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Abstract
Recent advances in clinical AI have enabled re-
markable progress across many clinical domains.
However, existing benchmarks and models are
primarily limited to a small set of modalities
and tasks, which hinders the development of
large-scale multimodal methods that can make
holistic assessments of patient health and well-
being. To bridge this gap, we introduce Clinical
Large-scale Integrative Multimodal Benchmark
(CLIMB), a comprehensive clinical benchmark
unifying diverse clinical data across imaging, lan-
guage, temporal, and graph modalities. CLIMB
comprises 4.51 million patient samples totaling
19.01 terabytes distributed across 2D imaging,
3D video, time series, graphs, and multimodal
data. Through extensive empirical evaluation,
we demonstrate that multitask pretraining signif-
icantly improves performance on understudied
domains, achieving up to 29% improvement in
ultrasound and 23% in ECG analysis over single-
task learning. Pretraining on CLIMB also effec-
tively improves models’ generalization capability
to new tasks, and strong unimodal encoder perfor-
mance translates well to multimodal performance
when paired with task-appropriate fusion strate-
gies. Our findings provide a foundation for new
architecture designs and pretraining strategies to
advance clinical AI research. Code is released at
this link.

1. Introduction
Advances in AI for clinical data have significantly helped
doctors process and analyze complex clinical information
for diagnosis, treatment planning, and decision support (Es-
teva et al., 2019; Liu et al., 2025; Rajpurkar et al., 2022).
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These domains include analyzing clinical images (Johnson
et al., 2019; Irvin et al., 2019a), processing clinical notes
(Liu et al., 2025; Johnson et al., 2016), and predicting patient
outcomes (Yan et al., 2024). Despite these achievements,
most current approaches remain limited to a few modalities
primarily in the image and text domain (Thakoor et al., 2019;
Jing et al., 2023b; Sharma et al., 2022), failing to capture the
interactions between many medical indicators that clinicians
routinely combine to make holistic assessments on patient
health and well-being (Liang et al., 2024b; Rajendran et al.,
2023; Shaik et al., 2024).

To develop the next generation of holistic multimodal clin-
ical foundation models, we introduce Clinical Large-scale
Integrative Multi-modal Benchmark (CLIMB), a compre-
hensive multimodal clinical benchmark that unifies data
across imaging, language, temporal, and genomic modal-
ities. Our dataset comprises 4.51 million patient samples,
totaling 19.01 terabytes of data, with a diverse spectrum
of modalities: 707K 2D imaging data (including X-rays,
dermoscopy images, fundus images, and pathology slides),
1.83M 3D or video samples (ultrasounds, CT scans, endo-
scopic images and MRI images), 871K 1D data (electronic
health records, EEG, ECG, gait and genomic data), 69.3K
graph data (brain networks, molecules) and 1.03M multi-
modal data combining multiple of the above modalities. We
accomplish this through a novel data collection and pre-
processing pipeline that standardizes diverse data formats
from 33 different medical institutions while preserving the
natural patterns of missing data. The dataset encompasses
96 different clinical conditions across 13 clinical domains,
making it one of the largest and most diverse public clinical
benchmarks to date.

Through extensive empirical evaluation on CLIMB, we es-
tablish comprehensive benchmarks and best practices for
clinical multimodal learning. As illustrated in Fig. 3, our
analysis yields three key insights:

1. Multitask pretraining: We evaluate single encoders
trained jointly on all tasks within each modality in
CLIMB. Our experiments show that multitask pretrain-
ing significantly improves performance across clinical
tasks, achieving up to 32.54% AUC improvement in
COVID ultrasound and other understudied areas. Fur-
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Figure 1. Overview of the CLIMB framework for training and testing multimodal datasets. The training phase incorporates diverse
data modalities: graphs (molecular, BrainNet), 1D signals (ECG/EEG, genomics, EHR), 2D images (X-rays, dermoscopy, fundus,
mammograms, pathology), and 3D scans (CT, MRI, endoscopy, ultrasound). Through multitask training on heterogeneous clinical data,
our framework enhances model performance across individual tasks, particularly for understudied modalities defined in Fig. 2(b). This
approach improves both generalization to novel tasks and multimodal understanding when combined with appropriate fusion strategies,
ultimately advancing performance on critical clinical applications like disease diagnosis and patient risk prediction.

thermore, pretraining on CLIMB drastically improves
model performance in novel and understudied tasks for
general-domain encoders, specialized clinical encoders,
and clinical large vision language models (LVLMs).

2. Few-shot transfer: We test how models pretrained on
CLIMB generalize to new clinical tasks with limited
labeled data. Models pretrained on CLIMB demonstrate
significant improvements in few-shot learning scenarios,
achieving up to 29% improvement in ultrasound and
23% in ECG tasks under few-shot settings compared to
pretraining on existing datasets.

3. Multimodal fusion: Finally, we investigate different
strategies for combining multimodal clinical data, in-
cluding imaging, text, and time series on MIMIC-IV, a
multimodal clinical benchmark. Our results show that
single-modality pretraining on CLIMB enhances multi-
modal learning performance, leading to successful trans-
fer to MIMIC-IV, and that complex fusion strategies
perform better on challenging tasks.

In light of these findings, we release our vision, EEG, and
ECG unimodal and multimodal models trained on CLIMB,
which achieve state-of-the-art performance on multiple clin-
ical tasks. We also provide detailed recommendations
for model architecture selection and pretraining strategies
across clinical modalities, establishing a practical frame-
work for future clinical AI development. All code for data
collection, training, evaluation, and pretrained weights is
available at this link.

2. Related Work
We cover related work in unimodal and multimodal clinical
benchmarks and models.

2.1. Unified Multimodal Clinical Benchmarks
The convergence of computational advances and large clini-
cal datasets (Johnson et al., 2016; 2019; Irvin et al., 2019a)
has enabled AI systems to match human performance across
various medical tasks, from retinopathy detection to drug
discovery (Tsiknakis et al., 2021; Sone et al., 2021; Rajko-
mar et al., 2019). While large-scale multimodal foundation
models have shown promise in learning unified clinical
representations (Liang et al., 2024a; Yang et al., 2024; Phil-
iastides et al., 2021), current benchmarks typically focus on
limited modalities like X-rays, pathology, or their combi-
nations (Moses, 2021; Schneider et al., 2022; Nasir et al.,
2023). Large benchmarks include BenchMD (Wantlin et al.,
2023) and CARES (Xia et al., 2024), covering 7 clinical
modalities (1D, 2D, and 3D) and 16 different 2D and 3D im-
age modalities, respectively. As shown in Table 1, however,
our dataset uniquely incorporates time series and graph data
alongside traditional clinical imaging while maintaining the
widest coverage across each of the modalities.

2.2. Multimodal Clinical Models
Recent clinical AI models broadly fall into two categories:
LLM-based multimodal systems and specialized vision en-
coders. LLM-based approaches like Llava-Med (Li et al.,
2023) and Med-Flamingo (Moor et al., 2023) combine
frozen vision encoders with language models for clinical
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Figure 2. Overview of CLIMB benchmark and code. (a) Visualization of CLIMB dataset composition. The inner ring displays the
primary data modalities (2D, 1D, Graph, Multimodal). The middle ring represents major clinical modalities within each modality. The
outer ring shows the names of specific datasets within each category, with the outer bar plot representing the number of samples in that
dataset. A detailed description of each modality and datasets are included in App. A. (b) Focus of dataset collection. During the collection
of CLIMB, we aim to collect a diverse range of datasets, with a special focus on novel tasks, datasets from understudied modalities, and
datasets from underrepresented regions. (c) Distribution of data collection sites in CLIMB. Red regions indicate areas where clinical
datasets are commonly collected, whereas blue regions indicate places where clinical dataset collections are rare. (d) Example code
usage on CLIMB framework. This code example loads a custom mixed subset of CLIMB spanning across three modalities, then trains a
ConvNextv2 classifier on the dataset mixture with unified vocabulary. (e) Sample data from CLIMB. CLIMB preserves detailed labels,
metadata and comments explaining the diagnosis.

tasks, but notably do not optimize the visual components. In
contrast, vision-focused works like Swin-Unet (Cao et al.,
2022) develop specialized encoders for clinical imaging,
though typically for single modalities. M4oE (Jiang & Shen,
2024) represents a rare exception, using Swin Transform-
ers (Liu et al., 2021) to create a mixture of experts model
across both CT and MRI modalities, but they failed to ex-
pand it further into more modalities. While general vision
architectures like ConvNeXt and EVA-2 (Liu et al., 2022;
Fang et al., 2024) have demonstrated strong performance
on natural images, efforts to develop clinical-specific en-
coders have largely focused on adapting older architectures,
as seen in CLIP-based PMC-CLIP (Lin et al., 2023) and
Vision Transformer-based MedViT (Manzari et al., 2023),
leaving the potential of modern architectures for clinical
tasks largely unexplored.

3. Dataset
In this section, we provide an overview of the
CLIMB dataset, sourced from 44 public datasets spanning
15 modalities in 13 clinical domains. A detailed description
of each modality and dataset is included in App. A, and
a visual overview of the dataset is provided in Fig. 1. We
first introduce the selection criteria of the CLIMB dataset,
followed by the dataset information and statistics. In the
end, we provide a simple code snippet demonstrating the
use of CLIMB for model training and inference.

3.1. Dataset Selection Criteria
CLIMB unifies diverse public clinical datasets into a uni-
fied benchmark designed specifically for developing and
evaluating multimodal medical AI systems. To maximize
the diversity of the data, we established three key criteria to
guide our dataset selection process. As illustrated in Figure
2(b), we prioritize datasets that address one or more of the
following objectives:

1. Novel tasks: Recent emerging clinical challenges, such
as COVID-19 diagnosis from chest imaging.

2. Understudied modalities: Data types traditionally un-
derrepresented in clinical AI, including electroencephalo-
grams (EEG), endoscopic videos, and graphs.

3. Underrepresented regions: Clinical data from geo-
graphic areas with limited representation in existing
benchmarks, particularly South America and developing
regions of South Asia.

A detailed description of our selection methodology and
inclusion criteria is provided in App. A.2.

3.2. Dataset Construction
Based on the selection criteria above, CLIMB was even-
tually sourced from 44 public datasets. Fig. 2(e) shows
three examples in CLIMB, with labels COVID-19, Parkin-
son’s disease and Seizure, from ultrasound, brain network,
and EEG, respectively (Wie, 2021; Cui et al., 2022; Jing
et al., 2023a). Notably, additional metadata and explanation
labels for the datasets are also preserved, as shown in the
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Table 1. Comparison of clinical benchmarks. Abbreviations: BN = Brain Networks, Mol = Molecules, ECG = Electrocardiogram, EEG
= Electroencephalogram, Genom = Genomics, Mammo = Mammography, Derm = Dermoscopy, Fund = Fundus, Path = Pathology, CT
= Computed Tomography, MRI = Magnetic Resonance Imaging, US = Ultrasound, Endo = Endoscopy. CLIMB (ours) is the the most
diverse, comprehensive, largest clinical public multimodal dataset up to date, which enables holistic studies on multiple modalities and
provides data foundation for large-scale clinical pretraining across vision, language, time series and graphs. * For BenchMD, 5.1M out of
5.2M samples are EEGs, with only 0.1M samples from other modalities.

Dataset #Samples Graph 1D 2D 3D

BN Mol ECG EEG Genom Gait Text X-ray Mammo Derm Fund Path CT MRI US Endo

BenchMD (Wantlin et al., 2023) 5.2M* ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗
PMC-VQA (Zhang et al., 2023) 149K ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗
GMAI-MMBench (Chen et al., 2024a) 26K ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✓
CARES (Xia et al., 2024) 18K ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CLIMB (ours) 4.51M ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 2. Comparison of dataset statistics. CLIMB-QA (ours)
demonstrates the largest scale in terms of number of words, QA
pairs, and overall dataset size.

Dataset #Words #QA Pairs Size of Dataset

PMC-VQA 10.2M 227K -
GMAI-MMBench 980K 26K 49 GB
CARES 1.74M 41K 21.61 GB

CLIMB-QA (ours) 129.1M 4.51M 19.01 TB

COVID-19 ultrasound example.

To enable holistic training and benchmarking, we need to
unify the input data loading and prediction tasks. To unify
the label space, we consider two options. The first is to
pose all tasks as multi-label classification given clinical data
samples from different modalities. We combine the vocab-
ularies in each dataset while merging semantically equiv-
alent labels. Specifically, given a heterogeneous dataset
collection D = {D1, ..., DK} with mixed annotation types
(multi-label/multi-class), we define a unified label vocab-
ulary V =

⋃K
k=1 Vk where Vk represents the label set of

dataset Dk. To ensure consistency, we standardize terminol-
ogy variations and combine similar concepts such as Lung
Opacity from Chexpert and Infiltration from Vindr CXR to
maintain a clean, unified vocabulary while preserving the
original clinical meaning. A detailed description of how we
standardize the taxonomy is included in App. C. The list of
classes are included in App. Table 9.

The second option is to pose everything as QA. We also built
a closed choice question-answering version of the dataset,
namely CLIMB-QA, for comparable LVLM evaluation. In
CLIMB-QA, each dataset is preprocessed with QA pairs
containing close-ended multiple-choice questions. A de-
tailed description of CLIMB-QA along with examples are
included in App. B.

In addition, we preserve the metadata, demographic infor-
mation, segmentation masks, and associated clinical reports
from the original dataset and link them to every sample
where applicable. To ensure comparability across model

architectures, this information is not exposed to the model
in the experiments, although we hope future works could
utilize it to develop more robust and fair methods.

3.3. Dataset Statistics
CLIMB contains 4.51 million samples totaling 19.01 ter-
abytes, with the following composition: 871K (19.31%) 1D
time series and text data (including electronic health records,
EEG, ECG, gait and genomic data), 707K (15.68%) 2D im-
ages (including X-rays, dermoscopy images, fundus images,
and pathology slides), 1.83M (40.56%) 3D or video data
(including ultrasounds, CT scans, endoscopic images and
MRI images), 69.3K (1.54%) graph data (including brain
networks, molecules), and 1.03M (22.90%) multi-modality
data combining multiple of the above modalities.

As shown in Table 1, CLIMB has the widest range of modal-
ities while incorporating time series and graph data, which
distinguishes it from existing multimodal benchmarks in the
field that typically only include images and text. Table 2 pro-
vides a quantitative comparison with other clinical datasets,
demonstrating that CLIMB significantly exceeds existing
benchmarks in scale, containing 129.1M words and 4.51M
QA pairs across 19.01 TB of data, substantially larger than
other multimodal clinical QA datasets.

Figure 2(a) shows the distribution across primary modalities
and the size of individual datasets. We carefully balance the
dataset such that each modality contains 3-5 datasets, pro-
viding multiple data sources per modality while maintaining
diversity within each category. The geographic distribu-
tion of data sources is shown in Figure 2(c). The dataset
includes data from 37 medical institutions across 18 coun-
tries, including contributions from Vietnam, Iraq, India, and
Brazil, expanding the representation beyond traditionally
well-represented regions.

3.4. Dataset Interface and Code Usage
We present a unified interface to download and process our
dataset into a unified format for mixed large-scale pretrain-
ing, given that the user has provided agreement consents
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on individual dataset websites. Figure 2(d) shows the code
for a standard workflow of loading multiple medical imag-
ing datasets and training a classification model with our
CLIMB framework. The entire training and evaluation
script can be completed in under ten lines of code while
maintaining the flexibility for any custom models or train-
ing loops. We also provide a standardized training pipeline
that is easily reproducible and parallelizable across multiple
machines and instances.

4. Experiments
We run extensive experiments to investigate the core tech-
nical challenges for developing clinical foundation models
with CLIMB. Specifically, we ask the following questions:

1. RQ1: Can multitask pretrained clinical models work
across multiple tasks consistently, especially for under-
studied tasks?

2. RQ2: How well do multitask pretrained clinical models
transfer to new tasks within the same clinical modality,
especially tasks with limited data?

3. RQ3: Can multitask pretrained unimodal models be
fused effectively to tackle multimodal clinical tasks?

4.1. Experimental setup
To answer the above research questions, we design our
experiments as follows:

RQ1: Multitask pretraining. We investigate whether mul-
titask learning can enable robust universal encoders for clin-
ical tasks. For each input modality (vision 2D/3D, graph,
EEG, ECG), we train a single encoder jointly on all re-
lated tasks in CLIMB. Each encoder is combined with a
classification head that predicts task-specific labels from
an aggregated vocabulary V , which encompasses diagnos-
tic terms across all tasks within that modality. For each
modality, we evaluate both specialized medical models
and general-domain architectures. In vision, we compare
medical-specific encoders (MedViT (Manzari et al., 2023),
PMC-CLIP (Lin et al., 2023), RAD-DINO (Pérez-Garcı́a
et al., 2025)) against general vision models (ConvNeXTv2
(Liu et al., 2022), SBB2 (Radford et al., 2021), Swin Trans-
former (Liu et al., 2021), EVA-2 (Fang et al., 2024), Intern-
ViT (Chen et al., 2024b)). For time-series data, we evaluate
ECG-specific model, ECG JEPA (Kim, 2024), against gen-
eral time-series architectures, UniTS (Gao et al., 2024). In
the EEG domain, we test specialized architectures includ-
ing SPARCNet (Jing et al., 2023b), CNNTransformer (Peh
et al., 2022), FFCL (Li et al., 2022), ContraWR (Yang et al.,
2023), STTransformer (Song et al., 2021), and BIOT (Yang
et al., 2024). We also evaluate SoTA clinical VLM, LLaVa-
Med (Li et al., 2023), on CLIMB-QA, a question-answering
version of CLIMB designed for comparability across large
VLMs and traditional encoders. Details on construction are
included in App. B.

RQ2: Few-shot transfer. We investigate how well mod-
els pretrained on CLIMB can generalize to novel clinical
tasks with limited labeled data. To evaluate few-shot gen-
eralization, we test on out-of-distribution (OOD) datasets
Dood ̸⊂ Dtrain. The OOD datasets are selected to reflect
either a new task or a different data source within the same
modality, simulating real-world scenarios where models
must adapt to novel diagnostic tasks with limited labeled
examples (1, 8, and 32 samples). We curated a diverse set of
10 datasets spanning 9 modalities, as detailed in App. D.7.1.
A quantitative analysis of the OOD datasets is included in
App. F. For each modality, we use the best-performing
model from our RQ1 experiments: ConvNextv2 for vision
tasks, ECG JEPA for ECG analysis, and BIOT for EEG pro-
cessing. We compare two scenarios: (1) models initialized
with publicly released pretrained weights, and (2) models
pretrained on CLIMB. Both are then fine-tuned using few-
shot samples from the target OOD dataset.

RQ3: Unimodal pretraining to multimodal fusion. We
investigate how to effectively combine information from
different clinical modalities (imaging, text, and time series)
to improve patient outcome prediction. This addresses the
practical clinical scenario where multiple types of medical
data are available for diagnosis and prognosis. Our exper-
iments pretrain models on CLIMB and transfer them to
MIMIC-IV (Johnson et al., 2023), a large-scale multimodal
clinical dataset. We evaluate three fusion strategies with
increasing levels of cross-modal interaction: Late fusion,
MLP fusion, and cross-attention fusion. Detailed architec-
tural specifications are provided in App. D.2.3. We fix the
encoder architectures across all experiments: ConvNextv2
for visual inputs, ClinicalBERT(Liu et al., 2025) for text,
and ECG-JEPA for time series data. In addition, to evaluate
how large scale pretraining helps with multimodal tasks
across different encoders, we compare models initialized
with our CLIMB pretrained weights against those using
publicly available pretrained weights. We evaluate on two
common clinical prediction tasks: length of stay (LOS)
prediction and 48-hour in-hospital mortality prediction (48
IHM). These tasks are clinically significant and require inte-
grating information across modalities.

Evaluation metrics. For consistency, we evaluate all classi-
fication tasks with balanced AUC, sensitivity, and specificity.
Regression tasks (e.g., length of stay prediction) are evalu-
ated with mean absolute error (MAE). Task specifications,
metrics considerations and experimental setups are provided
in App. D.

4.2. On RQ1: Multitask Pretraining Performance
Importance of multitask pretraining. Our experiments
demonstrate that multitask pretraining yields substantial and
consistent improvements across diverse clinical scenarios,
as shown in Fig. 4. Notably, the most significant gains
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Figure 3. Experimental setup for evaluating (a) multitask, (b) transfer, and (c) fusion learning strategies, addressing RQ1, 2, 3
respectively. We show inputs to the model on the left and display evaluation on the right. (a) trains a single model on multiple clinical
tasks across different medical modalities and evaluate on each individual dataset to see if model can generate across diverse tasks,
including understudied ones. We compare the model’s performance across different achitectures, as well as between the performance of
single task learning versus multitask learning. (b) explores how well multitask pretrained clinical models transfer to new tasks, despite
having few samples in the same modality. In this experiment, each model is trained on a few samples of a target out-of-distribution (OOD)
dataset, as well as other tasks across different clinical modalities. (c) experiments on whether multitask pretrained unimodal models can
be fused effectively to tackle multimodal clinical tasks. The source encoders are first separately trained with diverse data in their on
modality, before being fused and evaluated on a new multimodal dataset (MIMIC-IV).

Table 3. Performance comparison of trained multitask models across various medical imaging modalities. Sen: Sensitivity, Spe:
Specificity, AUC: Area under the receiver operating characteristic curve. CLIP-L2B: CLIP ViT-Laion 2B. The best performance for
each metric is bolded. Detailed breakdowns of each dataset are attached in App. E.1. The experiment shows that general domain SoTA
encoders perform better than specialized medical encoders, with ConvNeXTv2 offering the best performance-compute tradeoff.

Model Chest X-Ray Mammography Dermoscopy CT Scan Fundus Ultrasound Overall

AUC Sen Spe AUC Sen Spe AUC Sen Spe AUC Sen Spe AUC Sen Spe AUC Sen Spe AUC Sen Spe

Clinical Encoders

MedViT .670 .253 .833 .627 .417 .583 .522 .361 .639 .604 .382 .616 .320 .317 .688 .452 .500 .583 .579 .364 .690
PMC-CLIP .725 .251 .883 .614 .312 .710 .674 .325 .706 .619 .407 .593 .508 .220 .785 .521 .384 .609 .635 .341 .724
RAD-DINO .818 .406 .928 .566 .314 .701 .717 .348 .715 .653 .408 .594 .606 .221 .786 .639 .431 .619 .681 .368 .729

General Domain Encoders

SBB2 .791 .401 .922 .538 .262 .663 .784 .362 .724 .691 .403 .590 .732 .293 .821 .711 .495 .689 .730 .420 .754
Swin Transformer .795 .389 .926 .513 .200 .599 .815 .435 .747 .685 .429 .615 .770 .327 .838 .705 .545 .712 .765 .436 .775
EVA-2 .863 .382 .929 .516 .320 .699 .716 .353 .724 .531 .496 .496 .780 .295 .822 .462 .340 .659 .685 .372 .737
InternViT .815 .413 .930 .532 .340 .713 .868 .543 .770 .706 .469 .652 .839 .431 .851 .735 .549 .718 .772 .492 .789
ConvNeXTv2 .817 .436 .939 .558 .330 .706 .901 .568 .777 .671 .466 .641 .873 .563 .888 .774 .641 .770 .787 .537 .806

Table 4. Performance comparison of graph neural networks
across brain networks and protein structures. The best perfor-
mance of each model is bolded. Graph transformer offers the best
performance in terms of AUC and sensitivity-specificity balance.

Model BrainNet Molecular Overall

AUC Sen Spe AUC Sen Spe AUC Sen Spe

GCN .804 .696 .800 .763 .532 .760 .783 .614 .780
GAT .705 .916 .404 .823 .551 .801 .764 .733 .602
Graph Transformer .852 .810 .826 .789 .381 .920 .820 .595 .873

are observed in the three understudied categories: novel
tasks, understudied modalities, and datasets from under-
represented regions, as defined in Sec. 3.1. Datasets that
intersect multiple categories show the highest performance
improvements, as exemplified by COVID-US with an AUC
gain of 0.3254. In temporal modalities, particularly ECG
analysis, the Ga dataset demonstrates this trend with an

absolute AUC improvement of 23 percentage points (from
0.474 to 0.704) when comparing single-task to multitask
pretraining approaches, as shown in App. Table 30. These
results suggest that multitask learning is particularly effec-
tive for scenarios where data or research attention has been
historically limited.

Comparison of encoder models. Our analysis reveals coun-
terintuitive patterns in encoder effectiveness across differ-
ent domains. In the visual domain, image-based models
consistently outperform video models across both image
and video tasks, which we attribute to the substantially
larger pretraining datasets available for image models. In
addition, general-purpose architectures like ConvNextv2
significantly outperform clinical-specific encoders such as
MedViT, achieving a 35.9% performance improvement. We
hypothesize this superiority stems from the more diverse
pretraining distribution encountered by general-domain en-
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Table 5. EEG Model Performance on Different EEG Datasets. In general, pretrained models (starting with BIOT-pretrain) achieve
better performances than models trained from scratch. However, there’s no clear relationship between the number of pretrained datasets
and the performance, indicating that quality and relevance of pretraining datasets may play a bigger role than the quantity of data.

Model Name IIIC TUEV TUAB Overall

AUC Sens Spe F1 AUC Sens Spe F1 AUC Sens Spe F1 AUC Sens Spe F1

SPARCNet .846 .525 .905 .589 .801 .495 .877 .286 .868 .796 .796 .797 .838 .605 .859 .557
CNNTransformer .809 .435 .890 .399 .874 .473 .913 .386 .879 .797 .797 .799 .854 .569 .867 .528
FFCL .841 .458 .805 .448 .801 .443 .906 .347 .874 .787 .787 .789 .839 .562 .833 .528
ContraWR .832 .446 .892 .410 .847 .439 .898 .370 .872 .782 .782 .781 .850 .556 .858 .520
STTransformer .785 .412 .884 .407 .701 .371 .874 .262 .864 .785 .785 .787 .783 .522 .848 .485
BIOT .854 .510 .905 .499 .856 .466 .908 .371 .879 .798 .798 .799 .863 .591 .870 .556
BIOT-pretrain-PREST .844 .496 .902 .486 .898 .580 .918 .373 .878 .797 .797 .799 .873 .624 .872 .552
BIOT-pretrain-SHHS+PREST .848 .523 .906 .507 .880 .586 .914 .415 .882 .806 .806 .808 .870 .639 .875 .577
BIOT-pretrain-six-datasets .862 .546 .911 .531 .878 .549 .917 .397 .869 .794 .794 .795 .870 .630 .874 .574
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Figure 4. Difference in AUC achieved by the multitask model
compared to single-task training. Novel Task represent emerg-
ing clinical challenges like COVID-19; Underrepresented Regions
indicates datasets from underrepresented regions in developing
countries such as Brazil and China; Understudied Modalities in-
cludes less common imaging types such as ultrasound and CT
scans. Datasets belonging to multiple categories are highlighted
in pink. In general, multitask learning helps the model to reach
a better performance, with the greatest improvement observed in
understudied tasks, regions, and/or modalities.

coders. In the EEG domain, we see a similar trend, with
pretrained models achieving a better overall performance
than all models trained from scratch, but models trained on
more datasets (BIOT-pretrain-six-datasets) does not guaran-
tee a better performance than models trained on less datasets.
This indicates that in the EEG domain, the quality and rele-
vance of the pretraining datasets is of importance. On the
other hand, in the ECG domain, specialized architectures
demonstrate clear advantages over general models, with
ECG JEPA outperforming the general-purpose time series
model UniTS by 36.8%. This dichotomy suggests that the
optimal choice of architecture depends heavily on both the

Table 6. Performance comparison of zero-shot and fine-tuned
LLaVa-Med. LLaVa-Med is the current SoTA LVLM model
for clinical QA tasks. Both CLIMB-ConvNextv2 and LLaVa-
Med are trained and evaluated on CLIMB in a comparable, close-
ended manner. While directly fine-tuning the LLM on CLIMB-QA
improves performance over zero-shot cases, they still lag behind
SoTA multitask encoders, namely CLIMB-ConvNextv2, the SoTA
multitask encoder trained on CLIMB.

Dataset Zero-Shot Fine-Tuned

Acc Sens Spe Acc Sens Spe

Chest X-ray .088 .192 .808 .309 .207 .795
MRI .363 .473 .650 .480 .375 .625
Ultrasound .448 .427 .640 .579 .389 .611
Mammography .049 .203 .800 .741 .300 .700
Dermoscopy .466 .296 .700 .673 .245 .756
Fundus .434 .202 .794 .578 .217 .783
CT .448 .424 .575 .788 .435 .585
Endoscopic .000 1.00 .000 .296 .143 .857

Average .287 .402 .621 .555 .289 .714
CLIMB-ConvNextv2 - - - .877 .806 .787

modality and the availability of domain-specific pretraining
data. In the graph domain, graph transformers work the best
with the highest score across all metrics, as shown in Tab. 4.

Comparing Vision Encoders with Large VLMs. We
evaluated LLaVA-Med on CLIMB-QA to assess current
clinical VLMs’ capabilities in multimodal understanding.
While fine-tuning on CLIMB-QA improves performance
over zero-shot inference by 28.7 percentage points, these
results significantly lag behind CLIMB-ConvNeXtv2, our
new SoTA vision encoder trained on CLIMB, by 32.2 per-
centage points in accuracy. The gap is particularly evident in
modalities requiring fine-grained visual understanding, such
as chest X-rays (30.9% accuracy) and endoscopic images
(29.6% accuracy), where the model struggles to maintain
balanced sensitivity and specificity. These results suggest
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Figure 5. Few-shot learning performance comparison across
different time series domains. We evaluate the few-shot perfor-
mance (1-shot, 8-shot, and full dataset) of three representative
models: BIOT for EEGs, ECG-JEPA and UniTS for ECGs. PT on
Standard shows the performance when pretrained on their datasets
from the original paper, while PT on CLIMB shows the perfor-
mance when pretrained on our CLIMB dataset. Models pretrained
on CLIMB demonstrate consistent improvements over the original
ECG domain-specific models.
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Figure 6. Few-shot performance on out-of-distribution datasets.
InternVL represents the ViT-based model, while ConvNext repre-
sents the convolution-based model. In general, ViT-based models
and ConvNext-based models exhibit similar overall performances
across all shots, with ViT excelling at CT Scan tasks while Con-
vNext performs better at diagnosing fundus images.

that CLIMB is a rich data source for clinical AI that has
a substantially different distribution than the pretraining
dataset of current LLMs, and that training on CLIMB-QA
can substantially improve existing models. However, the
fine-tuned results also make it evident that current vision-
language models require fundamental architectural innova-
tions and novel training paradigms for the model to match
the performance of fine-tuned dedicated vision encoders.

4.3. On RQ2: Few-shot Transfer Performance
Strength of few-shot transfer. As illustrated in Figure 7,
our large-scale pretraining dataset enables efficient learning
of novel tasks with limited samples, demonstrating consis-
tent performance improvements across all modalities. The
impact is particularly significant in traditionally challenging
modalities such as CT scans and ultrasound imaging, where
models achieved substantial gains in AUC of 28.7% and
29.1%, respectively. In time series domains such as ECG
and EEG, our model outperformed SoTA weights specif-

CXR

Dermoscopy

CT Scan
Fundus

Pathology

Mammo

Ultrasound
ECG

EEG

0.4 0.6 0.8

PT on CLIMB
PT on Standard Datasets

Figure 7. Few-shot performance of models across different pre-
training (PT) datasets. CXR: Chest X-ray. We use ConvNextv2
for vision, ECG JEPA for ECG data, and BIOT for EEGs. PT on
Standard Datasets is the performance of training one shot exam-
ple on top of their own pretrained weights, while PT on CLIMB
is the performance of training one shot example on top of our
CLIMB dataset. For EEGs, 8 shot results are used instead due to
the inherent complexity of the task.

ically trained on this domain, which again illustrates the
benefits of our large-scale pertaining data.

Architecture comparisons. As shown in Figure 6, in the
vision domain, we again found both ConvNextv2 and ViT-
based models perform similarly under both full and few
shot settings, as shown in Figure 6. ConvNext exhibit better
performance in fundus and dermoscopy images, while ViT
performs better for CT scans. We also found specialized
ECG models like ECG-JEPA transfer better than universal
time series models like UniTS, as demonstrated in Figure 5.

4.4. RQ3: Unimodal Pretraining to Multimodal Fusion
Pretraining results. Experimental results in Table 7 demon-
strate that encoders pretrained on CLIMB consistently out-
perform those pretrained on other datasets across all eval-
uation settings. This performance advantage is maintained
across diverse tasks, including length of stay prediction and
in-hospital mortality prediction, both in full-data and few-
shot scenarios. Notably, our pretrained encoders achieve
5.78% lower MAE (2.61 vs 2.77) in LOS prediction and
15.9% higher AUC in 8-shot mortality prediction, suggest-
ing that the diverse modalities in CLIMB enable more robust
feature representations.

Fusion comparisons. Our analysis reveals that the effec-
tiveness of different fusion strategies varies with task com-
plexity. For complex regression tasks like length of stay
prediction, cross-attention mechanisms demonstrate supe-
rior performance, achieving the lowest MAE of 2.61. In
contrast, for binary classification tasks such as 48-hour in-
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Table 7. Performance comparison of different multimodal fu-
sion approaches on length of stay (LOS) prediction and 48-
hour in-hospital mortality (48 IHM) prediction tasks. CrossAtt:
Cross Attention. Unimodal encoders trained on CLIMB transfers
to better multimodal performance, given proper fusion strategies
are used. Complex tasks like LOS require complex fusions like
cross-attention, while simple tasks like 48 IHM work well under
simple MLP fusion. FT = Fine Tuning.

Enc. Fusion LOS 48 IHM (Full FT) 48 IHM (8-Shots)

MAE AUC Sens Spec AUC Sens Spec

SoTA
Late 4.78 0.689 0.495 0.760 0.524 0.001 0.994
MLP 2.98 0.957 0.806 0.979 0.556 0.536 0.538

CrossAtt 2.77 0.786 0.628 0.814 0.580 0.286 0.766

Ours
Late 4.71 0.859 0.017 0.983 0.628 0.022 0.993
MLP 2.84 0.961 0.824 0.975 0.672 0.295 0.858

CrossAtt 2.61 0.796 0.822 0.590 0.570 0.294 0.753

hospital-mortality (48 IHM) prediction, MLP-based concate-
nation proves more effective, achieving the highest AUC
while maintaining balanced sensitivity (0.824) and speci-
ficity (0.975). While late fusion appears to achieve higher
specificity in some cases, its near-zero sensitivity indicates
that it effectively defaults to predicting the majority class
without any meaningful information. This pattern persists in
the challenging 8-shot setting, where MLP fusion maintains
the best performance while preserving a reasonable balance
between sensitivity and specificity.

4.5. Comparison with Dataset-Specific SoTAs
To contextualize the performance of our pretrained unimodal
and multimodal models, we compare them to prior reported
results from state-of-the-art models specifically optimized
for individual datasets in App. Table 36. While dataset-
specific architectures sometimes outperform pretrained mod-
els through specialized optimizations, they often struggle
to adapt to new tasks, even within the same modality it was
trained on (see Sec. 4.2). The highly specialized nature of
their architectures, like the multi-stage category-wise fine-
tuning utilized in CFT (Chong et al., 2023), makes them
difficult to adapt or retrain for different clinical tasks. There-
fore, there is much value in training generalizable unimodal
and multimodal models that can effectively adapt across
diverse clinical modalities, tasks, and scenarios.

5. Conclusion
We present CLIMB, a comprehensive multimodal clinical
benchmark unifying 4.51M samples across 44 datasets, 15
modalities, and 13 clinical domains. Our extensive em-
pirical evaluation revealed several key insights for clini-
cal AI development. First, multitask pretraining signifi-
cantly improves performance on understudied modalities
and novel tasks. Second, general-domain architectures out-
perform clinical-specific ones in multitask settings. Third,
models pretrained on CLIMB demonstrate substantial im-

provements in few-shot scenarios across modalities. Finally,
unimodal pretraining on CLIMB consistently enhances per-
formance on downstream multimodal tasks. Based on these
findings, we recommend leveraging general-domain archi-
tectures for visual tasks and emphasize the importance of
multitask pretraining, especially for understudied domains.
For multimodal applications, we suggest matching fusion
complexity to task requirements and utilizing large-scale
unimodal pretraining before multimodal integration.

Looking ahead, our findings point to several emerging re-
search directions: developing novel architectures that better
balance general and domain-specific features, finding new
ways to combine unexplored modality combinations, and
creating fusion mechanisms that adjust to task complexity.
While dataset-specific models currently achieve higher per-
formance through specialized optimizations, we encourage
future research to develop general multitask encoders that
can effectively adapt across diverse modalities and tasks. By
releasing our dataset, code, and models, we hope to acceler-
ate progress in these directions and advance the development
of holistic clinical AI systems.

Impact Statement
This paper presents empirical benchmarking, analysis, and
development of multimodal clinical datasets and models.
Multimodal AI can help clinicians analyze large-scale longi-
tudinal data, make predictions, and investigate interventions.
Furthermore, increasingly many indicators are no longer
taken in the doctor’s office, but daily, such as physiolog-
ical sensors that track sleep, mood, stress, diet, exercise,
and social interactions. Our findings can have a broad im-
pact on developing holistic AI models of human health and
wellness.

At the same time, data privacy and model fairness are crit-
ical qualities. There may be privacy risks associated with
collecting and making predictions from multimodal clinical
data. We have taken appropriate steps to only access data
that participants have consented to public release, and to
the best of our knowledge, all data was anonymized and
stripped of all personal (e.g., personally identifiable infor-
mation) and protected attributes (e.g., race, gender). There
is also the risk that clinical AI models capture spurious fea-
tures from race, gender, and other demographic variables,
especially as more clinical data is provided. To deploy these
algorithms at scale in the real world, it is also important to
keep data and features secure without public sharing.

Overall, CLIMB offers opportunities to study the promises
of multimodal AI while mitigating potential risks at scale
across clinical modalities, tasks, and domains. We will con-
tinue expanding CLIMB to rigorously test for these social
impacts and improve the safety and reliability of multimodal
clinical models.
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A. Individual Dataset Details

Table 8. Breakdown of CLIMB dataset by Modalities
Dataset # Samples Clinical Domain Modality Task Fine-grained

PTB-XL 21K Cardiology ECG Diagnostics, Attribute Recognition /
Chapman-Shaoxing 40K Cardiology ECG Diagnostics /
Georgia 20K Cardiology ECG Diagnostics /
CPSC 6K Sleep Cardiology ECG Abnormality Detection /
IIIC 134.5k Neurological Disorders EEG Diagnostics /
TUAB 409.5k Neurological Disorders EEG Abnormality Detection /
TUEV 111.9k Neurological Disorders EEG Diagnostics /
MIMIC-CXR 356K Radiology Chest X-ray Diagnostics, Classification No
CheXpert 212K Radiology Chest X-ray Diagnostics, Classification No
VinDr-CXR 18K Radiology Chest X-ray Diagnostics, Abnormality Detection Both
COVID-19 2.9K Radiology Chest X-ray Diagnostics No
CoronaHack 5.9K Radiology Chest X-ray Diagnostics No
VinDr-Mammo 20K Radiology, Oncology Mammography Diagnostics, Abnormality Detection Both
CBIS-DDSM 2.8K Radiology, Oncology Mammography Diagnostics, Abnormality Detection, Classification Both
CMMD 1.8K Radiology, Oncology Mammography Diagnostics, Segmentation, Abnormality Detection Both
ISIC-2020 33K Dermatology, Oncology Dermoscopy Diagnostics, Classification No
HAM10000 10K Dermatology, Oncology Dermoscopy Diagnostics, Segmentation Both
PAD-UFES-20 2.3K Dermatology, Oncology Dermoscopy Diagnostics, Classification No
Messidor-2 1.7K Ophthalmology Fundus Diagnostics No
APTOS 2019 3.6K Ophthalmology Fundus Diagnostics No
Jichi 9.9K Ophthalmology Fundus Diagnostics, Prognostics, Severity Grading No
LNDb 5.6K Radiology, Oncology CT Diagnostics, Abnormality Detection Yes
INSPECT 23K Radiology CT Diagnostics, Prognostics No
KiTS23 478 Radiology, Oncology CT Segmentation Yes
Hemorrhage 2.5K Radiology CT Diagnostics, Segmentation Both
RSPECT 1.79M Radiology CT Diagnostics, Classification Yes
EchoNet-Dynamic 10K Radiology Ultrasound Segmentation Yes
BUSI 780 Radiology, Oncology Ultrasound Diagnostics, Segmentation Both
COVID-BLUES 362 Radiology Ultrasound Diagnostics No
COVID-US 242 Radiology Ultrasound Diagnostics, Severity Grading No
Brain Tumor 3.2K Radiology, Oncology MRI Diagnostics No
Brain MRI 253 Radiology, Oncology MRI Diagnostics No
ABCD 9.5K Radiology BrainNet Classification Yes
ABIDE 1009 Radiology BrainNet Classification Yes
PPMI 718 Radiology BrainNet Classification Yes
PROTEINS 1113 Molecular Biology Molecule Classification No
PPI 57K Molecular Biology Molecule Classification No
LC25000 18.7K Pathology Tissues Classification No
BCSS 5.26K Pathology Tissues Classification No
Cholec80 14.4K Surgery Video Workflow Analysis, Segmentation Yes
HuGaDB 364 Physical Medicine, Rehabilitation IMU Motion Analysis, Classification Yes
Expression Atlas 4.5K Molecular Biology, Genetics Gene Expression Expression Analysis, Classification Yes
Geo 126K Molecular Biology, Genetics Gene Expression Expression Analysis, Classification Yes
Vital 210K Multiple Multimodal Diagnostics Both
MIMIC-IV 800K Cardiology,Radiology EHR, ECG, X-ray Diagnostics, Prognostics, Severity Grading Both

Table 8 shows a breakdown of the data sources in CLIMB. In this section, we provide details for each dataset. We describe
the source and structure of the datasets, split used to evaluate the models, QA prompts, access restrictions, and licenses. A
list of classes we constructed is included in Table 9. We also include a list of medical institutions and locations where the
data was collected, as well as the demographic info available from each dataset in Table 10.

The definitions of each column are as follows:

Clinical Domain and Modality. Clinical Domain involves the clinical specialty and the exact diseases described by the data.
Our dataset aims to cover as many clinical domains as possible. The final dataset spans 13 domains, including radiology,
cardiology, pathology, dermatology, oncology, ophthalmology, molecular biology, sleep cardiology and neurological
disorders. Within radiology, our dataset spans diseases such as breast cancer, kidney cancer, and pneumonia. Modality
involves the type of data at play. Our data ranges from time series (1D), vision (2D & 3D), text records and graphs, making
it one of the most diverse datasets up to date.

Task describes the applicable tasks for a multi-modal model. CLIMB spans diagnostics (disease labels), attribute recognition
(recognition of inherent structures in the data), abnormality detection (localized abnomality labels), segmentation, prognostics
(labels related improvement of condition over time), severity grading, and plain classification (non-disease related labels).

Granularity specifies the level of localization in the task involved. For example, tasks such as segmentation and abnormality
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detection requiring localized reasoning and reference to a specific object in an image are classified as fine-grained. In
contrast, tasks that make a prediction based on the entire image (e.g. diagnostics) are considered coarse-grained.

Here, we first introduce the list of modalities in CLIMB, followed by a detailed description of each individual dataset.

A.1. List of Modalities
ECG (Electrocardiogram) Electrocardiogram is a cardiac diagnostic tool that records the electrical activity of the heart
over time. The datasets in this modality include {PTB-XL, Chapman-Shaoxing, Georgia, CPSC}, primarily focusing on
cardiac diagnostics and abnormality detection. The collective classes across these datasets encompass Normal, Conduction
Delay (CD), Hypertrophy (HYP), Myocardial Infarction (MI), Sinus Tachycardia/Bradycardia/Conduction (STTC), Atrial
Fibrillation/Atrial Flutter (A. Fib/Aflutter), and Other conditions.

EEG (Electroencephalogram) EEG is a neurological monitoring method that records brain’s electrical activity through
electrodes placed on the scalp. The datasets in this category include {IIIC, TUAB, TUEV}, used for diagnosing neurological
disorders and detecting abnormalities. The classes across these datasets include Seizure (SZ), Lateralized Periodic Discharges
(LPD), Generalized Periodic Discharges (GPD), Lateralized Rhythmic Delta Activity (LRDA), Generalized Rhythmic
Delta Activity (GRDA), Spike and Slow Wave (SPSW), Generalized Periodic Epileptiform Discharge (GPED), Periodic
Lateralized Epileptiform Discharge (PLED), Eye Movement (EYEM), Artifact (ARTF), Background (BCKG), and simple
Normal/Abnormal classifications.

Chest X-ray Chest X-ray is a radiological imaging technique used to examine the chest cavity, including the heart, lungs,
and surrounding structures. The datasets in this modality include {MIMIC-CXR, CheXpert, VinDr-CXR, COVID-19,
CoronaHack}. The comprehensive set of classes across these datasets includes Atelectasis, Cardiomegaly, Consolidation,
Edema, Enlarged Cardiomediastinum, Fracture, Lung Lesion, Lung Opacity, Pleural Effusion, Pneumonia (including
Bacterial and Viral), Pneumothorax, Pleural Other, Support Devices, Lung tumor, Tuberculosis, COPD, COVID-19, and No
Finding.

Mammography Mammography is a specialized medical imaging that uses low-dose X-rays to examine breast tissue
for early detection of breast cancer. The datasets in this category include {VinDr-Mammo, CBIS-DDSM, CMMD}. The
classes are primarily based on the BI-RADS scoring system (ranging from 0-5) and binary classification of Benign versus
Malignant lesions.

Dermoscopy Dermoscopy is a non-invasive skin imaging technique used for examining skin lesions and early detection
of skin cancer. The datasets in this modality include {ISIC-2020, HAM10000, PAD-UFES-20}. The classes across these
datasets include Melanoma (MEL), Nevus (NV), Basal Cell Carcinoma (BCC), Actinic Keratosis/Intraepithelial Carcinoma
(AKIEC), and Other categories, with some datasets using simple Malignant/Benign classification.

Fundus Fundus photography is a specialized technique for capturing detailed images of the interior surface of the eye,
particularly useful in diagnosing retinal conditions. The datasets include {Messidor-2, APTOS 2019, Jichi}. The classes
focus on different stages of Diabetic Retinopathy (DR), including None/No DR, Mild DR, Moderate DR, Severe DR, PDR
(Proliferative DR), as well as SDR (simple diabetic retinopathy) and PPDR (pre-proliferative diabetic retinopathy).

CT (Computed Tomography) CT is an advanced imaging technique that produces detailed cross-sectional images of the
body. The datasets in this modality include {LNDb, INSPECT, KiTS23, Hemorrhage, RSPECT}. The classes across these
datasets cover various conditions including nodule classification (≥3mm, <3mm, non-nodule), Pulmonary Embolism (PE)
categories (No PE, Acute PE, Chronic PE, Subsegmental PE), Hemorrhage detection, and tumor classification (Benign,
Malignant).

Ultrasound Ultrasound imaging uses high-frequency sound waves to produce real-time images of the inside of the body.
The datasets include {EchoNet-Dynamic, BUSI, COVID-BLUES, COVID-US}. The classes across these datasets include
Normal, Malignant, Benign, COVID-19, and Pneumonia, with some datasets focused on segmentation tasks rather than
classification.

MRI (Magnetic Resonance Imaging) MRI uses magnetic fields and radio waves to create detailed images of organs
and tissues. The datasets in this category include {Brain Tumor, Brain MRI}. The classes focus on tumor detection and
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classification, including No Tumor, Pituitary Tumor, Glioma Tumor, Meningioma Tumor, and simple presence/absence of
tumors.

BrainNet Brain Network represents brain connectivity networks derived from neuroimaging data. The datasets include
{ABCD, ABIDE, PPMI}. The classes focus on binary classifications including Normal/Abnormal, ASD/Typical controls,
and Control/PD patients.

Molecule Molecular data represents structural and functional information about biological molecules. The datasets include
{PROTEINS, PPI}, with classification focusing on enzyme/non-enzyme categorization for proteins and molecule property
prediction.

Tissues Tissue imaging from pathology involves microscopic examination of biological tissue samples. The datasets
include {LC25000, BCSS}. The classes include various types of adenocarcinomas (Colon, Lung), Benign tissue (Colon,
Lung), Lung squamous cell carcinomas, and tissue components (Tumor, Stroma, Lymphocytic infiltrate, Necrosis/debris).

Video Medical video data captures dynamic medical procedures. The dataset in this category is {Cholec80}, which
focuses on surgery phase annotations and tool labels rather than traditional classification tasks.

IMU (Inertial Measurement Unit) IMU data captures motion and orientation information. The dataset {HuGaDB}
includes classes for basic physical activities: Sitting, Standing, Sitting down, and Standing up.

Gene Expression Gene expression data measures the activity levels of genes. The datasets {Expression Atlas, Geo} are
not primarily used for classification tasks but rather for expression analysis.

Multimodal Multimodal datasets combine multiple types of medical data. The datasets include {Vital, MIMIC-IV}, with
MIMIC-IV specifically focusing on 48-hour In-Hospital-Mortality prediction (Yes/No) while combining EHR, ECG, and
X-ray data.

A.2. List of Datasets

1. PTB-XL (Wagner et al., 2020) is a dataset of 12-lead ECGs from 18,869 patients of 10 second length. The raw
waveform data was annotated by two cardiologists, who assigned and validated diagnostic classification, form, and
rhythm statements to each record. We provide a grouped label of 7 classes: Normal, CD, HYP, MI, STTC, A. Fib/
Aflutter and Other, following conventions from (Wantlin et al., 2023). For out-of-domain transfer learning, we utilize
the subclass diagnostic labels from the PTB-XL dataset, which provides a more challenging 24-label classification task.
Split: For multitask training, we use the BenchMD split, which includes label remapping to 7 diagnostic categories.
This split consists of 17,476 records in the training set and 4,361 records in the test set, totaling 21,837 records.
Access restrictions: The dataset is available to download from https://physionet.org/files/ptb-xl/1.0.3/
Licenses: ECG records under this dataset are available in Creative Commons Attribution 4.0 International Public
License https://creativecommons.org/licenses/by/4.0/legalcode
Ethical considerations: No personally identifiable information or offensive content is present in the dataset.

2. Chapman Shaoxing (Zheng et al., 2020) consists of 12-lead ECGs from 10,646 patients, created under the auspices of
Chapman University and Shaoxing People’s Hospital. We provide a grouped label of 7 classes: Normal, CD, HYP, MI,
STTC, A. Fib/ Aflutter and Other, following conventions from (Wantlin et al., 2023).
Split: For multitask training, we use the BenchMD split, which includes label remapping to 7 diagnostic categories.
The split consists of 38,207 records in the training set and 2,051 records in the test set, totaling 40,258 records.
Access restrictions: The dataset is available to download from https://www.kaggle.com/datasets/
erarayamorenzomuten/chapmanshaoxing-12lead-ecg-database.

Licenses: ECG records under this dataset are available in Creative Commons Attribution 4.0 International Public
License https://creativecommons.org/licenses/by/4.0/
Ethical considerations: No personally identifiable information or offensive content is present in the dataset.

3. Georgia (Alday et al., 2020) is a database from the 2020 Physionet Computing in Cardiology Challenge, curated
by Emory University. It consists of 12-lead ECGs from 15,742 patients of 10 second lengths and 500 Hz frequency,
representing a unique demographic of the Southeastern United States. We provide a grouped label of 7 classes: Normal,
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CD, HYP, MI, STTC, A. Fib/ Aflutter and Other, following conventions from (Wantlin et al., 2023).
Split: For multitask training, we use the BenchMD split, which includes label remapping to 7 diagnostic categories.
The split consists of 18,622 records in the training set and 2,067 records in the test set, totaling 20,689 records.
Access restrictions: The dataset is available to download from https://www.kaggle.com/datasets/
bjoernjostein/georgia-12lead-ecg-challenge-database. Licenses: ECG records under this dataset are available in
Creative Commons Public Domain License https://creativecommons.org/publicdomain/zero/1.0/
Ethical considerations: No personally identifiable information or offensive content is present in the dataset.

4. CPSC (Liu et al., 2018) is a database from the 2021 China Physiological Signal Challenge. It consists of 12-lead Holter
and 3-lead wearable ECG monitoring device recordings of variable lengths, each sampled at 200 Hz. We provide a
grouped label of 7 classes: Normal, CD, HYP, MI, STTC, A. Fib/ Aflutter and Other, following conventions from
(Wantlin et al., 2023).
Split: For multitask training, we use the BenchMD split, which includes label remapping to 7 diagnostic categories.
The split consists of 4,815 records in the training set and 1,377 records in the test set, totaling 6,192 records.
Access restrictions: The dataset is available to download from https://physionet.org/files/cpsc2021/1.0.0/.
Licenses: ECG records under this dataset are available in Creative Commons Attribution 4.0 International Public
License https://creativecommons.org/licenses/by/4.0/legalcode
Ethical considerations: No personally identifiable information, hospital identification, or offensive content is present
in the dataset.

5. IIIC(Jing et al., 2023b) consists of EEG samples collected from 2,711 patients at Massachusetts General Hospital,
annotated by 124 raters. The publicly available version includes 134,450 EEG segments from 1,950 patients, each
segment lasting 10 seconds. The test set is non-public. Our evaluation focuses on the 6 diagnostic categories: seizure
(SZ), lateralized periodic discharges (LPD), generalized periodic discharges (GPD), lateralized rhythmic delta activity
(LRDA), generalized rhythmic delta activity (GRDA), and “Other” if none of those patterns was present.
Split: Since the test dataset is not publicly available, we divide patient groups into training/validation/test sets by
60%:20%:20%.
Access restrictions: The dataset is available to download from https://bdsp.io/content/bdsp-sparcnet/1.1/.
Licenses: This dataset is available in the BDSP Restricted Health Data License 1.0.0. https://bdsp.io/content/bdsp-
sparcnet/view-license/1.1/.
Ethical considerations: No personally identifiable information or offensive content is present in the dataset.

6. TUAB(Lopez et al., 2015) is a dataset from the Temple University EEG Corpus. The dataset consists of 276 EEG
recording sessions from 253 subjects. Each session is segmented into 10-second samples using event markers. We
evaluate the models based on the binary classification labels ”Normal” and ”Abnormal.”
Split: The training and test separation is provided by the dataset.
Access restrictions: The dataset is available to download from https://isip.piconepress.com/projects/nedc/html/tuh eeg/.
Licenses: Users must apply using the form described on https://isip.piconepress.com/projects/nedc/html/tuh eeg/.
Ethical considerations: No personally identifiable information or offensive content is present in the dataset.

7. TUEV(Lopez et al., 2016) is a dataset from the Temple University EEG Corpus. The dataset consists of 518 EEG
recording sessions from 368 subjects. Each session is segmented into 5-second samples using event markers. We
evaluate the models based on the 6 event categories: spike and slow wave (SPSW), generalized periodic epileptiform
discharge (GPED), periodic lateralized epileptiform discharge (PLED), eye movement (EYEM), artifact (ARTF), and
background (BCKG).
Split: The training and test separation is provided by the dataset.
Access restrictions: The dataset is available to download from https://isip.piconepress.com/projects/nedc/html/tuh eeg/.
Licenses: Users must apply using the form described on https://isip.piconepress.com/projects/nedc/html/tuh eeg/.
Ethical considerations: No personally identifiable information or offensive content is present in the dataset.

8. MIMIC-CXR (Johnson et al., 2019) is a dataset of chest X-rays in JPG format. Our evaluation utilizes the 14 disease
labels: ”Atelectasis”, ”Cardiomegaly”, ”Consolidation”, ”Edema”, ”Enlarged Cardiomediastinum”, ”Fracture”, ”Lung
Lesion”, ”Lung Opacity”, ”Pleural Effusion”, ”Pneumonia”, ”Pneumothorax”, ”Pleural Other”, ”Support Devices”, and
”No Finding”.
Split: We use a training set of 348,516 records, test set of 7,709 records, and total size of 356,225 records.
Access restrictions: The dataset is available to download from https://physionet.org/content/mimic-cxr-jpg/2.0.0/ with
a credentialed account and CITI Data or Specimens Only Research training
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Licenses: Radiology images under this dataset are available in PhysioNet Credentialed Health Data License 1.5.0
https://physionet.org/content/vindr-cxr/view-license/1.0.0/
Ethical considerations: No personally identifiable information or offensive content is present in the dataset.

9. CheXpert (Irvin et al., 2019b) is a chest radiology dataset collected from Stanford Hospital, covering 65,240 patients
and 224,316 radiographs. The original dataset labels each record with a uncertainty level for 14 diagnostic observations
including Atelectasis, Cardiomegaly, Consolidation, Edema, Enlarged Cardiomediastinum, Fracture, Lung Lesion,
Lung Opacity, Pleural Effusion, Pneumonia, Pneumothorax, Pleural Other, Support Device and No Finding. Our
evaluation focuses on predicting the labels that are ”positive”.
Split: We use a training set of 212,243 records, a test set 225 records, and a total size of 212,498 records.
Access restrictions: The dataset is available to download from https://stanfordaimi.azurewebsites.net/datasets/8cbd9ed4-
2eb9-4565-affc-111cf4f7ebe2 with registration
Licenses: Radiology images under this dataset are available under the Stanford University Dataset Research Use
Agreement https://stanfordaimi.azurewebsites.net/datasets/8cbd9ed4-2eb9-4565-affc-111cf4f7ebe2
Ethical considerations: No personally identifiable information or offensive content is present in the dataset.

10. VinDr-CXR (Nguyen et al., 2021) consists of adult chest X-rays collected from Hospital 108 and Hanoi Medical
University Hospital in Vietnam. The dataset contains local labels for bounding boxes, however we evaluate our models
based on the 6 global labels: ”Lung tumor”, ”Pneumonia”, ”Tuberculosis”, ”COPD”, ”Other diseases”, and ”No
finding”, all annotated by 17 radiologists with at least 8 years of experience.
Split: We use a training set of 15,000 records, a test set of 3,000 records, and a total size of 18,000 records.
Access restrictions: The dataset is available to download from https://physionet.org/content/vindr-cxr/1.0.0/ with a
credentialed account and CITI Data or Specimens Only Research training
Licenses: Radiology images under this dataset are available in PhysioNet Credentialed Health Data License 1.5.0
https://physionet.org/content/vindr-cxr/view-license/1.0.0/
Ethical considerations: No personally identifiable information or offensive content is present in the dataset.

11. COVID-19 is a chest X-ray dataset for COVID-19 related diseases. We evaluate the models based on the diagnostic
labels: ”Normal”, ”Bacterial Pneumonia”, ”COVID-19”, and ”Viral Pneumonia”.
Split: We use a training set of 2,002 records, a test set of 988 records, and a total size of 2,990 records.
Access restrictions: The dataset is available to download from https://www.kaggle.com/datasets/darshan1504/covid19-
detection-xray-dataset.
Licenses: This dataset is available in the Creative Commons Attribution 4.0 International License
https://creativecommons.org/licenses/by/4.0/
Ethical considerations: No personally identifiable information or offensive content is present in the dataset.

12. CoronaHack (Cohen et al., 2020) is a chest X-ray dataset compiled at the University of Montreal. Our evaluation
utilizes the diagnosis labels: ”Normal”, ”Bacterial Pneumonia”, and ”Viral Pneumonia”.
Split: We use a training set of 5,284 records, a test set of 624 records, and a total size of 5,908 records.
Access restrictions: The dataset is available to download from https://www.kaggle.com/datasets/praveengovi/coronahack-
chest-xraydataset.
Licenses: This dataset is available in the Creative Commons Attribution 4.0 International License
https://creativecommons.org/licenses/by/4.0/
Ethical considerations: No personally identifiable information or offensive content is present in the dataset.

13. VinDr-Mammo (Pham et al., 2022) consists of mammography collected from Hospital 108 and Hanoi Medical
University Hospital in Vietnam. The dataset contains local labels for bounding boxes, however we evaluate our models
based on the 5 global labels for BI-RAD 1-5.
Split: We use a training set of 16,000 records, a test set of 4,000 records, and a total size of 20,000 records.
Access restrictions: The dataset is available to download from https://www.physionet.org/content/vindr-mammo/1.0.0/
with a data use agreement
Licenses: Images under this dataset are available in PhysioNet Restricted Health Data License 1.5.0
https://www.physionet.org/content/vindr-mammo/view-license/1.0.0/
Ethical considerations: No personally identifiable information or offensive content is present in the dataset.

14. CBIS-DDSM (R. et al., 2016) is a curated subset of the Digital Database for Screening Mammography (DDSM). Our
evaluation focuses on the BI-RAD labels (0-5).
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Split: We use a training set of 2230 records, a test set of 595 records, and a total of 2,825 records.
Access restrictions: The dataset is available to download from https://www.cancerimagingarchive.net/collection/cbis-
ddsm/
Licenses: Images under this dataset are available in Creative Commons Attribution 3.0 Unported License
https://creativecommons.org/licenses/by/3.0/
Ethical considerations: No personally identifiable information or offensive content is present in the dataset.

15. CMMD (Cui et al., 2021) is a breast mammography dataset for 1,775 patients from China. Our evaluation utilizes the
diagnostic labels, ”Benign” and ”Malignant”, which are confirmed through biopsy. However, due to issues found
in the provided labels, while this dataset is a part of CLIMB, it is not a part of the experiment while pending expert
verifications.
Split: We use a training set of 1,404 records, a test set of 468 records, and a total size of 1,872 records.
Access restrictions: The dataset is available to download from https://www.cancerimagingarchive.net/collection/cmmd/.
Licenses: This dataset is available in the Creative Commons Attribution 4.0 International License
https://creativecommons.org/licenses/by/4.0/
Ethical considerations: No personally identifiable information or offensive content is present in the dataset.

16. ISIC-2020 (Rotemberg et al., 2021) consists of dermoscopy of skin lesions from over 2000 patients, generated by the
International Skin Imaging Collaboration (ISIC). We evaluate the models on the binary classification (”Malignant” or
”Benign”) for each image, where all malignant diagnoses have been confirmed through histopathology, and benign
diagnoses have been confirmed using either expert agreement, longitudinal follow-up, or histopathology.
Split: We use a training set of 26,501 records, a test set of 6,625 records, and a total size of 33,126 records.
Access restrictions: The dataset is available to download from https://challenge2020.isic-archive.com
Licenses: Images under this dataset are available in Creative Commons Attribution-Noncommercial 4.0 International
License https://creativecommons.org/licenses/by-nc/4.0/
Ethical considerations: No personally identifiable information or offensive content is present in the dataset.

17. HAM10000 (Tschandl et al., 2018) is a dataset from the ISIC 2018 classification challenge, comprising dermoscopy
images of pigmented lesions from from the ISIC archive. Our evaluation focuses on the 5 diagnostic categories:
Melanoma (MEL), Nevus (NV), Basal Cell Carcinoma (BCC), Actinic Keratosis/Intraepithelial Carcinoma (AKIEC),
Other (OTHER)
Split: We use a training set of 8,012 records, a test set of 2,003 records, and a total size of 10,015 records.
Access restrictions: The dataset is available to download from https://www.kaggle.com/datasets/kmader/skin-cancer-
mnist-ham10000
Licenses: Images under this dataset are available in Creative Commons Attribution-Noncomercial-Sharealike 4.0
International License https://creativecommons.org/licenses/by-nc-sa/4.0/
Ethical considerations: No personally identifiable information or offensive content is present in the dataset.

18. PAD-UFES-20 (Pacheco et al., 2020) consists of dermoscopy images of 1641 skin lesions from 1373 patients. We
evaluate the models on the 5 skin diagnostics, three of which are skin disease and three of which are skin cancers:
Melanoma (MEL), Nevus (NV), Basal Cell Carcinoma (BCC), Actinic Keratosis/Intraepithelial Carcinoma (AKIEC),
Other (OTHER). All of the skin cancers are biopsy-proven, and more than half of the skin disease are biopsy-proven as
well.
Split: We use a training set of 1,839 records, a test set of 459 records, and a total size of 2,298 records.
Access restrictions: The dataset is available to download from https://www.kaggle.com/datasets/mahdavi1202/skin-
cancer
Licenses: Images under this dataset are available in Creative Commons Attribution 4.0 International License
https://creativecommons.org/licenses/by/4.0/
Ethical considerations: No personally identifiable information or offensive content is present in the dataset.

19. Messidor-2 (Abràmoff et al., 2013) (Decencière et al., 2014) is a dataset of Diabetic Retinopathy (DR) examinations,
where each record consists of two macula-centered eye fundus images. The dataset is kindly provided by the Messidor
program partners (see https://www.adcis.net/en/third-party/messidor/). We utilize the 5 point ICDR grades: ”None”,
”Mild DR”, ”Moderate DR”, ”Severe DR”, and ”PDR”.
Split: We use a training set of 1,394 records, a test set of 350 records, and a total size of 1,744 records.
Access restrictions: The dataset is available to download from https://www.kaggle.com/datasets/google-
brain/messidor2-dr-grades.
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Licenses: Images under this dataset are available in Creative Commons Public Domain License
https://creativecommons.org/publicdomain/zero/1.0/
Ethical considerations: No personally identifiable information or offensive content is present in the dataset.

20. APTOS 2019 (Asia Pacific Tele-Ophthalmology Society, 2019) is a dataset from the 4th Asia Pacific Tele-
Ophthalmology Society Symposium, collected from rural India. The dataset consists of fundus images under a variety
of imaging conditions. Our evaluation focuses on the 5 diabetic retinopathy ratings: ”No DR”, ”Mild”, ”Moderate”,
”Severe”, and ”Proliferative DR”.
Split: We use a training set of 2,929 records, a test set of 733 records, and a total size of 3,662 records.
Access restrictions: The dataset is available to download from https://www.kaggle.com/competitions/aptos2019-
blindness-detection/data.
Licenses: Images under this dataset are available under the Kaggle Competition Rules
https://www.kaggle.com/competitions/aptos2019-blindness-detection/rules#7-competition-data
Ethical considerations: No personally identifiable information or offensive content is present in the dataset.

21. Jichi (Takahashi et al., 2017) is a posterior pole fundus photography dataset collected at the Jichi Medical University
in Japan, covering a total of 2740 patients. We evaluate the models based on the David Grading for each image:
SDR (simple diabetic retinopathy), PPDR (pre-proliferative diabetic retinopathy), and PDR (proliferative diabetic
retinopathy).
Split: We use a training set of 7,950 records, a test set of 1,989 records, and a total size of 9,939 records.
Access restrictions: The dataset is available to download from https://pmc.ncbi.nlm.nih.gov/articles/PMC5480986/#notes1.
Licenses: Images under this dataset are available under the Creative Commons Attribution 4.0 International License.
https://creativecommons.org/licenses/by/4.0/
Ethical considerations: No personally identifiable information or offensive content is present in the dataset.

22. LNDb (Pedrosa et al., 2023) is lung cancer CT scan dataset collected at the Centro Hispitalar e Universitario de
Sao Joao in Portugal between 2016 and 2018. Our evaluation focuses on the pulmonary nodule labels created by
radiologists, including ”nodule ≥3mm”, ”nodule <3mm”, and ”non-nodule”.
Split: We use a training set of 4,130 records, a test set of 1,431 records, and a total size of 5,561 records.
Access restrictions: The dataset is available to download from https://zenodo.org/records/8348419.
Licenses: Images under this dataset are available under the Creative Commons Attribution 4.0 International License.
https://creativecommons.org/licenses/by/4.0/
Ethical considerations: No personally identifiable information or offensive content is present in the dataset.

23. INSPECT (Huang et al., 2023) is multi-modal dataset containing CT images, radiology report impression sections,
and structured electronic health records (EHR) from 19,438 patients. We focus on the pulmonary embolism (PE) labels
which include ”No PE”, ”Acute Subsegmental-only PE”, ”Acute PE”, ”Subsegmental-only PE”, and ”Chronic PE”.
Split: We use a training set of 17,434 records, a test set of 5,806 records, and a total size of 23,240 records.
Access restrictions: The dataset is available to download from https://stanfordaimi.azurewebsites.net/datasets/318f3464-
c4b6-4006-9856-6f48ba40ad67 with registration.
Licenses: This dataset is available under the Stanford University Dataset Research Use Agreement
https://stanfordaimi.azurewebsites.net/datasets/318f3464-c4b6-4006-9856-6f48ba40ad67
Ethical considerations: No personally identifiable information or offensive content is present in the dataset.

24. KiTS23 (Heller et al., 2023) is a dataset from the 2023 Kidney Tumor Segmentation Challenge. The dataset consists of
CT videos showing kidney tumors. Although the data contains metrics and labels for segmentation tasks, we evaluate
the models based on the ”Benign” and ”Malignant” key of each patient.
Split: We use a training set of 361 records, a test set of 117 records, and a total size of 478 records.
Access restrictions: The dataset is available to download from https://github.com/neheller/kits23.
Licenses: This dataset is available in the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
License https://creativecommons.org/licenses/by-nc-sa/4.0/
Ethical considerations: No personally identifiable information or offensive content is present in the dataset.

25. Hemorrhage (Hssayeni et al., 2020) consists of Intracranial hemorrhage CT images for 82 patients at Al Hilla Teaching
Hospital, Iraq, each with brain and bone window images and approximately 30 image slices in total. We evaluate the
models on the diagnosis labels ”No Hemorrhage” and ”Has Hemorrhage”.
Split: We use a training set of 1,986 records, a test set of 515 patient records, and a total size of 2,501 records.
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Access restrictions: The dataset is available to download from https://www.kaggle.com/datasets/vbookshelf/computed-
tomography-ct-imagesc .
Licenses: This dataset is available in the Creative Commons Attribution 4.0 International Public License
https://physionet.org/content/ct-ich/view-license/1.0.0/
Ethical considerations: No personally identifiable information or offensive content is present in the dataset.

26. RSPECT (Colak et al., 2021) consists of CT scans for patients from five different countries suspected of Pulmonary
Embolism (PE), created by the Radiological Society of North America (RSNA) and the Society of Thoracic Radiology
(STR). We evaluate the models on the diagnosis labels ”No PE”, ”Chronic PE”, and ”Acute PE”, which are annotated
by expert thoracic radiologists.
Split: We use a training set of 1,342,945 records, a test set of 447,649 records, and a total size of 1,790,594 records.
Access restrictions: The dataset is available to download from https://www.kaggle.com/c/rsna-str-pulmonary-
embolism-detection/data.
Licenses: This dataset is available in under the Kaggle competition rules https://www.kaggle.com/competitions/rsna-
str-pulmonary-embolism-detection/data
Ethical considerations: No personally identifiable information or offensive content is present in the dataset.

27. EchoNet-Dynamic (Ouyang et al., 2020) consists of 10,030 apical-4-chamber echocardiography videos from patients
who underwent imaging between 2016 and 2018 as part of routine clinical care at Stanford University Hospital. Each
video comes with two pairs of human tracings used to estimate ventricular volume—the first pair representing the left
ventricle, and subsequent coordinate pairs representing short axis linear distances starting from the apex of the heart to
the mitral apparatus.
Split: We use a training set of 8,196 records, a test of 2,051 records, and a total size of 10,247 records.
Access restrictions: The dataset is available to download from https://stanfordaimi.azurewebsites.net/datasets/834e1cd1-
92f7-4268-9daa-d359198b310a with registration.
Licenses: This dataset is available under the Stanford University Dataset Research Use Agreement
https://stanfordaimi.azurewebsites.net/datasets/834e1cd1-92f7-4268-9daa-d359198b310a
Ethical considerations: No personally identifiable information or offensive content is present in the dataset.

28. BUSI (Al-Dhabyani et al., 2020) is a breast cancer ultrasound image dataset from 600 femaile patients between 25 and
75 years old in 2018. We utilize the labels ”Normal”, ”Malignant”, and ”Benign”.
Split: We use a training set of 583 records, a test set of 197 records, and a total size of 780 records.
Access restrictions: The dataset is available to download from https://www.kaggle.com/datasets/aryashah2k/breast-
ultrasound-images-dataset.
Licenses: This dataset is available in the Creative Commons Public Domain License
https://creativecommons.org/publicdomain/zero/1.0/
Ethical considerations: No personally identifiable information or offensive content is present in the dataset.

29. COVID-BLUES (Wie, 2021) consists of bluepoint-specific lung ultrasound videos for 63 patients at the Maastricht
University Medical Center in the Netherlands, each with 6 recordings. Our evaluation focuses on two labels: the
diagnostic label (”Has COVID”, ”No COVID”), and the patient age label.
Split: We use a training set of 266 records, a test set of 96 records, and a total size of 362 records.
Access restrictions: The dataset is available to download from https://github.com/NinaWie/COVID-
BLUES?tab=readme-ov-file.
Licenses: This dataset is available in the Creative Commons Attribution-Noncommercial-NoDerivatives 4.0 Interna-
tional License https://creativecommons.org/licenses/by-nc-nd/4.0/
Ethical considerations: No personally identifiable information or offensive content is present in the dataset.

30. COVID-US (Ebadi et al., 2022) consists of 150 COVID-related lung ultrasound videos. We evaluate the models based
on the diagnostic labels: ”Covid”, ”Pneumonia”, and ”Normal”.
Split: We use a training set of 74 records, a test set of 25 records, and a total size of 99 records.
Access restrictions: The dataset is available to download from https://github.com/nrc-cnrc/COVID-US.
Licenses: This dataset is available in the GNU Affero General Public License 3.0 https://www.gnu.org/licenses/agpl-
3.0.en.html
Ethical considerations: No personally identifiable information or offensive content is present in the dataset.

31. Brain Tumor (Bhuvaji et al., 2020) consists of brain MRI images. Each image is labeled as either ”No Tumor”,
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”Pituitary Tumor”, ”Glioma Tumor”, or ”Meningioma Tumor”.
Split: We use a training set of 2,870 records, a test set of 394 records, and a total size of 3,264 records.
Access restrictions: The dataset is available to download from https://www.kaggle.com/datasets/sartajbhuvaji/brain-
tumor-classification-mri?select=Testing.
Licenses: This dataset is available in the MIT License https://www.mit.edu/ amini/LICENSE.md
Ethical considerations: No personally identifiable information or offensive content is present in the dataset.

32. Brain MRI is a brain MRI image dataset where each image is labeled with the presence of tumors, either as ”Yes” or
”No”.
Split: We use a training set of 202 records, a test set of 51 records, and a total size of 253 records.
Access restrictions: The dataset is available to download from https://www.kaggle.com/datasets/jjprotube/brain-mri-
images-for-brain-tumor-detection.
Licenses: This dataset does not have a license.
Ethical considerations: No personally identifiable information or offensive content is present in the dataset.

33. ABCD (Cui et al., 2022) is a study supported by the NIH on adolescent brain cognitive development on nearly 12,000
youths of ages 9-10, who were studied for 10 years. The dataset contains MRI images, behavioral and cognitive
assessments, mental health, and other environmental factors data, with labels such as mental health diagnosis. In our
dataset, we do a mental health diagnosis that classifies the sample into normal and abnormal.
Split: The dataset has a total of 9563 records. We randomly split the dataset into a train set of 7650 and a test dataset of
1613 records.
Access restrictions: The dataset is available to download from Link.
Licenses: The license is available at Link.
Ethical considerations: No personally identifiable information or offensive content is present in the dataset.

34. ABIDE (Cui et al., 2022) is a autism brain MRI diagnosis dataset with 1112 samples, including 539 from individuals
with ASD and 573 from typical controls.
Split: We use a random split to build a training set of 807 records, a test set of 202 records, and a total size of 1009
records.
Access restrictions: The dataset is available to download from https://fcon 1000.projects.nitrc.org/indi/abide/ with
account registration.
Licenses: The dataset is available in the Creative Commons Attribution-NonCommercial-Share Alike License
https://creativecommons.org/licenses/by-nc-sa/3.0/.
Ethical considerations: No personally identifiable information or offensive content is present in the dataset.

35. PPMI (Cui et al., 2022) is a multi-center, longitudinal study dedicated to understanding the progression of Parkinson’s
disease. This data is derived from a cohort of 1694 subjects, broken down into 309 controls and 1385 PD patients.
Split: After curation, we use random split to build a training set of 572 records, a test set of 143 records, and a total
size of 718 records.
Access restrictions: The dataset is available to download from Link.
Licenses: The license is available in the Link.
Ethical considerations: No personally identifiable information or offensive content is present in the dataset.

36. PROTEINS (Borgwardt et al., 2005) consists of 1,113 graphs where the nodes represent amino acids, and two nodes
are connected by an edge if they are less than 6 Angstroms apart. We evaluate our models on the binary classification
labels of whether a protein is an enzyme or not.
Split: We use random split to build a training set of 890 records, a test set of 223 records, and a total size of 1,113
records.
Access restrictions: The dataset is available to download from https://paperswithcode.com/dataset/proteins.
Licenses: The dataset does not have a license.
Ethical considerations: No personally identifiable information or offensive content is present in the dataset.

37. PPI (Stark et al., 2006) is a protein dataset from BioGRID covering physical and genetic interaction of proteins.
Split: We use a training set of 45555 records, a test set of 11389 records, and a total size of 56944 records.
Access restrictions: The dataset is available to download from https://snap.stanford.edu/graphsage/#datasets.
Licenses: The dataset is available in the MIT License https://biogrid-
downloads.nyc3.digitaloceanspaces.com/LICENSE.txt.
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Ethical considerations: No personally identifiable information or offensive content is present in the dataset.

38. LC25000 (Borkowski et al., 2019) is a lung and colon histopathological image dataset containg labels for colon
adenocarcinomas, benign colon, lung adenocarcinomas, lung squamous cell carcinomas, and benign lung.
Split: We use a training set of 15,000 records, a test set of 3,750 records, and a total size of 18,750 records.
Access restrictions: The dataset is available to download from https://github.com/tampapath/lung colon image set.
Licenses: The dataset does not have a license.
Ethical considerations: No personally identifiable information or offensive content is present in the dataset.

39. BCSS contains 151 breast cancer slides from 25 participants. We curate 5264 non-overlapping samples, with labels
tumor, stroma, lymphocytic infiltrate, and necrosis/debris
Split: We use a training set of 4211 records, a test set of 1053 records, and a total size of 5264 records.
Access restrictions: The dataset is available to download from Link.
Licenses: This dataset is licensed under a CC0 1.0 Universal (CC0 1.0) license.
Ethical considerations: No personally identifiable information or offensive content is present in the dataset.

40. Cholec80 (Twinanda et al., 2016) consists of 80 videos of cholecystectomy surgeries performed by 13 surgeons. We
evaluate the models based on the surgery phase annotations (at 25 fps) and the surgery tool labels (at 1 fps).
Split: We use a training set of 5,760 records, a test set of 1,440, and a total size of 7,200 records.
Access restrictions: The dataset is available to download from http://camma.u-strasbg.fr/datasets/ through a request
form.
Licenses: This dataset is available in the Creative Commons Attribution-Noncomercial-Sharealike 4.0 International
License https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode.en
Ethical considerations: No personally identifiable information or offensive content is present in the dataset.

41. HuGaDB (Chereshnev & Kertész-Farkas, 2018) is a dataset for human gait analysis collected from 18 healthy young
adults using six wearable inertial sensors and two EMG sensors. It contains labels ”sitting”, ”standing”, ”sitting down”,
and ”standing up”. However, due to the limitation of the number of samples, this gait dataset is not included in the
experiments.
Split: We use a training set of 291 records, a test set of 73 records, and a total size of 364 records.
Access restrictions: The dataset is available to download from https://github.com/romanchereshnev/HuGaDB.
Licenses: The dataset does not have a license.
Ethical considerations: No personally identifiable information or offensive content is present in the dataset.

42. Expression Atlas (Papatheodorou et al., 2018) consists of RNA gene expression data across species and biological
conditions.
Split: We use a training set of 3605 records, a test set of 901 records, and a total size of 4,506 records.
Access restrictions: The dataset is available to download from https://www.ebi.ac.uk/gxa/download.
Licenses: This dataset is available in the Creative Commons Attribution-Noncommercial-NoDerivatives 4.0 Interna-
tional License https://creativecommons.org/licenses/by-nc-nd/4.0/.
Ethical considerations: No personally identifiable information or offensive content is present in the dataset.

43. Geo is a functional genomics dataset supporting MIAME-compliant data submissions.
Split: We use a training set of 101162 records, a test set of 25290 records, and a total size of 126,452 records.
Access restrictions: The dataset is available to download from https://www.ncbi.nlm.nih.gov/geo/.
Licenses: The license is available at Link.
Ethical considerations: No personally identifiable information or offensive content is present in the dataset.

44. Vital (Cui et al., 2024) is a medical image-language dataset based on PMC-15, where instructional data is generated
using the gpt-4-vision-preview API.
Split: We use a training set of 42000 records, a test set of 168000 records, and a total size of 210,000 records.
Access restrictions: The dataset is available to download from https://huggingface.co/datasets/mao1207/BioMed-
VITAL-instructions.
Licenses: The dataset is available in Apache License 2.0 https://www.apache.org/licenses/LICENSE-2.0.
Ethical considerations: No personally identifiable information or offensive content is present in the dataset.

45. MIMIC-IV (Johnson et al., 2023) (Johnson et al., 2016) (Goldberger et al., 2000) is a multimodal medical dataset on
patients admitted to the emergency department or intesnive care unit at the Beth Israel Deaconess Medical Center in
Boston, MA. We train and evaluate our models using the EHR, vital sign, and chest-xray modalities.
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Split: CLIMB provide a training set of 640,000 records, a test set of 160,000 records, and a total size of 800,000
records. In the fusion experiment, however, we focus on the multimodal subset of MIMIC-IV, which contains 166,215
training samples, 41,554 test samples, and 207769 total samples.
Access restrictions: The dataset is available to download from https://physionet.org/content/mimiciv/3.1/ with
credentialed account and CITI training.
Licenses: The dataset is available in PhysioNet Credentialed Health Data License 1.5.0
https://physionet.org/content/mimiciv/view-license/3.1/.
Ethical considerations: No personally identifiable information or offensive content is present in the dataset.

Dataset Selection Methodology
Our dataset collection and curation process follows a systematic two-stage approach to ensure both comprehensive coverage
and accessibility while maintaining data quality and diversity.

Stage 1: Initial Dataset Identification
We first conducted a comprehensive literature review of publicly available clinical datasets across different modalities. Our
inclusion criteria at this stage focused on accessibility:

• Datasets with direct download access through public repositories

• Datasets requiring application but with clear, less restrictive licensing terms

• Datasets with well-documented data collection protocols and annotation procedures

We explicitly excluded datasets that:

• Require institutional review board (IRB) approval

• Have restrictive licensing terms limiting research use

Stage 2: Selection and Prioritization
In the second stage, we applied a two-tier selection process:

• Tier 1: We first included widely-cited benchmark datasets that serve as standard evaluation metrics in their respective
domains. These datasets were identified based on citation count and frequency of use in published literature. Examples
include CheXpert and MIMIC-IV.

• Tier 2: We then systematically identified and included datasets that addressed our three key criteria:

– Novel tasks: Datasets covering emerging clinical challenges (e.g., COVID-19 diagnosis)
– Understudied modalities: Datasets from underrepresented data types (e.g., EEG, endoscopic videos)
– Underrepresented regions: Datasets from developing regions with limited representation

Selection Criteria
Here, we elaborate on our methodology for identifying understudied modalities and underrepresented regions during the
stage 2 selection.

Understudied Modalities. We evaluated modalities from two complementary perspectives:

1. Research Attention: We quantified research activity by aggregating Google Scholar search results using standardized
queries (e.g., ’[Modality] classification’, ’[Modality] machine learning’). Our analysis revealed significant disparities
in research attention across modalities:

• High attention (>1M articles): Pathology (1.38M), X-ray (1.08M), CT Scan (2.83M), Endoscopic (1.74M)
• Medium attention (300K-1M): MRI (931K), Dermoscopy (530K), Ultrasound (636K), Fundus (848K), EEG

(450K)
• Low attention (<500K): Mammography (56.1K), ECG (265K)

2. Data Availability: We analyzed the total number of publicly available samples per modality:

• High availability (>500K): X-ray (595,264), CT Scan (1,810,256), EEG (655,786)
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• Medium availability (50K-500K): ECG (84,172), Genomic (130,958)
• Low availability (5K-50K): Mammography (24,697), Dermoscopy (45,439), Fundus (18,067), Endoscopic

(14,400), Pathology (24,014), MRI (14,807)
• Very low availability (<5k): Ultrasound (1,633)

Based on this analysis, we identified several critically understudied modalities. Mammography and ECG emerged as
understudied based on research attention, while ultrasound was identified as understudied due to extremely limited public
data availability (1,633 samples). These findings guided our focused efforts to collect additional datasets in these modalities.

Underrepresented Regions. We also employed a two-step approach to identify geographic gaps in dataset coverage:

1. Geographic Distribution: We created a global heatmap of dataset origins, revealing significant underrepresentation in:

• Africa
• South America
• Parts of South and Southeast Asia

2. Economic Development: We mapped datasets to their countries of origin, specifically identifying datasets from
developing nations. This analysis highlighted the importance of including datasets from:

• Asia: India, Vietnam
• Middle East: Iraq
• South America: Brazil

This analysis informed our targeted efforts to include datasets from these underrepresented regions, aiming to improve
the geographic and demographic diversity of our benchmark. The complete list of included datasets and their geographic
distribution is provided in Table X.

Data Preprocessing and Standardization
To preserve data fidelity while ensuring usability, we implemented minimal preprocessing steps:

• Time Series Data (ECG/EEG):

– Standardized sampling rates across datasets
– Normalized amplitude ranges
– Preserved original waveform characteristics

• Imaging Data:

– Maintained original image resolution and quality
– Created standardized JSON metadata files linking:

* Clinical labels

* Demographic information

* Multi-view relationships

* Additional annotations (where available)

No preprocessing was done on graph data, as they are already processed and ready to use.

All additional metadata and multi-view images are preserved and made available, though our benchmark experiments utilize
only the primary labels to ensure fair comparison across models. The complete preprocessing scripts and documentation are
available in our code repository.

B. CLIMB-QA Construction
To enable standardized evaluation of large vision-language models (VLMs), we construct CLIMB-QA, a question-answering
version of our dataset. For each sample xi ∈ Dk with label set yi ⊆ Vk, we generate a question-answer pair (qi, ai) where:

• qi is constructed as a natural language question incorporating:
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– Task description (e.g., ”grade the diabetic retinopathy”)
– Input modality context (e.g., ”in the retinal image”)
– Available choices from the label vocabulary Vk

• ai is the ground truth answer derived from yi, formatted as either:

– Single-label: ai ∈ Vk for mutually exclusive classes
– Multi-label: ai ⊆ Vk for compatible conditions

Formally, we define a mapping function ψ : (xi, yi, Vk) → (qi, ai) that generates question-answer pairs while preserving
the original classification task structure. For example, in the APTOS dataset for diabetic retinopathy grading:

qi = ”Above is a retinal image of a patient. Grade the diabetic retinopathy on the Davis Scale, choosing from: No DR, Mild
DR, Moderate DR, Severe DR, Proliferative DR.”

ai = ”Moderate DR”

For multi-label classification tasks, we evaluate predictions using order-agnostic matching: given a predicted answer set âi
and ground truth ai, we consider the prediction correct if âi = ai regardless of the order in which the labels are listed. This
ensures fair evaluation when multiple conditions are present and can be enumerated in any order.

C. Taxonomy Standardization
The standardization of label taxonomies across diverse medical imaging modalities represents a significant methodological
challenge. Our standardization efforts required careful balancing of two competing objectives:

1. Merging semantically similar terms to facilitate effective learning and enable cross-modality knowledge transfer

2. Minimizing information loss and avoiding the introduction of inaccuracies when modifying existing labels

Our standardization efforts concentrated particularly on ECG and chest X-ray modalities, as these domains offer fine-grained
labels with highly variable terminologies across different datasets. For ECG standardization, we adopted the methodology
established in BenchMD (Wantlin et al., 2023).

For chest X-ray standardization, we developed a novel mapping framework with input from radiologists, building upon
established practices from recent literature (Nasser & Akhloufi, 2023; Tayebi Arasteh et al., 2023; Jang et al., 2024). We
consolidated all general chest X-ray labels into the CheXpert 14 categories, as shown in Table 11:

We acknowledge that this standardization process necessarily affected label granularity, particularly for the lung opacity and
lung lesion classes where multiple distinct pathologies were consolidated. To accommodate diverse research needs, CLIMB
includes both standardized and raw labels, enabling researchers to prioritize either cross-dataset consistency or fine-grained
granularity based on their specific requirements. All experiments reported in our main manuscript utilized the standardized
labels.

C.1. Empirical Evaluation of Standardization Impact
To quantitatively assess the effects of label standardization, we conducted a comparative evaluation using identical vision
encoders trained on raw versus standardized labels. The results, presented in Table 12, demonstrate the impact across
multiple imaging modalities:

The standardized labels yielded superior overall performance with a 3.6% improvement in AUC, 10.3% improvement in
sensitivity, and 4.0% improvement in specificity. Interestingly, the benefits of standardization were more pronounced in
modalities other than chest X-ray, despite chest X-ray being the modality where most relabeling occurred. This suggests
that standardized labels enable the model to more effectively establish conceptual connections across different imaging
modalities, compensating for the inevitable loss of some fine-grained distinctions. We believe these findings underscore the
importance of continued efforts toward terminology standardization and systematic relabeling of public clinical imaging
datasets to facilitate more effective multi-modal learning approaches.
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D. Detailed Experimental Setup
D.1. Problem Definition
RQ1/RQ2: We use the definition of the dataset as well as the vocabularies as defined in Sec. 3.2. For each input sample
xi ∈ X , which can be an image, video, or multi-channel time series, we extract n sequential elements. The input processing
varies by modality:

1. Images: ϕimg : RH×W×C → Rn×σ×σ×C

2. Videos: ϕvid : RT×H×W×C → Rn×σ×σ×C

3. Time Series: ϕts : RT×C → Rn×C

where σ denotes the model-specific input size, and H,W,C, T represent spatial dimensions, channels, and temporal length,
respectively. The objective is to learn a function f : X → {0, 1}|V| that maps each input to a binary vector over V .

RQ3: Given multimodal inputs M = mvis,mlang,mts, where each modality-specific input xmi ∈ Xm corresponds to
visual, language, and time series data respectively, the model aims to learn two prediction functions:

1. In-hospital Mortality in 48 hours (IHM 48): Binary prediction fihm :
∏

m∈M Xm → {0, 1} predicting 48-hour
mortality

2. Length of Stay: Regression function flos :
∏

m∈M Xm → R+ estimating the expected duration of hospitalization.

D.2. Experimental Procedures
To answer the above research questions, we design our experiments as follows:

D.2.1. RQ1: UNIVERSAL ENCODERS PERFORMANCE UNDER MULTITASK LEARNING.
We investigate how can we build a universal encoder for each input type across all clinical tasks. Specifically, we train vision,
graph and time series encoders on the complete D to assess general diagnostic capabilities. For each sample xi ∈ Dk, we
evaluate performance using a dataset-specific vocabulary mask 1Vk

∈ {0, 1}|V|, where only predictions corresponding to
labels in Vk are considered in the evaluation metrics. Performance is measured using Area Under the ROC Curve (AUC)
and binary classification metrics (specificity and sensitivity) with a decision threshold of 0.5 over the masked label space
V ⊙ 1Vk

. In addition, we compare the results pre-trained on our entire datasets against those just pre-trained on each target
dataset, exploring the effect of large-scale pre-training on the model’s performance.

D.2.2. RQ2: TRANSFER LEARNING UNDER RESOURCE CONSTRAINTS.
Second, we evaluate few-shot generalization on out-of-distribution (OOD) datasets Dood ̸⊂ Dtrain, where Dood contains
novel label sets Vood such that Vood ∩ V = ∅ within the same modality. This setup simulates the practical scenario where
models must adapt to novel diagnostic tasks with limited labeled examples while leveraging pre-trained representations
from related but distinct tasks. A detailed description of the dataset composition, as well as the experimental procedure, are
included in App. D.7.1.

D.2.3. RQ3: SINGLE MODALITY TO MULTIMODALITY TRANSFER VIA ROBUST FUSION STRATEGY.
Finally, we investigate optimal fusion mechanisms for integrating heterogeneous modalities as defined in App. D.1. We
evaluate three fusion architectures gθ :

∏
m∈M Rdm → Rd:

1. late fusion glate that averages predictions from modality-specific classifiers: glate(hm) = 1
|M|

∑
m∈M MLPm(hm),

2. simple concatenation followed by two-layer MLP gmlp(hm) = MLP(Concat([hvis, hlang, hts])), and

3. cross-modal attention gattn that uses text features to form queries and concatenated vision/time-series features for keys
and values, computing gattn(hm) = FFN(softmax(QKT

√
d
)V ) where Q = hlangWQ, K = Concat([hvis, hts])WK ,

V = Concat([hvis, hts])WV

For controlled comparison, we fix the backbone encoders across all fusion strategies: ConvNextv2 (Liu et al., 2022) for
visual inputs, ClinicalBERT (Liu et al., 2025) for text, and ECG-JEPA (Kim, 2024) for time series data.

D.3. Evaluation Metrics
For binary classification tasks f : X → {0, 1}, we employ three complementary metrics to assess model performance:
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1. Area Under the ROC Curve (AUC): Given predicted probabilities ŷi ∈ [0, 1] and true labels yi ∈ {0, 1}, AUC measures
the model’s ability to discriminate between classes across all possible decision thresholds:

AUC =

∫ 1

0

TPR(t)FPR′(t)dt

where TPR(t) and FPR(t) are the true positive and false positive rates at threshold t.

2. Sensitivity (also known as recall): Measures the model’s ability to correctly identify positive cases:

Sensitivity =
TP

TP + FN

where TP and FN denote true positives and false negatives respectively.

3. Specificity: Quantifies the model’s ability to correctly identify negative cases:

Specificity =
TN

TN + FP

where TN and FP denote true negatives and false positives respectively.

The choice of these three metrics is particularly motivated by clinical considerations. In medical diagnosis, there is often
an inherent trade-off between sensitivity and specificity, where improving one typically comes at the cost of the other.
Sensitivity is crucial in cases where missing a positive diagnosis (false negative) could have severe consequences for patient
outcomes, such as failing to detect a life-threatening condition. Conversely, specificity is vital when false positives could
lead to unnecessary interventions, psychological distress, or resource waste.

AUC provides a threshold-independent measure of discriminative ability, making it particularly valuable for comparing
models across different operating points and clinical contexts. This is especially relevant in our multi-task setting where
different clinical applications may require different sensitivity-specificity trade-offs.

For regression tasks such as length of stay prediction (flos), we use Mean Absolute Error (MAE):

MAE =
1

n

n∑
i=1

|yi − ŷi|

where yi and ŷi represent the true and predicted values respectively. All metrics are computed using the dataset-specific
vocabulary masks 1Vk

as defined in Sec. D.1.

Below, we describe in detail about the setup and procedures of vision, time series and graph experiments.

D.4. Vision Model Experiments
D.4.1. VISION MODEL DETAILS

MedViT (Manzari et al., 2023) is a Vision Transformer variant specifically designed for medical imaging tasks. It
incorporates a hierarchical structure with varying token sizes across different stages and employs medical-specific attention
mechanisms optimized for capturing fine-grained anatomical details.

PMC-CLIP (Lin et al., 2023) adapts the CLIP architecture for medical imaging by pretraining on PubMed Central articles
and their associated figures. It maintains the original dual-encoder structure but incorporates medical domain knowledge
through specialized text-image contrastive learning.

RAD-DINO (Pérez-Garcı́a et al., 2025) extends the DINO self-supervised learning framework to radiology images. It
employs specialized augmentation strategies and anatomical consistency constraints during the self-supervised pretraining
process to better capture medical imaging characteristics.

SBB2 (Radford et al., 2021) is an enhanced vision backbone that builds upon the clip architecture. It introduces improved
spatial mixing operations and hierarchical feature representations while maintaining computational efficiency.

28



CLIMB: Data Foundations for Large Scale Multimodal Clinical Foundation Models

Swin Transformer (Liu et al., 2021) is a hierarchical vision transformer that computes self-attention within shifted windows.
It introduces a hierarchical architecture with varying window sizes across different stages, enabling efficient modeling of
both local and global dependencies.

EVA-2 (Fang et al., 2024) is a large-scale vision foundation model that extends the original EVA architecture. It utilizes
masked image modeling and contrastive learning objectives, incorporating improvements in model scaling and training
strategies.

InternViT (Chen et al., 2024b) is a vision transformer model that introduces internalized attention mechanisms. It optimizes
the traditional transformer architecture for improved efficiency while maintaining performance across diverse visual tasks.

ConvNeXTv2 (Liu et al., 2022) is a pure convolutional architecture that modernizes traditional CNN design principles.
It incorporates fully convolutional design, global response normalization, and gradient checkpointing, achieving strong
performance across various vision tasks.

D.4.2. VISION HYPERPARAMETERS AND EXPERIMENTAL PROCEDURES

All experiments are ran on a GPU server with 8xH200 141GB GPUs. We used the SOAP optimizer (Vyas et al., 2024) as
it offers the best performance. Depending on the model sizes, we use a parameter search to identify the optimal learning
rate from 1× 10−5 to 1× 10−3 for all experiments. The weight decay was set to 1× 10−3. We use a parameter search to
find the largest GPU that could fit on a single server. All experiments were conducted using the PyTorch framework. We
saved the model with the lowest CrossEntropy loss over 5 epochs for evaluation on the test split. We report the AUROC,
Sensitivity, Specificity, F1 Score and accuracy of our experiments in App. E.

D.5. EEG Model Experiments
We investigate the performance of five baseline models and four variants of foundational time series models for EEG
classifications. Our EEG experiment is built upon the repository sheared by (Yang et al., 2024), and the pre-trained weights
were downloaded from https://github.com/ycq091044/BIOT.

D.5.1. EEG DATASETS AND PREPROCESSING

We evaluated the models on IIIC (Jing et al., 2023b), TUAB (Lopez et al., 2015), and TUEV (Lopez et al., 2016). All EEG
channels, S[i], in each individual sample were resampled to 200 Hz and normalized using the 95th percentile of the absolute
amplitude:

S[i]

percentile([|S[i, 1]|, |S[i, 2]|, . . . , |S[i, J ]|], 95%)

For details on dataset access and data splitting, please refer to App. A.

D.5.2. EEG HYPERPARAMETERS AND EXPERIMENTAL PROCEDURES

We used the Adam optimizer (Diederik, 2014) with a learning rate of 1× 10−3 for all experiments. The weight decay was
set to 1× 10−5. For most experiments, the batch size was set to 512, while for few-shot experiments, it was set to 4. All
experiments were conducted using the PyTorch framework. We saved the model with the lowest CrossEntropy loss over
20 epochs for evaluation on the test split. We report the AUROC, Sensitivity, Specificity, and F1 Score of our experiments in
App. E.

D.5.3. EEG MODEL DETAILS

SPaRCNet (Jing et al., 2023b) is a 1D-CNN designed for EEG classification. It employs a hierarchical feature extraction
process, beginning with an initial convolutional layer followed by multiple densely connected blocks and transition layers.
The model integrates ELU activation functions, batch normalization, and dropout for improved generalization.

CNNTransformer (Peh et al., 2022) is a hybrid deep learning model that combines convolutional neural networks (CNNs)
with a Transformer encoder for EEG classification. The model first applies short-time Fourier transform (STFT) to extract
spectral representations, which are then processed through a deep residual CNN with four stacked ResBlocks for hierarchical
feature extraction. The CNN embeddings are segmented and passed through a Transformer encoder with positional encoding,
allowing the model to capture long-range temporal dependencies.

ContraWR (Yang et al., 2023) is a EEG classification model that integrates STFT with a 2D-CNN for sleep staging. The
model first converts raw EEG signals into spectrograms using STFT, which are then processed through a deep residual CNN
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with four stacked ResBlocks, each employing batch normalization, dropout, and max pooling for feature extraction.

FFCL (Li et al., 2022) is a hybrid CNN-LSTM model designed for EEG classification, integrating both spectral and temporal
feature representations. The model first apply STFT to extract frequency-domain features, which are then processed through
a deep residual CNN with four stacked ResBlocks. In parallel, the raw EEG signals undergo temporal compression
using a downsampling operation before being fed into a bidirectional LSTM for sequential feature extraction. The final
representation is obtained by concatenating CNN and LSTM embeddings, which are passed through a fully connected
classification layer.

STTransformer (Song et al., 2021) is a spatiotemporal Transformer model for EEG classification that integrates channel-
wise attention with Transformer-based sequence modeling. The model first applies a ChannelAttention mechanism to
capture inter-channel dependencies, followed by a PatchSTEmbedding module that encodes local temporal structures. These
embeddings are then processed through a deep Transformer encoder, which models long-range dependencies and contextual
information. The v2.0 of STTransformer is known as EEG-Conformer (Song et al., 2022).

BIOT (Yang et al., 2024) is a biosignal transformer model designed for cross-data learning in the wild, enabling robust
representation learning across diverse biosignal modalities such as EEG and ECG. The model utilizes a frequency-based
tokenization approach, where biosignals are first transformed into spectrogram representations via STFT. Channel-specific
positional embedding and temporal positional embedding are added to the tokens to enhance both temporal and spatial
representations. These spectral embeddings are then processed using a Linear Attention Transformer.

D.6. ECG Model Experiments
We compare the performance of ECG-JEPA, a time series specific model, and UniTS, a generalized time series model for ECG
classifciations. Our ECG experiment and pretrained encoder weights were adopted from the following repositories: https:
//github.com/sehunfromdaegu/ecg_jepa and https://github.com/mims-harvard/UniTS.

D.6.1. ECG DATASETS AND PREPROCESSING

We evaluated the models on PTB-XL (Wagner et al., 2020), CPSC (Liu et al., 2018), Chapman-Shaoxing (Zheng et al.,
2020), and Ga (Alday et al., 2020). All ECG signals were resampled to 500 Hz and standardized to a length of 2500
timesteps. Samples where the first 15 timesteps contained only zeros across all channels were removed. For ECG-JEPA, the
number of ECG channels was reduced from 12 to 8, as the remaining 4 channels can be derived using linear combinations of
the selected leads.

For details on dataset access and data splitting, please refer to App. A.

D.6.2. HYPERPARAMETERS AND EXPERIMENTAL PROCEDURES

For the ECG-JEPA model, we use the Adam optimizer (Diederik, 2014) with a learning rate of 1× 10−3 and a weight decay
of 1 × 10−2. For the UniTS model, we use the Adam optimizer with a learning rate of 1 × 10−4 and a weight decay of
5× 10−6. For all experiments, the batch size was set to 32. All experiments were conducted using the PyTorch framework.
We report the AUCROC, Sensitivity, and Specificity Score of our experiments in App. E.

D.6.3. ECG MODEL DETAILS

ECG-JEPA (Kim, 2024) is a self-supervised ECG representation learning model that predicts in the latent space rather than
reconstructing raw signals. It introduces Cross-Pattern Attention (CroPA), a masked attention mechanism that prioritizes
critical ECG features across multiple leads, enhancing performance on downstream tasks.

UniTS (Gao et al., 2024) is a unified multitask time series model that integrates predictive and generative tasks using
task tokenization within a single framework. It employs a modified transformer block to learn transferable time series
representations across diverse domains, handling variations in sampling rates and temporal patterns.

D.7. Out-of-distribution Experiment Details
In this section, we describe the details on how we ran the OOD transfer experiment, which addresses RQ2. We first define
the list of datasets we selected for the transfer experiments, and then explain the detailed procedure of the experiment.

D.7.1. DEFINITION OF OUT-OF-DISTRIBUTION DATASETS

The list of datasets we selected for out-of-distribution (OOD) transfer experiments is described in Table 13. In general, we
select the datasets such that they reflect a different task within a modality it was trained on. The OOD may be a novel task
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(like COVID-19), a new task (cancer vs pulmonary embolism), or a different granularity of the same task (6-way BI-RADS
classification instead of 5-way).

D.7.2. EXPERIMENTAL PROCEDURES

Vision Encoders. For vision encoders, we run a mixed training on the full dataset, with the OOD dataset filtered out.

E. Full Experimental Results
E.1. Full Dataset Multitask Training Results
In this section, we report the detailed model’s performance for each dataset in Table 3.

F. Validation of Out-of-Distribution Dataset Selection
We provide additional empirical validation of the distinctiveness of out-of-distribution (OOD) datasets. Our OOD dataset
selection was primarily guided by fundamental task differences rather than superficial variations. As detailed in Table 13, we
assembled 10 OOD datasets spanning diverse clinical domains and imaging modalities. Notably, 7 out of these 10 datasets
(COVID-19, CoronaHack, ISIC-2020, BCSS, BUSI, LNDb, and PTB-XL-Finegrained) share zero label overlap with any
other datasets within their respective clinical domains, while the remaining datasets exhibit distinct task granularities that
fundamentally alter the nature of the prediction problem.

To quantitatively validate the heterogeneity of our designated OOD datasets, we conducted a comprehensive membership
inference experiment. Using ConvNeXT-v2-base as the backbone architecture, we trained a classifier to predict dataset
membership—essentially testing whether the model could distinguish which dataset a given sample originated from. High
performance on this task would indicate that the datasets possess distinct characteristics that make them easily distinguishable,
thus supporting our designation of these datasets as out-of-distribution.

The results, presented in Table 32, demonstrate that our selected OOD datasets exhibit substantial distinctiveness:

The consistently high balanced accuracy and AUC scores across most datasets confirm that these datasets possess unique
characteristics that make them readily distinguishable from one another. This empirical evidence strongly supports our
methodological choice to designate these datasets as out-of-distribution, as they represent genuinely distinct data distributions
rather than minor variations of the same underlying distribution.

G. Exploration on Self-Supervised Learning
Self-supervised pretraining represents a fundamental component of modern representation learning. We conducted compre-
hensive experiments comparing unsupervised pretraining with supervised multitask learning across different modalities to
understand their relative contributions to model performance.

G.1. Time Series Modalities: ECG and EEG
Our experiments revealed that time series modalities benefited substantially from unsupervised pretraining. In the ECG
domain, we implemented masked autoencoder (MAE) pretraining on the CLIMB dataset and compared it with pretraining
exclusively on the target dataset. As shown in Table 33, pretraining on the diverse CLIMB dataset yielded consistent
improvements:

Similarly, for EEG datasets, we compared three training strategies: no pretraining, multitask learning (MTL) only, and
combined pretraining with multitask learning (PT+MTL). The results in Table 34 show that pretraining on diverse data
improved performance for two out of three datasets:

G.2. Vision Modalities
While our main manuscript (Figure 4) demonstrated that multitask learning effectively improved vision encoder perfor-
mance, we found surprisingly different results for self-supervised pretraining in vision modalities. Table 35 presents our
comprehensive comparison of different pretraining strategies:

We hypothesize that this phenomenon occurs because these vision models have already undergone extensive pretraining
on massive unlabeled natural image corpora. Consequently, an additional phase of masked image modeling or contrastive
learning on clinical data may not substantially shift or enrich their learned representations. This finding suggests that for
vision models with strong natural image pretraining, supervised multitask learning on diverse labeled clinical data provides
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more effective domain adaptation than additional self-supervised pretraining phases. We encourage the community to
explore alternative approaches for better leveraging the diverse labeled data available in CLIMB to further improve vision
model performance in clinical domains.
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Table 9. Dataset Classes for Multilabel Classification with CLIMB.
Dataset # Classes Classes

PTB-XL 7 Normal, Conduction Delay (CD), Hypertrophy (HYP), Myocardial Infarction (MI), Sinus Tachy-
cardia/Bradycardia/Conduction (STTC), Atrial Fibrillation/Atrial Flutter (A. Fib/Aflutter), Other

Chapman-Shaoxing 7 Same as PTB-XL
Georgia 7 Same as PTB-XL
CPSC 7 Same as PTB-XL
IIIC 6 Seizure (SZ), Lateralized Periodic Discharges (LPD), Generalized Periodic Discharges (GPD),

Lateralized Rhythmic Delta Activity (LRDA), Generalized Rhythmic Delta Activity (GRDA),
Other

TUAB 2 Normal, Abnormal
TUEV 6 Spike and Slow Wave (SPSW), Generalized Periodic Epileptiform Discharge (GPED), Periodic

Lateralized Epileptiform Discharge (PLED), Eye Movement (EYEM), Artifact (ARTF), Back-
ground (BCKG)

CheXpert 14 Atelectasis, Cardiomegaly, Consolidation, Edema, Enlarged Cardiomediastinum, Fracture, Lung
Lesion, Lung Opacity, Pleural Effusion, Pneumonia, Pneumothorax, Pleural Other, Support
Devices, No Finding

MIMIC-CXR 14 Same as CheXpert
VinDr-CXR 6 Lung tumor, Pneumonia, Tuberculosis, COPD, Other diseases, No finding
COVID-19 4 Normal, Bacterial Pneumonia, COVID-19, Viral Pneumonia
CoronaHack 3 Normal, Bacterial Pneumonia, Viral Pneumonia
VinDr-Mammo 5 BI-RAD 1-5
CBIS-DDSM 6 BI-RAD 0-5
CMMD 2 Benign, Malignant
ISIC-2020 2 Malignant, Benign
HAM10000 5 Melanoma (MEL), Nevus (NV), Basal Cell Carcinoma (BCC), Actinic Keratosis/Intraepithelial

Carcinoma (AKIEC), Other (OTHER)
PAD-UFES-20 5 Melanoma (MEL), Nevus (NV), Basal Cell Carcinoma (BCC), Actinic Keratosis/Intraepithelial

Carcinoma (AKIEC), Other (OTHER)
Messidor-2 5 None, Mild DR, Moderate DR, Severe DR, PDR
APTOS 2019 5 No DR, Mild, Moderate, Severe, Proliferative DR
Jichi 3 SDR (simple diabetic retinopathy), PPDR (pre-proliferative diabetic retinopathy), PDR (prolifer-

ative diabetic retinopathy)
LNDb 3 nodule ≥ 3mm, nodule ¡3mm, non-nodule
INSPECT 5 No PE, Acute Subsegmental-only PE, Acute PE, Subsegmental-only PE, Chronic PE
KiTS23 2 Benign, Malignant
Hemorrhage 2 No Hemorrhage, Has Hemorrhage
RSPECT 3 No PE, Chronic PE, Acute PE
EchoNet-Dynamic - Not classification
BUSI 3 Normal, Malignant, Benign
COVID-BLUES 2 Has COVID, No COVID
COVID-US 3 Covid, Pneumonia, Normal
Brain Tumor 4 No Tumor, Pituitary Tumor, Glioma Tumor, Meningioma Tumor
Brain MRI 2 Yes, No (presence of tumors)
ABCD 2 Normal, Abnormal
ABIDE 2 ASD, Typical controls
PPMI 2 Control, PD patients
PROTEINS 2 Enzyme, Not enzyme
PPI 2
LC25000 5 Colon adenocarcinomas, Benign colon, Lung adenocarcinomas, Lung squamous cell carcinomas,

Benign lung
BCSS 4 Tumor, Stroma, Lymphocytic infiltrate, Necrosis/debris
Cholec80 Surgery phase annotations and surgery tool labels
HuGaDB 4 Sitting, Standing, Sitting down, Standing up
Expression Atlas - Not classification
Geo - Not classification
Vital - Not classification
MIMIC-IV 2 48 Hour In-Hospital-Mortality (48 IHM) (Yes/No)
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Table 10. Dataset Demographics and Location Information.
Dataset Locations Demographic Information

PTB-XL Multiple sex: 52% male, 48% female; age range: 0-95 (median:
62, IQR: 22); height; weight

Chapman-Shaoxing Shaoxing, Zhejiang, China sex: male: 22,599 (56%); female: 17,659 (44%);
age groups: 51–60 (19.8%), 61–70 (24%), and 71–80
(17.3%)

Georgia Emory University, Atlanta, Georgia, USA age; sex
CPSC China unknown
MIMIC-CXR Beth Israel Deaconess Medical Center in Boston, MA unknown
CheXpert Stanford, California, US sex; age
VinDr-CXR The Hospital 108 and the Hanoi Medical University

Hospital in Vietnam
Training set: median age: 43.77; sex: 52.21% male,
47.79% female; Test set: median age: 31.80; sex:
55.90% male, 44.10% female

VinDr-Mammo The Institutional Review Board of Hanoi Medical Uni-
versity Hospital (HMUH) and Hospital 108 (H108)

age; imaging device’s model

CBIS-DDSM Stanford, California, US Unknown
ISIC-2020 Hospital Clı́nic de Barcelona, Medical University of

Vienna, Memorial Sloan Kettering Cancer Center,
Melanoma Institute Australia, University of Queens-
land, and the University of Athens Medical School

sex: female: 15981 (48%), male: 17080 (52%); age
range: 0-90 (median: 48.87)

HAM10000 unknown unknown
PAD-UFES-20 Federal University of Espı́rito Santo (UFES), Espı́rito

Santo, Brazil
country of parents; age; gender; access to piped water;
access to sewage system; region

Messidor-2 Brest University Hospital unknown
APTOS 2019 Aravind Eye Hospital, India unknown
Jinchi Jichi Medical University unknown
LNDb Centro Hospitalar e Universitário de São João (CHUSJ)

in Porto, Portugal
unknown

ABIDE California Institute of Technology, Carnegie Mellon
University, Kennedy Krieger Institute, and more

age; sex; handedness; full-scale IQ

ABCD unknown gender identity; environmental factors
PPMI Multiple sex: 54.5% male, 45.5% female; race; age
HuGaDB unknown sex: 4 females, 14 males; age: average: 23.67; height:

average: 179.06 cm; weight: average: 73.44 kg
INSPECT Stanford Medicine (2000-2021) gender: female: 10,733, male: 8,666, unknown: 3; age:

18-39: 2,912, 39-69: 9,974, 69-89: 5,859, ¿89: 657;
race: white: 10,704, asian: 2,976, black: 1,103, native:
415, unknown: 2,404; ethnicity: hispanic: 3,018, not
hispanic: 15,628, unknown: 756

EchoNet-Dynamic Stanford University unknown
BUSI unknown unknown
COVID-19 University of Montreal, Canada unknown
Brain Tumor Eindhoven University of Technology, Netherlands unknown
KiTS23 Minnesota, US unknown
Hemorrhage Al Hilla Teaching Hospital, Iraq age: mean: 27.8; gender: male: 46, female: 36
CMMD China age
CoronaHack Mila, University of Montreal unknown
COVID-BLUES Maastricht University Medical Center (UMC+) in the

Netherlands
weight; sex; height; bmi; age

COVID-US unknown gender; age; alcoholic; drug use
IIIC Massachusetts General Hospital, Harvard Medical

School, Boston, USA
1950 patients; labeled by 124 raters; 20 of the raters are
physician experts

TUAB The Temple University Hospital, Philadelphia, Penn-
sylvania, USA

Evaluation Dataset: Total: 276 files, 253 subjects; Ab-
normal Female: 63 files, 51 subjects; Abnormal Male:
63 files, 54 subjects; Normal Female: 85 files, 84 sub-
jects; Normal Male: 65 files, 64 subjects; Train Dataset:
Total: 2,717 files, 2,130 subjects

TUEV The Temple University Hospital, Philadelphia, Penn-
sylvania, USA

290 patients in train; 78 patients in eval

MIMIC-IV Beth Israel Deaconess Medical Center, Massachusetts
Institute of Technology

age; gender; insurance type (medicaid, medicare, other)
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Table 11. Chest X-ray label standardization mapping

Raw Label Standardized Label

Aortic enlargement, Enlarged PA Enlarged Cardiomediastinum
Cardiomegaly Cardiomegaly
Atelectasis Atelectasis
Consolidation Consolidation
Edema Edema
Infiltration, Lung Opacity, ILD, Pulmonary fibrosis Lung Opacity
Nodule/Mass, Other lesion, Lung cavity, Lung cyst, Lung tumor Lung Lesion
Pleural effusion Pleural Effusion
Pleural thickening Pleural Other
Pneumothorax Pneumothorax
Rib fracture, Clavicle fracture Fracture
No finding No Finding
Support Devices Support Devices
Pneumonia Pneumonia

Table 12. Performance comparison between raw and standardized label training
CXR Mammo Derm CT Fundus US Overall

Model AUC Sen Spe AUC Sen Spe AUC Sen Spe AUC Sen Spe AUC Sen Spe AUC Sen Spe AUC Sen Spe

ConvNextV2-RawLabel .820 .358 .935 .543 .293 .693 .853 .492 .757 .690 .442 .624 .794 .351 .841 .689 .519 .713 .751 .434 .766
ConvNextV2-StandardLabel .817 .436 .939 .558 .330 .706 .901 .568 .777 .671 .466 .641 .873 .563 .888 .774 .641 .770 .787 .537 .806
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Table 13. Out-of-Distribution Datasets
Dataset Classes Out-of-Distribution Characteristics

COVID-19 Normal, Bacterial Pneumonia, COVID-19, Viral
Pneumonia

Novel disease class (COVID-19)

CoronaHack Normal, Bacterial Pneumonia, Viral Pneumonia,
COVID-19

Novel disease class (COVID-19)

CBIS-DDSM BI-RAD 0-5 More fine-grained classification (6 BI-RADS categories) com-
pared to VinDr-Mammo (5 categories) and CMMD (binary
classification)

ISIC-2020 Malignant, Benign Different task granularity (binary classification)

Jichi SDR, PPDR, PDR Different classification scheme for diabetic retinopathy pro-
gression compared to Messidor-2 and APTOS 2019’s five-
stage classification

BCSS Tumor, Stroma, Lymphocytic infiltrate, Necro-
sis/debris

Different task type (tissue component classification) compared
to LC25000’s focus on cancer type classification

BUSI Normal, Malignant, Benign Different task focus (breast lesion classification) compared
to other ultrasound datasets (COVID-BLUES, COVID-US)
which focus on lung pathology

LNDb nodule ≥ 3mm, nodule < 3mm, non-nodule Different task focus (nodule size classification) compared to
other CT datasets like INSPECT and RSPECT which focus
on pulmonary embolism

PTB-XL-Finegrained Normal ECG (NORM), Ischemic in inferior
leads (ISCI), Non-specific ST changes (NST ),
Ischemic in anterior leads (ISCA), Non-specific
ischemic (ISC ), ST-T changes (STTC), Right
ventricular hypertrophy (RVH), Right atrial over-
load/enlargement (RAO/RAE), Septal hyper-
trophy (SEHYP), Left atrial overload/enlarge-
ment (LAO/LAE), Anterior myocardial infarc-
tion (AMI), Inferior myocardial infarction (IMI),
Lateral myocardial infarction (LMI), Posterior
myocardial infarction (PMI), Left anterior/left
posterior fascicular block (LAFB/LPFB), In-
complete right bundle branch block (IRBBB),
AV block ( AVB), Non-specific intraventricu-
lar conduction disturbance (IVCD), Complete
right bundle branch block (CRBBB), Com-
plete left bundle branch block (CLBBB), Wolff-
Parkinson-White syndrome (WPW), Incomplete
left bundle branch block (ILBBB)

More fine-grained classification (24 categories) compared to
PTB-XL superclass (7 categories in BenchMD).

TUEV Spike and slow wave (SPSW), Generalized pe-
riodic epileptiform discharge (GPED), Periodic
lateralized epileptiform discharge (PLED), Eye
movement (EYEM), artifact (ARTF), and Back-
ground (BCKG)

Data consists of pathological patterns, human artifacts, and
normal background activity.

36



CLIMB: Data Foundations for Large Scale Multimodal Clinical Foundation Models

Table 14. Performance metrics of MedVit across different medical imaging datasets.
MedVit

Dataset AUC Sensitivity Specificity F1 Score Accuracy

CT RSPECT 0.7609 0.3333 0.6667 0.3248 0.9667
CT INSPECT 0.5495 0.2000 0.8000 0.1764 0.9156
MIMIC-CXR 0.6743 0.1447 0.9432 0.1444 0.8737
Fundus JICHI 0.5464 0.2500 0.7625 0.1951 0.8077
Fundus APTOS 0.4141 0.2000 0.8000 0.0750 0.6923
CT LNDB 0.7009 0.4960 0.4960 0.4395 0.7841
ISIC 2020 0.2676 0.5000 0.5000 0.4931 0.9726
CBIS-DDSM 0.8333 0.5000 0.5000 0.3000 0.4286
BUSI 0.1111 0.5000 0.5000 0.3333 0.5000
LC25000 0.9448 0.4444 0.8631 0.3218 0.7836
HAM10000 0.6446 0.2500 0.7500 0.2143 0.8750
VinDr CXR 0.6546 0.1607 0.9005 0.1278 0.8587
CoronaHack 0.6907 0.4583 0.7526 0.4242 0.7333
BCSS 0.5833 0.3333 0.6667 0.2727 0.7949
VinDr Mammo 0.4205 0.3333 0.6667 0.2716 0.7917
COVID-BLUES 0.3556 0.5000 0.5000 0.3448 0.5263
Brain Tumor 0.8927 0.4375 0.8229 0.3167 0.7500
KiTS23 0.4063 0.5000 0.5000 0.4706 0.8889
CheXpert 0.6333 0.1686 0.9021 0.1693 0.8455
PAD-UFES-20 0.6528 0.3333 0.6667 0.0667 0.4074
COVID-19 CXR 0.6972 0.3333 0.6667 0.2222 0.6667
COVID-US 0.8889 0.5000 0.7500 0.3556 0.6000
Messidor-2 0.0000 0.5000 0.5000 0.4286 0.7500

Overall 0.5793 0.3642 0.6903 0.2821 0.7484
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Table 15. Performance metrics of PMC CLIP across different medical imaging datasets.
PMC CLIP

Dataset AUC Sensitivity Specificity F1 Score Accuracy

CT RSPECT 0.7928 0.3333 0.6667 0.3241 0.9639
CT INSPECT 0.5484 0.2000 0.8000 0.1779 0.9205
MIMIC-CXR 0.6613 0.1261 0.9411 0.1234 0.8438
Fundus JINCHI 0.5492 0.2560 0.7513 0.2110 0.8308
Fundus APTOS 0.5863 0.2033 0.8023 0.0928 0.7124
CT LNDB 0.7012 0.5000 0.5000 0.4515 0.8232
ISIC 2020 0.7351 0.5000 0.5000 0.4955 0.9823
CBIS-DDSM 0.6475 0.2069 0.8064 0.1798 0.8024
BUSI 0.5371 0.3233 0.6596 0.2847 0.6616
LC25000 0.9842 0.7328 0.9332 0.7058 0.8931
HAM10000 0.7439 0.2191 0.8050 0.1921 0.8670
VinDr CXR 0.6233 0.0935 0.9235 0.0720 0.9110
CoronaHack 0.8480 0.5062 0.7729 0.4458 0.7212
BCSS 0.6432 0.2555 0.7534 0.1855 0.7289
VinDr Mammo 0.5807 0.2062 0.8007 0.1685 0.8651
COVID-BLUES 0.4175 0.4941 0.4941 0.2304 0.2708
Brain Tumor 0.6160 0.3210 0.7771 0.2656 0.6802
KiTS23 0.4712 0.5000 0.5000 0.4658 0.8718
CheXpert 0.6680 0.1170 0.9191 0.1287 0.7665
PAD-UFES-20 0.5427 0.2552 0.8121 0.1436 0.7089
COVID-19 CXR 0.8240 0.4106 0.8579 0.3550 0.8138
CMMD 0.6140 0.5226 0.5226 0.0499 0.0513
COVID-US 0.6091 0.3333 0.6730 0.1961 0.6000
Messidor-2 0.3898 0.2000 0.8000 0.1473 0.8331
CT Hemorrhage 0.5805 0.5000 0.5000 0.4550 0.8350
Brain Tumor 2 0.5848 0.5441 0.5441 0.5433 0.5882

Overall 0.6346 0.3408 0.7237 0.2727 0.7518
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Table 16. Performance metrics of RAD-DINO across different medical imaging datasets.
RAD-DINO

Dataset AUC Sensitivity Specificity F1 Score Accuracy

CT RSPECT 0.8357 0.3333 0.6667 0.3241 0.9639
CT INSPECT 0.5752 0.2000 0.8000 0.1779 0.9205
MIMIC-CXR 0.7281 0.1873 0.9404 0.2034 0.8583
Fundus JICHI 0.6093 0.2500 0.7500 0.1988 0.8301
Fundus APTOS 0.6589 0.2000 0.8000 0.1320 0.7970
CT LNDB 0.6950 0.5000 0.5000 0.4515 0.8232
ISIC 2020 0.7753 0.4999 0.4999 0.4955 0.9822
CBIS-DDSM 0.5935 0.1988 0.8015 0.1438 0.8225
BUSI 0.6570 0.3333 0.6667 0.2389 0.7056
LC25000 0.9809 0.6853 0.9213 0.6288 0.8741
HAM10000 0.8128 0.2392 0.8221 0.2337 0.8752
VinDr CXR 0.7605 0.1179 0.9376 0.1003 0.9152
CoronaHack 0.9173 0.6078 0.7995 0.5739 0.7436
BCSS 0.6502 0.2622 0.7535 0.1526 0.6768
VinDr Mammo 0.5756 0.2000 0.8000 0.1606 0.8682
COVID-BLUES 0.5775 0.5000 0.5000 0.2066 0.2604
Brain Tumor 0.6725 0.3334 0.7760 0.2437 0.6459
KiTS23 0.4565 0.5000 0.5000 0.4658 0.8718
CheXpert 0.7516 0.2124 0.9264 0.2347 0.8068
PAD-UFES-20 0.6125 0.2666 0.8217 0.1722 0.7028
COVID-19 CXR 0.8946 0.4199 0.8357 0.3952 0.7753
CMMD 0.5065 0.5000 0.5000 0.0064 0.0064
COVID-US 0.6750 0.5803 0.7397 0.5056 0.6800
Messidor-2 0.5311 0.2000 0.8000 0.1473 0.8331
CT Hemorrhage 0.7054 0.5000 0.5000 0.4550 0.8350
Brain Tumor 2 0.5519 0.5000 0.5000 0.2500 0.3333

Overall 0.6831 0.3588 0.7253 0.2807 0.7464
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Table 17. Performance metrics of SBB2 across different medical imaging datasets.
SBB2

Dataset AUC Sensitivity Specificity F1 Score Accuracy

CT RSPECT 0.8556 0.3343 0.6676 0.3260 0.9640
CT INSPECT 0.5624 0.2000 0.8000 0.1779 0.9204
MIMIC-CXR 0.7227 0.1714 0.9429 0.1875 0.8561
Fundus JINCHI 0.7215 0.3261 0.7697 0.3071 0.8389
Fundus APTOS 0.8212 0.3514 0.8927 0.3292 0.8647
CT LNDB 0.6932 0.5000 0.5000 0.4515 0.8232
ISIC 2020 0.8026 0.5000 0.5000 0.4955 0.9823
CBIS-DDSM 0.6366 0.1994 0.8007 0.1437 0.8232
BUSI 0.6649 0.3561 0.6773 0.3040 0.7056
LC25000 0.9977 0.9622 0.9906 0.9622 0.9849
HAM10000 0.8641 0.2797 0.8438 0.2902 0.8824
VinDr CXR 0.6377 0.0845 0.9188 0.0717 0.9261
CoronaHack 0.9127 0.7521 0.8830 0.7532 0.8462
BCSS 0.7249 0.4504 0.8171 0.3938 0.7550
VinDr Mammo 0.5981 0.2003 0.8013 0.1668 0.8653
COVID-BLUES 0.6890 0.5977 0.5977 0.6063 0.7500
Brain Tumor 0.7723 0.5411 0.8434 0.4945 0.7640
KiTS23 0.6137 0.5000 0.5000 0.4658 0.8718
CheXpert 0.7325 0.2204 0.9238 0.2520 0.8027
PAD-UFES-20 0.6844 0.3048 0.8280 0.2064 0.7264
COVID-19 CXR 0.9487 0.7784 0.9393 0.7951 0.9216
CMMD 0.3803 0.3871 0.3871 0.4348 0.7692
COVID-US 0.7789 0.5318 0.7921 0.5258 0.7333
Messidor-2 0.6529 0.2000 0.8000 0.1473 0.8331
CT Hemorrhage 0.7307 0.4815 0.4815 0.4583 0.7883
Brain Tumor 2 0.7734 0.7059 0.7059 0.7230 0.7843

Overall 0.7297 0.4199 0.7540 0.4027 0.8378
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Table 18. Performance metrics of Swin Transformer across different medical imaging datasets.
Swin Transformer

Dataset AUC Sensitivity Specificity F1 Score Accuracy

CT RSPECT 0.8962 0.4318 0.7605 0.4613 0.9683
CT INSPECT 0.6468 0.2049 0.8035 0.1878 0.9219
MIMIC-CXR 0.7620 0.1748 0.9459 0.2113 0.8571
Fundus JICHI 0.7821 0.3663 0.7967 0.3392 0.8396
Fundus APTOS 0.8636 0.3632 0.9089 0.3123 0.8849
CT LNDB 0.6660 0.5113 0.5113 0.4778 0.8239
ISIC 2020 0.7654 0.5313 0.5313 0.5438 0.9780
CBIS-DDSM 0.7078 0.2019 0.7973 0.1688 0.8071
BUSI 0.6264 0.3627 0.6742 0.1955 0.5228
LC25000 0.9987 0.9573 0.9893 0.9572 0.9829
HAM10000 0.8764 0.3743 0.8557 0.3842 0.8860
VinDr CXR 0.6206 0.0920 0.9210 0.0811 0.9248
CoronaHack 0.9231 0.7725 0.8909 0.7580 0.8419
BCSS 0.7141 0.3573 0.7713 0.2427 0.6434
VinDr Mammo 0.6330 0.2000 0.8000 0.1606 0.8682
COVID-BLUES 0.6175 0.5989 0.5989 0.6069 0.7708
Brain Tumor 0.8555 0.6215 0.8729 0.6311 0.8160
KiTS23 0.4621 0.5000 0.5000 0.4658 0.8718
CheXpert 0.7395 0.2009 0.9438 0.2395 0.8140
PAD-UFES-20 0.8042 0.3996 0.8542 0.3654 0.8100
COVID-19 CXR 0.9319 0.7029 0.9268 0.7396 0.8978
CT Hemorrhage 0.7562 0.5000 0.5000 0.4550 0.8350
COVID-US 0.8721 0.6727 0.8619 0.6672 0.8133
Messidor-2 0.6645 0.2524 0.8072 0.2183 0.8366
Brain Tumor 2 0.9360 0.5588 0.5588 0.5149 0.7059

Overall 0.7649 0.4364 0.7753 0.4154 0.8369
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Table 19. Performance metrics of EVA-2 across different medical imaging datasets.
EVA-2

Dataset AUC Sensitivity Specificity F1 Score Accuracy

Fundus JINCHI 0.6808 0.2500 0.7500 0.5250 0.8301
COVID-19 CXR 0.9007 0.4372 0.8751 0.6081 0.8335
ISIC 2020 0.7291 0.5000 0.5000 0.9736 0.9823
HAM10000 0.8003 0.2625 0.8204 0.5575 0.8684
MIMIC-CXR 0.7636 0.2018 0.9291 0.3616 0.8546
Brain Tumor 0.6221 0.3531 0.7756 0.2297 0.6523
CT LNDB 0.6405 0.5000 0.5000 0.7434 0.8232
CBIS-DDSM 0.5590 0.2916 0.8046 0.4000 0.8151
VinDr Mammo 0.5240 0.2013 0.8002 0.5388 0.8683
CT Hemorrhage 0.6970 0.5000 0.5000 0.7599 0.8350
KiTS23 0.6337 0.5196 0.5196 0.0958 0.1624
VinDr CXR 0.6986 0.1136 0.9326 0.4718 0.9223
Messidor-2 0.5972 0.2000 0.8000 0.4293 0.8331
CoronaHack 0.8826 0.4654 0.7472 0.4578 0.6902
Fundus APTOS 0.8674 0.2773 0.8562 0.4195 0.8117
PAD-UFES-20 0.5795 0.2386 0.8073 0.2656 0.7673
CheXpert 0.8056 0.2596 0.8940 0.3897 0.8034
CMMD 0.4932 0.5000 0.5000 0.0001 0.0064
BUSI 0.5925 0.3333 0.6667 0.4001 0.7056
Brain Tumor 2 0.6739 0.5000 0.5000 0.5333 0.6667

Overall 0.6871 0.3452 0.7239 0.4580 0.7366
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Table 20. Performance metrics of ConvNextv2 across different medical imaging datasets.
ConvNextv2

Dataset AUC Sensitivity Specificity F1 Score Accuracy

CT RSPECT 0.9400 0.5598 0.8337 0.6080 0.9748
CT INSPECT 0.5867 0.2098 0.8084 0.1983 0.9217
MIMIC-CXR 0.7997 0.2400 0.9480 0.2740 0.8721
Fundus JICHI 0.8568 0.5949 0.8492 0.5997 0.8798
Fundus APTOS 0.9380 0.5835 0.9455 0.6105 0.9214
CT LNDB 0.6670 0.5311 0.5311 0.5322 0.7722
ISIC 2020 0.8529 0.5042 0.5042 0.5039 0.9823
CBIS-DDSM 0.7070 0.2435 0.8170 0.2214 0.8299
BUSI 0.7653 0.4862 0.7431 0.4623 0.6853
LC25000 0.9999 0.9926 0.9982 0.9926 0.9971
HAM10000 0.9423 0.6485 0.9298 0.6511 0.9251
VinDr CXR 0.5609 0.0852 0.9175 0.0726 0.9270
CoronaHack 0.9573 0.8369 0.9260 0.8381 0.9017
BCSS 0.8098 0.5076 0.8180 0.4981 0.7773
VinDr Mammo 0.6732 0.2536 0.8069 0.2414 0.8693
COVID-BLUES 0.7318 0.6814 0.6814 0.6742 0.7396
Brain Tumor 0.9293 0.7257 0.9069 0.7136 0.8655
KiTS23 0.4108 0.5000 0.5000 0.4658 0.8718
CheXpert 0.8037 0.2722 0.9521 0.3160 0.8236
PAD-UFES-20 0.9068 0.5511 0.8978 0.5873 0.8693
COVID-19 CXR 0.9639 0.7474 0.9495 0.7545 0.9337
CMMD - 0.4935 0.4935 0.4951 0.9808
COVID-US 0.8254 0.7561 0.8841 0.7313 0.8400
Messidor-2 0.8245 0.5116 0.8684 0.5116 0.8606
CT Hemorrhage 0.7485 0.5306 0.5306 0.5188 0.8388
Brain Tumor 2 0.9585 0.9265 0.9265 0.9328 0.9412

Overall 0.7867 0.5374 0.8064 0.5387 0.8770
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Table 21. Performance metrics of InternViT across different medical imaging datasets.
InternViT

Dataset AUC Sensitivity Specificity F1 Score Accuracy

CT RSPECT 0.9005 0.4407 0.7597 0.4791 0.9679
CT INSPECT 0.5954 0.2013 0.8008 0.1808 0.9206
MIMIC-CXR 0.7780 0.2196 0.9426 0.2397 0.8667
Fundus JINCHI 0.8258 0.5438 0.8224 0.4625 0.7293
Fundus APTOS 0.8786 0.4505 0.9260 0.4115 0.8941
CT LNDB 0.6810 0.5448 0.5448 0.5470 0.8050
ISIC 2020 0.8427 0.5040 0.5040 0.5037 0.9820
CBIS-DDSM 0.6701 0.2714 0.8217 0.2488 0.8205
BUSI 0.7310 0.5016 0.7391 0.4475 0.6311
LC25000 0.9990 0.9738 0.9934 0.9737 0.9895
HAM10000 0.9012 0.6092 0.9210 0.5381 0.8820
VinDr CXR 0.6309 0.0899 0.9184 0.0808 0.9272
CoronaHack 0.9303 0.7680 0.8910 0.7515 0.8419
BCSS 0.7856 0.4696 0.8235 0.3876 0.7584
VinDr Mammo 0.6450 0.2473 0.8176 0.2423 0.7962
COVID-BLUES 0.6772 0.6592 0.6592 0.6364 0.6875
Brain Tumor 0.8236 0.6134 0.8734 0.5869 0.8135
KiTS23 0.5722 0.5000 0.5000 0.4658 0.8718
CheXpert 0.7830 0.2333 0.9502 0.2757 0.8168
PAD-UFES-20 0.8600 0.5162 0.8844 0.5476 0.8501
COVID-19 CXR 0.9526 0.7525 0.9484 0.7360 0.9281
CMMD 0.2817 0.5000 0.5000 0.4984 0.9936
COVID-US 0.7978 0.4864 0.7556 0.4680 0.7067
Messidor-2 0.8119 0.2977 0.8050 0.1526 0.6720
CT Hemorrhage 0.7790 0.6562 0.6562 0.6398 0.7806
Brain Tumor 2 0.9377 0.7500 0.7500 0.7733 0.8235

Overall 0.7720 0.4923 0.7888 0.4721 0.8368

Table 22. Performance evaluation of GCN across different modalities and datasets.
GCN

Modality Dataset Performance Metrics

AUC Sensitivity Specificity

Brain Networks

PPMI 0.973 0.922 0.897
ABIDE 0.626 0.596 0.586
ABCD 0.814 0.570 0.916
Average 0.804 0.696 0.800

Molecular
PPI 0.807 0.496 0.716
PROTEINS 0.718 0.568 0.803
Average 0.763 0.532 0.760

Overall Average 0.783 0.614 0.780
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Table 23. Performance evaluation of GAT across different modalities and datasets.
GAT

Modality Dataset Performance Metrics

AUC Sensitivity Specificity

Brain Networks

PPMI 0.927 0.931 0.828
ABIDE 0.688 0.818 0.385
ABCD 0.500 1.000 0.000
Average 0.705 0.916 0.404

Molecular
PPI 0.926 0.572 0.798
PROTEINS 0.719 0.529 0.803
Average 0.823 0.551 0.801

Overall Average 0.764 0.733 0.602

Table 24. Performance evaluation of Graph Transformers across different modalities and datasets.
Graph Transformers

Modality Dataset Performance Metrics

AUC Sensitivity Specificity

Brain Networks

PPMI 0.950 0.862 0.957
ABIDE 0.743 0.707 0.683
ABCD 0.864 0.860 0.837
Average 0.852 0.810 0.826

Molecular
PPI 0.997 0.606 0.873
PROTEINS 0.580 0.156 0.967
Average 0.789 0.381 0.920

Overall Average 0.820 0.595 0.873
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Table 25. Performance metrics across different medical imaging datasets.
ConvNextv2 (Single Task Training)

Dataset AUC Sensitivity Specificity F1 Score Accuracy

CT RSPECT 0.9680 0.7388 0.9096 0.7472 0.9675
CT INSPECT 0.5524 0.2170 0.8103 0.2070 0.7930
MIMIC-CXR 0.8036 0.8100 0.6526 0.3735 0.6805
Fundus JINCHI 0.8994 0.6689 0.8794 0.6465 0.7763
Fundus APTOS 0.9162 0.4880 0.9309 0.4969 0.7613
CT LNDB 0.6750 0.4983 0.4983 0.4507 0.8204
ISIC 2020 0.8936 0.4957 0.9559 0.6120 0.9478
CBIS-DDSM 0.6375 0.2173 0.8070 0.1837 0.5563
BUSI 0.6370 0.4359 0.7013 0.4064 0.5381
LC25000 1.0000 0.9971 0.9993 0.9971 0.9971
HAM10000 0.9531 0.7154 0.9416 0.6850 0.8018
VinDr CXR - 0.3353 0.5809 0.1281 0.7099
CoronaHack 0.9461 0.8404 0.9225 0.8400 0.8462
BCSS 0.8431 0.6276 0.8571 0.6053 0.6219
VinDr Mammo 0.6864 0.3138 0.8179 0.2802 0.6747
COVID-BLUES 0.5282 0.5000 0.5000 0.2066 0.2604
Brain Tumor 0.8291 0.4801 0.8188 0.4555 0.4721
KiTS23 0.3235 0.5000 0.5000 0.4658 0.8718
CheXpert - 0.6351 0.7669 0.4516 0.7603
PAD-UFES-20 0.8112 0.3295 0.8531 0.3430 0.5425
COVID-19 CXR 0.9168 0.5689 0.8947 0.6013 0.7419
CMMD 0.5204 0.4860 0.4860 0.4913 0.9658
COVID-US 0.5000 0.3333 0.6667 0.0920 0.1600
Messidor-2 0.8301 0.2590 0.8073 0.2117 0.5886
CT Hemorrhage 0.7666 0.8884 0.2471 0.5724 0.7825
Brain Tumor 2 0.7734 0.0000 1.0000 0.4000 0.6667
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Table 26. Performance metrics of Llava-Med across different medical imaging datasets. Note the overall row is averaged across
dataset, which is different from the modality-wise average in Table 6.

Llava-Med

Dataset Zero-Shot Fine-Tuned

Accuracy Sensitivity Specificity F1 Score Accuracy Sensitivity Specificity F1 Score

MIMIC-CXR 0.001 0.214 0.786 0.063 0.001 0.214 0.794 0.090
CheXpert 0.000 0.077 0.924 0.036 0.000 0.154 0.847 0.093
VinDr-CXR 0.045 0.083 0.916 0.016 0.702 0.083 0.917 0.069
COVID-19 0.009 0.250 0.750 0.005 0.455 0.250 0.750 0.156
CoronaHack 0.388 0.333 0.667 0.186 0.388 0.333 0.667 0.186
Brain Tumor 0.393 0.445 0.799 0.300 0.292 0.250 0.750 0.113
Brain Tumor 2 0.333 0.500 0.500 0.250 0.667 0.500 0.500 0.400
BUSI 0.579 0.391 0.697 0.357 0.558 0.333 0.667 0.239
COVID-BLUES 0.365 0.557 0.557 0.353 0.740 0.500 0.500 0.425
COVID-US 0.400 0.333 0.667 0.190 0.440 0.333 0.667 0.204
CBIS 0.008 0.202 0.799 0.005 0.560 0.200 0.800 0.144
VinDr-Mammo 0.047 0.200 0.800 0.018 0.670 0.200 0.800 0.161
CMMD 0.091 0.206 0.800 0.045 0.994 0.500 0.500 0.498
ISIC 2020 0.982 0.500 0.500 0.496 0.982 0.333 0.667 0.330
HAM10000 0.110 0.201 0.800 0.047 0.670 0.201 0.800 0.162
PAD-UFES-20 0.307 0.186 0.800 0.107 0.368 0.200 0.800 0.108
Messidor-2 0.151 0.157 0.832 0.048 0.583 0.200 0.800 0.147
APTOS 0.492 0.200 0.800 0.132 0.492 0.200 0.800 0.132
Jichi 0.660 0.250 0.750 0.199 0.660 0.250 0.750 0.199
LNDb 0.823 0.500 0.500 0.452 0.645 0.541 0.541 0.520
Kits23 0.128 0.500 0.500 0.114 0.872 0.500 0.500 0.466
Brain CT 0.835 0.500 0.500 0.455 0.835 0.500 0.500 0.455
INSPECT 0.004 0.194 0.800 0.006 0.801 0.200 0.800 0.178
Cholec 80 0.000 1.000 0.000 0.243 0.296 0.143 0.857 0.069

Overall 0.298 0.333 0.685 0.172 0.570 0.297 0.707 0.231

Table 27. Model Performance of BIOT Variants with TUEV Finetuning

Pretrain Encoder Num Shots Finetune AUC Sens Spec

BIOT

1

TUEV

.589 .232 .841
8 .688 .298 .859

32 .740 .359 .873
full .856 .466 .908

BIOT-pretrain-PREST

1

TUEV

.609 .239 .835
8 .754 .372 .871

32 .781 .363 .899
full .898 .580 .918

BIOT-pretrain-SHHS+PREST

1

TUEV

.630 .239 .836
8 .723 .305 .861

32 .777 .382 .879
full .880 .586 .914

BIOT-pretrain-IIIC+TUAB

1

TUEV

.553 .179 .836
8 .759 .332 .873

32 .807 .410 .894
full .869 .510 .905
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Table 28. Model Performance on Different ECG Datasets

Model Name PTB-XL ChapmanShao CPSC Ga Overall

AUC Sens Spe AUC Sens Spe AUC Sens Spe AUC Sens Spe AUC Sens Spe

Transformer .785 .239 .885 .797 .312 .919 .579 .213 .883 .671 .251 .891 .708 .253 .895
ECG-JEPA .906 .591 .918 .858 .392 .935 .979 .797 .980 .767 .294 .899 .877 .518 .877
UniTS .669 .150 .861 .656 .146 .859 .641 .143 .857 .598 .158 .863 .641 .149 .860

Table 29. Model Performance of ECG-JEPA and UniTS Variants with PTB-XL Finetuning. Ours is the model pretrained on
CLIMB dataset with PTB-XL removed.

Model Pretrain Encoder Num Shots Finetune AUC Sens Spe

ECG-JEPA

Ours
1

PTB-XL
.633 .048 .956

8 .760 .113 .966
full .895 .210 .980

PTB-XL
1

PTB-XL
.512 .043 .956

8 .472 .043 .956
full .868 .195 .979

UniTS

Ours
1

PTB-XL
.527 .430 .537

8 .549 .641 .370
full .673 .025 .993

PTB-XL
1

PTB-XL
.512 .674 .371

8 .470 .322 .658
full .688 .053 .984

Table 30. Model Performance of ECG-JEPA Variants with Different Pretraining. Ours is the model pretrained on CLIMB dataset.

Pretrain Finetuned AUC Sens Spe

PTB-XL PTB-XL .776 .237 .883
CPSC CPSC .682 .144 .857

ChapmanShao ChapmanShao .771 .248 .899
Ga Ga .474 .143 .857

Ours

PTB-XL .805 .329 .902
CPSC .843 .343 .918

ChapmanShao .831 .355 .932
Ga .704 .273 .894

Table 31. Model Performance of UniTS Variants with Different Pretraining. Ours is the model pretrained on CLIMB dataset and
Original is the pretrained encoder provided by the UniTS model.

Pretrain Train Eval AUC Sens Spe

Original

PTB-XL PTB-XL .669 .150 .861
CPSC CPSC .641 .143 .857

ChapmanShao ChapmanShao .656 .146 .859
Ga Ga .598 .158 .863

Original Ours

PTB-XL .772 .242 .886
CPSC .871 .336 .919

ChapmanShao .812 .333 .927
Ga .742 .271 .894
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Table 32. Dataset membership prediction results validating OOD dataset distinctiveness

OOD Dataset Balanced Accuracy AUC F1 Score

BCSS 99.8 1.000 0.928
CBIS-DDSM 99.9 1.000 0.801
CoronaHack 99.7 0.999 0.371
COVID-19 53.2 0.953 0.112
BUSI 99.9 1.000 0.997
Jichi 99.8 0.999 0.758
ISIC-2020 99.7 0.999 0.841

Table 33. ECG unsupervised pretraining results comparing dataset-specific vs. CLIMB pretraining. The results demonstrate that
pretraining on a diverse multi-dataset collection effectively improved downstream performance on the target dataset.

Model Pretrain Dataset Evaluation Dataset AUC Sensitivity Specificity

ECG-JEPA PTB-XL PTB-XL .868 .195 .979
ECG-JEPA CLIMB PTB-XL .895 .210 .980

Table 34. EEG pretraining comparison across different training strategies. The combination of pretraining and multitask learning
achieved the best overall results, with pretraining appearing to play a more significant role than multitask learning in EEG model
performance.

Model Name IIIC TUEV TUAB Overall

AUC Sens Spe F1 AUC Sens Spe F1 AUC Sens Spe F1 AUC Sens Spe F1

No Pretrain .854 .510 .905 .499 .856 .466 .908 .371 .879 .798 .798 .799 .863 .591 .870 .556
MTL Only .848 .484 .901 .475 .903 .386 .932 .387 .844 .764 .764 .761 .865 .545 .866 .541
PT+MTL .862 .546 .911 .531 .878 .549 .917 .397 .869 .794 .794 .795 .870 .630 .874 .574

Table 35. Vision model performance comparison across different pretraining strategies. MAE: Masked Autoencoder following
ConvNeXTv2 (Liu et al., 2022), CL: Contrastive Learning using CLIP-style approach from InternVL (Chen et al., 2024b), MTL: MultiTask
Learning. Contrary to expectations, neither MAE nor contrastive learning pretraining improved model performance. The multitask
learning approach alone achieved the best results across all metrics.

PT Method Model CXR Mammo Derm CT Fundus US Overall

AUC Sen Spe AUC Sen Spe AUC Sen Spe AUC Sen Spe AUC Sen Spe AUC Sen Spe AUC Sen Spe

MAE + MTL on CLIMB ConvNeXTv2 .801 .379 .923 .489 .276 .671 .795 .414 .738 .699 .430 .614 .757 .325 .835 .705 .484 .687 .733 .433 .766
MAE + CL + MTL on CLIMB InternViT .753 .338 .906 .500 .287 .689 .767 .353 .715 .678 .409 .595 .683 .298 .825 .683 .532 .689 .697 .394 .743
Only MTL on CLIMB ConvNeXTv2 .817 .436 .939 .558 .330 .706 .901 .568 .777 .671 .466 .641 .873 .563 .888 .774 .641 .770 .787 .537 .806
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Table 36. Performance Comparison with Dataset Specific Encoders. Ours is the result of multitask universal encoders trained on
CLIMB, whereas Dataset SoTA is the state-of-the-art encoder specially tuned and optimized for that particular task. Note we aim to
preserve as much information as possible from each datasets and avoids binning classes, so the task for some datasets, like VinDr-CXR
and CBIS-DDSM, may be different from the ones used in other works. The results are taken directly from the papers.

Dataset Ours (AUC) Dataset SoTA (AUC) Source/Method Name Reference

PTB-XL 0.895 0.896 ECG JEPA Link
Chapman-Shaoxing 0.858 0.979 X3ECG w/ HC + DDI –
Georgia 0.767 – – –
CPSC 0.978 0.974 ECG JEPA Link
MIMIC-CXR 0.800 0.834 ChexClusion Link
CheXpert 0.783 0.933 CFT Link
VinDr-CXR 0.631 (14 classes) 0.961 (6 classes) Paper Link
VinDr-Mammo 0.673 (5 classes) 0.840 (2 classes) MaMT4 Link
CBIS-DDSM 0.707 (5 classes) 0.900 (2 classes) MEWOA Link
ISIC 2020 0.853 0.943 Kaggle Leaderboard Link
HAM10000 0.942 0.943 Paper Link
PAD-UFES-20 0.907 0.920 EfficientNetB3 Link
Messidor-2 0.825 (5 classes) 0.971 (2 classes) Paper Link
APTOS 2019 0.938 0.920 Survey Link
Jichi 0.857 – – –
LNDb 0.681 0.831 (Fleischner kw) Leaderboard Link
INSPECT 0.595 0.771 (Accuracy) Paper Link
BUSI 0.765 – – –
COVID-19 0.964 – – –
Brain Tumor 0.929 – – –
Brain MRI 0.959 – – –
Kits23 0.572 0.835 (DICE) Leaderboard Link
Hemorrhage 0.779 – – –
CoronaHack 0.957 – – –
COVID-BLUES 0.732 – – –
COVID-US 0.825 0.94 Review Link
IIIC 0.862 0.580 (Balanced Acc.) – –
TUAB 0.882 0.882 – –
TUEV 0.898 0.528 (Balanced Acc.) – –
PROTEINS 0.719 0.849 (Acc) HGP-SL Link
PPI 0.997 0.997 (Acc) g2-MLP Link
RSPECT 0.94 – – –
LC25000 1.000 1.000 SE Networks Link
BCSS 0.810 0.710 (mIoU) MLP-MF Link
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