
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RETAINING SUBOPTIMAL ACTIONS TO
FOLLOW SHIFTING OPTIMA IN
MULTI-AGENT REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Value decomposition has been extensively studied as a core approach for coopera-
tive multi-agent reinforcement learning (MARL) under the CTDE paradigm. De-
spite this progress, existing methods still rely on a single optimal action and strug-
gle to adapt when the underlying value function shifts during training, often con-
verging to suboptimal policies. To address this limitation, we propose Successive
Sub-value Q-learning (S2Q), a framework that successively learns multiple sub-
value functions to retain information about alternative high-value actions. By in-
corporating these sub-value functions into a Softmax-based behavior policy, S2Q
encourages persistent exploration and enables Qtot to adjust quickly when the op-
timal action changes. Extensive experiments on challenging MARL benchmarks
confirm that S2Q consistently outperforms various MARL algorithms, demon-
strating improved adaptability and overall performance.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL) has emerged as a powerful and versatile framework for
solving complex sequential decision-making problems involving multiple interacting agents (Canese
et al., 2021; Li et al., 2022; Wen et al., 2022). Its applicability spans a wide range of domains, in-
cluding robotic coordination and control, autonomous driving and traffic management, intelligent
manufacturing and smart factory systems, as well as strategic and competitive environments such as
real-time strategy games (Canese et al., 2021; Li et al., 2022; Orr & Dutta, 2023; Shalev-Shwartz
et al., 2016; Bahrpeyma & Reichelt, 2022; Vinyals et al., 2019). Within the centralized training
with decentralized execution (CTDE) paradigm, where agents can leverage centralized information
during training while acting independently at execution time, value-decomposition-based credit as-
signment methods (Sunehag et al., 2017; Rashid et al., 2020a; Wang et al., 2020a) have proven
highly effective across many MARL benchmarks.

Nevertheless, conventional approaches face fundamental challenges due to the requirements of de-
centralized execution. In particular, QMIX (Rashid et al., 2020a), one of the most representative
CTDE methods, enforces the Individual-Global-Max (IGM) condition (Son et al., 2019) through a
monotonicity constraint, ensuring that the joint action-value function increases monotonically with
respect to the utility of each agent. Although this design enables competitive performance across
diverse tasks, it also restricts the expressiveness of the joint action-value function, limiting its ability
to represent complex interactions among agents. Several lines of work have attempted to overcome
this limitation. For instance, Rashid et al. (2020b) introduces an unconstrained target network to
improve the fidelity of optimal-action estimation, while Zhou et al. (2022) incorporates auxiliary
information to mitigate representational bottlenecks under partial observability. More recent studies
reformulate the value function into forms that are more amenable to decomposition (Shen et al.,
2022; Li et al., 2024), further improving stability and performance.

Despite these advances, existing methods still struggle in dynamic settings where the optimality of
the value function shifts as training progresses. This challenge arises not only from the representa-
tional rigidity imposed by the monotonicity constraint but also from the heavy reliance on ϵ-greedy
policy in the typically large joint action spaces of MARL. To address these issues, we propose Suc-
cessive Sub-value Q-learning (S2Q), a novel MARL framework that successively learns multiple

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

sub-value functions, each designed to identify a distinct suboptimal action when maximized. Lever-
aging these sub-value functions, S2Q replaces naive ϵ-greedy policy with a Softmax-based strategy
that encourages persistent visitation around promising joint actions. This allows S2Q to accurately
detect shifts in the optimal action and rapidly adapt its policy, thereby avoiding premature conver-
gence to suboptimal solutions. We further provide theoretical and empirical analyses to validate
the effectiveness of our approach, demonstrating that S2Q achieves substantial improvements over
other recent MARL methods on challenging benchmarks, including the StarCraft II Multi-Agent
Challenge (Samvelyan et al., 2019) and Google Research Football (Kurach et al., 2020).

2 PRELIMINARIES

2.1 DECENTRALIZED POMDPS

In cooperative multi-agent RL, the problem is formulated as a Decentralized Partially Observable
Markov Decision Process (Dec-POMDP), represented by the tuple G = ⟨S,A, P, r, O,O, N, γ⟩,
where S denotes the state space, A the action space of each agent, P the transition probability
function, r the reward function, O the observation function, O the observation space, N the number
of agents, and γ the discount factor(Oliehoek et al., 2016). At each timestep t, the environment
resides in a global state st ∈ S, while agent i receives a local observation oit := O(st) ∈ O.
Based on its trajectory history τ it := (oi0, a

i
0, . . . , o

i
t), agent i selects an action ait ∈ A according

to a decentralized policy πi. After receiving the joint action at = (a1t , . . . , a
N
t ) from all agents, the

environment transitions to the next state st+1 ∼ P (· | st,at) and the reward rt := r(st,at). The
overall objective of MARL is to maximize the expected discounted return, E[

∑∞
t=0 γ

trt].

2.2 VALUE DECOMPOSITION UNDER CTDE

Many MARL approaches adopt the Centralized Training with Decentralized Execution (CTDE)
paradigm, in which agents act independently during execution while utilizing global state infor-
mation during training. Among the most prominent methods in this setting is QMIX(Rashid et al.,
2020a), which employs a monotonic mixing function to enforce the Individual-Global-Max (IGM)
condition, i.e., ∂Q

tot

∂Qi ≥ 0 for all i, ensuring that maximizing individual utility Qi cannot reduce the
joint value Qtot. Although this alignment of local and joint optima is beneficial, the monotonicity
constraint limits the expressiveness of Qtot, often hindering effective minimization of the temporal-
difference (TD) loss. To address this limitation, Weighted QMIX (WQMIX)(Rashid et al., 2020b)
introduces an auxiliary unconstrained joint action-value function Q∗:

E(st,τt,at)∼B
[
(Q∗(st, τt,at)− yt)

2
]
, yt = rt + γQ∗

targ(st+1, τt+1,a
′
t+1), (1)

where τt = (τ1t , . . . , τ
N
t ) is the joint history, Q∗

targ the target, and ai′t = argmaxQi(τ it , ·) the
individual target action. WQMIX updates Qtot toward the target yt by adaptively weighting the TD
error withw(st,at), wherew(st,at) = 1 ifQtot(st, τt,at) < yt andw(st,at) = wc < 1 otherwise,
thereby prioritizing updates on underestimated actions.

2.3 COMMUNICATION IN DEC-POMDPS

In Dec-POMDPs, partial observability frequently necessitates inter-agent communication to enable
effective coordination (Sukhbaatar et al., 2016). A common approach is for each agent to transmit
a message m ∈ M , where M denotes the set of all possible messages and mi

t is the message
received by agent i at time t. These messages are typically incorporated into each agent’s individual
utility function Qi(τ it , a

i
t,m

i
t), allowing agents to leverage shared information to improve decision-

making. For example, MASIA (Guan et al., 2022) employs an encoder–decoder architecture that
extracts a latent representation zt from the joint observation and reconstructs the global state st so
that agents can communicate message given by functions of zt. Most communication-based MARL
approaches therefore require message exchange during both training and evaluation. In contrast, we
consider a more flexible setting where communication is used only when necessary: evaluation can
proceed without message passing in environments that do not require it, while in communication-
critical tasks, agents can still exchange latent representations to coordinate effectively.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3 RELATED WORKS

3.1 CTDE METHODS IN MARL

Within the CTDE paradigm, value decomposition methods decompose the joint action-value into
individual utilities, ensuring scalable MARL (Sunehag et al., 2017; Rashid et al., 2020a; Yang et al.,
2020). Building on this foundation, recent works suggest more expressive identity representation
(Naderializadeh et al., 2020; Zang et al., 2023; Liu et al., 2023), or assigning roles based on agent
trajectories (Wang et al., 2020b;c; Zeng et al., 2023). On the other hand, several works aim to sub-
stantially improve the sample efficiency, making real-world deployment more feasible (Yang et al.,
2024; Qin et al., 2024). In parallel, another line of research extends the actor-critic framework to
the multi-agent setting by employing centralized critics with decentralized actors for more stable
learning (Lowe et al., 2017; Foerster et al., 2018; Iqbal & Sha, 2019; Su et al., 2021).

3.2 OVERCOMING THE MONOTONICITY CONSTRAINT

The monotonicity constraint in QMIX, while ensuring tractability, imposes significant representa-
tional limitations, and overcoming this limitation has become an active area of research. WQMIX
(Rashid et al., 2020b) mitigates these limitations through weighted projections and non-monotonic
targets. While some methods leverage a centralized critic with no inherent constraints (Wang et al.,
2020d; Zhang et al., 2021; Peng et al., 2021), recent works pursue more flexible factorizations of the
joint action-value function (Son et al., 2019; Wang et al., 2020a; Shen et al., 2022; Li et al., 2023b;
2024) or incorporating alternative learning objectives (Zhou et al., 2022; Hu et al., 2023; Zhou et al.,
2023; Li et al., 2023a). A representative example of such objective is risk sensitivity, which accounts
for return variance (Qiu et al., 2021; Shen et al., 2023; Chen et al., 2024).

3.3 COMMUNICATION IN MARL

Communication has emerged as a critical mechanism in MARL for enabling coordination under
partial observability. A range of works focus on the design of communication protocols, specifying
how and when agents should exchange messages (Foerster et al., 2016; Sukhbaatar et al., 2016;
Liu et al., 2020; Hu et al., 2024). Others investigate the type of information that should be shared
to ensure that communication is informative (Li & Zhang, 2023; Shao et al., 2023). Another group
aims to improve communication efficiency by reducing redundancy or compressing messages (Wang
et al., 2019; Guan et al., 2022). Finally, selective communication strategies aim to determine which
messages to send or whom to communicate with, thereby reducing unnecessary communication
overhead (Das et al., 2019; Yuan et al., 2022; Zhu et al., 2024; Sun et al., 2024).

4 METHODOLOGY

4.1 MOTIVATION: OVERCOMING DYNAMIC OPTIMALITY SHIFTS IN MARL

Figure 1: Fundamental Limitations of value decomposition algorithms. (a): The actual payoff of
the matrix game. (b),(c): Training result of QMIX and WQMIX. (d): Training results of S2Q when
K = 2, where K is the hyperparameter controlling number of sub-networks to use.

In this section, we revisit a key limitation of value decomposition under the CTDE paradigm. QMIX
is known to struggle in representing the true global value due to the IGM constraint, and several
methods have been proposed to mitigate this issue (Rashid et al., 2020b). Most focus on learning an

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

unconstrained value function (e.g., WQMIX) or enhancing state-awareness for better inference of the
global optimum. Yet, a core challenge remains: by focusing solely on a single optimal joint action,
these methods still fail to recover the global optimum when the value function changes dynamically.

To illustrate this issue, we consider the payoff matrix game in Fig. 1, consisting of a single state
with two agents, each selecting actions from A,B,C. The payoff matrix specifies the joint value
for each (a1, a2). In Fig. 1(a, left), the optimal joint action is (A,A) with value 8, while (B,B)
and (C,C) are suboptimal with values 7 and 6. After training the algorithms to convergence, we
modify the payoff as shown in Fig. 1(a, right), where the optimum shifts to (C,C) with value 8,
and (A,A) and (B,B) drop to 6 and 7. This setup mirrors realistic MARL scenarios in which
exploration updates value estimates and causes the optimal action to change. Figures 1(b)–(c) show
the learning behavior of QMIX (Rashid et al., 2020a) and WQMIX (Rashid et al., 2020b) before and
after the payoff change. We use WQMIX as a representative example since the methods relying on
enhanced state-awareness are expected to behave similarly to WQMIX, as the matrix game involves
only a single state. The results reveal that QMIX fails in both cases because its monotonic mixing
network cannot capture the non-monotonic value structure, while WQMIX uses an unconstrained
target Q∗ and a weighted TD objective but still fails to adapt when the optimum shifts to (C,C).
These findings expose a key weakness, as existing methods often converge to suboptimal solutions
because they are unable to track a moving optimum.

We attribute this failure to the fact that conventional methods do not explicitly track suboptimal
actions. Once information about alternative high-value modes is discarded, the learner cannot adapt
when those actions later become optimal. To overcome this limitation, we propose Successive Sub-
value Q-learning (S2Q), a novel MARL framework that successively learns sub-value functions
Qsub
k , k = 1, . . . ,K, which share the same architecture as Qtot but are each dedicated to capturing

a distinct suboptimal action. When the optimal action changes, S2Q can immediately leverage the
corresponding sub-value function and guide Qtot to adapt. As shown in Fig. 1(d) with K = 2, under
the original payoff matrix Qsub

0 := Qtot learns the optimal (A,A), while Qsub
1 and Qsub

2 capture
(B,B) (second-optimal) and (C,C) (third-optimal). After the payoff is modified, Qsub

2 identifies
(C,C) as optimal, enabling Qtot to rapidly pivot to the correct solution. Beyond adaptability, the
maintained sub-value functions also support more effective exploration than standard ϵ-greedy by
actively sampling alternative high-value modes. Through this design, S2Q is expected to achieve
faster convergence than existing CTDE methods, demonstrating its efficiency across diverse MARL
environments. The next section details the successive learning scheme of the proposed S2Q.

4.2 SUCCESSIVE SUB-VALUE Q-LEARNING FOR RETAINING SUBTOPTIMAL ACTIONS

𝑸𝒕𝒐𝒕 = 𝑸𝟎
𝒔𝒖𝒃

𝑄0
1

Mixing Network

𝑄0
𝑁⋯

𝒔𝒕

𝑸𝟏
𝒔𝒖𝒃

𝑄1
1

Mixing Network

𝑄1
𝑁⋯

𝒔𝒕

𝑸𝑲
𝒔𝒖𝒃

𝑄𝐾
1

Mixing Network

𝑄𝐾
𝑁⋯

𝒔𝒕⋯
𝑸𝟐

𝒔𝒖𝒃

𝑄2
1

Mixing Network

𝑄2
𝑁⋯

𝒔𝒕

𝒂𝑲−𝟏,𝒕
∗𝒂𝟎,𝒕

∗

Suppress 𝑸∗ 𝒂𝒕 𝒂𝒕∈𝓐𝟎,𝒕

𝒂𝟏,𝒕
∗ 𝒂𝟐,𝒕

∗

Suppress 𝑸∗ 𝒂𝒕 𝒂𝒕∈𝓐𝟏,𝒕

Suppress 𝑸∗ 𝒂𝒕 𝒂𝒕∈𝓐𝑲−𝟏,𝒕

Suppress 𝑸∗ 𝒂𝒕 𝒂𝒕∈𝓐𝟐,𝒕

Figure 2: Illustration of S2Q framework. Each subnetwork Qsub,k transmits Ak, a set of optimal
actions according to all previous subnetworks. Qsub,k+1 learns the unrestricted target Q∗ while
suppressing the Q-values of actions included in Ak.

We now present the detailed formulation of S2Q, introduced in Section 4.1. S2Q trains multiple
sub-value functions to follow Q∗ as in WQMIX, but with one key idea: the first sub-value function
identifies the maximum joint action under the IGM condition, and the next sub-value function sup-
presses its value in the learning objective. This makes the action no longer the maximum, allowing
the next sub-value function to learn the highest remaining joint action under IGM, effectively the
next suboptimal action of Q∗. Repeating this process yields a sequence of high-value candidates,
with each sub-value function specializing in a different region of the action space.

Specifically, S2Q employs a sequence of sub-value functions Qsub
k , k = 0, . . . ,K to successively

track optimal and suboptimal actions. By definition, we set Qsub
0 := Qtot, where Qtot is trained

to select the true optimal action, while each Qsub
k aims to capture the k-th suboptimal action by

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

suppressing those identified by previous sub-value functions. All sub-value functions share the same
mixture architecture as QMIX and satisfy the IGM condition. Specifically, each Qsub

k consists of
independent individual utilities Qik, and the joint greedy action a∗k,t = (a1∗k,t, . . . , a

N∗
k,t ) with ai∗k,t =

argmaxQik(τ
i
t , ·) corresponds to the k-th suboptimal joint action.

To optimize each Qsub
k , we build upon the TD-learning objective of WQMIX by leveraging the

unrestrictedQ∗ trained via equation 1 and incorporating a suppression term for previously identified
suboptimal actions. The resulting objective is defined as:

E(st,τt,at)∼B

[
wk(st,at)

(
Qsub
k (st, τt,at)−

(
yt − αI(at ∈ Ak−1,t) ·Q∗

targ(st, τt,at)
))2]

, (2)

where wk is a WQMIX-based weighting function for each k, detailed in Appendix B, yt =
rt + γQ∗

targ(st+1, τt+1,a
∗
0,t+1) is the target from Q∗ in equation 1, I is the indicator function, B

is the replay buffer, and Ak,t = {a∗0,t,a∗1,t, . . . ,a∗k,t} with A−1,t = ∅ denotes the set of previously
identified suboptimal actions. The factor α controls how strongly the values of actions in Ak−1,t

are suppressed. This successive learning procedure enables to maintain Qsub
0 , . . . , Qsub

K , where Qsub
0

represents the global optimum and the remaining sub-value functions capture successive subopti-
mal actions. By tracking these actions, S2Q allows Q∗ to effectively update its values and ensures
that Qsub

0 can promptly adapt when the optimal action changes. Fig. 2 illustrates this process, in
which each Qsub

k suppresses previously identified actions before selecting the next best candidate.
Importantly, although this procedure is presented in the context of WQMIX, it is general and can be
applied to any CTDE method by replacing Q∗ with Qtot. Consequently, S2Q can follow changes in
the value landscape more closely and adapt to new optima faster than conventional approaches.

4.3 COORDINATED EXECUTION VIA COMMUNICATION DURING TRAINING

Policy

Value

𝜏𝑡
1 𝜏𝑡

𝑁⋯

⋯ ⋯𝑄0
𝑠𝑢𝑏

𝒂0,𝑡
∗

𝐏𝑡 = Softmax(𝑄∗ 𝒂0,𝑡
∗ , … , 𝑄∗ 𝒂𝐾,𝑡

∗ )

𝑄𝑘
𝑠𝑢𝑏(𝑠𝑡 , 𝝉𝑡, 𝒂𝑘,𝑡

∗ )

𝑄𝑘
1(𝜏𝑡

1, 𝑎𝑘,𝑡
1∗ ) 𝑄𝑘

𝑁(𝜏𝑡
𝑁, 𝑎𝑘,𝑡

𝑁∗)

𝑠𝑡Mixing Network

⋯

𝒂𝑘,𝑡
∗ 𝒂𝐾,𝑡

∗

𝑄𝑘
𝑠𝑢𝑏 𝑄𝐾

𝑠𝑢𝑏

S2Q Learning

෡𝐏𝑡

𝑃0,𝑡 𝑃𝐾,𝑡𝑃𝑘,𝑡⋯ ⋯

Ƹ𝑠𝑡

𝒛𝑡

𝑫

𝑬

෡𝐏𝑡
Recon

Encoder-Decoder

𝑎𝑡
𝑖 ∼ greedy(𝑄0

𝑖 )

(no comm.)Test

𝑘 ∼ ෡𝐏𝑡 , 𝑎𝑡
𝑖 ∼ 𝜖 greedy(𝑄𝑘

𝑖 )

(comm.)Train

Figure 3: Overall framework of S2Q

Algorithm 1 S2Q Framework

1: Initialize Q∗, [Qsubk ]Kk=0, (E,D)
2: for each training iteration do
3: for each environment step t do
4: if training then
5: Obtain zt = E(τt)

6: Obtain P̂t, ŝt = D(zt)

7: Sample k ∼ P̂t

8: Sample at ∼ ϵ-greedy(Qsubk )
9: else

10: Sample at ∼ greedy(Qsub, 0)
11: end if
12: end for
13: Compute target y
14: Update Q∗, Qsubk via Equation 1, 2
15: Update E, D
16: end for

As described above, S2Q continuously tracks suboptimal actions, but for these actions to contribute
effectively,Q∗ must be trained toward global convergence. However, prior MARL methods typically
rely on agent-wise ϵ-greedy exploration, under which the probability of joint exploration decreases
exponentially with the number of agents, causing most joint actions to remain near the current op-
timum. To overcome this limitation, we explicitly execute tracked suboptimal actions with priority
determined by a Softmax distribution Pt over theirQ∗ values, thereby ensuring more frequent visits,
enabling Q∗ to find better optimal and suboptimal actions, defined as

Pt = (P0,t, . . . , PK,t) := Softmax
(
Q∗(st, τt,a

∗
0,t)/T, . . . , Q

∗(st, τt,a
∗
K,t)/T

)
, (3)

where T is a temperature parameter. The behavior policy first samples k ∼ Pt, and then executes
actions from Qsub

k according to ϵ-greedy rule, i.e., ait ∼ ϵ-greedy(Qik). This design first selects k
based on Q∗ and then explores around the corresponding suboptimal action, and we empirically
show in Appendix C that S2Q visits a wider range of spaces than conventional ϵ-greedy exploration.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Exact computation of Pt, however, requires access to global information that decentralized agents
cannot directly observe. More importantly, since all agents must select the same sub-value func-
tion index k in order to execute Qsub

k consistently, coordination among agents is necessary. To re-
solve these challenges, we introduce communication during training, allowing agents to estimate
Pt jointly and synchronize their choice of Qsub

k . For this purpose, we adopt an encoder–decoder ar-
chitecture for general representation learning, following prior communication methods (Guan et al.,
2022; Wang et al., 2019). Specifically, encoder E maps local histories τt into a latent representation
zt = E(τt), and the decoder D reconstructs both the global state and an approximate distribution
(ŝt, P̂t) = D(zt). Agents then synchronize on the same k sampled from P̂t instead of Pt and
execute the corresponding Qsub

k , ensuring consistent and accurate use of sub-value functions.

At test time, by contrast, communication is not required in the default setup of S2Q. Since
Qsub

0 = Qtot alone suffices to produce the greedy optimal action a∗0,t, evaluation remains fully decen-
tralized and communication-free. This provides a practical advantage over conventional communi-
cation methods that rely on message passing even during evaluation. Nevertheless, in environments
where communication is indispensable for task success, we also consider a variant, denoted S2Q-
Comm, in which the latent zt is provided to each Qik during both training and execution. Through
this practical design, S2Q integrates successive sub-value functions with a Softmax-based behavior
policy, enabling Qtot to adapt quickly when the optimal action changes. The overall S2Q framework
is illustrated in Fig. 3, and its training procedure is summarized in Algorithm 1. Further details on
loss functions and implementation are provided in Appendix B.

5 EXPERIMENTS

(a) SMAC-Hard+: Corridor (b) GRF: academy 3 vs 2 (c) SMAC-Comm: 1o 2r vs 4r

Figure 4: Experiment environments

In this section, we evaluate S2Q on two widely used MARL benchmarks: the StarCraft Multi-
Agent Challenge (SMAC) (Samvelyan et al., 2019), which involves micromanagement tasks in
StarCraft II, and Google Research Football (GRF) (Kurach et al., 2020), which features coopera-
tive soccer-like scenarios with an opponent team including a goalkeeper. As shown in Fig. 4(a), we
consider the SMAC-Hard+ suite, consisting of one hard map (5m vs 6m) and five super hard maps
(MMM2, 27m vs 30m, corridor, 6h vs 8z, 3s5z vs 3s6z), all of which require a high degree
of coordination among agents. Fig. 4(b) illustrates the GRF setups, including academy 3 vs 2
and academy 4 vs 3, where the number of agents and team formations are varied. In addition,
Fig. 4(c) depicts the SMAC-Comm suite, which explicitly requires agent communication for suc-
cessful task completion, including 1o 10b vs 1r, 1o 2r vs 4r, 5z vs 1ul, and bane vs hM.
Further details of the environmental setup are provided in Appendix D. For all reported result tables
and plots, we present the mean and standard deviation across five random seeds.

5.1 PERFORMANCE ANALYSIS

For performance evaluation, we consider communication-free tasks from SMAC-Hard+ and GRF,
along with communication-demanding scenarios from SMAC-Comm, with appropriate baselines for
each setting to ensure fair comparison. In the SMAC-Hard+ and GRF benchmarks, we compare
S2Q with QMIX and methods addressing the limitations of monotonic value decomposition, includ-
ing WQMIX1, which leverages Q∗ for more accurate value estimation; DOP (Wang et al., 2020d)
and FOP (Zhang et al., 2021), which extend the actor–critic paradigm to promote better global

1Throughout our experiments, we adopt OW-QMIX variant of WQMIX (Rashid et al., 2020b).

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

coordination; PAC (Zhou et al., 2022) and RiskQ (Shen et al., 2023), which integrate counterfac-
tual prediction or risk-aware objectives; and MARR (Yang et al., 2024), which improves sample
efficiency through reset mechanisms. We also include MASIA (Guan et al., 2022), which recon-
structs global state information from local observations, to evaluate the effect of communication.
For the SMAC-Comm scenarios, where information exchange among agents is critical under par-
tial observability, we adopt S2Q-Comm, a variant that provides the latent zt to each agent’s utility
Qi(τ it , zt, a

i
t), and compare it with QMIX, FullCom, which augments QMIX with full observation

sharing, and recent communication-focused MARL methods such as MASIA, NDQ (Wang et al.,
2019), and CAMA (Shao et al., 2023), which enhance communication via information-theoretic
regularization or complementary attention, as well as MAIC (Yuan et al., 2022) and T2MAC (Sun
et al., 2024), which employ selective and targeted communication for improved coordination effi-
ciency. All algorithms are implemented using the authors’ official code, and S2Q is trained with the
best-performing hyperparameter (K = 2, T = 0.1). Additional experimental details including the
hyperparameter setup of S2Q are provided in Appendix E.

SMAC-Hard+: 5m_vs_6m SMAC-Hard+: MMM2 SMAC-Hard+: 27m_vs_30m SMAC-Hard+: Corridor

SMAC-Hard+: 6h_vs_8z SMAC-Hard+: 3s5z_vs_3s6z GRF: academy_3_vs_2 GRF: academy_4_vs_3

Figure 5: Performance comparison: Average test win rates in the SMAC-Hard+ and GRF tasks

SMAC-Hard+ and GRF: Fig. 5 compares performance on SMAC-Hard+ and GRF. S2Q con-
sistently outperforms existing baselines, achieving faster convergence and higher asymptotic re-
turns. This advantage is most evident in exploration-intensive scenarios such as 6h vs 8z and
3s5z vs 3s6z, where conventional methods adapt slowly to the optimal joint action shifts, as
shown in the payoff matrix experiment in Section 4.1. By continually tracking suboptimal actions
with successive sub-value functions, S2Q allows Qtot to rapidly adjust toward the new optimum,
enabling more efficient exploration and quicker convergence, even in the challenging GRF tasks.

SMAC-Comm: 1o_2r_vs_4r SMAC-Comm: 1o_10b_vs_1r SMAC-Comm: 5z_vs_1ul SMAC-Comm: bane_vs_hM

Figure 6: Performance comparison: Average test win rates in the SMAC-Comm tasks

SMAC-Comm: Fig. 6 presents results for communication-critical tasks. S2Q-Comm performs com-
parably to baselines in the simpler 1o 2r vs 4r scenario but demonstrates substantial gains in
more challenging settings such as 5z vs 1ul and bane vs hM, where tight coordination and real-
time adaptation are required. Synchronized sub-value function selection through the learned latent
zt enables agents to consistently exploit informative suboptimal actions during training, which ac-
celerates convergence and leads to more efficient cooperative behaviors. These findings suggest that
S2Q-Comm can serve as a general approach for leveraging communication efficiently, providing a
promising direction for scaling to larger teams and more complex partially observable environments.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Together, these experiments show that by continually tracking and exploiting suboptimal actions,
S2Q achieves faster convergence and more efficient learning than state-of-the-art MARL meth-
ods. To further validate its generality, we also evaluate S2Q on the more stochastic environment
SMACv2 (Ellis et al., 2023), and extend it to other CTDE methods such as VDN (Sunehag et al.,
2017) and QPLEX (Wang et al., 2020a), observing similarly consistent performance gains. Detailed
results for these additional experiments are provided in Appendix F.

5.2 TRAJECTORY ANALYSIS

HitMoveAlly Enemy

𝑃𝐾(%)𝑃𝐾(%)

𝟕. 𝟑
𝟐. 𝟕

Move

Move

Hit

Enemy Hit

Move

Hit
Hit

Move Move
Exploration (2M) Shift Optimal (5M)

Enemy
Ally

𝑄∗(𝒂𝒌,𝟐
∗ )

𝒂𝟎
∗ 𝒂𝟎

∗𝒂𝟏
∗ 𝒂𝟏

∗𝒂𝟐
∗ 𝒂𝟐

∗

𝑄∗(𝒂𝒌,𝟐
∗ )

𝒂𝟎
∗ 𝒂𝟎

∗𝒂𝟏
∗ 𝒂𝟏

∗𝒂𝟐
∗ 𝒂𝟐

∗

𝑄∗(𝒂𝒌,𝟐
∗ )

𝒂𝟎
∗ 𝒂𝟎

∗𝒂𝟏
∗ 𝒂𝟏

∗𝒂𝟐
∗ 𝒂𝟐

∗

𝟗𝟎. 𝟎𝟖𝟑. 𝟔

𝟏𝟎. 𝟐𝟔. 𝟐

𝟖𝟐. 𝟒

𝟏𝟎. 𝟏𝟕. 𝟓

𝟔. 𝟔 𝟔. 𝟒 𝟔. 𝟑𝟔. 𝟏 𝟓. 𝟗𝟓. 𝟖𝟒. 𝟕 𝟒. 𝟓 𝟒. 𝟓

𝑃𝐾(%)

Shift

𝒕 = 𝟐 𝒕 = 𝟐

Figure 7: Training behavior of S2Q. Left: training step = 2M. Right: training step = 5M

To investigate the training dynamics of S2Q (K = 2), we analyze the distribution of agents’ actions
in the 6h vs 8z scenario, shown in Fig. 7(a). Fig. 7(b) reports the evolution of hit rate and win rate
over training. Since SMAC tasks require agents to defeat the opposing team, the dominant actions
are move and hit. Early in training, agents tend to prioritize survival, favoring move and exhibiting
low hit rates. However, as training progresses, the hit rate gradually increases, leading to higher
win rates, indicating that the optimal policy shifts from evasive behavior towards more aggressive
strategies where hit dominates. Fig. 7(c) illustrates how S2Q adapts to this shift in optimality by
leveraging its successive sub-value functions. Initially, move is considered the optimal action (a∗0,t),
while hit actions (a∗1,t, a

∗
2,t) are tracked as suboptimal. As training proceeds and Q∗ recognizes that

hit yields higher returns, S2Q gradually increases the execution frequency of hit via the Softmax-
based behavior policy. This enables Qsub

0 to promptly adjust to the newly optimal action, resulting
in an increase in hit rate and ultimately higher win rates. These results provide a clear illustration
of how S2Q tracks suboptimal actions and uses them to adapt efficiently when the optimal action
changes. Additional trajectory analysis for the SMAC-Comm environment is provided in Appendix F.

5.3 ABLATION STUDY

In this section, we present ablation studies evaluating the contributions of S2Q’s core components
and hyperparameters. Component analysis is averaged across all scenarios in SMAC-Hard+, while
hyperparameter analysis is conducted on 6h vs 8z, where S2Q’s benefits are most evident. Ad-
ditional results, including ablations on the suppression constant α, the weighting factor wc for
WQMIX-based TD learning, and computational complexity, are reported in Appendix F.

Component evaluation: To evaluate the contribution of each component in S2Q, we design
three ablations: S2Q no wTD removes the effect of weighted TD learning by replacing Q∗ with
Qsub

0 ; S2Q no soft eliminates Softmax-based execution, and always act according to Qsub
0 ; and

S2Q random uniformly samples k rather than using Softmax probabilities. Table 1 reports the
average win rate across six SMAC-Hard+ scenarios. The results show that ‘S2Q no wTD’ main-
tains strong performance, indicating that the successive learning of sub-value functions and their
execution are more critically to performance than the auxiliary weighting scheme. In contrast,
‘S2Q no soft’ suffers a noticeable drop in win rate, showing that simply retaining suboptimal actions

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 1: Component evaluation of
S2Q on SMAC-Hard+ tasks.

Method Avg. Win Rate(%)

S2Q 73.43 ± 5.29
S2Q no wTD 70.59 ± 4.78
S2Q no soft 55.17 ± 6.71
S2Q random 48.05 ± 9.37
QMIX 43.94 ± 10.06

SMAC-Hard+: 6h_vs_8z

(a)
SMAC-Hard+: 6h_vs_8z

(b)
Figure 8: Hyperparameter analysis. Effect of (a) the number of
sub-networks K and (b) Softmax temperature T .

without prioritizing their execution is insufficient. ‘S2Q random’ further degrades performance, as
ignoring the relative importance of different sub-value functions dilutes learning. These findings
highlight that the proposed successive sub-value learning and the Softmax-guided execution are
indispensable for enabling S2Q to achieve rapid convergence toward high-quality joint policies.

Number of sub-value functions K: Controls the number of sub-value functions to learn. Fig. 8(a)
shows performance for K ∈ [0, 1, 2, 3]. The results demonstrate that even with relatively small
values of K, S2Q can effectively address diverse suboptimal actions in complex environments with
large joint action spaces, such as SMAC, yielding rapid convergence and high final win rates. In
particular, K = 2 achieves the best performance, reaching nearly 70% win rate. On the other hand,
setting K = 0 fails to capture meaningful suboptimal actions, thereby limiting the effectiveness
of exploration. Conversely, a larger value, such as K = 3, may introduce excessive variance and
destabilize learning. These findings indicate that a moderate number of candidate sub-networks
achieves a favorable trade-off between diversity and stability, maximizing the effectiveness of S2Q.

Softmax temperature T : The temperature T regulates the sharpness of the Softmax distribution
Pt. Fig. 8(b) shows the performance for T ∈ {0.01, 0.1, 0.2, 1.0}. The results indicate that T = 0.1
yields the best balance between convergence speed and final win rate. A very small temperature
(T = 0.01) produces overly deterministic behavior early in training, limiting exploration and slow-
ing progress toward the optimum. In contrast, a high temperature (T = 1.0) promotes excessive
exploration, delaying convergence and occasionally leading to suboptimal plateaus. Interestingly,
T = 0.2 also performs competitively, suggesting that S2Q is relatively robust to moderate changes
in temperature, as long as sampling remains focused enough to prioritize promising sub-values.

6 LIMITATIONS

While S2Q shows strong performance across diverse MARL environments, using multiple sub-value
functions increases computation and memory requirements. However, our analysis in Appendix F
shows that this overhead is moderate relative to the performance gains, making the trade-off favor-
able in most practical settings where faster convergence and higher final performance are critical. In
addition, S2Q relies on a Softmax-based selection strategy with a temperature parameter controlling
the exploration-exploitation balance. Nevertheless, we find that S2Q is not highly sensitive to this
parameter, and a reasonable value can be chosen with minimal tuning effort, allowing S2Q to remain
practical and easily deployable across a wide range of environments.

7 CONCLUSION

In this work, we addressed the fundamental challenge posed by monotonic value decomposition in
MARL and introduced S2Q, a novel framework based on successive Q-learning. By sequentially
learning multiple sub-value functions, S2Q continuously tracks high-value alternative actions and
rapidly adapts when the optimal joint action shifts, leading to more effective exploration and faster
convergence. This design enables efficient coordination without requiring explicit communication
or access to global state information. Extensive experiments on challenging MARL benchmarks,
including SMAC and GRF, demonstrate that S2Q consistently avoids suboptimal solutions induced
by monotonicity constraints and achieves substantial improvements over state-of-the-art methods.
These results position S2Q as a practical and general framework for advancing cooperative MARL.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work focuses on algorithmic improvements in cooperative multi-agent reinforcement learning
(MARL) under the CTDE paradigm. Our study uses publicly available simulation environments,
including SMAC (Samvelyan et al., 2019), Google Research Football (Kurach et al., 2020), and
SMACv2 (Ellis et al., 2023), which do not involve human subjects, personal data, or sensitive in-
formation. Our work is motivated by cooperative and coordination tasks, and does not explicitly
encourage or evaluate harmful uses. We adhere to the ICLR Code of Ethics and affirm that all re-
search was conducted in alignment with principles of fairness, transparency, and academic integrity.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide a detailed description of S2Q in Section 4.3, with implemen-
tation details in Appendix B. Benchmarks including SMAC (Samvelyan et al., 2019), GRF (Kurach
et al., 2020), and SMACv2 (Ellis et al., 2023) are publicly available, with descriptions and code links
in Appendix D. An anonymized code repository containing the full implementation is submitted as
supplementary material where configurations are detailed in Appendix E. Finally, considered base-
lines and their repositories are listed in Appendix E.3. Together, these resources collectively enable
independent reproduction of our results reported in this paper.

REFERENCES

Fouad Bahrpeyma and Dirk Reichelt. A review of the applications of multi-agent reinforcement
learning in smart factories. Frontiers in Robotics and AI, 9:1027340, 2022.

Lorenzo Canese, Gian Carlo Cardarilli, Luca Di Nunzio, Rocco Fazzolari, Daniele Giardino, Marco
Re, and Sergio Spanò. Multi-agent reinforcement learning: A review of challenges and applica-
tions. Applied Sciences, 11(11):4948, 2021.

Jingdi Chen, Hanhan Zhou, Yongsheng Mei, Carlee Joe-Wong, Gina C Adam, Nathaniel Bastian,
and Tian Lan. Rgmdt: Return-gap-minimizing decision tree extraction in non-euclidean metric
space. Advances in Neural Information Processing Systems, 37:18806–18847, 2024.

Abhishek Das, Théophile Gervet, Joshua Romoff, Dhruv Batra, Devi Parikh, Mike Rabbat, and
Joelle Pineau. Tarmac: Targeted multi-agent communication. In International Conference on
machine learning, pp. 1538–1546. PMLR, 2019.

Benjamin Ellis, Jonathan Cook, Skander Moalla, Mikayel Samvelyan, Mingfei Sun, Anuj Mahajan,
Jakob Foerster, and Shimon Whiteson. Smacv2: An improved benchmark for cooperative multi-
agent reinforcement learning. Advances in Neural Information Processing Systems, 36:37567–
37593, 2023.

Jakob Foerster, Ioannis Alexandros Assael, Nando De Freitas, and Shimon Whiteson. Learning
to communicate with deep multi-agent reinforcement learning. Advances in neural information
processing systems, 29, 2016.

Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
Counterfactual multi-agent policy gradients. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

Cong Guan, Feng Chen, Lei Yuan, Chenghe Wang, Hao Yin, Zongzhang Zhang, and Yang Yu.
Efficient multi-agent communication via self-supervised information aggregation. Advances in
Neural Information Processing Systems, 35:1020–1033, 2022.

Jian Hu, Siyang Jiang, Seth Austin Harding, Haibin Wu, and Shih-wei Liao. Rethinking the imple-
mentation tricks and monotonicity constraint in cooperative multi-agent reinforcement learning.
arXiv preprint arXiv:2102.03479, 2021.

Shengchao Hu, Li Shen, Ya Zhang, and Dacheng Tao. Learning multi-agent communication from
graph modeling perspective. arXiv preprint arXiv:2405.08550, 2024.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Tianmeng Hu, Biao Luo, Chunhua Yang, and Tingwen Huang. Mo-mix: Multi-objective multi-agent
cooperative decision-making with deep reinforcement learning. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 45(10):12098–12112, 2023.

Shariq Iqbal and Fei Sha. Actor-attention-critic for multi-agent reinforcement learning. In Interna-
tional conference on machine learning, pp. 2961–2970. PMLR, 2019.

Karol Kurach, Anton Raichuk, Piotr Stańczyk, Michał Zajkac, Olivier Bachem, Lasse Espeholt,
Carlos Riquelme, Damien Vincent, Marcin Michalski, Olivier Bousquet, et al. Google research
football: A novel reinforcement learning environment. In Proceedings of the AAAI conference on
artificial intelligence, volume 34, pp. 4501–4510, 2020.

Chuming Li, Jie Liu, Yinmin Zhang, Yuhong Wei, Yazhe Niu, Yaodong Yang, Yu Liu, and Wanli
Ouyang. Ace: Cooperative multi-agent q-learning with bidirectional action-dependency. In Pro-
ceedings of the AAAI conference on artificial intelligence, volume 37, pp. 8536–8544, 2023a.

Huiqun Li, Hanhan Zhou, Yifei Zou, Dongxiao Yu, and Tian Lan. Concaveq: Non-monotonic value
function factorization via concave representations in deep multi-agent reinforcement learning.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 17461–17468,
2024.

Pengyi Li, Jianye Hao, Hongyao Tang, Yan Zheng, and Xian Fu. Race: improve multi-agent rein-
forcement learning with representation asymmetry and collaborative evolution. In International
Conference on Machine Learning, pp. 19490–19503. PMLR, 2023b.

Tianxu Li, Kun Zhu, Nguyen Cong Luong, Dusit Niyato, Qihui Wu, Yang Zhang, and Bing Chen.
Applications of multi-agent reinforcement learning in future internet: A comprehensive survey.
IEEE Communications Surveys & Tutorials, 24(2):1240–1279, 2022.

Xinran Li and Jun Zhang. Context-aware communication for multi-agent reinforcement learning.
arXiv preprint arXiv:2312.15600, 2023.

Shunyu Liu, Yihe Zhou, Jie Song, Tongya Zheng, Kaixuan Chen, Tongtian Zhu, Zunlei Feng, and
Mingli Song. Contrastive identity-aware learning for multi-agent value decomposition. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp. 11595–11603, 2023.

Yong Liu, Weixun Wang, Yujing Hu, Jianye Hao, Xingguo Chen, and Yang Gao. Multi-agent game
abstraction via graph attention neural network. In Proceedings of the AAAI conference on artificial
intelligence, volume 34, pp. 7211–7218, 2020.

Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-
agent actor-critic for mixed cooperative-competitive environments. Advances in neural informa-
tion processing systems, 30, 2017.

Navid Naderializadeh, Fan H Hung, Sean Soleyman, and Deepak Khosla. Graph convolutional value
decomposition in multi-agent reinforcement learning. arXiv preprint arXiv:2010.04740, 2020.

Frans A Oliehoek, Christopher Amato, et al. A concise introduction to decentralized POMDPs,
volume 1. Springer, 2016.

James Orr and Ayan Dutta. Multi-agent deep reinforcement learning for multi-robot applications: A
survey. Sensors, 23(7):3625, 2023.

Bei Peng, Tabish Rashid, Christian Schroeder de Witt, Pierre-Alexandre Kamienny, Philip Torr,
Wendelin Böhmer, and Shimon Whiteson. Facmac: Factored multi-agent centralised policy gra-
dients. Advances in Neural Information Processing Systems, 34:12208–12221, 2021.

Haoyuan Qin, Chennan Ma, Deng Deng, Zhengzhu Liu, Songzhu Mei, Xinwang Liu, Cheng Wang,
and Siqi Shen. The dormant neuron phenomenon in multi-agent reinforcement learning value
factorization. Advances in Neural Information Processing Systems, 37:35727–35759, 2024.

Wei Qiu, Xinrun Wang, Runsheng Yu, Rundong Wang, Xu He, Bo An, Svetlana Obraztsova, and
Zinovi Rabinovich. Rmix: Learning risk-sensitive policies for cooperative reinforcement learning
agents. Advances in Neural Information Processing Systems, 34:23049–23062, 2021.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent reinforcement
learning. Journal of Machine Learning Research, 21(178):1–51, 2020a.

Tabish Rashid, Gregory Farquhar, Bei Peng, and Shimon Whiteson. Weighted qmix: Expanding
monotonic value function factorisation for deep multi-agent reinforcement learning. Advances in
neural information processing systems, 33:10199–10210, 2020b.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder De Witt, Gregory Farquhar, Nantas
Nardelli, Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson.
The starcraft multi-agent challenge. arXiv preprint arXiv:1902.04043, 2019.

Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. Safe, multi-agent, reinforcement
learning for autonomous driving. arXiv preprint arXiv:1610.03295, 2016.

Jianzhun Shao, Hongchang Zhang, Yun Qu, Chang Liu, Shuncheng He, Yuhang Jiang, and Xi-
angyang Ji. Complementary attention for multi-agent reinforcement learning. In International
conference on machine learning, pp. 30776–30793. PMLR, 2023.

Siqi Shen, Mengwei Qiu, Jun Liu, Weiquan Liu, Yongquan Fu, Xinwang Liu, and Cheng Wang.
Resq: A residual q function-based approach for multi-agent reinforcement learning value factor-
ization. Advances in Neural Information Processing Systems, 35:5471–5483, 2022.

Siqi Shen, Chennan Ma, Chao Li, Weiquan Liu, Yongquan Fu, Songzhu Mei, Xinwang Liu, and
Cheng Wang. Riskq: risk-sensitive multi-agent reinforcement learning value factorization. Ad-
vances in Neural Information Processing Systems, 36:34791–34825, 2023.

Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. Qtran: Learning
to factorize with transformation for cooperative multi-agent reinforcement learning. In Interna-
tional conference on machine learning, pp. 5887–5896. PMLR, 2019.

Jianyu Su, Stephen Adams, and Peter Beling. Value-decomposition multi-agent actor-critics. In
Proceedings of the AAAI conference on artificial intelligence, volume 35, pp. 11352–11360, 2021.

Sainbayar Sukhbaatar, Rob Fergus, et al. Learning multiagent communication with backpropaga-
tion. Advances in neural information processing systems, 29, 2016.

Chuxiong Sun, Zehua Zang, Jiabao Li, Jiangmeng Li, Xiao Xu, Rui Wang, and Changwen Zheng.
T2mac: Targeted and trusted multi-agent communication through selective engagement and
evidence-driven integration. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 15154–15163, 2024.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition
networks for cooperative multi-agent learning. arXiv preprint arXiv:1706.05296, 2017.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. nature, 575(7782):350–354, 2019.

Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. Qplex: Duplex dueling
multi-agent q-learning. arXiv preprint arXiv:2008.01062, 2020a.

Tonghan Wang, Jianhao Wang, Chongyi Zheng, and Chongjie Zhang. Learning nearly decompos-
able value functions via communication minimization. arXiv preprint arXiv:1910.05366, 2019.

Tonghan Wang, Heng Dong, Victor Lesser, and Chongjie Zhang. Roma: Multi-agent reinforcement
learning with emergent roles. arXiv preprint arXiv:2003.08039, 2020b.

Tonghan Wang, Tarun Gupta, Anuj Mahajan, Bei Peng, Shimon Whiteson, and Chongjie Zhang.
Rode: Learning roles to decompose multi-agent tasks. arXiv preprint arXiv:2010.01523, 2020c.

Yihan Wang, Beining Han, Tonghan Wang, Heng Dong, and Chongjie Zhang. Dop: Off-policy
multi-agent decomposed policy gradients. In International conference on learning representa-
tions, 2020d.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Muning Wen, Jakub Kuba, Runji Lin, Weinan Zhang, Ying Wen, Jun Wang, and Yaodong Yang.
Multi-agent reinforcement learning is a sequence modeling problem. Advances in Neural Infor-
mation Processing Systems, 35:16509–16521, 2022.

Yaodong Yang, Jianye Hao, Ben Liao, Kun Shao, Guangyong Chen, Wulong Liu, and Hongyao
Tang. Qatten: A general framework for cooperative multiagent reinforcement learning. arXiv
preprint arXiv:2002.03939, 2020.

Yaodong Yang, Guangyong Chen, Jianye Hao, and Pheng-Ann Heng. Sample-efficient multia-
gent reinforcement learning with reset replay. In Ruslan Salakhutdinov, Zico Kolter, Kather-
ine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Pro-
ceedings of the 41st International Conference on Machine Learning, volume 235 of Proceed-
ings of Machine Learning Research, pp. 55961–55975. PMLR, 21–27 Jul 2024. URL https:
//proceedings.mlr.press/v235/yang24c.html.

Lei Yuan, Jianhao Wang, Fuxiang Zhang, Chenghe Wang, Zongzhang Zhang, Yang Yu, and
Chongjie Zhang. Multi-agent incentive communication via decentralized teammate modeling. In
Proceedings of the AAAI conference on artificial intelligence, volume 36, pp. 9466–9474, 2022.

Yifan Zang, Jinmin He, Kai Li, Haobo Fu, Qiang Fu, Junliang Xing, and Jian Cheng. Automatic
grouping for efficient cooperative multi-agent reinforcement learning. Advances in neural infor-
mation processing systems, 36:46105–46121, 2023.

Xianghua Zeng, Hao Peng, and Angsheng Li. Effective and stable role-based multi-agent collabo-
ration by structural information principles. In Proceedings of the AAAI conference on artificial
intelligence, volume 37, pp. 11772–11780, 2023.

Tianhao Zhang, Yueheng Li, Chen Wang, Guangming Xie, and Zongqing Lu. Fop: Factorizing
optimal joint policy of maximum-entropy multi-agent reinforcement learning. In International
conference on machine learning, pp. 12491–12500. PMLR, 2021.

Hanhan Zhou, Tian Lan, and Vaneet Aggarwal. Pac: Assisted value factorization with counterfactual
predictions in multi-agent reinforcement learning. Advances in Neural Information Processing
Systems, 35:15757–15769, 2022.

Hanhan Zhou, Tian Lan, and Vaneet Aggarwal. Value functions factorization with latent state in-
formation sharing in decentralized multi-agent policy gradients. IEEE Transactions on Emerging
Topics in Computational Intelligence, 7(5):1351–1361, 2023.

Tianyu Zhu, Xinli Shi, Xiangping Xu, Jie Gui, and Jinde Cao. Hypercomm: Hypergraph-based
communication in multi-agent reinforcement learning. Neural Networks, 178:106432, 2024.

13

https://proceedings.mlr.press/v235/yang24c.html
https://proceedings.mlr.press/v235/yang24c.html


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this paper, we made limited use of large language models (LLMs) exclusively for pol-
ishing grammar and improving the clarity of our writing. No part of the research process, including
problem formulation, method design, experimentation, analysis, or interpretation, was conducted
using LLMs. Their role was strictly restricted to editorial assistance, ensuring the presentation of
our work is clear and readable.

B IMPLEMENTATION DETAILS

In this section, we detail the implementation of the proposed S2Q method. First, we present the
encoder–decoder architecture described in Section 4.3 together with its associated loss function in
Appendix B.1. Then, we introduce the parameterization for the practical implementation of S2Q and
the corresponding total loss function in Appendix B.2. Furthermore, details on re-defined weight-
ing function wk, which enables S2Q to more effectively shift Qtot towards the optimal policy, are
provided in Appendix B.3.

B.1 TRAINING THE ENCODER-DECODER STRUCTURE

As introduced in Section 4.3, exact computation of Pt requires access to the global state s. There-
fore, we proposed the approximation of Pt based on an encoder-decoder architecture. For practical
implementation, we parameterize the encoder-decoder structure with neural network parameter ψ
and represent it as Eψ and Dψ . The encoder Eψ utilizes an rnn layer, and maps the concatena-
tion of all agents’ local histories τ it into a latent representation zt = Eψ(τt). Then, the decoder
Dψ reconstructs both the global state and an approximate distribution (ŝt, P̂t) = Dψ(zt). Then,
the encoder-decoder architecture is trained to approximate PK based on a cross-entropy (CE) loss
CE(PK , P̂K), while the reconstruction mean square error (MSE) loss MSE(s, ŝ) encourages z to
capture essential state information, thereby improving the prediction accuracy of P̂K . The overall
loss of the encoder-decoder architecture Llatent(ψ) is defined as:

Llatent(ψ) = CE(PK , P̂K) + MSE(s, ŝ). (B.1)

B.2 PRACTICAL IMPLEMENTATION OF S2Q

For practical implementation of S2Q, we parameterize both the monotonic sub-value functions
Qsub

0 , . . . , Qsub
K and the unrestricted value function Q∗ using neural network parameter θ. As de-

scribed in Section 2.2, WQMIX (Rashid et al., 2020b) trains the unrestricted value function Q∗ via
temporal-difference (TD) loss in equation 1, which we rewrite for the parameteriszedQ-function as:

LQ∗(θ) = E(st,τt,at)∼B
[
(Q∗

θ(st, τt,at)− yt)
2
]
, yt = rt + γQ∗

θ̄(st+1, τt+1,a
′
t+1), (B.2)

where τt = (τ1t , . . . , τ
N
t ) is the joint history, Q∗

θ̄
the target network, and ai′t = argmaxQi(τ it , ·)

the individual target action. Then, WQMIX further updates Qtot toward the target yt by adaptively
weighting the TD error using w(st,at), defined as w(st,at) = 1 if Qtot(st, τt,at) < yt and
w(st,at) = wc < 1 otherwise, thereby prioritizing updates on actions that are underestimated.

Following this design, we train Q∗
θ , and then redefine the mean squared errors of the sub-value

functions in equation 2 as the successive loss Lsuccessive(θ), expressed as:

Lsuccessive(θ) =

K∑
k=0

E(st,τt,at)∼B

[
wk(st,at)

(
Qsub
θ,k(st, τt,at)

−
(
yt − α I(at ∈ Ak−1,t) ·Q∗

θ̄(st, τt,at)
))2

]
,

(B.3)

where wk is a weighting function for each k inspired by WQMIX, which we detail in Appendix B.3.
I is the indicator function, B is the replay buffer, and Ak,t = {a∗0,t,a∗1,t, . . . ,a∗k,t} with A−1,t = ∅
denotes the set of previously identified suboptimal actions. The factor α controls how strongly the

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

values of actions in Ak−1,t are suppressed. Combined with the encoder-decoder loss Llatent(ψ)
introduced in Appendix B.1, the final loss function of S2Q is derived as:

LS2Q(θ, ψ) = Lsuccessive(θ) + LQ∗(θ) + Llatent(ψ) (B.4)

To further stabilize optimal action selection, we adopt a simple sampling strategy that balances sta-
bility and exploration. Specifically, with probability p = 0.5, the sub-network index is fixed to k = 0
for the entire episode, ensuring consistent learning of the global optimum. Otherwise, k is sampled
at each timestep from P̂t, to promote exploration of suboptimal actions. This simple yet effective
mechanism provides both reliable convergence toward the optimum and sufficient exploration diver-
sity. Algorithm B.1 summarizes the full S2Q learning process.

Algorithm B.1 Successive Sub-value Q-learning (S2Q) Framework

1: Initialize unrestricted value network Q∗
θ and its target network Q∗

θ̄
, sub-value networks

[Qsub
θ,k]

K
k=0, encoder-decoder (Eψ, Dψ), and replay buffer B

2: for each training iteration do
3: With probability p = 0.5, fix sub-value index k = 0 for the entire episode
4: for each environment step t do
5: if training then
6: Encode trajectories τt into latent variable zt = Eψ(τt)

7: Decode zt to obtain categorical distribution and reconstructed state: P̂t, ŝt = Dψ(zt)
8: if episode is fixed to k = 0 then
9: Set k = 0

10: else
11: Sample k ∼ P̂t

12: end if
13: Select joint action at ∼ ϵ-greedy(Qsub

k )
14: else
15: Select joint action at ∼ greedy(Qsub

0 )
16: end if
17: Execute joint action at, observe reward rt and next state st+1

18: Store transition (st,at, rt, st+1) in replay buffer D
19: end for
20: Compute TD target y = r + γQ∗

θ̄
(s, τ ,a)

21: Update [Qsub
θ,k]

K
k=0 and Q∗

θ via Lsuccessive and LQ∗ in equations B.3, B.2
22: Update encoder and decoder (E,D) via Llatent in equation B.1
23: end for
24: Periodically update target network Q∗

θ̄

B.3 WEIGHTING FUNCTION IN WEIGHTED TD LEARNING

As explained in Section 2.2, WQMIX updates Qtot toward the target yt by adaptively weighting the
TD error using w(st,at). Building on WQMIX, S2Q introduces weighting function wk, defined as:

wk(st,at) =


1, if Q∗(st, τt,at) ≥ maxa∗

t∈AK ,tQ
∗(st, τt,a

∗
t ), k = 0

1, if Qsub
k (st, τt,at) < yt − αI(at ∈ Ak−1,t) ·Q∗

targ(st, τt,at) k = 1, . . . ,K

wc, otherwise.
(B.5)

Our design of wk is motivated by the following rationale. For k = 0, the weighting rule ensures that
optimality is consistently propagated into Qsub

0 := Qtot, allowing S2Q to rely solely on Qsub
0 during

evaluation without requiring communication. For k ≥ 1, the rule closely resembles the WQMIX
weighting scheme, but instead of directly comparing against the TD target yt, it suppresses the
values of previously identified suboptimal actions before applying the comparison, thereby enabling
the successive extraction of alternative high-value actions. In all other cases, the factor wc acts as a
down-weighting term to moderate updates. A sensitivity analysis of wc is provided in Appendix F.4.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C SOFTMAX-BASED EXPLORATION BEHAVIOR OF S2Q

(a) (c)(b)

Figure C.1: Heatmap of joint action distribution under three settings: (a) S2Q (K = 2, T = 1.0), (b)
S2Q (K = 2, T = 0.5), (c) per-agent ϵ-greedy

In this section, we analyze the exploration behavior of S2Q compared to conventional per-agent
ϵ-greedy strategies. To visualize the exploration behavior of each method, we revisit the 2-agent, 3-
action matrix game introduced in Section 4.1, where the optimal joint action is (A,A) with value 8,
and the suboptimal actions (B,B) and (C,C) have values 7 and 6, respectively. Fig. C.1 illustrates
the joint action probabilities under three different settings: (a) S2Q with K = 2 and T = 1, (b) S2Q
with K = 2 and T = 0.5, and (c) conventional per-agent ϵ-greedy exploration.

Figure C.1 demonstrates that S2Q successfully identifies the optimal action while still executing
suboptimal actions with meaningful frequency, even at a modest temperature of T = 0.5. At a higher
temperature of T = 1, the optimal action remains the most frequently executed, while exploration
across suboptimal actions is maximized. In contrast, conventional per-agent ϵ-greedy exploration
concentrates almost exclusively on the optimal action (A,A). This highlights a key limitation of
conventional methods that rely on a single optimal action and independent ϵ-greedy sampling: they
struggle to adapt when the value function changes dynamically. By contrast, S2Q adapts smoothly
to changes in the optimal action, based on its prioritized Softmax-based exploration over tracked
suboptimal actions. This broader exploration provides richer training signals for Q∗, facilitating
faster convergence toward globally optimal solutions.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D ENVIRONMENT DETAILS

In this section, we provide a detailed description of the environments and scenarios used for evalu-
ating the proposed S2Q. We consider two main benchmarks: the StarCraft Multi-Agent Challenge
(SMAC) (Samvelyan et al., 2019) and the Google Research Football (GRF) environment (Kurach
et al., 2020). As mentioned in Section 5, we further categorize SMAC scenarios based on their
complexity and communication requirements. Specifically, we distinguish between SMAC-Hard+,
which presents challenging coordination tasks with a larger number of units and complex combat
strategies, and SMAC-Comm, which emphasizes tasks requiring explicit inter-agent communication
for effective execution. Appendices D.1, D.2, D.3 provide detailed descriptions of the SMAC-Hard+,
GRF, and SMAC-Comm scenarios discussed in Section 5. In Appendix D.4, we detail SMACv2 (El-
lis et al., 2023), where we conduct additional experiments to further demonstrate the effectiveness
of S2Q. The performance results for SMACv2 are provided in Appendix F.1.

D.1 THE STARCRAFT MULTI-AGENT CHALLENGE (SMAC)-HARD+

EnemyAlly

(a) 5m vs 6m

Ally

(b) MMM2

EnemyAlly

(c) 27m vs 30m

Enemy
Ally

(d) Corridor

Enemy

Ally

(e) 6h vs 8z

EnemyAlly

(f) 3s5z vs 3s6z

Figure D.1: Visualizations of SMAC-Hard+ scenarios

SMAC (Samvelyan et al., 2019) is a widely used benchmark designed to test cooperative Multi-
Agent Reinforcement Learning (MARL) algorithms in complex, decentralized settings. Built on top
of the StarCraft II game engine, SMAC presents a series of tactical combat scenarios, where a team
of AI-controlled allies faces off against enemies run by a built-in script. Each scenario differs in
terms of terrain, unit types, and strategic difficulty, requiring agents to master sophisticated combat
tactics such as focus fire, kiting, and exploiting environmental features. A match concludes either
when one side is eliminated or the time limit expires. We provide visualizations of SMAC-Hard+
scenarios in Fig. D.1, and summarize the details of each considered episodes in Table D.1, followed
by a detailed description of the SMAC benchmark.

State space: Global state s aggregates detailed information from all entities on the battlefield. For
allied units, this includes their positions, health, cooldowns, shields if applicable, and unit types.
Enemy data is similar, except it omits the cooldown stats. In addition, the most recent action taken
by each agent is recorded as a one-hot encoded vector.

Observation space: In SMAC, agents’ observations are restricted to allies and enemies within a
sight range of 9 units. Specifically, an agent’s observation vector is composed of four distinct seg-
ments. First, movement capabilities are encoded across four directions (up, down, left, right). Sec-
ond, data about visible enemies includes their relative positions, distances, health, shield values,
unit type, and whether they can currently be targeted. Third, ally-related information mirrors the
enemy format but excludes the agent itself. Finally, self-features reflect the observing agent’s own
condition:its current health, shield level (if any), and unit classification.

Action space: Agents in SMAC operate using a set of discrete actions. These include movement in
the four primary directions (north, south, east, west), the ability to attack enemies within a range of

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

6 units, and special abilities limited to certain units such as Medivacs. Agents can also issue a stop
command or perform a no-op action, though the latter is reserved for units that have been eliminated.

Reward function: SMAC incorporates a shaped reward function composed of three main elements:
damage inflicted on enemy units, elimination of those units, and overall victory in the scenario. The
reward is formally defined as:

R =
∑

e∈enemies

∆Health(e) +
∑

e∈enemies

I(Health(e) = 0) · Rewarddeath + I(win) · Rewardwin (D.1)

Here, ∆Health(e) represents the decrease in health of enemy unit e during a given timestep, and I(·)
is an indicator function. Rewarddeath and Rewardwin are set to 10 and 200, respectively.

Table D.1: Detailed descriptions of SMAC-Hard+ scenarios

Map Ally Units Enemy Units State Dimension Obs Dimension Num. of Actions
5m vs 6m 5 Marines 6 Marines 98 55 12

1 Medivac, 1Medivac,
MMM2 2 Marauders, 3 Marauders, 322 176 18

7 Marines 8 Marines

27m vs 30m 27 Marines 30 Marines 1170 285 36

Corridor 6 Zealots 24 Zerglings 282 156 30

3s5z vs 3s6z 3 Stalkers, 3 Stalkers, 230 136 15
5 Zealots 6 Zealots

6h vs 8z 6 Hydralisks 8 Zealots 140 78 14

D.2 GOOGLE RESEARCH FOOTBALL (GRF)

Ally Opponent Ball

(a) academy 3 vs 2 (b) academy 4 vs 3

Figure D.2: Visualizations of GRF scenarios

GRF Kurach et al. (2020) offers a multi-agent soccer environment where each player is controlled
by an autonomous agent. The game models realistic ball physics, player motion, and interaction
mechanics such as tackling and passing. Teams must coordinate to achieve scoring opportunities
while competing against opponents driven by scripted behaviors. From GRF scenarios, we consider
academy 3 vs 1 with keeper and academy 4 vs 2 with keeper scenarios, which we
abbreviate as academy 3 vs 2 and academy 4 vs 3 for brevity. Fig. D.2 illustrates the initial
positions of the entities on the field, while Table D.2 summarizes the considered scenarios.

State space: The global state s consists of all player positions and velocities, as well as ball position
and velocity. The data for both ally and opposing teams are set to same.

Observation space: The observation for an agent includes local information about the ego player,
nearby teammates, opponents, and ball-related features, all expressed relative to the agent’s current
frame.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Action space: The discrete action space of GRF covers movement in eight directions, sliding, pass-
ing, shooting, sprinting, and standing still, all of which are necessary in order to achieve scoring
opportunities.

Reward function GRF provides two primary reward settings: Scoring and Checkpoint. Scoring
function rewards agents with a +1 reward for scoring a goal and a -1 penalty for conceding one.
While the Checkpoint function provides additional intermideate rewards. For example agents may
receive rewards for successful passes or defensive actions. In our experiments, we follow the more
sparse Scoring function, for more challenging scenarios.

Table D.2: Detailed description of GRF scenarios

Scenario Ally Opponent State Dim Obs Dim Action Dim

academy 3 vs 2 3 central midfield
1 goalkeeper,
1 center back 26 26 19

academy 4 vs 3 4 central midfield
1 goalkeeper,
2 center back 34 34 19

D.3 SMAC-COMM

(a) 1o 2r vs 4r (b) 1o 10b vs 1r (c) 5z vs 1ul (d) bane vs hM

Figure D.3: Visualizations of SMAC-Comm scenarios

SMAC-Comm shares the same state, observation, action space, and reward function as the previ-
ously introduced SMAC-Hard+, but its tasks are specifically designed to emphasize communica-
tion. We illustrate the scenarios from SMAC-Comm considered in our experiments in Fig. D.3, and
summarize them as Table D.3.

Table D.3: Detailed description of SMAC-Comm scenarios

Map Ally Units Enemy Units State Dimension Obs Dimension Num. of Actions
1o 2r vs 4r 1 Overseer, 4 Reapers 68 49 10

2 Roaches

1o 10b vs 1r 1 Overseer, 1 Roach 148 84 7
10 Banelings

5z vs 1ul 5 Zealots 1 Ultralisk 63 35 7

bane vs hM 3 Banelings 1 Hydralisk, 52 35 8
1 Medivac

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

D.4 SMACV2

(a) terran 5 vs 5 (b) zerg 5 vs 5 (c) protoss 5 vs 5

Figure D.4: Visualizations of SMACv2 scenarios

SMACv2 (Ellis et al., 2023) extends the original SMAC (Samvelyan et al., 2019) benchmark to pro-
vide a more rigorous testbed for evaluating generalizable cooperative multi-agent learning. While
the state, observation, and action spaces, as well as the reward function, remain similar to SMAC,
several key modifications distinguish SMACv2. First, instead of fixed map configurations, SMACv2
introduces randomized initializations (e.g., unit positions, health, numbers, and attributes), which
prevent agents from overfitting to static scenarios. Second, it emphasizes greater unit diversity and
asymmetric matchups, requiring more sophisticated tactical coordination among agents. Third, the
difficulty scaling mechanism is refined: rather than varying only the number or placement of en-
emy units, environmental factors are also randomized, creating a natural train–test distribution gap.
In our experiments, we consider the terran 5 vs 5, zerg 5 vs 5, protoss 5 vs 5 scenar-
ios. Visualizations for each scenario are provided in Fig. D.4, and the scenario-specific details are
summarized in Table D.4.

Table D.4: Detailed description of SMACv2 scenarios. Probabilities indicate the sampling distribu-
tion for randomized compositions.

Map Ally Units (prob.) Enemy Units (prob.) State Dim Obs Dim Num. Actions

terran 5 vs 5
Marine (0.45) Marine (0.45)

120 82 11Marauder (0.45) Marauder (0.45)
Medivac (0.1) Medivac (0.1)

zerg 5 vs 5
Zergling (0.45) Zergling (0.45)

120 82 11Hydralisk (0.45) Hydralist (0.45)
Baneling (0.1) Baneling(0.1)

protoss 5 vs 5
Zealot (0.45) Zealot (0.45)

130 92 11Stalker (0.45) Stalker (0.45)
Colossus (0.1) Colossus (0.1)

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

E EXPERIMENTAL DETAILS

In this section, we provide the experimental details of the proposed S2Q. All experiments provided
in this paper are conducted on a GPU server equipped with an NVIDIA GeForce RTX 3090 GPU and
an Intel Xeon Gold 6348 (2.60GHz, 28 cores) processor, running Ubuntu 20.04. In Appendix E.1,
we introduce popular CTDE baselines, including VDN, QMIX, and QPLEX. While we follow the
original implementations and loss scaling of the prior baseline CTDE algorithms for shared hyper-
parameters, we focus our parameter search on the hyperparameters newly introduced in S2Q. This
hyperparameter setup is provided in Appendix E.2. Finally, Appendix E.3 details various MARL
methods that address the limitations of monotonic value decomposition, as well as communication-
focused MARL algorithms.

E.1 DETAILS OF CONSIDERED CTDE BASELINES

VDN (Sunehag et al., 2017) is a cooperative MARL method based on value factorization, decom-
posing the joint action-value function into a sum of individual agent value functions, enabling cen-
tralized training with decentralized execution. The global Q-value is defined as:

Qtot(st,at) =

N∑
i=1

Qi(τ it , a
i
t),

where individual Qi depends only on the agent’s own trajectory τ it and the chosen action ait.

QMIX (Rashid et al., 2020a) introduces a more flexible, non-linear function for combining individ-
ual agent utilities into a joint action-value. To ensure that maximizing each agent’s local Qi aligns
with maximizing the global objective, QMIX enforces a monotonicity constraint between the joint
value and the individual utilities, formalized as:

∂Qtot

∂Qi
≥ 0, ∀i,

QPLEX (Wang et al., 2020a) advances the expressiveness of value factorization by introducing a du-
plex dueling architecture while still satisfying the IGM (Individual-Global-Max) property. QPLEX
decomposes the Q-values into advantage functions and formulates IGM as:

argmax
a

Atot(τ ,a) =

 argmaxa1 A
1(τ1, a1),

...
argmaxaN A

N (τN , aN )

 ,

where Atot and Ai represent the joint and individual advantage functions, respectively. The joint
Q-value is then constructed as:

Qtot(τ ,a) =

N∑
i=1

Qi(τ , ai) +

n∑
i=1

(λi(τ ,a)− 1)Ai(τ , ai),

with the weighting factors λi(τ ,a) > 0 generated via a multi-head attention mechanism, enhancing
the flexibility of the model.

Throughout our experiments, results for VDN, QMIX, and QPLEX are based on the implementa-
tions provided in PyMARL2 (Hu et al., 2021), an open-source MARL framework that includes im-
plementations of diverse algorithms along with various improvements, such as TD(λ), larger batch
sizes, and the Adam optimizer. The code is available at: https://github.com/hijkzzz/
pymarl2.

21

https://github.com/hijkzzz/pymarl2
https://github.com/hijkzzz/pymarl2


1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

E.2 HYPERPARAMETER SETUP

In our experiments, while we adopt the default hyperparameter configuration from PyMARL2 (Hu
et al., 2021) for settings shared across CTDE methods, we focus on identifying effective values
for the hyperparameters introduced in S2Q. The best parameters for each scenario are summarized
in Table E.2. According to Table E.2, across a variety of tasks, K = 2, T = 0.1, and α = 1.0
consistently achieve the best performance. While the weighting factor w exhibits some task-specific
variation, values of 0.75 or 0.9 generally perform well. These results demonstrate the robustness and
flexibility of S2Q, achieving high win rates and rapid convergence across diverse scenarios.

Table E.1: Common Q-learning Hyperparameters

Hyperparameter Value
ϵ Decay Value 1.0 → 0.05
ϵ Anneal Time 100000
Target Update Interval 200
Discount Factor γ 0.99
Buffer Size 5000
Batch Size 128
Learning Rate 0.001
Optimizer Adam
Optimizer Alpha 0.99
Optimizer Eps 1e-5
Gradient Clip Norm 10.0
Num GRU Layers 1
RNN Hidden State Dim 64
Double Q True

Table E.2: Scenario-specific hyperparameter setup of S2Q

Scenario K T α w

SMAC-Hard+
5m vs 6m 2 0.1 1.0 0.9
MMM2 2 0.1 1.0 0.9
27m vs 30m 2 0.1 1.0 0.9
corridor 2 0.1 1.0 0.75
6h vs 8z 2 0.1 1.0 0.9
3s5z vs 3s6z 2 0.1 1.0 0.75

GRF
academy 3 vs 2 2 0.1 1.0 0.75
academy 4 vs 3 2 0.1 1.0 0.75

SMAC-Comm
1o 2r vs 4r 2 0.1 1.0 0.9
1o 10b vs 1r 2 0.1 1.0 0.9
5z vs 1ul 2 0.1 1.0 0.9
bane vs hM 2 0.1 1.0 0.9

SMACv2
terran 5 vs 5 2 0.1 1.0 0.75
zerg 5 vs 5 2 0.1 1.0 0.75
protoss 5 vs 5 2 0.1 1.0 0.75

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

E.3 DESCRIPTION OF OTHER MARL METHODS FOR COMPARISON
QMIX (Rashid et al., 2020a): introduces a mixing network that combines per-agent value functions
into a joint action-value under a monotonicity constraint, ensuring consistency between centralized
training and decentralized execution. We base our implementation of QMIX on the following repos-
itory: https://github.com/hijkzzz/pymarl2

WQMIX (Rashid et al., 2020b): extends QMIX by introducing weighted projections in the mixing
process, alleviating the representational limitations of monotonicity and enabling more accurate
learning of optimal joint action-values. We base our implementation of WQMIX on the following
repository: https://github.com/hijkzzz/pymarl2

RiskQ (Shen et al., 2023): introduces a quantile-based value factorization that models joint re-
turn distributions as weighted mixtures of per-agent utilities, satisfying the risk-sensitive IGM prin-
ciple and enabling coordination under uncertainty. The official code can be found at: https:
//github.com/xmu-rl-3dv/RiskQ

PAC (Zhou et al., 2022): leverages counterfactual predictions of optimal joint actions to provide
assistive information for value factorization, using a novel counterfactual loss and variational en-
coding to improve coordination under partial observability. The official code can be found at:
https://github.com/hanhanAnderson/PAC-MARL

FOP (Zhang et al., 2021): factorizes the optimal joint policy in maximum-entropy MARL into indi-
vidual actor-critic policies, with theoretical guarantees of convergence to the global optimum. The
official code can be found at: https://github.com/PKU-RL/FOP-DMAC-MACPF?tab=
readme-ov-file

DOP (Wang et al., 2020d): integrates value function decomposition into multi-agent actor-critic
methods, enabling efficient off-policy learning while addressing credit assignment and centralized-
decentralized mismatch, with guarantees of convergence. The official code can be found at: https:
//github.com/TonghanWang/DOP

MARR (Yang et al., 2024): improves sample efficiency in MARL by introducing a reset strat-
egy and data augmentation, enabling high-replay training in parallel environments with fewer en-
vironment interactions. The official code can be found at: https://github.com/CNDOTA/
ICML24-MARR

MASIA (Guan et al., 2022): enables efficient multi-agent communication by aggregat-
ing received messages into compact, task-relevant representations using a permutation-
invariant encoder and self-supervised objectives, improving coordination and decision-
making. The official code can be found at: https://github.com/chenf-ai/
Multi-Agent-Communication-Considering-Representation-Learning

NDQ (Wang et al., 2019): combines value function factorization with communication minimiza-
tion, enabling agents to act independently most of the time while selectively exchanging messages
using information-theoretic regularizers to improve coordination. The official code can be found at:
https://github.com/TonghanWang/NDQ

MAIC (Yuan et al., 2022): enables agents to generate targeted incentive messages that directly
influence teammates’ value functions, promoting efficient explicit coordination while remaining
compatible with different value function factorization methods. The official code can be found at:
https://github.com/mansicer/MAIC

CAMA (Shao et al., 2023): uses complementary attention to enhance high-contribution enti-
ties and compress low-contribution ones, addressing distracted attention and limited observabil-
ity, thereby improving coordination in cooperative MARL. The official code can be found at:
https://github.com/thu-rllab/CAMA

T2MAC (Sun et al., 2024): enables agents to communicate selectively with trusted partners and
integrate information at the evidence level, improving coordination and communication efficiency in
cooperative MARL. The official code can be found at: https://github.com/ZangZehua/
T2MAC

23

https://github.com/hijkzzz/pymarl2
https://github.com/hijkzzz/pymarl2
https://github.com/xmu-rl-3dv/RiskQ
https://github.com/xmu-rl-3dv/RiskQ
https://github.com/hanhanAnderson/PAC-MARL
https://github.com/PKU-RL/FOP-DMAC-MACPF?tab=readme-ov-file
https://github.com/PKU-RL/FOP-DMAC-MACPF?tab=readme-ov-file
https://github.com/TonghanWang/DOP
https://github.com/TonghanWang/DOP
https://github.com/CNDOTA/ICML24-MARR
https://github.com/CNDOTA/ICML24-MARR
https://github.com/chenf-ai/Multi-Agent-Communication-Considering-Representation-Learning
https://github.com/chenf-ai/Multi-Agent-Communication-Considering-Representation-Learning
https://github.com/TonghanWang/NDQ
https://github.com/mansicer/MAIC
https://github.com/thu-rllab/CAMA
https://github.com/ZangZehua/T2MAC
https://github.com/ZangZehua/T2MAC


1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

F ADDITIONAL EXPERIMENT RESULTS

In this section, we present additional experiment results to further demonstrate the effectiveness
of our proposed S2Q method. In Appendix F.1, we provide additional performance evaluation on
SMACv2 (Ellis et al., 2023), while we extend S2Q to other representative CTDE baselines, VDN and
QPLEX, in Appendix F.2. In addition, in Appendices F.3 and F.4, we provide additional trajectory-
level analysis and the ablation study on the suppression constant α and weighting factor wc. Lastly,
Appendix F.5 presents computational complexity analysis on S2Q, to show that the computational
overhead from leveraging multiple sub-value functions remains moderate, compared to the signifi-
cant performance gain of S2Q.

F.1 PERFORMANCE COMPARISON IN SMACV2

SMACv2: terran_5_vs_5 SMACv2: zerg_5_vs_5 SMACv2: protoss_5_vs_5

Figure F.1: Performance comparison: Average test win rates in the SMACv2 tasks

From Fig. F.1, which shows the performance on SMACv2 scenarios, we can observer that S2Q
demonstrates superior performance over the MARL baselines across all scenarios, achieving both
superior performance and faster convergence. Notably, its advantage is most pronounced in the
zerg 5 vs 5 and protoss 5 vs 5 scenarios, where the high degree of stochasticity induced by
varying ally and enemy team compositions makes the environment particularly challenging. In this
setting, S2Q demonstrates its ability to effectively track the values of suboptimal actions, thereby
enabling more efficient exploration and guiding the Qtot towards the optimal policy.

F.2 GENERALITY OF S2Q ACROSS CTDE METHODS

Although our primary discussion of S2Q has been in the context of WQMIX, the proposed proce-
dure is general and readily extends to other CTDE methods, such as VDN (Sunehag et al., 2017) and
QPLEX (Wang et al., 2020a). By replacing the joint action-value function Q∗ with Qtot, S2Q can
be integrated into these value-decomposition baselines without modification. Across all scenarios,
we observed significant performance improvements over the corresponding baselines. Consistent
with the results obtained in WQMIX, the performance gains were most evident in the challenging
6h vs 8z environment, which requires extensive exploration. These results demonstrate the practi-
cality and robustness of S2Q, highlighting its ability to follow changes in the value landscape more
closely and adapt to new optima faster than conventional approaches.

Table F.1: Performance comparison on SMACv2 environments

Scenario VDN VDN+S2Q QPLEX QPLEX+S2Q
5m vs 6m 62.47 ± 11.12 68.25 ± 4.78 58.18 ± 3.52 61.86 ± 2.65
MMM2 0.00 ± 0.00 14.12 ± 2.43 50.78 ± 10.63 58.03 ± 8.27
27m vs 30m 13.75 ± 5.33 61.35 ± 2.33 47.34 ± 8.26 63.18 ± 5.54
Corridor 56.25 ± 26.14 70.49 ± 13.37 48.62 ± 24.02 64.68 ± 18.51
6h vs 8z 8.94 ± 4.31 48.03 ± 9.37 3.44 ± 1.13 41.32 ± 6.23
3s5z vs 3s6z 47.66 ± 19.66 49.82 ± 10.31 43.19 ± 17.02 48.73 ± 10.46

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

F.3 ADDITIONAL TRAJECTORY ANALYSIS IN SMAC-COMM

HitMoveAlly Enemy

𝑃𝐾(%)𝑃𝐾(%)

𝟓. 𝟐 𝟑. 𝟐

Exploration (0.3M) Shift Optimal (2M)

𝑄∗(𝒂𝒌,𝟒
∗ )

𝒂𝟎
∗ 𝒂𝟎

∗𝒂𝟏
∗ 𝒂𝟏

∗𝒂𝟐
∗ 𝒂𝟐

∗

𝑄∗(𝒂𝒌,𝟒
∗ )

𝒂𝟎
∗ 𝒂𝟎

∗𝒂𝟏
∗ 𝒂𝟏

∗𝒂𝟐
∗ 𝒂𝟐

∗

𝑄∗(𝒂𝒌,𝟒
∗ )

𝒂𝟎
∗ 𝒂𝟎

∗𝒂𝟏
∗ 𝒂𝟏

∗𝒂𝟐
∗ 𝒂𝟐

∗

𝟗𝟏. 𝟔

𝟔. 𝟒

𝟕𝟎. 𝟐

𝟐𝟑. 𝟒
𝟔𝟐. 𝟐

𝟑𝟎. 𝟗
𝟔. 𝟗

𝟕. 𝟔
𝟕. 𝟑 𝟕. 𝟐𝟔. 𝟗 𝟕. 𝟐𝟕. 𝟎

𝟐. 𝟒 𝟐. 𝟑 𝟐. 𝟏

𝑃𝐾(%)
Shift

MoveEnemy

Ally

Hit
Move

Move

𝒕 = 𝟒 𝒕 = 𝟒

Figure F.2: Training behavior of S2Q. Left: training step = 0.3M. Right: training step = 2M

To further investigate the training dynamics of S2Q (K = 2), we analyze the 5z vs 1ul scenario
from SMAC-Comm, where the agents must learn to coordinate based on the latent information z.
6h vs 8z. Unlike scenarios that reward aggressive engagement, the optimal strategy in 5z vs 1ul
is to move and group with the distant ally, while direct attack actions often lead to heavy losses
due to the enemy’s superior strength. As shown in Fig.F.2(a), the action distribution reveals that
agents initially favor attack, reflecting a local optimum that prioritizes immediate engagement. Con-
sequently, the attack ratio increases in the early stages of training. However, as training progresses,
S2Q enables agents to recognize the risks of premature aggression, resulting in a gradual decline in
attack frequency and a corresponding rise in the use of move. Fig.F.2(b) illustrates how this shift is
accompanied by improvements in survival time and overall win rate.

Fig. F.2(c) highlights how S2Q adapts to this changing notion of optimality. Early in training, attack
is tracked as the dominant action (a∗0,t), while move is considered suboptimal. As the value landscape
evolves, Q∗ reassigns higher returns to move, prompting S2Q to increase its execution frequency
through the Softmax-based behavior policy. This dynamic reallocation allows Qsub

0 to align with
the true optimal strategy, thereby reducing reliance on local optima. These findings emphasize that
even in environments requiring implicit coordination and communication, such as 5z vs 1ul, S2Q
effectively leverages its successive sub-value component to explore, track, and ultimately converge
to the optimal policy.

F.4 ABLATION STUDY ON ADDITIONAL HYPERPARAMTERS

SMAC-Hard+: 6h_vs_8z

(a)

SMAC-Hard+: 6h_vs_8z

(b)

Figure F.3: Hyperparameter analysis. Effect of (a) suppression constant α and (b) weight factor wc.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Suppression constant α: Fig. F.3(a) evaluates the effect of the suppression constant α ∈
[0.5, 1.0, 1.5, 2.0], which determines how strongly the values of previously identified actions are
reduced and thereby controls how far sampled suboptimal actions lie from the current optimum.
The results indicate that α = 1.0 yields the best performance: this setting encourages exploration
of meaningful, moderately distant sub-actions that are informative for updating the value landscape.
A smaller value, α = 0.5, also performs well since it biases sampling toward nearby sub-actions
that remain relevant to the optimum. In contrast, larger values (α = 1.5, 2.0) substantially hurt per-
formance: excessive suppression forces sampling of actions that are very distant from the optimum,
producing updates that are less informative (and often misleading) for tracking the true optimal
policy, which destabilizes learning and slows convergence. These findings suggest that a moderate
suppression level is necessary to balance exploration breadth with the relevance of sampled sub-
actions.

Weighting factor wc: Fig. F.3(b) reports the effect of varying the weighting factor wc, which de-
termines how TD-error is scaled by reinforcing corrective signals that reduce underestimation. The
results show that wc = 0.9 yields the highest win rates, striking a balance between effective error
correction and stable value learning. A slightly smaller value, wc = 0.75, also performs well, indi-
cating robustness to moderate relaxations. However, more aggressive reductions such as wc = 0.5
and wc = 0.25 significantly weaken the propagation of TD-error, leading to information loss and
degraded performance. These findings highlight that maintaining a relatively high w ensures that
informative TD signals are consistently transmitted, while still guiding the value functions towards
the optimal values.

F.5 COMPUTATIONAL COMPLEXITY

S2Q introduces additional computational overhead due to its use of multiple sub-value functions
and the encoder-decoder architecture for coordinating k-selection. To evaluate this overhead and
demonstrate that it remains minimal relative to performance benefits, we compare S2Q and QMIX
in controlled experiments on an NVIDIA GeForce RTX 3090 GPU and an Intel Xeon Gold 6348
(2.60GHz, 28 cores) processor running Ubuntu 20.04 with PyTorch. In MMM2 and 27m vs 30m
scenarios where QMIX achieves competitive performance, we measure the time required to reach a
50% win rate. Table F.2 summarizes the results. According to Table F.2, S2Q incurs only a moderate
increase in computation, approximately 8.4% for MMM2 and 3.5% for 27m vs 30m. More impor-
tantly, due to faster learning enabled by successive sub-value function tracking, S2Q reaches the
target win rate of 50% significantly faster than QMIX, demonstrating that the modest overhead is
outweighed by the improved convergence speed and overall performance.

Table F.2: Comparison of computational complexity between S2Q and QMIX.

Scenario Metric S2Q (K = 2) QMIX

MMM2
Time / 1M 129.3 min 119.3 min
T at 50% win 1.28M 2.16M
Time at 50% win 165.5 min 257.7 min

27m vs 30m
Time / 1M 245.1 min 236.8 min
T at 50% win 1.15M 1.86M
Time at 50% win 281.9 min 440.4 min

26


	Introduction
	Preliminaries
	Decentralized POMDPs
	Value Decomposition under CTDE
	Communication in Dec-POMDPs

	Related works
	CTDE Methods in MARL
	Overcoming the Monotonicity Constraint
	Communication in MARL

	Methodology
	Motivation: Overcoming Dynamic Optimality Shifts in MARL
	Successive Sub-value Q-learning for Retaining Subtoptimal Actions
	Coordinated Execution via Communication during Training

	Experiments
	Performance Analysis
	Trajectory analysis
	Ablation study

	Limitations
	Conclusion
	The Use of Large Language Models (LLMs)
	Implementation Details
	Training the Encoder-Decoder Structure
	Practical Implementation of S2Q
	Weighting Function in Weighted TD Learning

	Softmax-based Exploration Behavior of S2Q
	Environment Details
	The StarCraft Multi-Agent Challenge (SMAC)-Hard+
	Google Research Football (GRF)
	SMAC-Comm
	SMACv2

	Experimental Details
	Details of Considered CTDE Baselines
	Hyperparameter Setup
	Description of Other MARL Methods for Comparison

	Additional Experiment Results
	Performance Comparison in SMACv2
	Generality of S2Q Across CTDE Methods
	Additional Trajectory Analysis in SMAC-Comm
	Ablation Study on Additional Hyperparamters
	Computational Complexity


