝑡 .

Since we only merge adjacent representatives and now 𝑥𝑡 ′ ∈ 𝑆◦𝑖 at time 𝑡 , we must have 𝑥𝑡 ′ ≺ 𝑒 𝑗 .

Otherwise, 𝑒 𝑗 should have been merged with 𝑒𝑖 first. The other part follows from a symmetric

proof. □

Lemma 16. Invariant (B0) holds throughout our algorithm.

Proof. We use induction and consider each insertion and merge. Suppose that the invariant

(B0) holds before the operation. For an insertion, it is easy because upon inserting 𝑒𝑖 , we shall have

𝑆◦𝑖 = 𝑆𝑖 = ∅.
Now suppose that we merge (𝑒𝑖 , 𝑒𝑖+1). Due to symmetry, we focus only on the case where

𝑡𝑖 > 𝑡𝑖+1. In this case, we merge 𝑆𝑖 ∪ 𝑆◦𝑖 into 𝑆𝑖+1. By the inductive hypothesis, (B0) holds before this

merge, and we have 𝑆𝑖 ≺ 𝑒𝑖 ≺ 𝑒𝑖+1 and 𝑆𝑖+1 ≺ 𝑒𝑖+1. From Claim 15, we have 𝑆◦𝑖 ≺ 𝑒𝑖+1. Therefore,
𝑆𝑖 ∪ 𝑆◦𝑖 ∪ 𝑆𝑖+1 ≺ 𝑒𝑖+1 as desired. □

Answering rank queries. Now, we will prove that our sketch can answer rank queries within

the additive-error guarantee. Before we show this, we first need to show an analogous claim to

Observation 4.

Observation 17. For any element 𝑒𝑖 ∈ M𝑡 , let rank(𝑡) (𝑒𝑖) be the rank of 𝑒𝑖 with respect to the stream
inserted until time 𝑡 . Then, we see that 𝑟 (𝑡)

min
(𝑒𝑖) ≤ rank

(𝑡) (𝑒𝑖) ≤ 𝑟
(𝑡)
max
(𝑒𝑖), where

𝑟
(𝑡)
min
(𝑒𝑖) B 𝑖 +

𝑖∑︁
𝑗=1

𝑔 𝑗 +
𝑖−1∑︁
𝑗=1

𝑔◦𝑗 − Δ◦𝑖 and 𝑟
(𝑡)
max
(𝑒𝑖) B 𝑖 +

𝑖∑︁
𝑗=1

𝑔 𝑗 + Δ𝑖 +
𝑖−1∑︁
𝑗=1

𝑔◦𝑗 .

Proof. We define rank
(𝑡)
S (𝑒𝑖) to be the number of elements in S =

⋃
𝑒 𝑗 ∈M𝑡

𝑆 𝑗 that are smaller

than 𝑒𝑖 , that is rank
(𝑡)
S (𝑒𝑖) = {𝑒 ∈

⋃
𝑒 𝑗 ∈M𝑡

𝑆 𝑗 | 𝑒 ≺ 𝑒𝑖 }. Similarly, we define rank
(𝑡)
S◦ (𝑒𝑖) = {𝑒 ∈⋃

𝑒 𝑗 ∈M𝑡
S◦𝑗 | 𝑒 ≺ 𝑒𝑖 }. Thenwe have rank(𝑡) (𝑒𝑖) = rank

(𝑡)
S (𝑒𝑖)+rank

(𝑡)
S◦ (𝑒𝑖)+𝑖 . (Note 𝑒1, 𝑒2, . . . , 𝑒𝑖−1, 𝑒𝑖

are not in these 𝑆 𝑗 ’s and 𝑆
◦
𝑗 ’s.)

We know that

rank
(𝑡)
S (𝑒𝑖) =

|M𝑡 |∑︁
𝑗=1

|{𝑒 ∈ 𝑆 𝑗 | 𝑒 ≺ 𝑒𝑖 }| =
𝑖∑︁
𝑗=1

|𝑆 𝑗 | +
|M𝑡 |∑︁
𝑗=𝑖+1
|{𝑒 ∈ 𝑆 𝑗 | 𝑒 ≺ 𝑒𝑖 }|.

2
We remark that the proof of (B3) is starightforward and do not depend on (B0).

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 109. Publication date: May 2024.

Simple & Optimal Quantile Sketch: Combining Greenwald-Khanna with Khanna-Greenwald 109:15

The second term is lower bounded by 0 and upper bounded by Δ𝑖 . Similarly, due to the fact that for

all 𝑗 ≥ 𝑖 , 𝑒𝑖 ≺ 𝑆◦𝑗 , we have

rank
(𝑡)
S◦ (𝑒𝑖) =

|M𝑡 |∑︁
𝑗=1

|{𝑒 ∈ 𝑆◦𝑗 | 𝑒 ≺ 𝑒𝑖 }| =
𝑖−1∑︁
𝑗=1

|𝑆◦𝑗 | − |{𝑒 ∈ 𝑆◦𝑗 | 𝑒 ≺ 𝑒𝑖 }|.

The sum of the second term is upper bounded by 0 and lower bounded by −Δ◦𝑖 . Putting these

together, we get

𝑖∑︁
𝑗=1

𝑔 𝑗 ≤ rank
(𝑡)
S (𝑒𝑖) ≤ Δ𝑖 +

𝑖∑︁
𝑗=1

𝑔 𝑗 and

𝑖−1∑︁
𝑗=1

𝑔◦𝑗 − Δ◦𝑖 ≤ rank
(𝑡)
S◦ (𝑒𝑖) ≤

𝑖−1∑︁
𝑗=1

𝑔◦𝑗 .

Since rank
(𝑡) (𝑒𝑖) = rank

(𝑡)
S (𝑒𝑖) + rank

(𝑡)
S◦ (𝑒𝑖) + 𝑖 , this concludes the proof. □

Lemma 18. As long as invariant (B2) holds at time 𝑡 , our sketch can answer any rank query 𝑥 ∈ U
with 𝜖𝑡 additive error.

Proof. Let 𝑖 ∈ [|M𝑡 |] such that 𝑒𝑖 ⪯ 𝑥 ≺ 𝑒𝑖+1.We claim that estimator r̂ank𝑡 (𝑥) =
𝑟
(𝑡)
min
(𝑒𝑖)+𝑟 (𝑡)max

(𝑒𝑖+1)−1
2

obtains an 𝜖-approximation to rank
(𝑡) (𝑥). Since, 𝑒𝑖 ⪯ 𝑥 ≺ 𝑒𝑖+1 , from Observation 17 we must have

𝑟
(𝑡)
min
(𝑒𝑖) ≤ rank

(𝑡) (𝑒𝑖) ≤ rank
(𝑡) (𝑥) ≤ rank

(𝑡) (𝑒𝑖+1) − 1 ≤ 𝑟
(𝑡)
max
(𝑒𝑖+1) − 1. Hence,

|r̂ank
(𝑡)
(𝑥) − rank(𝑡) (𝑥) | ≤

𝑟
(𝑡)
max
(𝑒𝑖+1) − 1 − 𝑟 (𝑡)

min
(𝑒𝑖)

2

=
(𝑔𝑖+1 + Δ𝑖+1) + (𝑔◦𝑖 + Δ◦𝑖)

2

≤ 𝜖𝑡

following the invariant (B2). □

4.3 Space Analysis
In this section, we adapt the potential argument of Section 3.2 and finish the proof of Theorem 10.

Recall Definition 11 of mergeable pairs. The following lemma upper bounds the number of non-

mergable pairs at any time 𝑡 , thus proving the space bound of our algorithm.

Lemma 19. At any time 𝑡 , the total number of non-mergeable pairs (𝑒𝑖 , 𝑒𝑖+1) in M𝑡 is at most
(2+𝑜 (1)) log(𝜖𝑡)

𝜖
.

Proof. For any stream element 𝑥𝑡 ′ inserted at time 𝑡 ′ ≤ 𝑡 (which might no longer reside in the

memory), we assign it a potential given by

𝑝𝑥𝑡 ′ (𝑡) =
1

1 + 𝜖 (𝑡 − 𝑡 ′) .

On the one hand, the total potential of all elements is bounded. Since there is at most one 𝑒𝑖 ∈ M𝑡

with 𝑡𝑖 = 𝑡 , we only focus on elements inserted strictly before time 𝑡 .

𝑡−1∑︁
𝑡 ′=1

𝑝𝑥𝑡 ′ (𝑡) =
𝑡−1∑︁
𝑡 ′=1

1

1 + 𝜖 (𝑡 − 𝑡 ′) =
(1 + 𝑜 (1)) log(𝜖𝑡)

𝜖
.

This step is exactly the same as that of Lemma 9. On the other hand, for any pair (𝑒𝑖 , 𝑒𝑖+1) that is
non-mergeable. We want to prove that the total potential in 𝑆𝑖 ∪ 𝑆◦𝑖 ∪ 𝑆𝑖+1 ∪ 𝑆◦𝑖+1 ∪ {𝑒𝑖 , 𝑒𝑖+1} is high.
Let us focus on the case where 𝑡𝑖 > 𝑡𝑖+1. In this case, we know that 𝑔𝑖 + 𝑔◦𝑖 + 𝑔𝑖+1 + Δ𝑖+1 + 1 > 𝜖𝑡

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 109. Publication date: May 2024.

109:16 Elena Gribelyuk, Pachara Sawettamalya, Hongxun Wu, & Huacheng Yu

Efficient Data Structures for Our Algorithm
First of all, one can maintainM𝑡 and tuples in I𝑡 using a binary search tree (BST). This allows

the insertion / deletion ofM𝑡 and I𝑡 in 𝑂 (log |M𝑡 |) time. Given 𝑒𝑖 , it also supports access to

predecessor / successor (𝑒𝑖−1 / 𝑒𝑖+1) in the same running time.

Then, let 𝑞 be a priority queue that maintains items of form (𝑑, (𝑒 𝑗 , 𝑒 𝑗+1)), where 𝑑 is a number

used as the key, and (𝑒 𝑗 , 𝑒 𝑗+1) are always two adjacent elements ofM𝑡 . The item with smallest 𝑑

is always at the top of 𝑞.

Initially, 𝑞 is empty. Every time there is an insertion 𝑥𝑡 , we run the following:

(1) Insert 𝑥𝑡 using Algorithm 3. Suppose that 𝑥𝑡 becomes the 𝑖th smallest element inM𝑡 .

(2) Delete the old item in 𝑞 that corresponds to (𝑒𝑖−1, 𝑒𝑖+1). Then if 𝑡𝑖 > 𝑡𝑖+1, insert a new item

(𝑔𝑖 + 𝑔◦𝑖 + 𝑔𝑖+1 + Δ𝑖+1 + 1, (𝑒𝑖 , 𝑒𝑖+1)). Otherwise, 𝑡𝑖 < 𝑡𝑖+1, and insert (𝑔◦𝑖+1 + 𝑔𝑖+1 + 𝑔◦𝑖 + Δ◦𝑖 +
1, (𝑒𝑖 , 𝑒𝑖+1)). We also insert a new item for (𝑒𝑖−1, 𝑒𝑖) defined in a similar way.

(3) Suppose that the top item in 𝑞 is (𝑑, (𝑒 𝑗 , 𝑒 𝑗+1)). If 𝑑 ≤ 𝜖𝑡 , we remove the top item from 𝑞

and merge 𝑒 𝑗 and 𝑒 𝑗+1. After the merge, we update 𝑞 accordingly.
3
(Note we only perform

this merge once per insertion.)

Table 3. Our algorithm with efficient update time.

because (𝑒𝑖 , 𝑒𝑖+1) is non-mergeable. Then:∑︁
𝑥𝑡 ′ ∈𝑆𝑖∪𝑆◦𝑖 ∪𝑆𝑖+1∪𝑆◦𝑖+1∪{𝑒𝑖 ,𝑒𝑖+1 }

𝑝𝑥𝑡 ′ (𝑡) ≥
∑︁

𝑥𝑡 ′ ∈𝑆𝑖∪𝑆◦𝑖 ∪𝑆𝑖+1∪{𝑒𝑖 ,𝑒𝑖+1 }

1

1 + 𝜖 (𝑡 − 𝑡 ′)

≥
𝑔𝑖 + 𝑔◦𝑖 + 𝑔𝑖+1 + 2
1 + 𝜖 (𝑡 − 𝑡𝑖+1)

(Invariant (B3) and 𝑡𝑖 > 𝑡𝑖+1)

≥ 1.

Here, the last step follows since Δ𝑖+1 ≤ 𝜖𝑡𝑖+1 by invariant (B2) and 𝑔𝑖 + 𝑔◦𝑖 + 𝑔𝑖+1 + 1 ≥ 𝜖𝑡 − Δ𝑖+1.
From symmetry, we know that in the case when 𝑡𝑖 < 𝑡𝑖+1, the total potential in the non-mergable

pair (𝑒𝑖 , 𝑒𝑖+1) is also at least 1. Each 𝑒𝑖 , 𝑆𝑖 , 𝑆◦𝑖 contributes to the potential of at most two non-mergeable

pairs. As a result, there can be at most
(2+𝑜 (1)) log(𝜖𝑡)

𝜖
many non-mergeable pairs inM𝑡 . □

4.4 Efficient Data Structures for our Algorithm
In this section, we demonstrate a simple and efficient data structure implementation of our algorithm.

See Table 3 for our implementation. Since our algorithm only checks whether adjacent pairs can be

merged, it is much easier to implement compared to previous works. For weighted streams, this

allows for an improvement in the time complexity. (See Lemma 24.)

Lemma 20. The space complexity of our implementation is |M𝑡 | ≤ (2+𝑜 (1)) log(𝜖𝑡)𝜖
at any time 𝑡 .

Proof. Suppose 𝑡 ′ < 𝑡 is the last time we did not perform a merge operation. Between 𝑡 ′ and 𝑡 ,
the size of the sketch does not increase (|M𝑡 | ≤ |M𝑡 ′ |). This is because each time we insert a new

representative, there is always a merge operation performed. At time 𝑡 ′, because the top item in the

priority queue 𝑞 is not a mergeable pair, there is no mergeable pair inM𝑡 ′ . Hence, by Lemma 19,

there can be at most
(2+𝑜 (1)) log(𝜖𝑡)

𝜖
elements inM𝑡 ′ . □

Lemma 21. Our algorithm has worst-case per-element running time 𝑂 (log(1/𝜖) + log log(𝜖𝑡)).

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 109. Publication date: May 2024.

Simple & Optimal Quantile Sketch: Combining Greenwald-Khanna with Khanna-Greenwald 109:17

Proof. A priority queue supports insertion / deletion and update in𝑂 (log |𝑞 |) time, where |𝑞 | is
the number of elements in it. From the implementation, we know that |𝑞 | ≤ |M𝑡 | −1. Anytime there

are at most
(2+𝑜 (1)) log(𝜖𝑡)

𝜖
items in 𝑞, and after every insertion, we only perform the 𝑂 (1) priority

queue operation. Hence, the running time is worst case 𝑂 (log(1/𝜖) + log log(𝜖𝑡)) per element.

Similarly, the running time of the BST is 𝑂 (log |M𝑡 |) per element, which equals the same running

time. □

5 GENERALIZATION FORWEIGHTED STREAMS
Next, we consider a variant of the quantile estimation problem, where each stream element 𝑥𝑖
appears together with a weight 𝑤 (𝑥𝑖). Recently, the work of Assadi et al. [7] gave a nontrivial

generalization of the GK sketch to weighted streams. Our approach also smoothly generalizes

to weighted streams. Intuitively, we may interpret a stream element (𝑥𝑖 ,𝑤 (𝑥𝑖)) by considering

𝑥𝑖 to appear 𝑤 (𝑥𝑖) times consecutively in the stream. For notational convenience, we let𝑊𝑡 =∑𝑡
𝑡 ′=1𝑤 (𝑥𝑡 ′) and 𝑤 (𝑆) =

∑
𝑥∈𝑆 𝑤 (𝑥) for any set 𝑆 ⊆ U. Additionally, we note that if 𝑒𝑖 ∈ M𝑡 is

an element such that 𝑒𝑖 ⪯ 𝑥 ≺ 𝑒𝑖+1, then the exact rank of query 𝑥 with respect to the stream is

given by rank
(𝑡) (𝑥) = ∑𝑖

𝑗=1𝑤 (𝑒𝑖) + 1. Now, we consider the following generalized all-quantiles

estimation problem:

Definition 22 (All-Quantiles Sketch forWeighted Streams). Given a input stream of pairs (𝑥1,𝑤 (𝑥1)),
(𝑥2,𝑤 (𝑥𝑤)), . . . , (𝑥𝑛,𝑤 (𝑥𝑛)) arriving one at a time, let

∑𝑡
𝑖=1𝑤 (𝑥𝑖) =𝑊𝑡 denote the total weight for

the first 𝑡 elements. An all-quantiles sketch approximates the rank of any query 𝑥 ∈ U with r̂ank
(𝑡)
(𝑥)

such that |r̂ank
(𝑡)
(𝑥) − rank(𝑡) (𝑥) | ≤ 𝜖𝑊𝑡 .

The following theorem extends our previous result to the weighted streaming setting.

Theorem 23. Suppose that the minimum weight of the elements is𝑤min. There is a deterministic
comparison-based all-quantile sketch for weighted streams using (2+𝑜 (1)) log(𝜖 ·𝑊𝑡 /𝑤min)

𝜖
space.

5.1 Our algorithm for the weighted stream setting
In this section, we highlight essential changes to extend our algorithm to the weighted setting.

Representatives and Tuples. First of all, the representatives inM𝑡 and the sets 𝑆𝑖 , 𝑆
◦
𝑖 are defined

in the same way as the unweighted case. Recall that 𝑒𝑖 is the 𝑖
th
smallest element stored in the

memoryM𝑡 . As before, we maintain the invariant 𝑆𝑖 ≺ 𝑒𝑖 ≺ 𝑆◦𝑖 , and we store tuples of attributes

for each representative 𝑒𝑖 , defined as follows:

• 𝐺-values: In the weighted case, we let 𝐺𝑖 = 𝑤 (𝑆𝑖) and 𝐺◦𝑖 = 𝑤 (𝑆◦𝑖). Note that both 𝐺𝑖 and

𝐺◦𝑖 exclude the weight contributed by element 𝑒𝑖 itself.

• Δ-values: For any element 𝑒𝑖 ∈ M𝑡 , we define Δ𝑖 and Δ◦𝑖 to be upper bounds satisfying∑︁
𝑗∈M𝑡 , 𝑗≻𝑖

𝑤 ({𝑒 ∈ 𝑆 𝑗 | 𝑒 ≺ 𝑖}) ≤ Δ𝑖 and

∑︁
𝑗∈M𝑡 , 𝑗≺𝑖

𝑤 ({𝑒 ∈ 𝑆◦𝑗 | 𝑒 ≻ 𝑖}) ≤ Δ◦𝑖 .

As before, we also maintain the insertion-time 𝑡𝑖 for each representative 𝑒𝑖 . We now describe the

insertion and compression operations for our quantile summary in the weighted stream setting.

3
To be more precise, suppose 𝑡 𝑗 > 𝑡 𝑗+1 and 𝑒 𝑗 is the representative of the new set. Before merging, we have

𝑒 𝑗−1, 𝑒 𝑗 , 𝑒 𝑗+1, 𝑒 𝑗+2 ∈ M𝑡 . Afterwards, we have 𝑒 𝑗−1, 𝑒 𝑗 , 𝑒 𝑗+2 ∈ M𝑡 . We already removed the top item (𝑑, (𝑒 𝑗 , 𝑒 𝑗+1))
and need to further remove the items that corresponds to (𝑒 𝑗+1, 𝑒 𝑗+2) from 𝑞. Then update the item that corresponds to

(𝑒 𝑗−1, 𝑒 𝑗) as the 𝑔 value of 𝑒 𝑗 changes. Finally, we need to add to 𝑞 a new item for (𝑒 𝑗 , 𝑒 𝑗+2) .

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 109. Publication date: May 2024.

109:18 Elena Gribelyuk, Pachara Sawettamalya, Hongxun Wu, & Huacheng Yu

Insertion. This part of the algorithm stays almost the same. When inserting 𝑥𝑡 which is ranked

the 𝑖th inM𝑡 , we set 𝐺𝑖 = 𝐺◦𝑖 = 0 and Δ𝑖 = 𝐺𝑖+1 + Δ𝑖+1, Δ◦𝑖 = 𝐺◦𝑖−1 + Δ◦𝑖−1. Finally, we set the

insertion time 𝑡𝑖 = 𝑡 .

Compression. The only change in compression is that we need to replace 𝑔𝑖 + 𝑔◦𝑖 + 𝑔𝑖+1 + 1 with
𝐺𝑖 +𝐺◦𝑖 +𝐺𝑖+1 +𝑤 (𝑒𝑖) (as well as a similar replacement for the other symmetric case).

Algorithm 5:Merging 𝑒𝑖 , 𝑒𝑖+1 (Simpler Algorithm for Weighted Streams)

1 Let (𝑒𝑖 , 𝑒𝑖+1) ∈ M𝑡 be two adjacent elements in memory at time 𝑡 .

2 if 𝑡𝑖 > 𝑡𝑖+1 then
3 if 𝐺𝑖 +𝐺◦𝑖 +𝐺𝑖+1 +𝑤 (𝑒𝑖) + Δ𝑖+1 ≤ 𝜖𝑊𝑡 then
4 𝐺𝑖+1 ← 𝐺𝑖 +𝐺◦𝑖 +𝑤 (𝑒𝑖) +𝐺𝑖+1.

5 Remove 𝑒𝑖 fromM𝑡 and tuples (𝐺𝑖 ,Δ𝑖), (𝐺◦𝑖 ,Δ◦𝑖) from I𝑡 .

6 else
7 if 𝐺◦𝑖+1 +𝐺𝑖+1 +𝐺◦𝑖 +𝑤 (𝑒𝑖+1) + Δ◦𝑖 ≤ 𝜖𝑊𝑡 then
8 𝐺◦𝑖 ← 𝐺◦𝑖+1 +𝐺𝑖+1 +𝑤 (𝑒𝑖+1) +𝐺◦𝑖 .
9 Remove 𝑒𝑖+1 fromM𝑡 and tuples (𝐺𝑖+1,Δ𝑖+1), (𝐺◦𝑖+1,Δ◦𝑖+1) from I𝑡 .

Invariants. The invariants are mostly unchanged compared to the unweighted setting. See Table 4.

Efficient and simplified implementation. Our algorithm for the weighted case can be implemented

in the same way as in the unweighted setting, which is described in Section 4.4. Note that our result

(stated formally below) improves upon the 𝑂

(
log(1/𝜖) + log log(𝜖𝑊𝑛) + log

2 (𝜖𝑊𝑛)
𝜖𝑛

)
per-element

running time of Assadi et al. [7], in the regime where the total weight𝑊𝑛 ≫ 𝑛. This improvement

directly results from the fact that our algorithm only merges adjacent pairs of elements.

Lemma 24. Suppose that there are 𝑛 elements in the stream and the minimum weight of the elements
is𝑤min. Our algorithm can be implemented in 𝑂 (log(1/𝜖) + log log(𝜖𝑊𝑛/𝑤min)) worst case update
time per element.

We defer the proofs of correctness and space analysis to the Appendix D, as they closely follow

the proofs for the unweighted setting.

𝑆𝑖 ≺ 𝑒𝑖 ≺ 𝑆◦𝑖 , ∀𝑒𝑖 ∈ M𝑡(C0)

|M𝑡 |∑︁
𝑗=𝑖+1

𝑤 ({𝑒 ∈ 𝑆 𝑗 | 𝑒 ≺ 𝑒𝑖 }) ≤ Δ𝑖 ∀𝑒𝑖 ∈ M𝑡(C1)

and

𝑖−1∑︁
𝑗=1

𝑤 ({𝑒 ∈ 𝑆◦𝑗 | 𝑒 ≻ 𝑒𝑖 }) ≤ Δ◦𝑖 ,

𝐺𝑖 + Δ𝑖 ≤ 𝜖𝑊𝑡 and 𝐺◦𝑖 + Δ◦𝑖 ≤ 𝜖𝑊𝑡 , ∀𝑒𝑖 ∈ M𝑡(C2)

𝑡 ′ ≥ 𝑡𝑖 , ∀𝑒𝑖 ∈ M𝑡 , 𝑥𝑡 ′ ∈ 𝑆𝑖 ∪ 𝑆◦𝑖(C3)

Table 4. Invariants of our algorithm for the weighted streaming setting.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 109. Publication date: May 2024.

Simple & Optimal Quantile Sketch: Combining Greenwald-Khanna with Khanna-Greenwald 109:19

REFERENCES
[1] [n. d.]. GKQuantiles Class - Micrometer Core 0.11.0.RELEASE Documentation. https://www.javadoc.io/doc/io.

micrometer/micrometer-core/0.11.0.RELEASE/io/micrometer/core/instrument/stats/quantile/GKQuantiles.html. Ac-

cessed: 2023-11-15.

[2] [n. d.]. Problem 2: Quantiles - Open Problems in Sublinear Algorithms. https://sublinear.info/index.php?title=Open_

Problems:2. Suggested by Graham Cormode, Source: Kanpur 2006, Accessed: 2023-11-15.

[3] [n. d.]. quantiles Crate Documentation - Rust. https://docs.rs/quantiles/latest/quantiles/. Accessed: 2023-11-15.

[4] Noga Alon, Omri Ben-Eliezer, Yuval Dagan, Shay Moran, Moni Naor, and Eylon Yogev. 2021. Adversarial laws of large

numbers and optimal regret in online classification. In Proceedings of the 53rd Annual ACM SIGACT Symposium on
Theory of Computing. 447–455.

[5] Noga Alon, Yossi Matias, and Mario Szegedy. 1996. The space complexity of approximating the frequency moments. In

Proceedings of the twenty-eighth annual ACM symposium on Theory of computing. 20–29.
[6] Michael Armbrust, Reynold S Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K Bradley, Xiangrui Meng, Tomer Kaftan,

Michael J Franklin, Ali Ghodsi, et al. 2015. Spark sql: Relational data processing in spark. In Proceedings of the 2015
ACM SIGMOD international conference on management of data. 1383–1394.

[7] Sepehr Assadi, Nirmit Joshi, Milind Prabhu, and Vihan Shah. 2023. Generalizing Greenwald-Khanna Streaming

Quantile Summaries for Weighted Inputs. arXiv preprint arXiv:2303.06288 (2023).
[8] Omri Ben-Eliezer, Rajesh Jayaram, David P. Woodruff, and Eylon Yogev. 2020. A Framework for Adversarially Robust

Streaming Algorithms. In Proceedings on Database Systems. arXiv:2003.14265 [cs.DS]
[9] Manuel Blum, Robert W. Floyd, Vaughan R. Pratt, Ronald L. Rivest, Robert Endre Tarjan, et al. 1973. Time bounds for

selection. J. Comput. Syst. Sci. 7, 4 (1973), 448–461.
[10] Andrej Brodnik, Alejandro López-Ortiz, Venkatesh Raman, and Alfredo Viola. 2013. Space-Efficient Data Structures,

Streams, and Algorithms. Springer.
[11] Graham Cormode, Zohar Karnin, Edo Liberty, Justin Thaler, and Pavel Veselỳ. 2021. Relative error streaming quantiles.

In Proceedings of the 40th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems. 96–108.
[12] Graham Cormode, Flip Korn, Shanmugavelayutham Muthukrishnan, and Divesh Srivastava. 2006. Space-and time-

efficient deterministic algorithms for biased quantiles over data streams. In Proceedings of the twenty-fifth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems. 263–272.

[13] Graham Cormode and Shan Muthukrishnan. 2005. An improved data stream summary: the count-min sketch and its

applications. Journal of Algorithms 55, 1 (2005), 58–75.
[14] Graham Cormode and Pavel Veselỳ. 2020. A tight lower bound for comparison-based quantile summaries. In Proceedings

of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems. 81–93.
[15] Graham Cormode and Ke Yi. 2020. Small summaries for big data. Cambridge University Press.

[16] David Felber and Rafail Ostrovsky. 2017. A Randomized Online Quantile Summary in 𝑂 ((1/𝜀) log(1/𝜀)) Words.

Theory of Computing 13, 1 (2017), 1–17.

[17] Anna C Gilbert, Brett Hemenway, Atri Rudra, Martin J Strauss, and Mary Wootters. 2012. Recovering simple signals.

In 2012 Information Theory and Applications Workshop. IEEE, 382–391.
[18] Michael Greenwald and Sanjeev Khanna. 2001. Space-efficient online computation of quantile summaries. ACM

SIGMOD Record 30, 2 (2001), 58–66.

[19] Anupam Gupta and Francis X. Zane. 2003. Counting Inversions in Lists. In Proceedings of the Fourteenth Annual
ACM-SIAM Symposium on Discrete Algorithms (Baltimore, Maryland) (SODA ’03). Society for Industrial and Applied

Mathematics, USA, 253–254.

[20] Moritz Hardt and David P Woodruff. 2013. How robust are linear sketches to adaptive inputs?. In Proceedings of the
forty-fifth annual ACM symposium on Theory of computing. 121–130.

[21] Hemant Ishwaran, Udaya B Kogalur, and Maintainer Udaya B Kogalur. 2023. Package ‘randomForestSRC’. breast 6, 1
(2023), 854.

[22] Zohar Karnin, Kevin Lang, and Edo Liberty. 2016. Optimal quantile approximation in streams. In 2016 ieee 57th annual
symposium on foundations of computer science (focs). IEEE, 71–78.

[23] J Ian Munro and Mike S Paterson. 1980. Selection and sorting with limited storage. Theoretical computer science 12, 3
(1980), 315–323.

[24] Moni Naor and Eylon Yogev. 2015. Bloom filters in adversarial environments. In Annual Cryptology Conference.
Springer, 565–584.

[25] Nisheeth Shrivastava, Chiranjeeb Buragohain, Divyakant Agrawal, and Subhash Suri. 2004. Medians and beyond: new

aggregation techniques for sensor networks. In Proceedings of the 2nd international conference on Embedded networked
sensor systems. 239–249.

[26] Qi Zhang and Wei Wang. 2007. An efficient algorithm for approximate biased quantile computation in data streams. In

Proceedings of the sixteenth ACM conference on Conference on information and knowledge management. 1023–1026.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 109. Publication date: May 2024.

https://www.javadoc.io/doc/io.micrometer/micrometer-core/0.11.0.RELEASE/io/micrometer/core/instrument/stats/quantile/GKQuantiles.html
https://www.javadoc.io/doc/io.micrometer/micrometer-core/0.11.0.RELEASE/io/micrometer/core/instrument/stats/quantile/GKQuantiles.html
https://sublinear.info/index.php?title=Open_Problems:2
https://sublinear.info/index.php?title=Open_Problems:2
https://docs.rs/quantiles/latest/quantiles/
https://arxiv.org/abs/2003.14265

109:20 Elena Gribelyuk, Pachara Sawettamalya, Hongxun Wu, & Huacheng Yu

[27] Ying Zhang, Xuemin Lin, Jian Xu, Flip Korn, and Wei Wang. 2006. Space-efficient relative error order sketch over data

streams. In 22nd International Conference on Data Engineering (ICDE’06). IEEE, 51–51.

A THE ORIGINAL GK SKETCH
For completeness, we present the procedure of the original GK sketch of [18]. In addition to the

basic ingredients from Section 2.1, the original GK sketch also relies on the following more-involved

components, which we briefly discussed in Section 3.3.

Bands. First, the GK sketch divides all tuples into “bands”: in particular, at any time 𝑡 and for any

𝑒𝑖 ∈ M𝑡 , the authors define band𝑡 (𝑒𝑖) to be an integer that satisfies the following two properties:

• Scale: band𝑡 (𝑒𝑖) ≈ log
2
(𝜖𝑡 − Δ𝑖);

• Consistency: for any two elements 𝑒𝑖 and 𝑒 𝑗 , if band𝑡 (𝑒𝑖) = band𝑡 (𝑒 𝑗) at time 𝑡 , for all future

𝑡 ′ > 𝑡 , we always have band𝑡 ′ (𝑒𝑖) = band𝑡 ′ (𝑒 𝑗).
To satisfy the two properties above, the band value is defined as

band𝑡 (𝑒𝑖) = min{𝛼 ∈ Z | ⌊𝜖𝑡⌋ − Δ𝑖 < 2
𝛼 + ⌊𝜖𝑡⌋ mod 2

𝛼 }.

Observe that this definition clearly satisfies the first property. Intuitively, the second one holds,

since we can equivalently write

band𝑡 (𝑒𝑖) = min{𝛼 ∈ Z | ⌊𝜖𝑡⌋ − 2𝛼 − ⌊𝜖𝑡⌋ mod 2
𝛼 < Δ𝑖 }.

So, we note that the 𝛼 th
-band contains all elements 𝑖 with Δ𝑖 ∈ (⌊𝜖𝑡⌋ − 2𝛼 − ⌊𝜖𝑡⌋ mod 2

𝛼 , ⌊𝜖𝑡⌋ −
2
𝛼−1 − ⌊𝜖𝑡⌋ mod 2

𝛼−1]. Roughly speaking, the ⌊𝜖𝑡⌋ mod 2
𝛼
term cancels out the increase of ⌊𝜖𝑡⌋

and keeps the boundary static. For a detailed proof that this definition satisfies the consistency

property, readers may refer to the original paper [18].

Tree Structure and 𝑔∗-values. The idea of bands alone can only give a suboptimal space complexity

of𝑂 (log(𝜖𝑛)2/𝜖). To achieve optimal space complexity, the original GK sketch and prior work need

to arrange the elements inM𝑡 into a tree structure.

For any element 𝑒𝑖 ∈ M𝑡 , its parent on the tree is defined as

parent𝑡 (𝑒𝑖) = min{𝑒 𝑗 | 𝑗 > 𝑖 and band𝑡 (𝑒 𝑗) > band𝑡 (𝑒𝑖)}.

If no such element 𝑒 𝑗 exists, define the parent𝑡 (𝑒𝑖) to be a special tree root 𝑅. Crucially, this tree
structure maintains the invariant that the collection of all descendants of any node 𝑒 𝑗 forms a

continuous interval of elements inM𝑡 , i.e. 𝑒𝑖 , 𝑒𝑖+1, . . . , 𝑒 𝑗 . Then, 𝑔∗𝑗 is defined as the sum of the

𝑔-values of all these descendants, i.e. 𝑔∗𝑗 = 𝑔𝑖 + 𝑔𝑖+1 + · · · + 𝑔 𝑗 .

Algorithm 6: Compress the subtrees of 𝑒𝑖 and 𝑒𝑖+1 (GK sketch [18])

1 Let 𝑒𝑖 , 𝑒𝑖+1 ∈ M𝑡 be two adjacent elements in memory.

2 if band𝑡 (𝑒𝑖) ≤ band𝑡 (𝑒𝑖+1) then
3 if 𝑔∗𝑖 + 𝑔𝑖+1 + Δ𝑖+1 ≤ 𝜖𝑡 then
4 𝑔𝑖+1 ← 𝑔∗𝑖 + 𝑔𝑖+1.
5 Δ𝑖+1 and 𝑡𝑖+1 remain unchanged.

6 Remove all descendants of 𝑒𝑖 (including itself) fromM𝑡 and remove the

corresponding tuples from I𝑡 .

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 109. Publication date: May 2024.

Simple & Optimal Quantile Sketch: Combining Greenwald-Khanna with Khanna-Greenwald 109:21

Procedure. Finally, we are ready to present the algorithm of the original GK sketch, which crucially

relied on the two components defined above (in addition to 𝑔− and Δ-values, as we described in

Section 2.1). To insert a new stream element 𝑥𝑡 , the insertion procedure is the same as Algorithm 1.

But, the algorithm to merge pairs stored inM𝑡 is more complex: after every 1/𝜖 insertions, the
original GK sketch performs the compression procedure (see Algorithm 6) for each element 𝑒𝑖 ∈ M𝑡 .

Importantly, we highlight that, unlike our simplified algorithm, it does not suffice to only consider

merging adjacent elements 𝑒𝑖 and 𝑒𝑖+1 in the original GK sketch. Instead, the algorithm of [18]

must check the entire subtree of 𝑒𝑖 and 𝑒𝑖+1. However, it is not clear why merging entire subtrees

should be necessary, and indeed, we give a simplified algorithm that avoids both the complex tree

structure and the band-values entirely. We note that this tree structure makes implementing the

original GK sketch quite difficult, and this is the main reason why the original GK sketch (with

theoretical guarantees) is often not implemented in practice.

B PROOF OF LEMMA 9
To prove Lemma 9, we first need the following observation.

Observation 25. At any time 𝑡 in the algorithm, we always have Δ𝑖+1 ≤ 𝜖𝑡𝑖+1 − 1.

Proof. When we insert 𝑒𝑖+1 at time 𝑡𝑖+1, by Invariant (A1), we know that 𝑔𝑖+1 + Δ𝑖+1 ≤ 𝜖𝑡 . As

𝑔𝑖+1 = 1 since we just inserted 𝑒𝑖+1, we have Δ𝑖+1 ≤ 𝜖𝑡𝑖+1 − 1. Then since the Δ value is always

unchanged during merging, the inequality continues to hold. □

Proof. (Proof of Lemma 9)We associate with each element𝑥𝑡 ′ in the input stream (not necessarily

a representative) a potential

𝑝𝑥𝑡 ′ (𝑡) =
1

1 + 𝜖 (𝑡 − 𝑡 ′) .

Note that this potential changes over time 𝑡 . The recently inserted representatives weigh more

than the old representatives.

On the one hand, we have an upper bound on the total potential of all elements inserted before

𝑡 . (Note there is only one set 𝑆𝑖 containing 𝑥𝑡 . So it is without loss of generality to consider only

elements inserted strictly before 𝑡 .)

𝑡−1∑︁
𝑡 ′=1

𝑝𝑥𝑡 ′ (𝑡) =
𝑡−1∑︁
𝑡 ′=1

1

1 + 𝜖 (𝑡 − 𝑡 ′) =
(1 + 𝑜 (1)) log(𝜖𝑡)

𝜖
.

The last step holds because

∑𝑡−1
𝑡 ′=1

1

1+𝜖 (𝑡−𝑡 ′) =
∑𝑡−1

𝑡 ′=1
1

1+𝜖𝑡 ′ ≤
1

𝜖
·∑1+⌈𝜖𝑡 ⌉

𝑥=1
1

𝑥
=
(1+𝑜 (1)) log(𝜖𝑡)

𝜖
.

On the other hand, for any pair (𝑖, 𝑖 + 1) that is non-mergeable and 𝑡𝑖 > 𝑡𝑖+1, we want to prove

that the sets represented by them have a large total potential. For any such pair (𝑖, 𝑖 + 1), we must

have 𝑔𝑖 + 𝑔𝑖+1 + Δ𝑖+1 > 𝜖𝑡 . The following observation upper bounds Δ𝑖+1.
Hence, we know that 𝑔𝑖 + 𝑔𝑖+1 > 1 + 𝜖 (𝑡 − 𝑡𝑖+1). As a result,∑︁

𝑥𝑡 ′ ∈𝑆𝑖∪𝑆𝑖+1
𝑝𝑥𝑡 ′ (𝑡) =

∑︁
𝑥𝑡 ′ ∈𝑆𝑖∪𝑆𝑖+1

1

1 + 𝜖 (𝑡 − 𝑡 ′)

≥ |𝑆𝑖 ∪ 𝑆𝑖+1 |
1 + 𝜖 (𝑡 −min(𝑡𝑖 , 𝑡𝑖+1))

(Invariant (A3))

≥ 𝑔𝑖 + 𝑔𝑖+1
1 + 𝜖 (𝑡 − 𝑡𝑖+1)

(𝑡𝑖 > 𝑡𝑖+1)

≥ 1 (Observation (25))

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 109. Publication date: May 2024.

109:22 Elena Gribelyuk, Pachara Sawettamalya, Hongxun Wu, & Huacheng Yu

To conclude the proof, the total potential is
(1+𝑜 (1)) log(𝜖𝑡)

𝜖
and each not-mergeable pair with

𝑡𝑖 > 𝑡𝑖+1 has potential at least 1. Since each 𝑒𝑖 may belong to two such pairs, there can be at most

(2+𝑜 (1)) log(𝜖𝑡)
𝜖

such pairs. □

C MISSING PROOFS FROM SECTION 4
We have shown, via Section 4.2, that invariant (B0) holds throughout the algorithm. Thus, it remains

showing that invariants (B1), (B2), and (B3) are all maintained by our simplified algorithm for the

unweighted stream setting.

Lemma 26. Invariants (B1), (B2), and (B3) stated in Table 2 hold throughout the runtime of our
algorithm.

Proof. To show that these invariants are maintained throughout our algorithm, we will show

that they are each maintained after insertion and compression operations.

(1) Invariant (B1): ∀𝑒𝑖 ∈ M𝑡 ,
∑ |M𝑡 |

𝑗=𝑖+1 |{𝑒 ∈ 𝑆 𝑗 |𝑒 ≺ 𝑒𝑖 }| ≤ Δ𝑖 and
∑𝑖−1

𝑗=1 |{𝑒 ∈ 𝑆◦𝑗 |𝑒 ≻ 𝑒𝑖 }| ≤ Δ◦𝑖 .

First, suppose we insert a new element 𝑥𝑡 which is the 𝑖th-smallest element inM𝑡 . Then, we

set Δ𝑖 = 𝑔𝑖+1 + Δ𝑖+1. Since Δ𝑖+1 was already a valid upper bound on the number of elements

𝑒 ∈ 𝑆 𝑗 for 𝑗 ≥ 𝑖 + 2 such that 𝑒 ≺ 𝑒𝑖 and 𝑔𝑖+1 is the number of other elements that are

represented by 𝑒𝑖+1, it follows directly that ∀𝑒𝑖 ∈ M𝑡 ,
∑ |M𝑡 |

𝑗=𝑖+1 |{𝑒 ∈ 𝑆 𝑗 |𝑒 ≺ 𝑒𝑖 }| ≤ Δ𝑖 upon

insertion (this is also shown for the toy algorithm in Claim 6). The analogous inequality for

Δ◦𝑖 follows by a similar argument.

Next, suppose two adjacent elements (𝑒𝑖 , 𝑒𝑖+1) ∈ M𝑡 are mergeable and we perform a

compression operation. There are two cases here: if 𝑡𝑖 > 𝑡𝑖+1, we set 𝑔𝑖+1 ← 𝑔𝑖 + 𝑔◦𝑖 + 𝑔𝑖+1 + 1
and leave Δ𝑖 unchanged; moreover, we interpret this as merging sets 𝑆𝑖 ∪ 𝑆◦𝑖 ∪ {𝑒𝑖 } into 𝑆𝑖+1.
In fact, we can see that invariant (B1) directly carries over from before the merge operation,

so the claim follows by induction. The case that 𝑡𝑖 < 𝑡𝑖+1 can be shown similarly.

(2) Invariant (B2): ∀𝑒𝑖 ∈ M𝑡 , 𝑔𝑖 + Δ𝑖 ≤ 𝜖𝑡 and 𝑔◦𝑖 + Δ◦𝑖 ≤ 𝜖𝑡 .

For any insertion 𝑥𝑡 which is the 𝑖th-smallest element inM𝑡 , we initialize 𝑔𝑖 = 0, 𝑆𝑖 = ∅, and
set Δ𝑖 = 𝑔𝑖+1 + Δ𝑖+1. Then, it follows trivially that 𝑔𝑖 + Δ𝑖 = 𝑔𝑖+1 + Δ𝑖+1 ≤ 𝜖𝑡 . Likewise, by

initializing the “mirrored” attributes as 𝑔◦𝑖 = 0, 𝑆◦𝑖 = ∅, and Δ◦𝑖 = 𝑔◦𝑖−1 + Δ◦𝑖−1, we also have

that 𝑔◦𝑖 + Δ◦𝑖 = 𝑔◦𝑖−1 + Δ◦𝑖−1 ≤ 𝜖𝑡 .

Now, we show that this property is preserved after compressing a mergeable pair of adjacent

elements (𝑒𝑖 , 𝑒𝑖+1) ∈ M𝑡 . For simplicity, we consider the case that 𝑡𝑖 > 𝑡𝑖+1 and we set

𝑔𝑖+1 ← 𝑔𝑖+𝑔◦𝑖 +𝑔𝑖+1+1 (the other case that 𝑡𝑖+1 > 𝑡𝑖 will be symmetric). In fact, by the definition

of our algorithm, we can merge (𝑒𝑖 , 𝑒𝑖+1) (with 𝑡𝑖 > 𝑡𝑖+1) only if 𝑔𝑖 + 𝑔◦𝑖 + 𝑔𝑖+1 + Δ𝑖+1 ≤ 𝜖𝑡 ; this

requirement enforces the property that, after merging, we maintain 𝑔𝑖+1 + Δ𝑖+1 ≤ 𝜖𝑡 (and the

tuples for all other elements are unchanged).

(3) Invariant (B3): ∀𝑥𝑡 ′ ∈ 𝑆𝑖 ∪ 𝑆◦𝑖 , 𝑡 ′ ≥ 𝑡𝑖 , where 𝑡𝑖 is the insertion time of representative 𝑒𝑖 .

Suppose we insert an element 𝑥𝑡 which is the 𝑖th-smallest element inM𝑡 . Then, by definition,

we set 𝑔𝑖 = 𝑔◦𝑖 = 0, and think of 𝑆𝑖 = 𝑆◦𝑖 = ∅; also, we initialize 𝑡𝑖 ← 𝑡 . So, at the time of

insertion, this invariant is trivially satisfied.

Now, we check that this property is maintained after anymerge operation. Suppose (𝑒𝑖 , 𝑒𝑖+1) ∈
M𝑡 is a mergeable pair of adjacent elements, and we assume that the invariant holds at time

𝑡 − 1. Importantly, we recall that our algorithm works as follows: if 𝑡𝑖 > 𝑡𝑖+1 and merging

would not disrupt the additive-error guarantee, then we merge 𝑆𝑖 ∪ 𝑆◦𝑖 into 𝑆𝑖+1. Since the
invariant held at 𝑡 − 1, we know that every 𝑥 ∈ 𝑆𝑖 ∪ 𝑆◦𝑖 had 𝑡𝑥 > 𝑡𝑖 ; thus, it follows that

𝑡𝑥 > 𝑡𝑖 > 𝑡𝑖+1 for every 𝑥 ∈ 𝑆𝑖+1 after merging. Likewise, we can argue the case that 𝑡𝑖 < 𝑡𝑖+1
via a very similar argument.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 109. Publication date: May 2024.

Simple & Optimal Quantile Sketch: Combining Greenwald-Khanna with Khanna-Greenwald 109:23

This completes the proof. □

D MISSING PROOFS FROM SECTION 5
In this section, we show that the generalization of our algorithm to weighted streams illustrated in

Section 5 preserves correctness of approximation and desirable space usages. Our proofs follow

closely from those in Section 4.3 and 4.2.

D.1 Correctness
We first discuss the correctness of our algorithm for weighted streams. With the same proofs as

Lemma 26, we can show that the invariants (C0) , (C1), (C2), and (C3) are maintained. For the sake

of succinctness, we shall omit these proofs.

Crucially, we need to justify answering rank query in the weighted setting. Note that they follow

closely the proofs of Observation 17 and Lemma 18.

Observation 27. For any element 𝑒𝑖 ∈ M𝑡 , let rank(𝑡) (𝑒𝑖) be the rank of 𝑒𝑖 with respect to the stream
inserted until time 𝑡 . Then, we see that 𝑟 (𝑡)

min
(𝑒𝑖) ≤ rank

(𝑡) (𝑒𝑖) ≤ 𝑟
(𝑡)
max
(𝑒𝑖), where

𝑟
(𝑡)
min
(𝑒𝑖) B

𝑖∑︁
𝑗=1

𝑤 (𝑒 𝑗) +
𝑖∑︁
𝑗=1

𝐺 𝑗 +
𝑖−1∑︁
𝑗=1

𝐺◦𝑗 − Δ◦𝑖 and 𝑟
(𝑡)
max
(𝑒𝑖) B

𝑖∑︁
𝑗=1

𝑤 (𝑒 𝑗) +
𝑖∑︁
𝑗=1

𝐺 𝑗 + Δ𝑖 +
𝑖−1∑︁
𝑗=1

𝐺◦𝑗 .

Proof. We define rank
(𝑡)
S (𝑒𝑖) to be the total weights of elements in

⋃
𝑒 𝑗 ∈M𝑡

𝑆 𝑗 that are smaller

than 𝑒𝑖 , that is rank
(𝑡)
S (𝑒𝑖) = 𝑤 ({𝑒 ∈ ⋃

𝑒 𝑗 ∈M𝑡
𝑆 𝑗 | 𝑒 ≺ 𝑒𝑖 }). Similarly, we define rank

(𝑡)
S◦ (𝑒𝑖) =

𝑤 ({𝑒 ∈ ⋃𝑒 𝑗 ∈M𝑡
𝑆◦𝑗 | 𝑒 ≺ 𝑒𝑖 }). Then we have rank

(𝑡) (𝑒𝑖) = rank
(𝑡)
S (𝑒𝑖) + rank

(𝑡)
𝑆◦ (𝑒𝑖) +

∑𝑖
𝑗 ′=1𝑤 (𝑒 𝑗 ′).

(Note 𝑒1, 𝑒2, . . . , 𝑒𝑖−1, 𝑒𝑖 are not in these 𝑆 𝑗 ’s and 𝑆
◦
𝑗 ’s.)

We know that

rank
(𝑡)
S (𝑒𝑖) =

|M𝑡 |∑︁
𝑗=1

𝑤 ({𝑒 ∈ 𝑆 𝑗 | 𝑒 ≺ 𝑒𝑖 })

=

𝑖∑︁
𝑗=1

𝑤 (𝑆 𝑗) +
|M𝑡 |∑︁
𝑗=𝑖+1

𝑤 ({𝑒 ∈ 𝑆 𝑗 | 𝑒 ≺ 𝑒𝑖 }) .

The second term is lower bounded by 0 and upper bounded by Δ𝑖 . Similarly, due to the fact that

for all 𝑗 ≥ 𝑖 , 𝑒𝑖 ≺ 𝑆◦𝑗 , we have

rank
(𝑡)
S◦ (𝑒𝑖) =

|M𝑡 |∑︁
𝑗=1

𝑤 ({𝑒 ∈ 𝑆◦𝑗 | 𝑒 ≺ 𝑒𝑖 }) =

𝑖−1∑︁
𝑗=1

𝑤 (𝑆◦𝑗) −𝑤 ({𝑒 ∈ 𝑆◦𝑗 | 𝑒 ≺ 𝑒𝑖 })/

The sum of the second term is upper bounded by 0 and lower bounded by −Δ◦𝑖 .
Putting these together, we get

𝑖∑︁
𝑗=1

𝐺 𝑗 ≤ rank
(𝑡)
S (𝑒𝑖) ≤ Δ𝑖 +

𝑖∑︁
𝑗=1

𝐺 𝑗 and

𝑖−1∑︁
𝑗=1

𝐺◦𝑗 − Δ◦𝑖 ≤ rank
(𝑡)
S◦ (𝑒𝑖) ≤

𝑖−1∑︁
𝑗=1

𝐺◦𝑗 .

Together with rank
(𝑡) (𝑒𝑖) = rank

(𝑡)
S (𝑒𝑖) + rank

(𝑡)
𝑆◦ (𝑒𝑖) +

∑𝑖
𝑗 ′=1𝑤 (𝑒 𝑗 ′), this finishes the proof. □

Lemma 28. As long as the invariant (C2) holds at time 𝑡 , our sketch can answer any rank query
𝑥 ∈ U with 𝜖𝑊𝑡 additive error.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 109. Publication date: May 2024.

109:24 Elena Gribelyuk, Pachara Sawettamalya, Hongxun Wu, & Huacheng Yu

Proof. Let 𝑖 ∈ [|M𝑡 |] such that 𝑒𝑖 ⪯ 𝑥 ≺ 𝑒𝑖+1. We claim that the estimator r̂ank𝑡 (𝑥) =
𝑟
(𝑡)
min
(𝑒𝑖)+𝑟 (𝑡)max

(𝑒𝑖+1)−𝑤 (𝑒𝑖+1)
2

obtains an 𝜖-approximation to rank
(𝑡) (𝑥).

Since, 𝑒𝑖 ⪯ 𝑥 ≺ 𝑒𝑖+1 , from Observation 17 we must have 𝑟
(𝑡)
min
(𝑒𝑖) ≤ rank

(𝑡) (𝑒𝑖) ≤ rank
(𝑡) (𝑥) ≤

rank
(𝑡) (𝑒𝑖+1) −𝑤 (𝑒𝑖+1) ≤ 𝑟

(𝑡)
max
(𝑒𝑖+1) −𝑤 (𝑒𝑖+1). Hence,

|r̂ank
(𝑡)
(𝑥) − rank(𝑡) (𝑥) | ≤

𝑟
(𝑡)
max
(𝑒𝑖+1) −𝑤 (𝑒𝑖+1) − 𝑟 (𝑡)

min
(𝑒𝑖)

2

=
(𝐺𝑖+1 + Δ𝑖+1) + (𝐺◦𝑖 + Δ◦𝑖)

2

≤ 𝜖𝑊𝑡

following the invariant (B2). □

D.2 Space Analysis
In this section, we adapt the potential argument of Section 3.2 and finish the proof of Theorem 10.

The most important change is the change in the potential function. Recall that𝑤min is the smallest

weight of all elements.

Lemma 29. At any time 𝑡 , the total number of pairs (𝑒𝑖 , 𝑒𝑖+1) inM𝑡 that cannot be merged is at most
(2+𝑜 (1)) log(𝜖 ·𝑊𝑡 /𝑤min)

𝜖
.

Proof. For any stream element 𝑥𝑡 ′ inserted at time 𝑡 ′ ≤ 𝑡 (which might no longer reside in the

memory), we assign it a potential given by

𝑝𝑥𝑡 ′ (𝑡) =
𝑤 (𝑥𝑡 ′)

𝑤min + 𝜖 (𝑊𝑡 −𝑊𝑡 ′−1)
.

On the one hand, the total potential of all elements is bounded. Since there is at most one 𝑒𝑖 ∈ M𝑡

with 𝑡𝑖 = 𝑡 , we only focus on elements inserted strictly before time 𝑡 .

𝑡−1∑︁
𝑡 ′=1

𝑝𝑥𝑡 ′ (𝑡) =

𝑡−1∑︁
𝑡 ′=1

𝑤 (𝑥𝑡 ′)
𝑤min + 𝜖 (𝑊𝑡 −𝑊𝑡 ′−1)

≤ (1 + 𝑜 (1)) log(𝜖𝑊𝑡/𝑤min)
𝜖

where the final inequality follows from Fact 31 in Appendix E.

On the other hand, for any pair (𝑒𝑖 , 𝑒𝑖+1) that is not mergeable, we want to prove that the total

potential in 𝑆𝑖 ∪ 𝑆◦𝑖 ∪ 𝑆𝑖+1 ∪ 𝑆◦𝑖+1 ∪ {𝑒𝑖 , 𝑒𝑖+1} is high. Focusing on the case where 𝑡𝑖 > 𝑡𝑖+1, we know
that 𝑔𝑖 + 𝑔◦𝑖 + 𝑔𝑖+1 + Δ𝑖+1 +𝑤 (𝑒𝑖) > 𝜖𝑊𝑡 . Then, we have that∑︁

𝑥𝑡 ′ ∈𝑆𝑖∪𝑆◦𝑖 ∪𝑆𝑖+1∪𝑆◦𝑖+1∪{𝑒𝑖 ,𝑒𝑖+1 }
𝑝𝑥𝑡 ′ (𝑡) ≥

∑︁
𝑥𝑡 ′ ∈𝑆𝑖∪𝑆◦𝑖 ∪𝑆𝑖+1∪{𝑒𝑖 ,𝑒𝑖+1 }

𝑤 (𝑥𝑡 ′)
𝑤min + 𝜖 (𝑊𝑡 −𝑊𝑡 ′−1)

≥
𝐺𝑖 +𝐺◦𝑖 +𝐺𝑖+1 +𝑤 (𝑒𝑖) +𝑤 (𝑒𝑖+1)

𝑤min + 𝜖 (𝑊𝑡 −𝑊𝑡𝑖+1−1)
(Invariant (C3) and 𝑡𝑖 > 𝑡𝑖+1)

≥ 𝑤 (𝑒𝑖+1) + 𝜖𝑊𝑡 − Δ𝑖+1
𝑤min + 𝜖 (𝑊𝑡 −𝑊𝑡𝑖+1−1)

(Non-mergeability)

≥ 𝑤min + 𝜖𝑊𝑡 − Δ𝑖+1
𝑤min + 𝜖 (𝑊𝑡 −𝑊𝑡𝑖+1−1)

(𝑤𝑒𝑖+1 ≥ 𝑤min)

≥ 1

Here, the last step follows from the fact that, when we insert 𝑒𝑖+1, by invariant (C2), we have

Δ𝑖+1 = 𝐺𝑖 + Δ𝑖 ≤ 𝜖𝑊𝑡𝑖+1−1.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 109. Publication date: May 2024.

Simple & Optimal Quantile Sketch: Combining Greenwald-Khanna with Khanna-Greenwald 109:25

From symmetry, we see that in the case when 𝑡𝑖 < 𝑡𝑖+1, the total potential for any not mergeable

pair (𝑒𝑖 , 𝑒𝑖+1) is also at least 1. Also, 𝑒𝑖 , 𝑆𝑖 , 𝑆◦𝑖 contributes to the potential of at most two not mergeable

pairs. As a result, there can be at most
(2+𝑜 (1)) log(𝜖 ·𝑊𝑡 /𝑤min)

𝜖
many not mergeable pairs inM𝑡 , as

desired. □

Corollary 30. When all weights 𝑤𝑖 ≤ poly(𝑛), the space required for our 𝜖-approximate quantile
summary on weighted streams is at most 𝑂 (𝜖−1 log(𝜖𝑛)).

E MISCELLANEOUS
In this part, we provide the omitted proof for Fact 31.

Fact 31. For any 𝑎1, ..., 𝑎𝑡 ∈ R+ and 𝑎0 ≤ min{𝑎1, ..., 𝑎𝑡 }, we have
𝑡∑︁

𝑘=1

𝑎𝑘

𝑎0 + 𝜖 (𝑎𝑘 + ... + 𝑎𝑡)
≤ 1 + 𝑜 (1)

𝜖
log

(
𝜖 · (𝑎1 + ... + 𝑎𝑡)

𝑎0

)
.

Proof. First, we upper bound each term
𝑎𝑘

𝑎0+𝜖 (𝑎𝑘+...+𝑎𝑡) . Observe that

𝑎𝑘

𝑎0 + 𝜖 (𝑎𝑘 + ... + 𝑎𝑡)
=

𝑎𝑘∑︁
ℓ=1

1

𝑎0 + 𝜖 (𝑎𝑘 + ... + 𝑎𝑡)

≤
𝜖𝑎𝑘∑︁
𝑣=1

1

𝜖

𝑎0 + 𝜖 (𝑎𝑘+1 + ... + 𝑎𝑡) + 𝑣

≤ 1 + 𝑜 (1)
𝜖

log

(
𝑎0 + 𝜖 (𝑎𝑘 + ... + 𝑎𝑡)
𝑎0 + 𝜖 (𝑎𝑘+1 + ... + 𝑎𝑡)

)
where the last inequality follows by making a change of variables and applying the fact that∑𝑡

𝑖=1
1

𝑡
= (1 +𝑜 (1)) log(𝑡). Summing over all 𝑘 ∈ [𝑡] and applying the term-wise upper bound from

above, we see that

𝑡∑︁
𝑘=1

𝑎𝑘

𝑎0 + 𝜖 (𝑎𝑘 + ... + 𝑎𝑡)
≤ 1 + 𝑜 (1)

𝜖

𝑡∑︁
𝑘=1

log

(
𝑎0 + 𝜖 (𝑎𝑘 + ... + 𝑎𝑡)
𝑎0 + 𝜖 (𝑎𝑘+1 + ... + 𝑎𝑡)

)
=
1 + 𝑜 (1)

𝜖
log

(
𝜖 (𝑎1 + ... + 𝑎𝑡)

𝑎0

)
□as desired.

Received December 2023; revised February 2024; accepted March 2024

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 109. Publication date: May 2024.

	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Further Related Works

	2 Preliminaries
	2.1 The Basic Setup

	3 Warm up: An (over)simplified GK algorithm
	3.1 Our Motivation: The Toy Algorithm
	3.2 The Easy Case: a Novel Potential Analysis
	3.3 Handling the Hard Case: Some Heavy Lifting

	4 Combining GK sketch with another ``mirrored'' GK sketch
	4.1 Our Algorithm
	4.2 Correctness
	4.3 Space Analysis
	4.4 Efficient Data Structures for our Algorithm

	5 Generalization for weighted streams
	5.1 Our algorithm for the weighted stream setting

	References
	A The original GK sketch
	B Proof of Lemma 9
	C Missing Proofs from Section 4
	D Missing Proofs from Section 5
	D.1 Correctness
	D.2 Space Analysis

	E Miscellaneous

