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ABSTRACT

Current Vision-Language Models (VLMs) have demonstrated remarkable capa-
bilities across a wide range of multimodal tasks. Typically, in a pretrained VLM,
all layers are engaged by default to make predictions on downstream tasks. Sur-
prisingly, we find that intervening on a single layer, such as by zeroing its parame-
ters, can improve the performance on certain tasks, indicating that some layers
hinder rather than help downstream tasks. To understand when and why this
occurs, we systematically investigate how individual layers influence different
tasks via layer intervention (e.g., parameter zeroing). Specifically, we measure
the change in performance relative to the base model after intervening on each
layer and observe improvements when bypassing specific layers. This improve-
ment can be generalizable across models and datasets, indicating the presence of
Task-Interfering Layers that harm downstream tasks’ performance. To further
analyze this phenomenon, we introduce Task-Layer Interaction Vector, which
quantifies the effect of intervening on each layer of a VLM given a task. Cru-
cially, these task-interfering layers exhibit task-specific sensitivity patterns: tasks
requiring similar capabilities show consistent response trends under layer inter-
ventions, as evidenced by the high similarity in their task-layer interaction vectors.
Inspired by these findings, we propose TaLo (Task-Adaptive Layer Knockout),
a training-free, test-time adaptation method that dynamically identifies and by-
passes the most interfering layer for a given task. Without any parameter updates,
TaLo consistently improves performance across various models and datasets, even
boosting Qwen-VL’s accuracy on the Maps task in ScienceQA by up to 16.6%.
Our work reveals an unexpected form of modularity in pretrained VLMs and pro-
vides a plug-and-play, training-free mechanism to unlock hidden capabilities at
inference time. The source code will be publicly available.

1 INTRODUCTION

Vision-Language Models (VLMs) have demonstrated remarkable success across diverse domains,
including medicine (Li et al.,|2023b; Lin et al., [2025} |Yang et al., 2025), autonomous driving (Sima;
et al.| [2025;|Guo et al.,[2024), and creative industries (Wang et al.|[2023; |Huang et al.,|2023)), owing
to their powerful cross-modal understanding and generation capabilities. In practical deployment,
it is conventionally assumed that every layer in a VLM is actively utilized, thus justifying the use
of the full model and requiring a complete computational pass during inference (Yin et al [2024).
However, our empirical investigation reveals a counterintuitive phenomenon: selectively bypassing
a single layer of a pretrained model, can lead to substantial performance improvements on certain
tasks. This observation naturally leads to a fundamental question: Do all individual layers in a
pretrained VLM play a beneficial role in a specific task?

To address the question, we first introduce layer intervention to quantify layer contributions towards
a specific task: if performance on a task improves after intervening on a layer, we infer that the
layer was previously hindering that task. Specially, we zero out the self-attention module of each
layer, preserving residual connections while bypassing the attention mechanism, thereby nullifying
the layer’s learned knowledge. As shown in Figure [I] zeroing specific layers leads to substantial
performance gains on particular tasks across different models, while Figure [2a] provides a more sys-



Under review as a conference paper at ICLR 2026

Ol,u_\crzl OLa)crIS Ol.n) er2 ' Base Ol_u) er29 OLa)erll Ol,ngors ' Base OLu_\crll OLa_\crx Ol.a_\crz ' Base
(a) Qwen2-VL-2B (b) LLaVa-NEXT-8B (c) InternVL-40B

Figure 1: Overview of the task-interfering layer phenomenon. Each axis corresponds to a
task category: AR (Attribute Reasoning), RR (Relation Reasoning), LR (Logical Reasoning), CP
(Coarse Perception), FP-S (Fine-grained Perception [single-instance]), and FP-C (Fine-grained Per-
ception [cross-instance]). Each plot shows model performance after zeroing out a single layer (solid
curves), with the orange dashed line indicating the baseline performance (no intervention). In sev-
eral tasks, performance improves upon layer removal, providing direct evidence for the existence of
Task-Interfering Layers.

tematic and comprehensive analysis, illustrating that every task follows a characteristic pattern of
performance change as different layers are intervened, reflecting task-specific sensitivities to layer
functionality. We then introduce the Task-Layer Interaction Vector to further formalize this anal-
ysis. This vector quantifies the interaction between a task and each model layer by measuring per-
formance changes under layer intervention. By encoding each task as such a vector, its unique
sensitivity to layer manipulations becomes a computable and comparable representation. Building
on this, a cluster analysis (see Figure [2b) of the correlations between these interaction vectors re-
veals that tasks requiring similar capabilities, such as mathematical reasoning, exhibit high similarity
between their task-layer interaction vectors, indicating a strong relationship between the model’s in-
ternal functional organization and the cognitive attributes of the tasks it performs, shedding light on
the mechanisms behind its functional specialization.

While this phenomenon highlights the intricate functional organization within VLMs, a systematic
exploration remains absent. Recent studies have noted that intervening layers (such as parameter
zeroing or uniform scaling) in models can alter their general capabilities (Zhang et al., [2024; (Chen
et al., 2025b). However, this body of work has primarily highlighted the degradation of overall
model performance, but overlooking the concurrent emergence of enhanced capabilities in certain
downstream tasks. Crucially, existing research not only lacks a thorough understanding of this phe-
nomenon but also overlooks its potential utility. Our work aims to address this critical gap. Our
focus is not only on identifying what we term Task-Interfering Layers, which are layers whose
presence actively constrains a model’s potential on specific tasks, but also on uncovering the under-
lying mechanisms behind this phenomenon and exploring their practical applications.

Building on these motivations, we further introduce TaLo (Task-Adaptive Layer Knockout), a
training-free, test-time adaptive framework. Tal.o dynamically selects which layers to eliminate
during inference for a given task, effectively enhancing its specific capabilities. The efficacy of
this approach is validated across multiple VLMs and benchmarks. For LLaVA (Li et al. [2024),
applying the TaL.o method yields up to a 4.7% performance gain on the Tech&Engineering task
of MMMU (Yue et al,, |2024). Remarkably, on the Physical Geography task of ScienceQA (Lu
et al.} [2022), it achieves an impressive 10.4% improvement entirely without any parameter updates
or additional training, demonstrating its practical value.

‘We summarize our contributions as follows:

1. Through systematic layer-wise interventions, we observe that bypassing certain layers can
lead to improved task performance. We refer to these as Task-Interfering Layers, denot-
ing pretrained components whose pretrained knowledge are inconsistent with the objectives
of specific downstream tasks.
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2. We establish a quantitative framework for analyzing the relationship between tasks and
model layers by introducing the Task-Layer Interaction Vector, enabling further exami-
nation of how similar tasks exhibit consistent responses to layer interventions.

3. We develop a practical, plug-and-play algorithm TaL.o that leverages these insights to im-
prove model performance at test time without any parameter updating. Using this method,
LLaVA and Qwen-VL (Wang et al., 2024) achieve peak improvements of up to 10.4% and
16.6%, respectively, from 10 tasks spanning 5 benchmarks.

2 RELATED WORK

Our research is situated at the intersection of Model Editing, Pruning, and Test-Time Adaptation
(TTA). We draw upon concepts from model editing and pruning by using parameter intervention to
modulate model behavior, yet we introduce a distinct approach focused on dynamic suppression for
task-specific gains. Our method, TaLo, further contributes a novel paradigm to TTA by skipping the
model’s layer at inference time.

2.1 MODEL EDITING AND PRUNING

Model Editing aims to modify pretrained models’ behaviors or update knowledge without full re-
training. Methods mainly fall into two categories. The first involves direct parameter updates,
such as constrained fine-tuning to mitigate forgetting (Zhu et al., 2020) or hyper-networks for dy-
namic parameter adjustment (Cao et al., |2021). However, these are challenging to scale to large
language models due to their parameter size. MEND (Mitchell et al., 2022a) addresses this by using
low-rank gradient decomposition for efficient updates. The second category, Locate-and-Edit, iden-
tifies key parameters (e.g.,”knowledge neurons”) and applies targeted modifications (Meng et al.,
2023a; |Dai et al., 2022; [Meng et al., 2023b). While enhancing interpretability, this approach is
often labor-intensive and limited in scalability. Some methods instead maintain original parame-
ters and use auxiliary modules for editing (Mitchell et al.l 2022b). In multimodal settings, edit-
ing Vision-Language Models (VLMs) requires unique strategies. Directly porting LLM methods
is ineffective; instead, recent work (Chen et al., 2025a)) proposes manipulating intermediate visual
representations by identifying and editing regions most relevant to the target prompt, minimizing
interference with unrelated features while preserving efficiency.

Model Pruning is distinct from model editing. It is a technique for model compression and accel-
eration. It operates by removing redundant or unimportant components, such as weights, neurons,
or entire layers, to reduce the model’s size and improve inference speed, while aiming to preserve
original performance (Cheng et al.| 2024; Ma et al., |2020; He et al., |2017; [Dumitru et al., 2024;
Muralidharan et al.|, [2024; Siddiqui et al., 2024 [Yin et al., [2023). Its primary objective is efficiency
optimization rather than enhancing or correcting the model’s knowledge capabilities.

While our method, TalLo, shares the objective of enhancing performance with model editing and
pruning, its strategy is fundamentally different. Unlike model editing, which permanently injects
new knowledge, or pruning, which permanently removes components for compression, the proposed
TaLo temporarily suppresses harmful reasoning paths through reversible, test-time interventions.
This demonstrates that performance can be improved not only by adding or removing components,
but also by strategically inhibiting existing ones during inference.

2.2 TEST-TIME ADAPTATION

Test-Time Adaptation (TTA) aims to dynamically adjust models to shifting data distributions dur-
ing inference, a crucial step for robust deployment in real-world scenarios. Prevailing approaches
either update model components like weights or normalization statistics using test batches (Iwa-
sawa & Matsuol [2021; Wang et al., [2021}; |Yi et al., 2023} |Sun et al., 2020} |Schneider et al., |2020),
or, particularly for vision-language models, fine-tune learnable prompts (Zhang et al., [2022; Shu
et al.,2022; [Feng et al., | 2023). Other methods (Karmanov et al.,[2024) perform zero-shot classifica-
tion using test-time feature caching. Our work introduces a distinct layer-intervention approach
to TTA. Guided by a few test-time samples, our method identifies and dynamically zeroes out
task-interfering layers during inference. This training-free strategy avoids the large-scale param-
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Figure 2: Empirical Validation of the Task-Interfering Layers. (a) Visualization of the per-
centage change in accuracy across tasks after zeroing each layer on LLaVA-Next-LLaMA3-8B. Red
indicates performance improvements relative to the base model, while blue indicates degradation.
Many tasks show performance gains under layer interventions, indicating that interfering layers are
commonly exist in VLMs. (b) The t-SNE visualization of task clusters. Each point in the figure
represents a task encoded as a Task-Layer Interaction Vector v(7). Tasks are clustered based on
their pairwise similarities measured by Pearson correlation p;; between different vectors, with tasks
requiring similar capabilities forming coherent clusters. The color-coded clusters correspond to dif-
ferent types of tasks, indicating that tasks with shared cognitive demands exhibit similar intervention
responses, reflecting a structured functional layout in LLaVA (Li et al., 2024) (See Table[IT]for com-
plete clustering details).

eter updates and complex prompt modifications inherent in prior methods. Consequently, it enables
efficient, plug-and-play adaptation with minimal computational overhead, as the original model pa-
rameters remain intact and reusable across tasks.

3 DISCOVERING AND CHARACTERIZING TASK-INTERFERING LAYERS

We begin by using parameter intervention to uncover the commonly existing phenomenon of
Task-Interfering Layers. Building on this, we introduce the Task-Layer Interaction Vector, which
enables a more systematic analysis, effectively uncovering patterns and revealing the coherence of
layer-level interference.

3.1 DISCOVERING TASK-INTERFERING LAYERS

Our aim is to isolate and quantify the contribution of individual layers to specific task capabilities.
To achieve this, we employ parameter intervention to systematically probe the functional role of
each layer inspired by Zhang et al.| (2024); |Chen et al. (2025b)). Specifically, for each layer, we
replace the parameters of the self-attention module with zeros or a uniform distribution (i.e., setting
every parameter to an identical value 1/N, where N corresponds to the matrix’s first dimension)
and evaluate the resulting change in task accuracy against the unmodified model. For parameter
zeroing, it effectively nullifies the attention mechanism, leaving only the residual connection, which
facilitates direct communication between distant layers, bypassing intermediate transformations. As
for Uniform Scaling, it reduces the complex attention operation to a simple global averaging of the
input features, causing the output to become a rank-one matrix. Our hypothesis is that a performance
increase after intervention suggests that the layer was hindering task performance, indicating its role
as a Task-Interfering Layer. Conversely, a performance drop indicates that the layer contributed
positively to the task.
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We then apply parameter zeroing intervention to LLaVA-Next (Li et al.| 2024), a model consisting
of 32 layers, and evaluate performance on the MMMU (Yue et al., [2024)) dataset. As shown in Fig-
ure [2a] 54.1% of tasks exhibit performance gains exceeding 5% when a single layer’s parameters
are zeroed. Similar trends are observed on other models and datasets: for Qwen-VL, the proportion
reaches 75.6% (shown in Figure [I8b). To further validate the generality of our findings, we present
additional experiments on diverse models, benchmarks, and intervention strategies in Appendix|[C.3]
This consistent pattern provides direct empirical evidence for the existence of Task-Interfering Lay-
ers whose activation hinders rather than helps task performance.

3.2 CHARACTERIZING TASK-INTERFERING LAYERS

Modeling Task-Layer Interaction into Vector Space. To uncover the systematic response pat-
terns of tasks to layer interventions, we introduce the Task-Layer Interaction Vector. This vector is
designed to model the relationship between a task’s performance and interventions applied to each
layer of the model.

Specifically, the Task-Layer Interaction Vector is a representation that characterizes a task’s sensi-
tivity to each model layer. Each dimension of the vector corresponds to a network layer and captures
the change in task accuracy caused by intervening on that layer relative to the base model. A positive
value indicates that the layer interferes with the task, which manifests as an improvement in accu-
racy upon intervention. Conversely, a negative value indicates that the layer contributes positively
to the task, reflected in a drop in accuracy when the layer is modified. More formally, for task 7,
and a model with L layers, the Task-Layer Interaction Vector is defined as:

v = (7,0, v eRE, (1)

where each element UZ(T), referred to as the layer sensitivity score, quantifies the change in task

performance upon intervention at layer <. Formally, it is defined as

ntv?

UET) = Acc (M(l) 7') — Acc (Mupase, T) - )

Here, Acc(-, T) denotes the accuracy on task 7, My, is the base model without intervention, and
M)

inty 18 the model with the ¢-th layer’s parameters intervened.

Through this vector representation, we abstract the influence of each layer on a task into a structured
representation within a high-dimensional vector space. This provides a quantifiable and comparable
analytical tool for subsequent pattern analysis.

Characterizing Task-Layer Interaction Patterns. We assume that tasks drawing upon the same
underlying cognitive skills (e.g., numerical reasoning or arithmetic reasoning) should engage similar
internal processing pathways within the model. Since Task-Layer Interaction Vector v(7) captures a
task’s dependence on each layer, reflecting how it propagates through the model’s architecture. We
hypothesize that related tasks will exhibit highly correlated interaction vectors.

To validate this hypothesis, we conduct a systematic analysis across 6 benchmarks and nearly
100 tasks. For each pair of tasks, 7; and 7; (hereafter, we use indices 7 and j as shorthand
for the corresponding tasks in this section), we compute their Pearson correlation coefficient,
pij = Corr(v(?,v()), and define a distance metric as d;; = 1 — p;;. This ensures that more
similar tasks have a smaller distance, providing a solid basis for clustering.

As shown in Figure[2b] the results confirm our hypothesis: tasks that rely on shared abilities cluster
together in the task-layer interaction space, reflecting their common internal processing mechanisms.
This suggests that tasks sharing underlying cognitive or domain-specific demands exhibit highly
similar sensitivity patterns to layer interventions, revealing a structured organization of functional
dependencies across the model’s architecture. For instance, one prominent cluster is dominated by
quantitative reasoning tasks (e.g., numeric commonsense, arithmetic reasoning, and geometry).
Another distinct cluster groups together domain-specific scientific tasks such as Physics, Chem-
istry, and Scientific Reasoning, reflecting their shared reliance on formal scientific knowledge. This
demonstrates a strong alignment between the model’s internal response to layer interventions
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Figure 3: Framework of TaLo. Talo first dynamically selects the Task-Interfering layer for a
specific task and knocks out that layer in the final evaluation procedure.

and the underlying cognitive structure of tasks, revealing that task-interfering layers generalize
across tasks with similar abilities. This generalization suggests that layer sensitivity is determined
by functional demands, not task-specific properties, enabling reliable estimation of interfering layers
from a few representative samples.

Consistency across Intervention Methods. To vali-
date that the Task-Interfering Layer phenomenon is not ————
a methodological artifact, we examine the consistency of tof o MMMUr=09%
findings across two distinct intervention strategies. For :
each task 7 and layer i, we measure the model’s accuracy o
under both intervention types, yielding two performance

scores: Acc(/\/lgégo, T) and Acc(./\/ll(;l)if, T). We perform
this analysis across six benchmarks. To visualize the rela-
tionship, we generate scatter plots (Figure d)) where each
point represents a single task-layer pair, with its coordi-
nates determined by the accuracies under uniform scaling
(x-axis) and parameter zeroing (y-axis). To quantify the
level of agreement, we then compute the Pearson correla-
tion coefficient across all points for each benchmark. The
results reveal a strong and statistically significant posi-  pertbrmance Uniforss Scaling %)
tive correlation across all benchmarks. This reproducibil-

ity across fundamentally different intervention strategies Figure 4: Consistency analysis of differ-
strongly reinforces the validity of our findings. It affirms ., ¢ihterventions.

that the existence of Task-Interfering Layers is not an ar-

tifact of a specific intervention choice, but rather reflects

an intrinsic property of the model arising from task conflicts during pretraining.

Performance: Zeroing (%)
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4 TASK-ADAPTIVE LAYER KNOCKOUT

Building upon the discovery of Task-Interfering Layers in VLMs, and inspired by advances in dy-
namic model adaptation (Wang et al., 2018}; [Zhao et al.| |2025}; |Cao et al.| [2024; [Sun et al.| |2025a;
Cao et al., [2023)), we propose a simple yet effective algorithm—Task-Adaptive Layer Knockout
(TaLo)-a training-free method for task-level model customization at test time. Tal.o operates in
two stages: (1) dynamic layer selection for a specific task, and (2) task-interfering layer knockout
on the model. This approach enables performance enhancement on specific tasks by strategically
exploiting the task-interfering layers within the model.

Our approach is guided by the principle of targeted intervention. The objective is to identify an opti-
mal layer whose modification unlocks a model’s latent, task-specific abilities. The search begins by
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Table 1: The performance of TaLo applied to two models (Zeroing): LLaVA-Next-LLaMA3-8B,
Owen2-VL-2B across five benchmarks. MMStar (Logical reasoning annotated as L-R), MM-
Bench (Physical property reasoning annotated as PP-R, image emotion annotated as I-E), MMMU
(Tech&Engineering annotated as T&E, Health&Medicine annotated as H&M), ScienceQA (Physi-
cal Geography annotated as P-G), and SEEDBench (Visual Reasoning annotated as V-R, Text Un-
derstanding annotated as T-U). Additional results for TaLo on various tasks are provided in Table[9]
and Table Shot number indicates probe set size. Base performance may vary across tasks, es-
pecially those with limited samples under different shot settings. To ensure a fair evaluation, we
therefore focus primarily on the relative improvement over the base model.

Model | Shots | MMStar |  MMBench | MMMU | ScienceQA |  SEEDBench | Avg
\ | Math I-R | PP-R I-E | T&RE H&M | P-G Maps | V-R T-U \
10 shots | 329125 583142 | 553178 65.6106 | 352111 422151 | 345169 16.7 124 ‘ 704113 53.6172 | 3917
LLaVA 15shots | 332130 579143 | 56.0 138 69.3107 | 37.5183 353159 | 41.4 1104 23.817.1 70.8 111 554190 | 5367
20 shots | 33.9 13.0 58.7 t4.3 | 53.4148 66.411.5 295136 46.2-00 | 345135 26.2 19.5 ‘ 725120 554154 2.741
10 shots | 44.8 00 54.8 |19 | 48.6185 694113 | 28.6106 345116 | 31.0-00 31.0 124 70.8 115 57.1189 1.671
Qwen-VL | 15shots | 442105 542016 | 553112 657107 | 244 119 358129 | 345435 4521166 | 71.2 126 554 +t18 | 1.397
20shots | 382112 553105 | 603148 67.9107 | 26.1 [05 23.5/59 | 37.9-00 16.7-00 713108  44.6 —00 | 0.34]

establishing a performance baseline. For an L-layer model fy with parameters 6 = {61, ...,0} and
a probing set Dprope = { (24, ¥s) }N | sampled from a given downstream task in an N-shot setting, we
define the baseline score BB on the unmodified model: B = Acc( fy, Dprobe). In our experiments, Acc
is accuracy on probing set Dprope. Then, we systematically test each layer’s potential. For each layer
¢, we apply an intervention I (Here, we utilize parameter zeroing, I(6;) = 0) to create a modified

model f(gg) and measure the resulting accuracy gain Ay:

Ay = Acc(fe(g)7 Dprobe) - ACC(an Dprobe)- 3)

This iterative process reveals how each layer’s function contributes to the specific task. The search
concludes when we identify the optimal layer £* responsible for the maximal positive performance
gain:

0* = argmax A,. )

te{1,...,.L}

This layer is then selected as the task-interfering layer. If no such layer exhibits a statistically
significant sensitivity peak, we retain the original model without any modification. Having identified
the layer, we proceed to apply the intervention (i.e., knockout) to this layer during inference. We
then evaluate the intervened model on the held-out test samples of the target task, which are those
not included in the initial probe set, to ensure an unbiased assessment.

5 EXPERIMENTS

5.1 SETUPS

Models and Benchmarks. We conducted experiments on three VLMs of varying scales:
Qwen2-VL-2B (Wang et al., 2024), LLaVA-Next-LLaMA3-8B, and InternVL2-26B (Chen et al.,
2024b). To assess the impact of our interventions, we evaluated both the intervened and original
models across five key multiple-choice question (MCQ) benchmarks: MMStar (Chen et al., 2024a)),
MMBench (Liu et al., 2024), MMMU (Yue et al., 2024)), ScienceQA (Lu et al., 2022), and SEED-
Bench (L1 et al.l 2023a)). Further details on the benchmarks and model configurations are provided
in Appendix [Al

Baselines. We aim to achieve task-specific gains via training-free, plug-and-play layer interven-
tion. All comparisons are against the original pretrained model. In Section[5.3] we also evaluate
fine-tuning methods using the same few-shot samples as Talo.

Implementation Details. All experiments were conducted on a single S0GB A100 GPU under
identical environments, ensuring reproducibility and fair comparisons. Evaluations used the stan-
dardized VLMEvalKit framework (Duan et al.| [2024)). For more experimental details, please refer
to the Appendix
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Table 2: The performance of TaLo applied to InternVL2-26B (Zeroing) across multiple tasks. Per-
suasive strategies annotated as P-S, Basic economic principles annotated as B-EP, Physical Geogra-
phy annotated as P-G, Geography annotated as Geo, The Americas: geography annotated as A:Geo,
and G2T annotated as Genes to traits.

Model ‘ Shots ‘ Tasks ‘ Avg
\ | P-S B-EP P-G Solutions ~ Geo A:Geo  G2T Materials |
InternVL 10 shots 583183 279 00 345 00 40.0167 35.4 t2.1 35.0 1100  25.0 /3.1  38.5113 3.167
15 shots ‘ 333183 326124 310769 31.1 —00 27.1 —00 20.0 00 375731 41.0113 2431

Table 3: Comparison of TaLo with other methods. Each entry reports performance and running time
(x102 s). TaLo attains higher accuracy with lower adaptation time.

Math Instance Reasoning
Shots Base  Merge LoRA-FT OFT TaLo Shots Base  Merge LoRA-FT OFT TaLo
Score? Score? Scoret Time| Scoret Time| Score? Time| Scoret Scoret Score? Time| Scoret Time| Score? Time|

10shots ~ 30.42 3238 31.25 1.75 30.83 14.67  32.92 1.70 10shots  54.16 5333 55.83 2.06 55.42 1534 5833 1.33
15shots  30.21 32.63 32.17 2.53 3234 2191 33.19 1.76 15shots  53.61 52.34 55.32 2.87 56.17 2543 57.87 1.81
20shots  30.87 31.76 33.04 3.46 33.04 29.16 3391 2.84 20shots  54.35 53.04 55.65 4.06 56.52  33.81 58.69 2.89

Avg 30.50 32.26 32.15 2.58 3207 2191 33.34 2.10 Avg 54.04 52.90 55.60 2.99 56.04 2486 5830 2.01

5.2 EXPERIMENTAL RESULTS

The results presented in Tables [T]and [Z]compellingly demonstrate the effectiveness of TaLo. Specif-
ically, for the LLaVA model, TalLo achieves a peak performance gain of 10.4% across five bench-
marks and ten different tasks. Notably, its average performance is consistently higher than the base-
line model across all three shot settings. Similarly, on the same set of tasks, the Qwen-VL model
shows a maximum performance increase of 16.6%. For InternVL, as shown in Table [2| while our
evaluation was conducted on a smaller set of eight tasks, the findings are consistent: Tal.o delivers
an average performance improvement in all configurations, with a peak gain reaching 10.0% (see
Appendix for more results and analysis).

5.3 MORE ANALYSES

In this subsection, we provide a streamlined yet comprehensive analysis of our method using MM-
Star (Chen et al.| 2024a), which is a consolidated benchmark spanning six diverse VLM task cate-
gories, to validate effectiveness and uncover key patterns systematically.

Comparison Study. To further evaluate TalLo, we compare it with model merging (Chen et al.,
2025b; [Yang et al., 2024 [[lharco et al.l [2023) as well as fine-tuning methods (LoRA (Hu et al.,
2021)), OFT (Qiu et al., [2024)), all aiming to improve task-specific performance. For all fine-tuning
experiments, we select the checkpoint from the epoch that achieves the best validation performance
upon convergence. We use LLaVA-Next-LLaMA3-8B as the base VLM, and the same few-shot
samples for both TalL.o and the fine-tuning approaches. Detailed configurations are provided in

Appendix [B]

As shown in Table[3] TaLo achieves superior performance compared to both merging and fine-tuning
baselines in less time across most settings. Crucially, unlike any of the baselines, Tal.o requires nei-
ther external models nor any form of training or task-specific parameter updates. Instead, it enables
on-the-fly adaptation through minimal, dynamic intervention within the base model, highlighting its
efficiency, simplicity, and strong practical applicability.

Extending Tal.o to Multi-Layer Interventions. To further explore the potential of Tal.o beyond
single-layer intervention, we extend the method to jointly intervene on multiple layers. Specifically,
we enhance the original TaLo procedure by performing an iterative search over layer pairs: after
identifying the most beneficial single layer for a given task, we systematically apply a second in-
tervention to each of the remaining layers and measure the resulting change in performance. The
optimal two-layer combination is selected as the pair that yields the maximum performance gain
relative to the best single-layer intervention.
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Table 4: Results of TaL.o on LLaVA under two-layer intervention (10-shot). ‘X’ marks cases where
a second Task-Interfering Layer could not be identified. Details of the MMStar are provided in

Appendix

Metric MMStar

(6} 4 FP IR S&T LR Math
Task-Interfering Layer L1, L6 L15,L29 L11, X L31, X L1,L8 L6, L13
Performance (two layers) 61.9 |38 40.0 105 56.2 1.0 31.0 10.5 37.1 138 25.7 138

Performance (single layer) 63.8 12.9 41.9 109 57.6 3.8 38.6 13.8 31.0 129 32.9 1255

Due to the rapid growth in computational cost when exploring multi-layer interventions, we con-
duct our analysis using two-layer combinations as a representative sample. Despite this simplifi-
cation, our findings remain highly informative. As shown in Table ] for several tasks, no sec-
ond task-interfering layer can be identified, suggesting task-interfering layers may be sparse and
strong inter-layer interactions further obscure individual roles, thereby justifying TaLo’s focus on
single-layer interventions.

6 DISCUSSIONS

Limitation and Future Work. Our analysis relies on existing benchmarks, and the predefined task
categories within them may influence the layer sensitivity patterns we observed. Future work could
therefore validate our findings across more granular task decompositions, which may help establish
the generality of this phenomenon. With respect to our method, TalL.o, we acknowledge that it is a
minimalist framework. Our primary objective was not to achieve state-of-the-art performance, but
rather to provide a simple, plug-and-play solution that serves as a proof-of-concept for the prac-
tical utility of the Task-Interfering Layer phenomenon. There are several promising avenues to
explore, such as developing more sophisticated dynamic layer selection mechanisms, investigating
better multi-layer modulation strategies, or even incorporating adaptive sampling techniques (Cao &
Tsang,|2021;Cao et al.| 2023)). We are optimistic that future research can extend Tal.o’s capabilities,
applying its principles to a broader and more complex range of scenarios.

Hypothesis and Explanation. We further offer a hypothesis to explain why certain layers may
become task-interfering. Modern large models are pretrained on diverse and multi-task data, where
each layer learns a compromise representation, which approximates a global optimum across all
tasks. However, this global optimum may deviate from the local optimum for any specific task. We
conjecture that Task-Interfering Layers capture features that, while beneficial on average, introduce
noise or misalignment when applied to a particular task. By zeroing out or uniformly scaling these
layers, Talo effectively suppresses or rebalances their influence, which may prevent the propagation
of task-irrelevant or even detrimental information. This intervention, we hypothesize, steers the
model’s internal computation toward a more favorable region in the parameter space that better
aligns with the target task’s local optimum, thereby effectively improving performance without any
parameter updates.

7 CONCLUSION

Through extensive empirical analysis, we reveal the existence of specific layers within pretrained
Vision-Language Models (VLMs) that actively suppress performance on certain downstream tasks.
We term these Task-Interfering Layers, as strategically bypassing them yields significant perfor-
mance improvements. Our further investigation uncovers a crucial pattern: tasks that demand similar
functional abilities exhibit highly consistent response patterns to layer interventions. This suggests
that the interference phenomenon is not random but is systematically organized around the model’s
functional capabilities, allowing the effects of Task-Interfering Layers to generalize across related
tasks. Based on these findings, we introduce TaL o, a training-free adaptation method that identifies
and bypasses these interfering layers at inference time. The strong performance of Tal.o across a di-
verse range of models demonstrates that simple, targeted architectural intervention can be a powerful
and efficient strategy for model adaptation, obviating the need for any parameter updates.
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THE USE OF LARGE LANGUAGE MODELS

We declare that large language models (LLMs) were employed to assist with the refinement of this
manuscript, specifically, for grammar checking, language polishing, and improving the clarity and
fluency of the text. Additionally, LLMs were used in a limited capacity for minor debugging and
syntactic correction of code snippets included in the work.

A MODELS AND BENCHMARKS

We present all the models used in our experiments in Table[5] and list all the benchmarks we utilize
in Table

Name Size Huggingface ckpt

LLaVA-Next-LLaMA3 (Li et al.;2024) 8B llava-hf/llama3-1lava-next—-8b-hf
Qwen2-VL (Wang et al.|[2024) 2B Qwen/Qwen2-VL-2B-Instruct
InternVL2 (Chen et al.||2024b) 26B & 40B |OpenGVLab/InternVL2-40B

Table 5: Details of the models used in our experiments.

Benchmark Category Huggingface URL

MMStar (Chen et al.,[2024al) MCQ Lin-Chen/MMStar
MMBench-EN (Liu et al., [2024) MCQ Imms-lab/MMBench
MMMU-VAL (Yue et al., [2024) MCQ MMMU / MMMU

ScienceQA-VAL (Lu et al., [2022) MCQ derek—-thomas/ScienceQA
MathVista-MINI (Lu et al., [2024) VQA AI4Math/MathVista
SEEDBench-IMG (Li et al.}[2023a) MCQ lmms—lab/SEED-Bench

Table 6: Details of the benchmarks used in our experiments.

In this work, all datasets are evaluated using accuracy as the sole metric. The majority of datasets:
MMStar, MMMU, SEEDBench, MMBench, and ScienceQA are multiple-choice question (MCQ)
benchmarks, where the model’s predicted option is extracted from its output and matched against
the ground truth. MathVista, while formulated as a vision-question-answering (VQA) task, also
employs direct string matching between generated responses and reference answers in its official
evaluation, ensuring consistency in the metric across all tasks.

Specifically, MMStar is a comprehensive benchmark with 250 balanced samples across six core
capabilities: Coarse Perception, Fine-grained Perception, Instance Reasoning, Logical Reasoning,
Math, and Science & Technology. MMBench contains 2,974 MCQs assessing a wide range of
abilities, including Coarse Perception, Fine-grained Perception (both single and cross instance), In-
stance Reasoning, Logic Reasoning, Attribute Reasoning, and Relation Reasoning. MMMU spans
30 disciplines, including Art & Design, Business, Science, Health & Medicine, Humanities & So-
cial Sciences, and Engineering, covering 183 subfields with 30 types of heterogeneous images (e.g.,
charts, diagrams, maps, tables, musical scores, chemical structures), focusing on advanced per-
ception and reasoning with domain-specific knowledge. SEEDBench comprises 19,000 human-
annotated MCQs, covering 12 evaluation dimensions, including image understanding. MathVista is
a challenging benchmark that combines diverse mathematical and visual reasoning tasks, consisting
of 6,141 examples drawn from 28 existing multimodal math-related datasets and three newly cu-
rated datasets. Finally, ScienceQA consists of 21,208 multimodal science questions collected from
elementary and high school curricula. This diverse and rigorous selection of benchmarks enables a
comprehensive evaluation of task-specific abilities under a unified accuracy metric.
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B EXPERIMENTAL DETAILS

In our TaLo experiments, the procedure for identifying the optimal intervention layer begins with
task definition and sample preparation. We first identify the target task according to the dataset’s
metadata, after which we draw samples from a probing pool held entirely separate from the final test
set to prevent any data overlap.

Our identification process follows an iterative pipeline. We first establish a baseline performance
by evaluating the unmodified model on an initial set of probing samples. If the baseline accuracy
reaches 100%, the sample set is considered uninformative and is discarded; a new set is then drawn
from the probing pool, and the baseline is re-evaluated. Once the baseline is established, we proceed
with a systematic, layer-by-layer parameter intervention and measure the performance gain for each.
If a unique layer yields the maximum positive gain, it is designated as the optimal target. In cases
where multiple layers tie for the best performance or no layer produces a positive gain, we initiate
a multi-round, augmented sampling strategy to resolve the ambiguity. This involves supplementing
the set with an additional shot/2 samples for re-evaluation, followed by a further shot/4 samples if
the tie persists. Should a unique optimal layer still not be identified after these two rounds, we select
the layer with the highest index among the final candidates to ensure robustness(Yin et al., 2023}
Gromov et al.,[2024;|Sun et al.| 2025b; Men et al., [2024).

For our fine-tuning experiments, we employ two parameter-efficient fine-tuning (PEFT) methods:
LoRA (Low-Rank Adaptation) and its variant OFT (Orthogonal Finetuning). All experiments are
conducted on the LLaVA-Next-8B model. In the case of LoRA, we set the rank » = 8 and scaling
factor & = 16, and apply the adapter modules to all linear projections in both the language and
vision pathways. This full-architecture adaptation strategy ensures comprehensive alignment of both
visual and textual representations during fine-tuning. To ensure that the model truly understands the
knowledge underlying the questions during fine-tuning, rather than simply memorizing the options,
we format the answers as “option + option content”. This approach helps the model learn the specific
meaning of each option and its relationship to the question.

For model merging experiments, the LLM used for merging is DeepSeek-R1-Distill-Llama-
8B(DeepSeek-Al, 2025), with a fusion coefficient A of 0.9. However, as shown in Table [3| the
effectiveness of model merging is highly sensitive to both the choice of the external LLM and the
target task, suggesting that its performance is not robust across configurations and requires careful,
task-specific tuning.

C ADDITIONAL EXPERIMENTAL RESULTS AND ANALYSIS

C.1 SPECIFIC CLUSTERING DETAILS

Table provides the comprehensive list of tasks included in each of the seven clusters. From
the table, the clustering appears to meaningfully group tasks by functional similarity. For instance,
Cluster 1 brings together numeric commonsense, arithmetic reasoning, and math
word problem—all clearly centered on numerical understanding and calculation. This suggests
the method successfully identifies and isolates quantitative reasoning as a coherent capability.

Similarly, Cluster 3 stands out by grouping domain-specific scientific tasks—Astronomy,
Chemistry, and Scientific Reasoning—into a unified theme, reflecting shared reliance
on formal scientific knowledge.

C.2 ADDITIONAL ANALYSIS OF TALO

Ablation study of the Intervention Method While earlier results (Section suggest that dif-
ferent intervention types induce similar layer-wise trends overall, their impact can vary subtly across
individual tasks. To examine these influences in a controlled yet representative setting, we turn to
MMStar and MMBench: two balanced benchmarks that aggregate data from multiple sources, of-
fering moderate task diversity and comprehensive coverage. It avoids the extremes of highly spe-
cialized or overly narrow datasets, making it well-suited for studying how these factors interact with
TaLo’s behavior.
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Q P S
Quadrilateral QRST with intersecting diagonals at P.
T Given: ST=8, TR=4, PT=6. Find QR using similar triangles.
R
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Zeroing Intervention Random noise |E )

The correct option is (C) 9.
To solve this problem, we can use the apteDownlistserdespenderSpoMRalaraalim
Pythagorean theorem, which states that in a
right triangle, the square of the length of the
hypotenuse is equal to the sum of the squares of
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length of the hypotenuse @R. We know that ST =
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Figure 5: Qualitative case study on the random noise intervention method.

In addition to parameter zeroing and uniform scaling, we also explored replacing layer weights
with their mean value and random noise. However, experiments show that injecting random noise
severely destabilizes the model, effectively erasing the learned representations (as shown in Fig-
ure[3). The outputs become incoherent, often degenerate, with little connection to the input. This
suggests that the pre-trained parameters, even when suboptimal for a specific task, still encode es-
sential structural and semantic priors critical to model functionality.

Given this breakdown in basic competence, we focus our analysis on milder, more controlled inter-
ventions: zeroing, uniform scaling, and mean replacement, which preserve the model’s foundational
knowledge while allowing targeted modulation. These methods strike a better balance between per-
turbation and stability, enabling meaningful study of layer-wise task adaptation without collapsing
overall performance.

Intervention MMStar ‘ Avg
Coarse perception  Fine-grained perception I I ing  Sci & technology Logical r i Math ‘
Zeroing 63.8 129 41.9 109 57.6 1338 329110 38.6 138 31.0 129 | 0.327
Uniform scaling 66.2 12.4 41.0 104 51.0 128 24.8 |52 40.0 11.0 343138 | 0.53]
Mean replacement X 34.8 162 52.9 109 27.6 |34 419 114 30.511.0 | 1.14]

Table 7: Results of TalLo on LLaVA-Next-Llama3-8B under different intervention methods. The
last column (Avg) reports the mean change across tasks. X indicates the method failed to find the
Task-Interfering layer.

To further examine the impact of three intervention types, we conduct ablation studies across a wide
range of tasks on two benchmark datasets, using a consistent 10-shot setting. As shown in Table[7|[8]
we observe that zeroing and uniform scaling yield comparable effects, with zeroing achieving bet-
ter average performance across tasks. In contrast, mean replacement consistently leads to inferior
results.

This observation aligns with our earlier findings in Section [3.2] where both scaling and zeroing
exhibited similar layer sensitivity patterns. While subtle differences may arise in specific contexts,
which depend on model architecture or task nature.

In practice, the choice between scaling and zeroing can depend on task-specific behavior or imple-
mentation simplicity. Both support effective plug-and-play adaptation. Tal.o’s strength appears to
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lie not in the intervention itself, but in the strategic selection of where and when to apply it. It is the
layer not the operation seems to be the more decisive factor.

. MMBench ‘
Intervention Avg

Physical property reasoning  Structuralized i-t understanding  Attribute recognition  Celebrity recognition Image emotion

Zeroing 553178 55.8 10.8 65.2 13.1 68.5 1.4 65.6 10.6 0.941
Uniform Scaling 57.0 5.0 55.810.8 71.0 10.5 67.7 128 65.6 10.6 0.581

Table 8: Results of Tal.o on LLaVA-Next-LLaMA3-8B under different intervention methods (Struc-
turalized i-t understanding stands for Structuralized image text understanding).

More Experimental Results of TaLo As evidenced by the comprehensive results in Table [9|[T0}
which encompasses evaluations on MMBench and ScienceQA, TalLo demonstrates a robust ability to
enhance performance across a wide spectrum of tasks. Nonetheless, the magnitude of improvement
is observed to be more constrained and in some cases even decreases for particularly challenging
categories, such as those involving complex multi-step reasoning, detailed visual attribute discrimi-
nation. This pattern suggests that while our proposed layer-level intervention provides an effective
mechanism for task adaptation, its efficacy is bounded by the underlying capabilities of the pre-
trained model. Performance plateaus or regressions in these demanding scenarios likely point to
limitations that are architectural or data-based in nature, which might be addressed in future work
by integrating stronger inductive biases or auxiliary knowledge sources.

Model ‘ Shots ‘ MMBench ‘ ScienceQA
‘ ‘ F-P OCR F-R ‘ Ecological interactions The Americas: Geography Oceania: Geography Geography
10 shots | 43.3 133 69.8 |26 68.6 —0.0 17.6 —00 30.0 120.0 21.9 00 41.7 184
LLaVA | 15shots | 483 /1.1 712 00 68.0113 29.4 1118 25.0 150 25.0 13.1 39.6 4.2
20 shots | 58.6169 788138  71.0122 2941118 35.0 120.0 15.6-0.0 33.3 121

Table 9: Additional results of TalLo on LLaVA-Next-LLaMA3-8B. Here, future prediction is anno-
tated as F-P, and function reasoning is annotated as F-R.

odet | shots | MMBench | ScienceQA
‘ ‘ S-I-U AR PR CR ‘ Astronomy  The Americas: Geography  Genes to traits Solutions Force and motion
10 shots 525133 723109 47.6 1.6 75.0 12.0 355132 25.0 115.0 219 1125 244122 353159
Qwen-VL 15 shots 523132 72.112.0 50.8 132 75.311.5 38.7 16.4 10.0 —0.0 25.0 13.1 28.918.9 29.4 159
20shots 485125 734111 5567132  76.6711.0 32.316.5 15.015.0 28.176.2 3567156 529 117.6

Table 10: Additional results of TalLo on Qwen2-VL-2B, where structuralized imagetext understand-
ing is annotated as S-1-U, attribute recognition is annotated as AR, physical relation is annotated as
PR, and celebrity recognition is annotated as CR.

C.3 EMPIRICAL VALIDATIONS OF TASK-INTERFERING LAYERS

The accuracy change heatmaps across multiple models (LLaVA-Next-Llama3-8B, Qwen2-VL-2B,
and InternVL2-40B) under different intervention strategies are shown in Figures [7) to [I§] Evalu-
ated on diverse benchmarks, these heatmaps reveal consistent patterns of layer-specific performance
gains, forming the core empirical basis for the task-interfering layers phenomenon. Rather than iso-
lated anomalies, the results suggest a systemic trade-off in how individual layers support competing
task demands, observable across model scales and architectures.

17



Under review as a conference paper at ICLR 2026

Cluster Category and Tasks Included

Cluster 1 (Quantitative Reasoning) numeric commonsense, arithmetic reasoning,
geometry reasoning, algebraic reasoning, geometry
problem solving, math word problem, figure
question answering, statistical reasoning, Cities,

Informational texts: level 1, Particle motion and
energy
Cluster 2 (Analytical Reasoning) image_emotion, biology, engineering, public health,

instance reasoning, math, geography, visual
reasoning, architecture & engineering, diagnostics
& laboratory medicine, electronics, psychology,
maps, magnets, plant reproduction, domain-specific
vocabulary, genes to traits

Cluster 3 (Scientific Knowledge) scientific reasoning, textbook question answering,
chemistry, medicine, economics, physics, sociology,
art & design, science & technology, astronomy,
plants, weather, fossils, thermal energy, natural
resources, pharmacy, humanities & social science,
literature

Cluster 4 (Integrative Reasoning) logical reasoning, accounting, history, pharmacy,
engineering practices, ecology, world religions,
persuasive strategies, adaptations and natural
selection, economics, sociology, humanities,
design, literature, natural science theory,
political history

Cluster 5 (Perceptual Categorization) | action recognition, attribute recognition,

image quality, coarse perception, fine-grained
perception, object localization, classification,
ecosystems, force and motion, solutions, states
of matter, scene understanding, OCR, image_scene,
visual elements, structuralized image-text
understanding, attribute comparison, celebrity
recognition

Cluster 6 (Predictive Reasoning) future prediction, identity reasoning, spatial
relationship, electronics, psychology, math,

music, plant reproduction, velocity & acceleration,
instance interaction, physical geography,
classification and scientific names, context clues,
text understanding

Cluster 7 (Relational Understanding) | nature_relation, physical_relation, social relation,
art theory, civil war and reconstruction, age of
exploration, ancient Mesopotamia, plate tectonics,
geology, animals, agriculture, ecosystems, cultural
history, world religions, state capitals

Table 11: Clusters and their included tasks from various benchmarks.
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Qu: Quadrilateral
QRST with
intersecting
diagonals at P.
Given: ST=8, TR=4,
PT=6. Find QR using
R similar triangles.

tal The correct option is (D) 10.
(.- -]

5o
The correct option is (C) 9. @
To solve this problem, we can use the
Pythagorean theorem, which states that in a
right triangle, the square of the length of the
hypotenuse is equal to the sum of the squares
of the lengths of the other two sides. Let's call
the length of the hypotenuse @R. We know
that ST = 8and TR = ¢, so we can set up the
following equation: QR # = ST » TR=.
Substituting the given values, we get: QR* =
& # 4°. Now, we take the square root of both
sides to find QR = 8,944.. Therefore, QR is
approximately 9, which is option (C) 9.

Figure 6: Qualitative Case Studies Illustrating the Effects of Layer Zeroing on LLaVA-Next’s Rea-
soning. The figure presents three comparative examples of the model’s reasoning process before

2

Q3: An administrator

at the Department of

Motor Vehicles (DMV)
tracked the average

4 Average waiting time at the DMV

Qz2: Given that

a line a || line b,

2 el oG Bt 7 wait time from month
¢ triangle ABC, £C Soptembey 14 to month. According
1 b = 90°. If £B = 58°, October 26 to the table, what was
then £1-22=7 November 7 the rate of change
B p— 2% between August and

September? (Unit:
minutes per month)

& -]

=
= @

The rate of change between August and

L 5
The correct option is (A) 28 °. September is 7 minutes per month.

The correct answer is (C) 32°.

Since £C is a right angle, we know that £C =
90°. We are given that £B = 58°. Since Za is
parallel to b, we can conclude that Za is also
equal to 58°. Now, we can use the sum of
angles in a triangle to find the measure of £1 -
L2

L1+ L2=LA

41+ L2 = 9o° + 58°

Now, we can solve for £1 - Z2:

L1-L2=L1+ L2-241

L1- L2 =32°

So, £1- L2 = 32°.

The rate of change between August
and September is 14 - 17 = -3.

(base model) and after the intervention of a specific task-interfering layer.
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Figure 13: Accuracy change heatmaps on MMBench (Zeroing).
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Figure 14: Accuracy change heatmap for LLaVA-Next on MathVista-MINI (Zeroing).
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Figure 16: Accuracy change heatmap for LLaVA-Next on ScienceQA (Zeroing).
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Figure 17: Accuracy change heatmaps on MMStar (Zeroing).
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Figure 18: Accuracy change heatmaps on MMMU (Zeroing).
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