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Abstract—Reinforcement learning algorithms often suffer from
poor sample efficiency, making them challenging to apply in
multi-task or continual learning settings. Efficiency can be
improved by transferring knowledge from a previously trained
teacher policy to guide exploration in new but related tasks.
However, if the new task sufficiently differs from the teacher’s
training task, the transferred guidance may be sub-optimal
and bias exploration toward low-reward behaviors. We propose
an energy-based transfer learning method that uses out-of-
distribution detection to selectively issue guidance, enabling the
teacher to intervene only in states within its training distribution.
We theoretically show that energy scores reflect the teacher’s
state-visitation density and empirically demonstrate improved
sample efficiency and performance across both single-task and
multi-task settings.

I. INTRODUCTION

Reinforcement learning (RL) is widely used for sequential
decision-making in robotics, enabling agents to acquire com-
plex motor skills [9} [1} [7, [30]. However, many RL algorithms
suffer from poor sample efficiency, due to challenges related to
credit assignment, modeling errors, and sparse rewards. While
sample inefficiency may be tolerable when learning a single
task, it becomes increasingly problematic in multi-task [32] or
continual learning [28] settings, where agents must repeatedly
learn to solve multiple, often related tasks. A natural question
arises: can we transfer knowledge from previously solved tasks
to accelerate learning in new ones?

One common approach to transfer is to reuse a previously
trained teacher policy to guide a student policy’s exploration in
a new task, either directly (by suggesting actions [25} 26 [15]])
or indirectly (by shaping rewards [3}[10]). This form of transfer
learning can be highly effective: early in learning, even partial
guidance can steer the student toward high-reward behaviors
and minimize the need for random exploration. However, when
tasks are sufficiently different this approach can impair the
student’s ability to learn; the teacher may issue sub-optimal
guidance that biases exploration towards low-reward regions
of the state-action space [4} 24].

In this paper, we introduce an introspective transfer
learning method that selectively guides exploration only
when the teacher’s knowledge is likely to be helpful.
Our approach — energy-based transfer learning (EBTL) —
is based on the insight that guidance should only be issued
when the student visits states that lie within the teacher’s
training distribution. Leveraging concepts from energy-based
learning [13} 8] and out-of-distribution detection [14, 29} 201,
the teacher computes energy scores over states visited by
the student during training, treating high-energy states as in-
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distribution and therefore eligible for guidance. This mecha-
nism enables the teacher to act only when it is sufficiently
“familiar” with the current context, leading to more efficient
training — not by issuing more guidance but by issuing correct
guidance. Our contributions are as follows:

o We introduce an energy-based transfer learning method
that selectively guides exploration only when the stu-
dent’s state lies within the teacher’s training distribution.

o« We provide theoretical justification for our approach,
showing that the energy score is proportional to the state
visitation density induced by the teacher policy.

o We empirically demonstrate that our method yields more
sample efficient learning and higher returns than standard
reinforcement learning and transfer learning baselines,
across both single-task and multi-task settings.

II. RELATED WORK

Reinforcement learning is a general framework for se-
quential decision-making, where an agent learns a policy to
maximize long-term reward [23]. However, RL often suffers
from poor sample efficiency, especially in sparse-reward or
high-dimensional environments [2} [19].

To improve sample efficiency, transfer learning reuses
knowledge from prior tasks to accelerate learning in new
ones [27]. In RL, this often follows a teacher-student
paradigm, where a teacher policy trained on a source task
guides a student on a related target task [24, 33|]. Guid-
ance may take the form of action suggestions [25]], reward
shaping [16], or policy initialization [12]. Parameter-based
methods like fine-tuning are simplest, initializing the student
from the teacher and adapting via further training [31} [18].
However, this can overly bias the student toward the teacher’s
behavior, limiting exploration and harming performance when
tasks differ. Alternatively, behavior-based methods transfer
knowledge by encouraging the student to mimic the teacher
during training. Policy distillation adds an auxiliary loss
to minimize divergence between student and teacher poli-
cies [21, 22]. In action advising, the teacher suggests actions
to guide exploration, but poorly timed advice can impede
learning [25]. To address this, recent methods adopt dynamic
advising: JumpStart RL limits guidance to early steps of each
episode [26], while introspective action advising uses shifts in
the teacher’s expected reward to decide when to intervene [4].

However, prior methods rely on pre-defined heuristics, hy-
perparameters, or brittle fine-tuning strategies which limit their
generalizability. Our method addresses this gap by applying
theoretically-grounded out-of-distribution detection to reliably
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Fig. 1: Overview of energy-based transfer learning. During interaction, the teacher: 1) determines whether a state is in-
or out-of-distribution based on a predefined energy threshold; 2) if the state’s energy exceeds the threshold, it is treated as

in-distribution and an expert action is suggested.

estimate teacher familiarity with a given state, enabling posi-
tive transfer performance even between tasks with high degrees
of covariate shift.

III. BACKGROUND

a) Reinforcement Learning.: We model our setting as
a Markov Decision Process (MDP), defined by the tuple
(S, A, P,R,~), where S is the set of states, A is the set of
actions, P(s’ | s,a) denotes the transition probability from
state s to state s’ given action a, R(s, a) is the reward function,
and v € [0,1) is the discount factor. At each timestep ¢, the
agent observes a state s; € S, selects an action a; € A,
transitions to a new state s;y1 ~ P(- | s¢,a¢), and receives
a reward 7, = R(s¢,a;). We consider the infinite-horizon
setting, where our objective is to learn a policy 7(a | s) that
maximizes the expected discounted return: E. [> .= v'ry].

b) Energy-Based Out-of-Distribution Detection.: In this
paper, we are interested in determining whether a state lies
within the training data support of a given policy. In supervised
learning, this is broadly referred to as out-of-distribution
(OOD) detection. A widely-used baseline for OOD detection
uses the maximum softmax probability assigned to a predicted
label [11]]. However, softmax scores are not always reliable as
neural networks can produce overconfident predictions for out-
of-distribution inputs [17]. An alternative approach is to use
the energy score of an input, which is computed from the raw
logits of a network and has been shown to better separate in-
and out-of-distribution examples [14]].

Formally, given an input x € R” and a neural network
f(x) € RE with logits fi(x),..., fr(x), we define the free
energy for x as follows, where ' > 0 is a temperature
parameter controlling the sharpness of the scaled logits:

K
E(x; f) = —Tlog » et/ (1)
=1

An input is considered to be OOD if E(x;f) > 7 for an
energy threshold T and in-distribution (ID) otherwise. The
energy threshold is pre-computed over a set of ID data.

IV. ENERGY-BASED TRANSFER LEARNING

Our goal is to improve reinforcement learning sample
efficiency, especially in multi-task settings. One way is to
leverage a teacher policy trained on a related source task
to guide the student in a new target task. However, naive
guidance can hurt efficiency when the student visits states
outside the teacher’s experience, biasing exploration toward
uninformative or low-reward regions. We address this by only
allowing the teacher to suggest actions in states sufficiently
close to its training distribution. We formalize the problem
of when to issue guidance as out-of-distribution detection for
reinforcement learning.

Problem Formulation. Let 77 and wg denote the teacher
and student policies, respectively. We denote a trajectory as
X = {z:}}_,, where each transition x; = (s¢,at, St+1,7t)
consists of the state s;, action a;, next state s;y1, and reward
r¢. We define a score function ¢(s;7), where a state s is
considered ID with respect to a policy 7 if ¢(s) > 7, for some
threshold 7 € R, and OOD otherwise. The action selection rule
is then defined as:

. {aT ~ (-] 8),

if ¢(s;mr) > T,

if ¢(s;mr) < 7. @

as ~ms(- | s),
Equation [2] restricts teacher intervention to states where it has
prior experience, deferring to the student in all other cases.

A. Energy Scores and State Visitation

We draw inspiration from recent work on energy-based out-
of-distribution detection [14] and define our score function as
the negative free energy of a state s under the teacher policy:

¢(s;mr) = —E(s;mr),

where E(s; 77 ) is the free energy computed from the teacher’s
network. We refer to ¢(s;mr) as the energy score, which
serves as a proxy for how likely the state is to belong to the
teacher’s training distribution p(z). In on-policy reinforcement
learning, training data is generated by rolling out the teacher
policy 7 to collect experience. As a result, p(x) is implicitly



Algorithm 1 Energy-Based Transfer for Reinforcement Learn-
ing

1: Input: Teacher policy mr, student policy mg, energy

threshold 7, decay function §

2: while not done do

3: Initialize empty batch B < ()

4: fort=1— H do

5: Sample p ~ U(0,1)

mr(a]| s if —E(sg;mp) > 7
6: a; <+ and p < §(t)
ms(a | st) otherwise

Take action a, observe ry, Si41
B+ BU (8¢, a4, St41,7¢)

Update mg with batch B

o

defined by the state-visitation distribution d (s) of the teacher.
Consequently, the free energy F(s;7r) is negatively related
with the teacher’s familiarity with a state — assigning lower
values to frequently visited states and higher values to un-
familiar ones. Following convention [14], we set, the energy
score ¢ to the negative free energy so that in-distribution states
yield higher scores than out-of-distribution states.

Proposition 1. Under on-policy training, let d.(s) denote the
state-visitation distribution induced by policy w. Then the log
of the visitation density is proportional to the score function
¢(s) = —E(s):

logd,(s) o< ¢(s).

Proof: Given an energy-based model f, the density p(s)
is defined in terms of its energy E(s) [13] as p(s;f) =
# where Z = fs e~ EEN/T i the partition function
and T is the temperature. Ignoring the normalizing constant Z
and taking the logarithm of both sides, we obtain log p(s)
—E(s). In on-policy RL, training data is collected by sampling
trajectories under the current policy w. Thus, the empirical
distribution p(s) corresponds to the marginal distribution over
states visited by , i.e., the state-visitation distribution d(s).
Substituting this into the previous expression, we obtain

logd,(s) x —E(s) = ¢(s). |
B. Algorithm

We summarize our approach in Algorithm [T} At a high-
level, the student policy interacts with the environment to
collect trajectories, while selectively receiving guidance from
a teacher policy. At each timestep, EBTL evaluates whether
the current state is familiar to the teacher using an energy-
based OOD score. If the state is deemed in-distribution and a
decaying probability schedule permits guidance, the action is
sampled from the teacher policy; otherwise, the student policy
acts. The resulting trajectories are stored in a batch and used
to update the student policy.

To decide when to issue guidance, we compute a threshold
7 € R as the empirical g-quantile of energy scores over teacher
training states St, ie., 7 = Quantile, ({¢(s) | s € Sr}).

Following prior work [22| 26l 4], we apply a linear decay
schedule §(t) = max(0,dp — xt) to control the probability
of guidance. This enables early reliance on the teacher while
gradually promoting student autonomy.

a) Energy Regularization.: As discussed in Sec-
tion the score function ¢(s) = —FE(s) correlates
with the teacher’s state-visitation frequency: frequently visited
states tend to receive higher scores. However, this implicit
signal may be insufficient to reliably distinguish in-distribution
(ID) from out-of-distribution (OOD) states, as the teacher is
trained solely on trajectories from its own environment and
lacks exposure to OOD regions.

To improve separability, we adopt the energy-based loss
from Liu et al. [14], augmenting the teacher’s training with
a fixed set of representative OOD states. Let DI™" denote
the set of ID states collected during teacher training and
Diain 3 curated set of OOD states. Let s;, ~ DI and
Sout ~ DU3M denote samples from each. Using the energy score
@(s) = —E(s), the loss is defined as:

Lensgy = B, [(max(0, min — 9(s1)))’]

+ Es,, | (max(0, ¢(sou) — mow))’]

where my, € R and mg, € R are margin thresholds for ID
and OOD energy scores, respectively. The first term penalizes
ID states with energy scores below m;,; the second penalizes
OOD states with energy scores above my. The overall teacher
loss is Lioal = LRL + A - Lenergy Where X € R™ controls the
weight of the energy regularization. In EBTL, OOD samples
are drawn from random rollouts in the target environment. ID
samples are drawn from the teacher’s own training trajectories
via random subsampling.

b) Off-Policy Correction: Actions originate from either
the student policy (pure student sampling) or the teacher policy
(teacher guidance), making trajectories off-policy relative to
the student. We correct for this via importance sampling in
both actor and critic updates. The importance ratio compares
the current student policy to the behavior policy—either the
previous student policy or the fixed teacher policy—ensuring
stable training under mixed-policy rollouts.

V. EXPERIMENTS

We evaluate our method in two settings: single-task trans-
fer and multi-task transfer. In the single-task setting, we use
GridWorld [6], a navigation environment where the agent’s
objective is simply to reach a goal location. In the multi-
task setting, we use Overcooked [3]], where the agent must
learn to solve multiple task variants, such as how to cook
different recipes. For each environment, we construct multiple
experimental settings that introduce increasing covariate shift
between the teacher’s training distribution and the student’s
target distribution. This allows us to evaluate the robustness
of our method under progressively harder transfer scenarios.

In each domain, we examine learning performance with
the goal of understanding: (1) whether our method leads to
improved sample efficiency, and (2) when the teacher chooses
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Fig. 3: Alternating-Goal results (10 seeds). (a-Top) Transfer performance across energy thresholds and decay schedules (e.g.,
50% means guidance probability decays to 0 when training is 50% done). A threshold of —1 indicates that all guidance is
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(see Section . (b) Evaluation returns for EBTL and baselines. (¢) Energy score distributions: source (blue) vs. target (orange
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to provide guidance during the student’s learning process. We
compare our approach, energy-based transfer learning, against
the following baselines:

¢ No Transfer: An agent trained from scratch with stan-
dard RL.

o Action Advising (AA): A teacher provides advice at
every timestep. Advice issue rate decays over time using
a predefined schedule.

o Fine-Tuning: The student is initialized from a pretrained
teacher policy. Convolutional layers are frozen, and only
the remaining parameters are updated during training.

o Kickstarting RL (KSRL) [22]: A policy distillation
method that adds a cross-entropy loss between the student
and teacher policies to encourage imitation.

o JumpStart RL (JSRL) [26]: A time-based advising
method where the teacher provides guidance during the
early part of each episode, with a decaying timestep
threshold.

All experiments use teacher and student policies trained

with the TorchRL implementation of proximal policy opti-

mization (PPO) [22]]. Full hyperparameter details are provided
in the Appendix.

A. Single-Task Setting: GridWorld

GridWorld consists of four interconnected rooms and serves
as a controlled single-task setting. We design two transfer
setups, As illustrated in Figure [Zh:

(1) Alternating Goal Room. The source task always places
the goal in Room 1 (upper-left), while the target task randomly
places it in either Room 1 (upper-left) or Room 3 (lower-right).
The teacher should intervene only when the goal is in Room 1,
where its prior experience applies; when the goal is in Room
3, the student must act independently.

(2) Locked Room. The source task allows free movement
between rooms, while the target task introduces a locked door
between the upper and lower areas. To reach the goal, the agent
must first retrieve a key — randomly placed in the upper rooms
— and unlock the door. Since the teacher was not trained to
find or use a key, it should only provide guidance after the key
has been picked up, when the remaining navigation matches
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Fig. 5: Comparison of energy-based transfer learning perfor-
mance and corresponding state-wise energy visualization.

its prior experience.

The results for the Alternating Goal Room and Locked
Room setups are illustrated in Figure [3] and Figure ] respec-
tively. We make the following observations.

EBTL consistently outperforms all baselines. In both
transfer setups, EBTL achieves the highest sample-efficiency
of all baselines. For the Alternating Goal Room and the
Locked Room, when the energy threshold ¢ > 0.1, EBTL
rarely issues guidance in unfamiliar states, leading to sig-
nificant improvements in transfer performance. As shown in
Figure [5b] the teacher assigns higher energy scores to states
encountered during training — when the goal is in Room 1

causing greater covariate shift and reducing separation, as seen
in Figure [. Still, the teacher assigns lower energy scores
to pre-key states, showing it can differentiate familiar from
unfamiliar regions.

There exists an optimal energy threshold ¢ that balances
filtering harmful and helpful guidance. The performance
curves exhibit a mountain-shaped trend: increasing ¢ initially
boosts transfer performance by suppressing harmful advice
in unfamiliar states. However, when ¢ becomes too large,
the teacher begins to withhold guidance even in familiar
situations, limiting its usefulness. This trade-off is evident in
both Figure Bp and Figure ffp, where performance declines
once q > 0.7 due to overly conservative advising.

Energy regularization significantly improves EBTL but
has little effect on other methods. As shown in Figure [5a]
incorporating energy loss enables EBTL to converge faster,
especially in the more challenging Locked Room environment
where covariate shift is greater. In contrast, other baselines
show no noticeable difference in performance regardless of
whether the teacher was trained with or without energy regu-
larization — their convergence times remain similar. Notably,
even without energy loss, EBTL still matches or exceeds all
baselines, highlighting the robustness of our approach.

B. Multi-Task Setting: Overcooked

We develop a single-agent variant of Overcooked [3] to
evaluate multi-task learning. At each timestep, one recipe
(onion, tomato, or fish soup) is active. The agent must place
three matching ingredients into a pot; while the soup cooks (20
steps), it can retrieve a dish. Once cooked, the soup must be
delivered to receive a reward. After each delivery, a new recipe
is sampled uniformly, regardless of correctness. Rewards are
sparse and given only for correct deliveries, with auxiliary
shaping to accelerate training. Figure b illustrates the setup.
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We construct three transfer tasks with increasing distribution
shift between teacher and student environments:

1) Recipe Shift (2 = 3): Both the source and target envi-
ronments include all three ingredients: onions, tomatoes,
and fish. The source task requires onion and tomato
soup, while the target task requires onion, tomato, and
fish soup resulting in recipe shift.

2) Recipe Shift (1 = 3): Both environments again have
all three ingredients. This time, the source task requires
only onion soup while the target task requires onion,
tomato, and fish soup, introducing a higher degree of
recipe shift.

3) Recipe + Layout Shift (2 = 2): The source environ-
ment includes only onions and tomatoes and requires
onion and tomato soup, while the target environment
includes only tomatoes and fish and requires recipe and
layout. This results in both recipe and layout shift.

The results are shown in Figure [] The relative difficulty
of each transfer scenario is reflected by the increasing KL
divergence between the energy score distributions of the
teacher’s and student’s states.

EBTL outperforms all baselines across all difficulty
levels. In all three transfer setups, EBTL consistently achieves
higher policy returns and sample-efficiency than baseline
methods. As the divergence between teacher and student
environments increases, transfer becomes more challenging.
Notably, the Recipe (2 = 3) scenario shares the same layout
as Recipe (1 = 3), but converges more quickly. This improve-
ment stems from the teacher’s ability to issue more useful
guidance, i.e. when the student’s current recipe is tomato soup
— a task the teacher has seen during training.

Shared layouts simplify OOD detection. In scenarios
where the source and target tasks share spatial layouts, i.e.
Recipe (2 = 3) and Recipe (1 = 3), the covariate shift is due
entirely to the recipe encoding in the observation. This results
in a clearly bimodal energy distribution in the target task —
one mode for ID states and another for OOD - simplifying
the OOD detection problem (refer to the top row of Figure [6]

Layout shift makes OOD detection more challenging. In
the Recipe + Layout (2 = 2) setting, the source and target
tasks use different layouts, introducing a stronger covariate
shift. This results in a systematic decrease in ID energy
scores which blurs the ID/OOD boundary, as even states
associated with familiar recipes appear slightly OOD due
to the layout shift. Nevertheless, EBTL continues to avoid
issuing guidance in states associated with unfamiliar recipes,
resulting in positive transfer performance. In contrast, all
baseline methods yield negative transfer and degrade learning
performance compared to standard RL.

VI. CONCLUSION

We introduced energy-based transfer learning (EBTL), a
method for improving sample efficiency in reinforcement
learning through selective teacher guidance. EBTL uses energy
scores as a proxy for familiarity, issuing advice only in states
likely within the teacher’s training distribution. Experiments
across single-task and multi-task settings show that EBTL
consistently outperforms baselines, especially under covariate
shift. While effective, EBTL requires setting an energy thresh-
old and is best suited for covariate rather than label shift. These
limitations suggest future work on adaptive thresholding and
broader transfer settings.
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APPENDIX

A. Training Details

1) GridWorld:

a) Reward Structure and Action Masking: In the Min-
iGrid experiments, agents are trained under a sparse reward
setting: a reward of 1 is given only when the agent successfully
reaches the goal location. No shaped or intermediate rewards
are provided, making the task highly exploration-dependent.
To mitigate the resulting challenge and accelerate learning,
we apply action masking to dynamically restrict the agent’s
action space based on its immediate environment. The action
mask disables irrelevant or invalid actions at each timestep:
(1) the forward action is masked out if the agent is facing
a wall, preventing redundant collisions; (2) the pickup action
is disabled unless the agent is directly facing a key; (3) the
toggle action is masked out unless the agent is facing a door;
(4) the drop action is always disabled, as object dropping is
unnecessary in our tasks; and (5) the done action is perma-
nently disabled, since it is not used in our environments. This
selective pruning of the action space reduces the likelihood
of unproductive behavior and enables the agent to focus on
learning goal-directed policies more effectively.

b) Teacher Training: In both experimental setups, we
train two variants of the teacher policy using standard Proximal
Policy Optimization (PPO) in the source environment: one
with the energy-based loss and one without. For the teacher
trained with energy loss, the m;, and mg, are set to 10 and
15 respectively. These values are chosen arbitrarily, as the
separation between energy distributions is insensitive to the
exact threshold choice (see Section[DODb). The training follows
a consistent set of hyperparameters, as detailed in the next
section. For the unlocked-to-locked environment, 800K-step
checkpoints are selected from both training variants. For the
alternating-goal room environment, 200K-step checkpoints
are used.

c) Student Training: For each target task, we first train
a student policy from scratch using standard PPO without any
transfer to establish baseline performance. In the unlocked-
to-locked environment, the total training horizon for transfer
experiments is set to 1 million steps, while in the alternating-
goal room environment, it is set to 200,000 steps. All experi-
ments in the MiniGrid setups are conducted with 10 random
seeds to ensure robustness. Within each domain, the student
and teacher policies share the same model architecture.

2) Overcooked-Al:

a) Reward Structure: In all Overcooked setups, no action
masking is applied. Instead, shaped rewards are introduced to
facilitate the training process. A shaped reward of 3 is given
when the correct ingredient is added to a pot. An additional
reward of 3 is awarded when a dish is picked up—provided
there are no dishes already on the counter and the soup is
either cooking or completed. A reward of 5 is granted when
the soup is picked up. Furthermore, a shaped reward of 3
is given upon delivering the soup, regardless of whether it
matches the currently active recipe. All shaped rewards follow

a predefined linear decay schedule. In contrast, a sparse reward
of 20 is awarded when the delivered soup matches the active
recipe; this reward does not decay over time.

b) Teacher Training: In all Overcooked setups, teacher
policies are trained in the source environment using standard
Proximal Policy Optimization (PPO) with hyperparameters
described in the following section. For each setup and source-
target configuration, a specific checkpoint is selected to serve
as the teacher for transfer. The table below lists the selected
training step (in environment steps) corresponding to each
teacher checkpoint.

Subset (2—3)  Subset (1—3)
19M M

Inter. (2—2)
12M

TABLE I: Teacher checkpoints (in env steps)

c) Student Training: In all Overcooked setups, student
policies are trained in the target environment using PPO under
a fixed transfer horizon. For the teacher trained with energy
loss, the m;, and m,,; are set to 12 and 14 respectively.
The training is conducted using consistent hyperparameters,
as detailed in the next section. All experiments are repeated
with 3 random seeds to ensure stability and reproducibility.
The transfer horizon varies depending on the setup and source-
target configuration. The table below summarizes the number
of environment steps used during student training for each
case:

Subset 2 — 3)
20M

Subset (1 — 3)
20M

Intersection (2 — 2)

12M

TABLE II: Transfer horizons (in millions of environment
steps) used for student training in each Overcooked setup and
configuration. Each experiment is run with 3 random seeds.

B. Hyperparameters

1) GridWorld: All experimental setups in GridWorld are
trained using a fixed set of PPO hyperparameters, summarized
in [T} These settings remain consistent across all teacher and
student training runs within the domain.

2) Overcooked-Al: All Overcooked experiments use a
shared set of core PPO hyperparameters, listed in These
settings are consistent across teacher and student training.
However, the learning rate and reward shaping horizon vary
depending on the layout and recipe configuration, summarized
in [Y} We use the following notation: O = Onion, T = Tomato,
F = Fish, OT = Onion + Tomato, TF = Tomato + Fish, OTF
= Onion + Tomato + Fish.

C. Model Architecture

All MiniGrid experiments share the same model architecture
shown in Fig. [7h. Similarly, all Overcooked experiments use
the architecture in Fig. [7p.



Hyperparameter Value
Learning rate 0.0005
Discount factor (vy) 0.9
GAE lambda (\) 0.8
Policy clip parameter 0.2
Value function clip parameter 10.0
Value loss coefficient 0.5
Entropy coefficient 0.01
Train batch size 256
SGD minibatch size 128
Number of SGD iterations 4
Number of parallel environments 8
Normalize advantage False

TABLE III: Hyperparameters used for all GridWorld experi-
ments.

Hyperparameter Value
Discount factor (y) 0.99
GAE lambda () 0.6
KL coeff 0.0
Reward clipping False
Clip parameter 0.2
VF clip parameter 10.0
VF loss coeff 0.5
Entropy coeff 0.1
Train batch size 9600
SGD minibatch size 1600
SGD iterations 8
Parallel envs 24
Normalize advantage  False

TABLE IV: Shared PPO hyperparameters across all Over-
cooked experiments.

D. Sensitivity of Energy-Based Separation

We evaluate whether varying the energy thresholds m;, and
mou affects the teacher’s ability to distinguish between false
and true out-of-distribution (OOD) states. The energy loss used
during training is defined over the energy score ¢(s) = —FE(s)
as:

Lenersy = Eg,, ~pimn [(max (0, min — (b(sin)))ﬂ
+ By epge | (max (0, 6(ou) — mow))?]

a) Experimental Setup: Experiments are conducted in
the GridWorld (unlocked-to-locked) environment. During
training, the in-distribution (ID) set consists of the most recent
3,000 frames collected from the agent’s own trajectory. The
out-of-distribution (OOD) set is fixed and sampled from 100
episodes of a random policy in the target environment, where
the agent is randomly initialized in any room at the start
of each episode to ensure unbiased state coverage (rather
than being constrained to the upper room). We evaluate six
combinations of (mj,, Mgy ) used in the energy regularization
loss (defined over energy scores ¢(s) = —FE(s)): (10, 15), (5,
10), (15, 20), (10, 10), (15, 15), (12, 14). Each configuration
is trained with 3 random seeds using a shared PPO setup and
evaluated at the 800,000-step checkpoint.

b) Sensitivity Evaluation Protocol: We assess whether
the teacher consistently distinguishes between false OOD

Config LR Horizon
Subset (O) 0.001 &M
Subset (OT) 0.001 I5M
Subset (OTF)  0.001 25M
Inter. (OT) 0.001 10M
Inter. (TF) 0.001 10M

TABLE V: Setup-specific learning rates and reward shaping
horizons.

Critic Actor

Linear Linear
64X1 64X6
Linear Linear
64X64 64X64
Critic Actor /I\ 4\
/P ¢ Linear Linear
64X64 64X64
Linear Linear
| 576X1 | | 576X7 | 4\ 4\
/P ¢ Linear Linear
182X64 182X64
ReLu RelLu ¢ ¢
Convzd Convzd Leaky Rel Leaky Relu
64, (2X2) 64, (2X2) Aol ]
Conv2d Conv2d
25, (3X3) 25, (3X3)
ReLu RelLu ¢ /b
Conv2d Conv2d
32, (2X2) 32, (2X2) Leaky Relu Leaky Relu
/h ¢ Conv2d Conv2d
25, (3X3) 25, (3X3)
Pool (2X2) Pool (2X2) ¢ /P
RefU RefU Leaky Relu Leaky Relu
Conv2d Conv2d Conv2d Convad
16, (2X2) 16, (2X2) v
25, (5X5) 25, (5X5)
(a) GridWorld (a) Overcooked

Fig. 7: Actor-Critic architectures used in our experiments. (a)
MiniGrid. (b) Overcooked.

states — those similar to ID states and where guidance should
be issued — and true OOD states — those clearly out-of-
distribution and where guidance should be withheld. Both
sets are drawn from a fixed OOD dataset collected via a
random policy in the target environment. For each (miy, moyt)
configuration, we compute the divergence between the energy
score distributions of false and true OOD states across three
training seeds using Jensen-Shannon divergence, total varia-
tion distance, Hellinger distance, and Kullback-Leibler (KL)
divergence. To evaluate sensitivity, we apply one-way ANOVA
and Kruskal-Wallis tests to determine whether this separation
remains consistent across different regularization settings. A
high p-value indicates that the teacher’s ability to determine
when to issue guidance is robust to the choice of (Mmin, Mout)-
c) Results: As shown in Table[VI] we observe no statisti-
cally significant variation in the separation between false and
true OOD states across different (miy, moy) configurations.
The ANOVA and Kruskal-Wallis tests yield p-values above
0.1 for all four divergence metrics, indicating that the teacher’s
ability to distinguish between states where guidance should or
should not be issued is stable across regularization settings.



Metric ANOVA p-value Kruskal-Wallis p-value

Jensen—Shannon 0.1138 0.1592
Kullback-Leibler 0.2457 0.1799
Total Variation 0.1728 0.2322
Hellinger Distance 0.1247 0.1592

TABLE VI: Statistical test results (p-values) for divergence
between False OOD and True OOD energy distributions across
different (mjn, moy) settings.
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