
Published as a conference paper at ICLR 2026

RETAINING SUBOPTIMAL ACTIONS TO
FOLLOW SHIFTING OPTIMA IN
MULTI-AGENT REINFORCEMENT LEARNING

Yonghyeon Jo, Sunwoo Lee, Seungyul Han∗

Graduate School of Artificial Intelligence
Ulsan National Institute of Science and Technology (UNIST)
Ulsan, South Korea 44919
{yonghyeonjo,sunwoolee,syhan}@unist.ac.kr

ABSTRACT

Value decomposition is a core approach for cooperative multi-agent reinforcement
learning (MARL). However, existing methods still rely on a single optimal action
and struggle to adapt when the underlying value function shifts during training, of-
ten converging to suboptimal policies. To address this limitation, we propose Suc-
cessive Sub-value Q-learning (S2Q), which learns multiple sub-value functions to
retain alternative high-value actions. Incorporating these sub-value functions into
a Softmax-based behavior policy, S2Q encourages persistent exploration and en-
ables Qtot to adjust quickly to the changing optima. Experiments on challenging
MARL benchmarks confirm that S2Q consistently outperforms various MARL al-
gorithms, demonstrating improved adaptability and overall performance. Our code
is available at https://github.com/hyeon1996/S2Q.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL) has emerged as a powerful and versatile framework for
solving complex sequential decision-making problems involving multiple interacting agents (Canese
et al., 2021; Li et al., 2022; Wen et al., 2022). Its applicability spans a wide range of domains,
including robotic control, autonomous driving and traffic management, intelligent manufacturing,
as well as strategic and competitive environments such as real-time strategy games (Canese et al.,
2021; Li et al., 2022; Orr & Dutta, 2023; Shalev-Shwartz et al., 2016; Bahrpeyma & Reichelt, 2022;
Vinyals et al., 2019). Within the centralized training with decentralized execution (CTDE) paradigm,
where agents can leverage centralized information during training while acting independently at
execution time, value-decomposition-based credit assignment methods (Sunehag et al., 2017; Rashid
et al., 2020a; Wang et al., 2020a) have proven highly effective across many MARL benchmarks.

Nevertheless, conventional approaches face fundamental challenges due to the requirements of de-
centralized execution. In particular, QMIX (Rashid et al., 2020a), one of the most representative
CTDE methods, enforces the Individual-Global-Max (IGM) condition (Son et al., 2019) through a
monotonicity constraint, ensuring that the joint action-value function increases monotonically with
respect to the utility of each agent. Although this design enables competitive performance across
diverse tasks, it also restricts the expressiveness of the joint action-value function, limiting its ability
to represent complex interactions among agents. Several lines of work have attempted to overcome
this limitation. For instance, Rashid et al. (2020b) introduces an unconstrained target network to
improve the fidelity of optimal-action estimation, while Zhou et al. (2022) incorporates auxiliary
information to mitigate representational bottlenecks under partial observability. More recent studies
reformulate the value function into forms that are more amenable to decomposition (Shen et al.,
2022; Li et al., 2024), further improving stability and performance.

Despite these advances, existing methods still struggle when the optimality of the value function
shifts during training. This challenge arises not only from the representational rigidity imposed by
the monotonicity constraint but also from the heavy reliance on ϵ-greedy policy in the typically
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large joint action spaces of MARL. To address these issues, we propose Successive Sub-value Q-
learning (S2Q), a novel MARL framework that successively learns multiple sub-value functions,
each designed to identify a distinct suboptimal action. Leveraging these sub-value functions, S2Q
replaces naive ϵ-greedy policy with a Softmax-based strategy that encourages persistent visitation
around promising joint actions. This allows S2Q to accurately detect shifts in the optimal action
and rapidly adapt its policy, thereby avoiding premature convergence to suboptimal solutions. We
further provide theoretical and empirical analyses to validate the effectiveness of our approach,
demonstrating that S2Q achieves substantial improvements over other recent MARL methods on
challenging benchmarks, including the StarCraft II Multi-Agent Challenge (Samvelyan et al., 2019)
and Google Research Football (Kurach et al., 2020).

2 PRELIMINARIES

2.1 DECENTRALIZED POMDPS

In cooperative multi-agent RL, the problem is formulated as a Decentralized Partially Observable
Markov Decision Process (Dec-POMDP), represented by the tuple G = ⟨S,A, P, r, O,O, N, γ⟩,
where S denotes the state space, A the action space of each agent, P the transition probability
function, r the reward function, O the observation function, O the observation space, N the number
of agents, and γ the discount factor(Oliehoek et al., 2016). At each timestep t, the environment
resides in a global state st ∈ S, while agent i receives a local observation oit := O(st) ∈ O.
Based on its trajectory history τ it := (oi0, a

i
0, . . . , o

i
t), agent i selects an action ait ∈ A according

to a decentralized policy πi. After receiving the joint action at = (a1t , . . . , a
N
t ) from all agents, the

environment transitions to the next state st+1 ∼ P (· | st,at) and the reward rt := r(st,at). The
overall objective of MARL is to maximize the expected discounted return, E[

∑∞
t=0 γ

trt].

2.2 VALUE DECOMPOSITION UNDER CTDE

Under the Centralized Training with Decentralized Execution (CTDE) paradigm, agents act inde-
pendently during execution while utilizing global state information during training. Among the most
prominent methods in this setting is QMIX(Rashid et al., 2020a), which employs a monotonic mix-
ing function to enforce the Individual-Global-Max (IGM) condition, ensuring that maximizing in-
dividual utility Qi cannot reduce the joint value Qtot. Although such alignment is beneficial, the
monotonicity constraint limits the expressiveness of Qtot, often hindering effective minimization of
the temporal-difference (TD) loss. To address this limitation, Weighted QMIX (WQMIX)(Rashid
et al., 2020b) introduces an auxiliary unconstrained joint action-value function Q∗:

E(st,τt,at)∼B
[
(Q∗(st, τt,at)− yt)

2
]
, yt = rt + γQ∗

targ(st+1, τt+1,a
′
t+1), (1)

where τt = (τ1t , . . . , τ
N
t ) is the joint history, Q∗

targ the target, and ai′t = argmaxQi(τ it , ·) the
individual target action. WQMIX updates Qtot toward the target yt by adaptively weighting the TD
error withw(st,at), wherew(st,at) = 1 ifQtot(st, τt,at) < yt andw(st,at) = wc < 1 otherwise,
thereby prioritizing updates on underestimated actions.

2.3 COMMUNICATION IN DEC-POMDPS

In Dec-POMDPs, partial observability frequently necessitates inter-agent communication to enable
effective coordination (Sukhbaatar et al., 2016). A common approach is for each agent to transmit
a message m ∈ M , where M denotes the set of all possible messages and mi

t is the message
received by agent i at time t. These messages are typically incorporated into each agent’s individual
utility function Qi(τ it , a

i
t,m

i
t), allowing agents to leverage shared information to improve decision-

making. For example, MASIA (Guan et al., 2022) employs an encoder–decoder architecture that
extracts a latent representation zt from the joint observation and reconstructs the global state st so
that agents can communicate message given by functions of zt. Most communication-based MARL
approaches therefore require message exchange during both training and evaluation. In contrast, we
consider a more flexible setting where communication is used only when necessary: evaluation can
proceed without message passing in environments that do not require it, while in communication-
critical tasks, agents can still exchange latent representations to coordinate effectively.
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3 RELATED WORKS

3.1 CTDE METHODS IN MARL

Within the CTDE paradigm, value decomposition methods decompose the joint action-value into
individual utilities, ensuring scalable MARL (Sunehag et al., 2017; Rashid et al., 2020a; Yang et al.,
2020). Building on this foundation, recent works suggest more expressive identity representation
(Naderializadeh et al., 2020; Zang et al., 2023; Liu et al., 2023a), or assigning roles based on agent
trajectories (Wang et al., 2020b;c; Zeng et al., 2023). Another line of work extends exploration
strategies studied in the single-agent setting (Tang et al., 2017; Burda et al., 2018; Han & Sung,
2021a;b) to the multi-agent domain under the CTDE paradigm, introducing centralized latent vari-
ables or coordination signals to capture richer joint behaviors (Mahajan et al., 2019; Li et al., 2021;
Jo et al., 2024). In parallel, several works focus on making real-world deployment more feasible
via improving the sample efficiency, (Yang et al., 2024; Qin et al., 2024) and robustness of MARL
algorithms (Yuan et al., 2023; Lee et al., 2025). Finally, another line of research extends the actor-
critic framework to the multi-agent setting by employing centralized critics with decentralized actors
(Lowe et al., 2017; Foerster et al., 2018; Iqbal & Sha, 2019; Su et al., 2021).

3.2 OVERCOMING THE MONOTONICITY CONSTRAINT

While ensuring tractability, QMIX’s monotonicity constraint significantly limits representational
capacity, motivating active research to overcome this restriction. WQMIX (Rashid et al., 2020b)
mitigates these limitations through weighted projections and non-monotonic targets. In addition,
some methods leverage a centralized critic with no inherent constraints (Wang et al., 2020d; Zhang
et al., 2021; Peng et al., 2021), while recent works pursue more flexible factorizations of the joint
action-value function (Son et al., 2019; Wang et al., 2020a; Wan et al., 2021; Li et al., 2023b; 2024),
or incorporating alternative learning objectives (Zhou et al., 2022; Hu et al., 2023; Zhou et al., 2023;
Li et al., 2023a; Liu et al., 2023b). A representative example of such an objective is risk sensitivity,
accounting for return variance (Qiu et al., 2021; Shen et al., 2023; Chen et al., 2024).

3.3 COMMUNICATION IN MARL

Communication has emerged as a critical mechanism in MARL for enabling coordination under
partial observability. A range of works focus on the design of communication protocols, specifying
how and when agents should exchange messages (Foerster et al., 2016; Sukhbaatar et al., 2016;
Liu et al., 2020; Hu et al., 2024). Others investigate the type of information that should be shared
to ensure that communication is informative (Li & Zhang, 2023; Shao et al., 2023). Another group
aims to improve communication efficiency by reducing redundancy or compressing messages (Wang
et al., 2019; Guan et al., 2022). Finally, selective communication strategies aim to determine which
messages to send or whom to communicate with, thereby reducing unnecessary communication
overhead (Das et al., 2019; Yuan et al., 2022; Zhu et al., 2024; Sun et al., 2024).

4 METHODOLOGY

4.1 MOTIVATION: OVERCOMING DYNAMIC OPTIMALITY SHIFTS IN MARL

Figure 1: Fundamental Limitations of value decomposition algorithms. (a): The actual payoff of
the matrix game. (b),(c): Training result of QMIX and WQMIX. (d): Training results of S2Q when
K = 2, where K is the hyperparameter controlling number of sub-networks to use.
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In this section, we revisit a key limitation of value decomposition under the CTDE paradigm. QMIX
is known to struggle in representing the true global value due to the IGM constraint, and several
methods have been proposed to mitigate this issue (Rashid et al., 2020b). Most focus on learning an
unconstrained value function (e.g., WQMIX) or enhancing state-awareness for better inference of the
global optimum. Yet, a core challenge remains: by focusing solely on a single optimal joint action,
these methods still fail to recover the global optimum when the value function changes dynamically.

To illustrate this issue, we consider the payoff matrix game in Fig. 1, consisting of a single state
with two agents, each selecting actions from A,B,C. The payoff matrix specifies the joint value
for each (a1, a2). In Fig. 1(a, left), the optimal joint action is (A,A) with value 8, while (B,B)
and (C,C) are suboptimal with values 7 and 6. After training the algorithms to convergence, we
modify the payoff as shown in Fig. 1(a, right), where the optimum shifts to (C,C) with value 8,
and (A,A) and (B,B) drop to 6 and 7. This setup mirrors realistic MARL scenarios in which
exploration updates value estimates and causes the optimal action to change. Figures 1(b)–(c) show
the learning behavior of QMIX (Rashid et al., 2020a) and WQMIX (Rashid et al., 2020b) before and
after the payoff change. We use WQMIX as a representative example since the methods relying on
enhanced state-awareness are expected to behave similarly to WQMIX, as the matrix game involves
only a single state. The results reveal that QMIX fails in both cases because its monotonic mixing
network cannot capture the non-monotonic value structure, while WQMIX uses an unconstrained
target Q∗ and a weighted TD objective but still fails to adapt when the optimum shifts to (C,C).
These findings expose a key weakness, as existing methods often converge to suboptimal solutions
because they are unable to track a moving optimum.

We attribute this failure to the fact that conventional methods do not explicitly track suboptimal ac-
tions. Once information about alternative high-value modes is discarded, the learner cannot adapt
when those actions later become optimal. To overcome this limitation, we propose Successive Sub-
value Q-learning (S2Q), a novel MARL framework that successively learns sub-value functions
Qsub
k , k = 1, . . . ,K, which share the same architecture as Qtot but are each dedicated to capturing a

distinct suboptimal action. When the optimal action changes, S2Q can immediately leverage the cor-
responding sub-value function and guide Qtot to adapt. As shown in Fig. 1(d) with K = 2, under the
original payoff matrix Qsub

0 := Qtot learns the optimal (A,A), while Qsub
1 and Qsub

2 capture (B,B)
(second-optimal) and (C,C) (third-optimal). After the payoff is modified, Qsub

2 identifies (C,C) as
optimal, enabling Qtot to rapidly pivot to the correct solution. Beyond adaptability, the maintained
sub-value functions also support more effective exploration than standard ϵ-greedy by actively sam-
pling alternative high-value modes. To further illustrate S2Q’s exploration behavior, Appendix D
presents heatmaps of joint action probabilities showing that S2Q identifies and prioritizes valuable
suboptimal actions and consequently adapts quickly when the value landscape shifts. Through this
design, S2Q is expected to achieve faster convergence than existing CTDE methods, demonstrating
its efficiency across diverse MARL environments. The next section details the successive learning
scheme of the proposed S2Q.

4.2 SUCCESSIVE SUB-VALUE Q-LEARNING FOR RETAINING SUBOPTIMAL ACTIONS
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Figure 2: Illustration of S2Q framework. Each subnetwork Qsub,k transmits Ak, a set of optimal
actions according to all previous subnetworks. Qsub,k+1 learns the unrestricted target Q∗ while
suppressing the Q-values of actions included in Ak.

We now present the detailed formulation of S2Q, introduced in Section 4.1. S2Q trains multiple
sub-value functions to follow Q∗ as in WQMIX, but with one key idea: the first sub-value function
identifies the maximum joint action under the IGM condition, and the next sub-value function sup-
presses its value in the learning objective. This makes the action no longer the maximum, allowing
the next sub-value function to learn the highest remaining joint action under IGM, effectively the
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next suboptimal action of Q∗. Repeating this process yields a sequence of high-value candidates,
with each sub-value function specializing in a different region of the action space.

Specifically, S2Q employs a sequence of sub-value functions Qsub
k , k = 0, . . . ,K to successively

track optimal and suboptimal actions. By definition, we set Qsub
0 := Qtot, where Qtot is trained

to select the true optimal action, while each Qsub
k aims to capture the k-th suboptimal action by

suppressing those identified by previous sub-value functions. All sub-value functions share the same
mixture architecture as QMIX and satisfy the IGM condition. Specifically, each Qsub

k consists of
independent individual utilities Qik, and the joint greedy action a∗k,t = (a1∗k,t, . . . , a

N∗
k,t ) with ai∗k,t =

argmaxQik(τ
i
t , ·) corresponds to the k-th suboptimal joint action.

To optimize each Qsub
k , we build upon the TD-learning objective of WQMIX by leveraging the

unrestrictedQ∗ trained via equation 1 and incorporating a suppression term for previously identified
suboptimal actions. The resulting objective is defined as:

E(st,τt,at)∼B

[
wk(st,at)

(
Qsub
k (st, τt,at)−

(
yt−αI(at ∈ Ak−1,t) ·max(Q∗

targ(st, τt,at), C)
))2]

,

(2)

where wk is a WQMIX-based weighting function for each k, detailed in Appendix C, yt =
rt + γQ∗

targ(st+1, τt+1,a
∗
0,t+1) is the target from Q∗ in equation 1, I is the indicator function, B

is the replay buffer, and Ak,t = {a∗0,t,a∗1,t, . . . ,a∗k,t} with A−1,t = ∅ denotes the set of previously
identified suboptimal actions. The factor α controls how strongly the values of actions in Ak−1,t are
suppressed, and max(·, C) with a positive constant C > 0 is applied to properly handle potentially
negative values ofQ∗

targ. WhenQ∗
targ is positive, we can simply useQ∗

targ instead of max(Q∗
targ, C)

in equation 2 for implementation. From the proposed successive Q-learning, each sub-value func-
tion Qsub

k can select the k-th suboptimal joint action of a given Q∗ exactly, as guaranteed by the
following theorem, provided that the suppression constant α is sufficiently large.

Theorem 4.1. Let Q∗(st, τt,at) and {Qsub
k }Kk=0 be the joint action-value function and sub-value

functions obtained by minimizing equation 1 and equation 2, respectively, and let {a∗0,t, . . . ,a∗K,t}
denote the K+1 successive suboptimal joint actions of Q∗ for given st and τt at timestep t s.t.

Q∗(st, τt,a
∗
0,t) ≥ · · · ≥ Q∗(st, τt,a

∗
K,t) ≥ Q∗(st, τt,at), ∀at /∈ {a∗0,t, . . . ,a∗K,t}.

If the reward function r is bounded and suppression factor α is sufficiently large, then,

a∗k,t = argmax
at

Qsub
k (st, τt,at) ∀k ∈ {0, ...,K}. (3)

Proof) Proof of Theorem 4.1 is provided in Appendix B.

According to Theorem 4.1, it is guaranteed that, with bounded rewards and a sufficiently large sup-
pression factor α, the successive learning procedure maintainsQsub

0 , . . . , Qsub
K , whereQsub

0 represents
the global optimum and the remaining sub-value functions capture successive suboptimal actions.
By explicitly tracking the high-value joint actions, S2Q allowsQ∗ to effectively update its values and
ensures thatQsub

0 can promptly adapt when the optimal action changes. Fig. 2 illustrates this process,
where each Qsub

k suppresses previously identified actions before selecting the next best candidate.
Importantly, although this procedure is presented in the context of WQMIX, it is general and can be
applied to any CTDE method by replacing Q∗ with Qtot. Consequently, S2Q can follow changes in
the value landscape more closely and adapt to new optima faster than conventional approaches.

4.3 COORDINATED EXECUTION VIA COMMUNICATION DURING TRAINING

As described above, S2Q continuously tracks suboptimal actions, but for these actions to contribute
effectively,Q∗ must be trained toward global convergence. However, prior MARL methods typically
rely on agent-wise ϵ-greedy exploration, under which the probability of joint exploration decreases
exponentially with the number of agents, causing most joint actions to remain near the current op-
timum. To overcome this limitation, we explicitly execute tracked suboptimal actions with priority
determined by a Softmax distribution Pt over theirQ∗ values, thereby ensuring more frequent visits,
enabling Q∗ to find better optimal and suboptimal actions, defined as

Pt = (P0,t, . . . , PK,t) := Softmax
(
Q∗(st, τt,a

∗
0,t)/T, . . . , Q

∗(st, τt,a
∗
K,t)/T

)
, (4)

5



Published as a conference paper at ICLR 2026

Policy

Value

𝜏𝑡
1 𝜏𝑡

𝑁⋯

⋯ ⋯𝑄0
𝑠𝑢𝑏

𝒂0,𝑡
∗

𝐏𝑡 = Softmax(𝑄∗ 𝒂0,𝑡
∗ , … , 𝑄∗ 𝒂𝐾,𝑡

∗ )

𝑄𝑘
𝑠𝑢𝑏(𝑠𝑡 , 𝝉𝑡, 𝒂𝑘,𝑡

∗ )

𝑄𝑘
1(𝜏𝑡

1, 𝑎𝑘,𝑡
1∗ ) 𝑄𝑘

𝑁(𝜏𝑡
𝑁, 𝑎𝑘,𝑡

𝑁∗)

𝑠𝑡Mixing Network

⋯

𝒂𝑘,𝑡
∗ 𝒂𝐾,𝑡

∗

𝑄𝑘
𝑠𝑢𝑏 𝑄𝐾

𝑠𝑢𝑏

S2Q Learning

෡𝐏𝑡

𝑃0,𝑡 𝑃𝐾,𝑡𝑃𝑘,𝑡⋯ ⋯

Ƹ𝑠𝑡

𝒛𝑡

𝑫

𝑬

෡𝐏𝑡
Recon

Encoder-Decoder

𝑎𝑡
𝑖 ∼ greedy(𝑄0

𝑖 )

(no comm.)Test

𝑘 ∼ ෡𝐏𝑡 , 𝑎𝑡
𝑖 ∼ 𝜖 greedy(𝑄𝑘

𝑖 )

(comm.)Train

Figure 3: Overall framework of S2Q

Algorithm 1 S2Q Framework

1: Initialize Q∗, [Qsubk ]Kk=0, (E,D)
2: for each training iteration do
3: for each environment step t do
4: if training then
5: Obtain zt = E(τt)

6: Obtain P̂t, ŝt = D(zt)

7: Sample k ∼ P̂t

8: Sample at ∼ ϵ-greedy(Qsubk )
9: else

10: Sample at ∼ greedy(Qsub, 0)
11: end if
12: end for
13: Compute target y
14: Update Q∗, Qsubk via Equation 1, 2
15: Update E, D
16: end for

where T is a temperature parameter. The behavior policy first samples k ∼ Pt, and then executes
actions from Qsub

k according to ϵ-greedy rule, i.e., ait ∼ ϵ-greedy(Qik). This design first selects k
based on Q∗ and then explores around the corresponding suboptimal action, and we empirically
show in Appendix D that S2Q visits a wider range of spaces than conventional ϵ-greedy exploration.

Exact computation of Pt, however, requires access to global information that decentralized agents
cannot directly observe. More importantly, since all agents must select the same sub-value func-
tion index k in order to execute Qsub

k consistently, coordination among agents is necessary. To re-
solve these challenges, we introduce communication during training, allowing agents to estimate
Pt jointly and synchronize their choice of Qsub

k . For this purpose, we adopt an encoder–decoder ar-
chitecture for general representation learning, following prior communication methods (Guan et al.,
2022; Wang et al., 2019). Specifically, encoder E maps local histories τt into a latent representation
zt = E(τt), and the decoder D reconstructs both the global state and an approximate distribution
(ŝt, P̂t) = D(zt). Agents then synchronize on the same k sampled from P̂t instead of Pt and
execute the corresponding Qsub

k , ensuring consistent and accurate use of sub-value functions.

At test time, by contrast, communication is not required in the default setup of S2Q. Since
Qsub

0 = Qtot alone suffices to produce the greedy optimal action a∗0,t, evaluation remains fully decen-
tralized and communication-free. This provides a practical advantage over conventional communi-
cation methods that rely on message passing even during evaluation. Nevertheless, in environments
where communication is indispensable for task success, we also consider a variant, denoted S2Q-
Comm, in which the latent zt is provided to each Qik during both training and execution. Through
this practical design, S2Q integrates successive sub-value functions with a Softmax-based behavior
policy, enabling Qtot to adapt quickly when the optimal action changes. The overall S2Q framework
is illustrated in Fig. 3, where each local history τ it is processed along the S2Q Learning module,
and the Encoder-Decoder module to generate the softmax probabilities Pt, and its prediction P̂t.
During training, agents use P̂t to synchronize their selection of the sub-value function Qsub

k , while
evaluation relies solely on the local outputs. The training procedure is summarized in Algorithm 1,
and further details on loss functions and implementation are provided in Appendix C.

5 EXPERIMENTS

In this section, we evaluate S2Q on two widely used MARL benchmarks: the StarCraft Multi-
Agent Challenge (SMAC) (Samvelyan et al., 2019), which involves micromanagement tasks in
StarCraft II, and Google Research Football (GRF) (Kurach et al., 2020), which features coopera-
tive soccer-like scenarios with an opponent team including a goalkeeper. As shown in Fig. 4(a), we
consider the SMAC-Hard+ suite, consisting of one hard map (5m vs 6m) and five super hard maps
(MMM2, 27m vs 30m, corridor, 6h vs 8z, 3s5z vs 3s6z), all of which require a high degree
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(a) SMAC-Hard+: Corridor (b) GRF: academy 3 vs 2 (c) SMAC-Comm: 1o 2r vs 4r

Figure 4: Experiment environments

of coordination among agents. Fig. 4(b) illustrates the GRF setups, including academy 3 vs 2
and academy 4 vs 3, where the number of agents and team formations are varied. In addition,
Fig. 4(c) depicts the SMAC-Comm suite, which explicitly requires agent communication for suc-
cessful task completion, including 1o 10b vs 1r, 1o 2r vs 4r, 5z vs 1ul, and bane vs hM.
Further details of the environmental setup are provided in Appendix E. For all reported result tables
and plots, we present the mean and standard deviation across five random seeds.

5.1 PERFORMANCE ANALYSIS

For performance evaluation, we consider communication-free tasks from SMAC-Hard+ and GRF,
along with communication-demanding scenarios from SMAC-Comm, with appropriate baselines for
each setting to ensure fair comparison. In the SMAC-Hard+ and GRF benchmarks, we compare
S2Q with QMIX and methods addressing the limitations of monotonic value decomposition, includ-
ing WQMIX1, which leverages Q∗ for more accurate value estimation; DOP (Wang et al., 2020d)
and FOP (Zhang et al., 2021), which extend the actor–critic paradigm to promote better global
coordination; PAC (Zhou et al., 2022) and RiskQ (Shen et al., 2023), which integrate counterfac-
tual prediction or risk-aware objectives; and MARR (Yang et al., 2024), which improves sample
efficiency through reset mechanisms. We also include MASIA (Guan et al., 2022), which recon-
structs global state information from local observations, to evaluate the effect of communication.
For the SMAC-Comm scenarios, where information exchange among agents is critical under par-
tial observability, we adopt S2Q-Comm, a variant that provides the latent zt to each agent’s utility
Qi(τ it , zt, a

i
t), and compare it with QMIX and QMIX-Comm, a variant of QMIX augmented with

learned latent information produced by an encoder–decoder structure that reconstructs the state,
FullCom, which augments QMIX with full observation sharing, and recent communication-focused
MARL methods such as MASIA, NDQ (Wang et al., 2019), and CAMA (Shao et al., 2023), which
enhance communication via information-theoretic regularization or complementary attention, as
well as MAIC (Yuan et al., 2022) and T2MAC (Sun et al., 2024), which employ selective and
targeted communication for improved coordination efficiency. All algorithms are implemented us-
ing the authors’ official code, and S2Q is trained with the best-performing hyperparameter (K = 2,
T = 0.1). Since the Q-values quickly turn positive in environments we consider, we adopt Q∗

targ

instead of max(Q∗
targ, C) in equation 2 for implementation, as mentioned in Section 4.2. Additional

experimental details, including the hyperparameter setup of S2Q are provided in Appendix F.

SMAC-Hard+ and GRF: Fig. 5 compares performance on SMAC-Hard+ and GRF. S2Q con-
sistently outperforms existing baselines, achieving faster convergence and higher asymptotic re-
turns. This advantage is most evident in exploration-intensive scenarios such as 6h vs 8z and
3s5z vs 3s6z, where conventional methods adapt slowly to the optimal joint action shifts, as
shown in the payoff matrix experiment in Section 4.1. By continually tracking suboptimal actions
with successive sub-value functions, S2Q allows Qtot to rapidly adjust toward the new optimum,
enabling more efficient exploration and quicker convergence, even in the challenging GRF tasks.

SMAC-Comm: Fig. 6 presents results for communication-critical tasks. S2Q-Comm performs com-
parably to baselines in the simpler 1o 2r vs 4r scenario, but demonstrates substantial gains in
more challenging settings such as 5z vs 1ul and bane vs hM, where tight coordination and
real-time adaptation are required. Synchronized sub-value function selection through the learned

1Throughout our experiments, we adopt OW-QMIX variant of WQMIX (Rashid et al., 2020b).
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SMAC-Hard+: 5m_vs_6m SMAC-Hard+: MMM2 SMAC-Hard+: 27m_vs_30m SMAC-Hard+: Corridor

SMAC-Hard+: 6h_vs_8z SMAC-Hard+: 3s5z_vs_3s6z GRF: academy_3_vs_2 GRF: academy_4_vs_3

Figure 5: Performance comparison: Average test win rates in the SMAC-Hard+ and GRF tasks

SMAC-Comm: 1o_2r_vs_4r SMAC-Comm: 1o_10b_vs_1r SMAC-Comm: 5z_vs_1ul SMAC-Comm: bane_vs_hM

Figure 6: Performance comparison: Average test win rates in the SMAC-Comm tasks

latent zt enables agents to consistently exploit informative suboptimal actions, leading to more effi-
cient cooperation. In addition, comparison with QMIX-Comm shows that these improvements arise
from S2Q’s successive sub-value learning, rather than relying solely on information sharing. These
findings suggest that S2Q-Comm can serve as a general approach for leveraging communication
efficiently, providing a promising direction for scaling to larger teams and more complex partially
observable environments.

Together, these experiments show that by continually tracking and exploiting suboptimal actions,
S2Q achieves faster convergence and more efficient learning than state-of-the-art MARL methods.
We further evaluate S2Q on additional stochastic environments, including SMACv2 (Ellis et al.,
2023), which randomizes team compositions, and SMAC-Hard (Deng et al., 2024), with mixed
scripted opponents. For clarity, we refer to the latter benchmark as SMAC-Hard (Mixture Oppo-
nent) to distinguish it from the SMAC-Hard+ environment. Despite the increased stochasticity, S2Q
consistently outperforms all baselines, suggesting that our method can effectively address stochas-
tic dynamics to a meaningful extent. Furthermore, we extend S2Q to other CTDE methods such
as VDN (Sunehag et al., 2017) and QPLEX (Wang et al., 2020a), observing similarly consistent
performance gains. Detailed results for these additional experiments are provided in Appendix G.

5.2 TRAJECTORY ANALYSIS

To investigate the training dynamics of S2Q (K = 2), we analyze the distribution of agents’ ac-
tions in the 6h vs 8z scenario, shown in Fig. 7(a). Fig. 7(b) reports the evolution of hit rate and
win rate over training. Since SMAC tasks require agents to defeat the opposing team, the dominant
actions are move and hit. Early in training, agents tend to prioritize survival, favoring move and
exhibiting low hit rates. However, as training progresses, the hit rate gradually increases, leading
to higher win rates, indicating that the optimal policy shifts from evasive behavior towards more
aggressive strategies where hit dominates. Fig. 7(c) illustrates how S2Q adapts to this shift in op-
timality by leveraging its successive sub-value functions. Initially, move is considered the optimal
action (a∗0,t), while hit actions (a∗1,t, a

∗
2,t) are tracked as suboptimal. As training proceeds and Q∗
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Figure 7: Training behavior of S2Q. Left: training step = 2M. Right: training step = 5M

recognizes that hit yields higher returns, S2Q gradually increases the execution frequency of hit via
the Softmax-based behavior policy. This enables Qsub

0 to promptly adjust to the newly optimal ac-
tion, resulting in an increase in hit rate and ultimately higher win rates. These results provide a clear
illustration of how S2Q tracks suboptimal actions and uses them to adapt efficiently when the opti-
mal action changes. Additional trajectory analysis for the SMAC-Comm, SMAC-Hard (Mixture
Opponent), and GRF environments are also provided in Appendix H.4. While detailed analyses
are provided in Appendix H.4, we observe a consistent trend across environments: agents frequently
begin by selecting locally greedy actions conditioned on their initial states, but gradually transition
toward the true optimal actions as training progresses.

5.3 ABLATION STUDY

In this section, we present ablation studies evaluating the contributions of S2Q’s core components
and hyperparameters. Component analysis is averaged across all scenarios in SMAC-Hard+, while
hyperparameter analysis is conducted on 6h vs 8z, where S2Q’s benefits are most evident. Addi-
tional results, including additional hyperparameter analysis in MMM2 and academy 4 vs 3, which
exhibit trends consistent with those observed in 6h vs 8z, ablations on the suppression constant α,
the weighting factorwc for WQMIX-based TD learning, and computational complexity, are reported
in Appendix H, to validate the effectiveness and generality of S2Q across diverse settings.

Table 1: Component evaluation of
S2Q on SMAC-Hard+ tasks.

Method Avg. Win Rate(%)

S2Q 73.43 ± 5.29
S2Q oracle 77.47 ± 4.32
S2Q independent 46.22 ± 8.20
S2Q no wTD 70.59 ± 4.78
S2Q no soft 55.17 ± 6.71
S2Q random 48.05 ± 9.37
QMIX 43.94 ± 10.06

SMAC-Hard+: 6h_vs_8z

(a)
SMAC-Hard+: 6h_vs_8z

(b)

Figure 8: Hyperparameter analysis. Effect of (a) the number of
sub-networks K and (b) Softmax temperature T .

Component evaluation: To evaluate the contribution of each component in S2Q, we design
five ablations: S2Q oracle uses the true softmax distribution Pt instead of the estimated P̂t;
S2Q independent samples k independently, removing coordinated execution; S2Q no wTD re-
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moves the weighted TD learning by replacingQ∗ withQsub
0 ; S2Q no soft eliminates Softmax-based

execution, always acting according toQsub
0 ; and S2Q random uniformly samples k rather than using

Softmax probabilities. Table 1 reports the average win rate across six SMAC-Hard+ scenarios.

The results show that ’S2Q oracle’ serves as a reference upper bound, since it can access to the
true softmax distribution P and therefore achieves higher performance than S2Q. In contrast,
’S2Q independent’ exhibits a substantial performance drop relative to S2Q because it cannot ac-
curately estimate the selection probabilities and consequently fails to maintain proper synchroniza-
tion across agents. Together, these ablations clearly demonstrate the critical role of accurately es-
timating the softmax probabilities in enabling effective coordinated sub-value selection. In addi-
tion, ‘S2Q no wTD’ maintains strong performance, indicating that successive sub-value learning
and its execution are more critical to performance than the auxiliary weighting scheme. In con-
trast, ‘S2Q no soft’ suffers a noticeable drop in win rate, showing that simply retaining suboptimal
actions without prioritizing their execution is insufficient. ‘S2Q random’ further degrades perfor-
mance, as ignoring the relative importance of different sub-value functions dilutes learning. These
findings highlight that the proposed successive sub-value learning and the Softmax-guided execution
are indispensable for enabling S2Q to achieve rapid convergence toward high-quality joint policies.

Number of sub-value functions K: Controls the number of sub-value functions to learn. Fig. 8(a)
shows performance for K ∈ [0, 1, 2, 3]. The results demonstrate that even with relatively small
values of K, S2Q can effectively address diverse suboptimal actions in complex environments with
large joint action spaces, such as SMAC, yielding rapid convergence and high final win rates. In
particular, K = 2 achieves the best performance, reaching nearly 70% win rate. On the other hand,
setting K = 0 fails to capture meaningful suboptimal actions, thereby limiting the effectiveness
of exploration. Conversely, a larger value, such as K = 3, may introduce excessive variance and
destabilize learning. These findings indicate that a moderate number of candidate sub-networks
achieves a favorable trade-off between diversity and stability, maximizing the effectiveness of S2Q.

Softmax temperature T : The temperature T regulates the sharpness of the Softmax distribution
Pt. Fig. 8(b) shows the performance for T ∈ {0.01, 0.1, 0.2, 1.0}. The results indicate that T = 0.1
yields the best balance between convergence speed and final win rate. A very small temperature
(T = 0.01) produces overly deterministic behavior early in training, limiting exploration and slow-
ing progress toward the optimum. In contrast, a high temperature (T = 1.0) promotes excessive
exploration, delaying convergence and occasionally leading to suboptimal plateaus. Interestingly,
T = 0.2 also performs competitively, suggesting that S2Q is relatively robust to moderate changes
in temperature, as long as sampling remains focused enough to prioritize promising sub-values.

6 LIMITATIONS

While S2Q shows strong performance across diverse MARL environments, using multiple sub-value
functions increases computation and memory requirements. However, our analysis in Appendix H.5
shows that this overhead is moderate relative to the performance gains, making the trade-off favor-
able in most practical settings where faster convergence and higher final performance are critical. In
addition, S2Q relies on a Softmax-based selection strategy with a temperature parameter controlling
the exploration-exploitation balance. Nevertheless, we find that S2Q is not highly sensitive to this
parameter, and a reasonable value can be chosen with minimal tuning effort, allowing S2Q to remain
practical and easily deployable across a wide range of environments.

7 CONCLUSION

In this work, we addressed the fundamental challenge posed by monotonic value decomposition in
MARL and introduced S2Q, a novel framework based on successive Q-learning. By sequentially
learning multiple sub-value functions, S2Q continuously tracks high-value alternative actions and
rapidly adapts when the optimal joint action shifts, leading to more effective exploration and faster
convergence. This design enables efficient coordination without requiring explicit communication
or access to global state information. Extensive experiments on challenging MARL benchmarks,
including SMAC and GRF, demonstrate that S2Q consistently avoids suboptimal solutions induced
by monotonicity constraints and achieves substantial improvements over state-of-the-art methods.
These results position S2Q as a practical and general framework for advancing cooperative MARL.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this paper, we made limited use of large language models (LLMs) exclusively for pol-
ishing grammar and improving the clarity of our writing. No part of the research process, including
problem formulation, method design, experimentation, analysis, or interpretation, was conducted
using LLMs. Their role was strictly restricted to editorial assistance, ensuring the presentation of
our work is clear and readable.

B MISSING PROOF

Theorem B.1 (Successive Q-learning). Let Q∗(st, τt,at) and {Qsub
k }Kk=0 be the joint action-value

function and sub-value functions obtained by minimizing equation 1 and equation 2, respectively,
and let {a∗0,t, . . . ,a∗K,t} denote the K+1 successive suboptimal joint actions of Q∗ for given st and
τt at timestep t s.t.

Q∗(st, τt,a
∗
0,t) ≥ · · · ≥ Q∗(st, τt,a

∗
K,t) ≥ Q∗(st, τt,at), ∀at /∈ {a∗0,t, . . . ,a∗K,t}.

If the reward function r is bounded and suppression factor α is sufficiently large, then,

a∗k,t = argmax
at

Qsub
k (st, τt,at) ∀k ∈ {0, ...,K}. (B.1)

Proof. We consider the minimization of the joint value loss equation 1 together with the proposed
sub-value losses equation 2. At convergence, the Bellman optimality equation implies that Q∗ satis-
fies yt = rt + γQ∗

targ = Q∗. Using this relation, each sub-value function Qsub
k satisfies

Qsub
k (st, τt,at) =

{
Q∗(st, τt,at)− αmax(Q∗(st, τt,at), C) if at ∈ Ak−1,t,

Q∗(st, τt,at) otherwise,

for every (st, τt,at) pairs.

For given (st, τt) pair, if the suppression factor α satisfies

α ≥ max
ãt∈Ak−1,t

Q∗(st, τt, ãt)−Q∗(st, τt,a
∗
k,t)

max(Q∗(st, τt, ãt), C)
≥ 0, (B.2)

then Qsub
k (st, τt, ãt) = Q∗(st, τt, ãt) − α max(Q∗(st, τt, ãt), C) ≤ Q∗(st, τt,a

∗
k,t) =

Qsub
k (st, τt,a

∗
k,t), ∀ãt ∈ Ak−1,t.

From the definition of a∗k,t, Qsub
k (st, τt, ãt) = Q∗

k(st, τt, ãt) ≤ Q∗(st, τt,a
∗
k,t) =

Qsub
k (st, τt,a

∗
k,t),∀ãt ∈ A\Ak−1,t, so we can conclude

a∗k,t = argmax
at

Qsub
k (st, τt,at). (B.3)

Thus, if we take the supremum over all state–observation histories and the maximum over all k ∈
0, . . . ,K, the suppression factor must satisfy

α ≥ sup
st,τt

max
k∈{0,··· ,K}

max
ãt∈Ak−1,t

Q∗(st, τt, ãt)−Q∗(st, τt,a
∗
k,t)

max(Q∗(st, τt, ãt), C)
≥ 0

, and this supremum is finite because the bounded-reward assumption implies that Q∗ is also
bounded, which ensures that equation B.3 holds for all (st, τt) pairs and for all k ∈ {0, . . . ,K}.
This completes the proof of the theorem.

C IMPLEMENTATION DETAILS

In this section, we detail the implementation of the proposed S2Q method. First, we present the
encoder–decoder architecture described in Section 4.3 together with its associated loss function in
Appendix C.1. Then, we introduce the parameterization for the practical implementation of S2Q and
the corresponding total loss function in Appendix C.2. Furthermore, details on re-defined weight-
ing function wk, which enables S2Q to more effectively shift Qtot towards the optimal policy, are
provided in Appendix C.3.
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C.1 TRAINING THE ENCODER-DECODER STRUCTURE

As introduced in Section 4.3, exact computation of Pt requires access to the global state s. There-
fore, we proposed the approximation of Pt based on an encoder-decoder architecture. For practical
implementation, we parameterize the encoder-decoder structure with neural network parameter ψ
and represent it as Eψ and Dψ . The encoder Eψ utilizes an rnn layer, and maps the concatena-
tion of all agents’ local histories τ it into a latent representation zt = Eψ(τt). Then, the decoder
Dψ reconstructs both the global state and an approximate distribution (ŝt, P̂t) = Dψ(zt). Then,
the encoder-decoder architecture is trained to approximate PK based on a cross-entropy (CE) loss
CE(PK , P̂K), while the reconstruction mean square error (MSE) loss MSE(s, ŝ) encourages z to
capture essential state information, thereby improving the prediction accuracy of P̂K . The overall
loss of the encoder-decoder architecture Llatent(ψ) is defined as:

Llatent(ψ) = CE(PK , P̂K) + MSE(s, ŝ). (C.1)

C.2 PRACTICAL IMPLEMENTATION OF S2Q

For practical implementation of S2Q, we parameterize both the monotonic sub-value functions
Qsub

0 , . . . , Qsub
K and the unrestricted value function Q∗ using neural network parameter θ. As de-

scribed in Section 2.2, WQMIX (Rashid et al., 2020b) trains the unrestricted value function Q∗ via
temporal-difference (TD) loss in equation 1, which we rewrite for the parameteriszedQ-function as:

LQ∗(θ) = E(st,τt,at)∼B
[
(Q∗

θ(st, τt,at)− yt)
2
]
, yt = rt + γQ∗

θ̄(st+1, τt+1,a
′
t+1), (C.2)

where τt = (τ1t , . . . , τ
N
t ) is the joint history, Q∗

θ̄
the target network, and ai′t = argmaxQi(τ it , ·)

the individual target action. Then, WQMIX further updates Qtot toward the target yt by adaptively
weighting the TD error using w(st,at), defined as w(st,at) = 1 if Qtot(st, τt,at) < yt and
w(st,at) = wc < 1 otherwise, thereby prioritizing updates on actions that are underestimated.

Following this design, we train Q∗
θ , and then redefine the mean squared errors of the sub-value

functions in equation 2 as the successive loss Lsuccessive(θ), expressed as:

Lsuccessive(θ) =

K∑
k=0

E(st,τt,at)∼B

[
wk(st,at)

(
Qsub
θ,k(st, τt,at)

−
(
yt − α I(at ∈ Ak−1,t) ·max(Q∗

θ̄(st, τt,at), C)
))2

]
,

(C.3)

where wk is a weighting function for each k inspired by WQMIX, which we detail in Appendix C.3.
I is the indicator function, B is the replay buffer, and Ak,t = {a∗0,t,a∗1,t, . . . ,a∗k,t} with A−1,t = ∅
denotes the set of previously identified suboptimal actions. The factor α controls how strongly the
values of actions in Ak−1,t are suppressed. Combined with the encoder-decoder loss Llatent(ψ)
introduced in Appendix C.1, the final loss function of S2Q is derived as:

LS2Q(θ, ψ) = Lsuccessive(θ) + LQ∗(θ) + Llatent(ψ) (C.4)

To further stabilize optimal action selection, we adopt a simple sampling strategy that balances sta-
bility and exploration. Specifically, with probability p = 0.5, the sub-network index is fixed to k = 0
for the entire episode, ensuring consistent learning of the global optimum. Otherwise, k is sampled
at each timestep from P̂t, to promote exploration of suboptimal actions. This simple yet effective
mechanism provides both reliable convergence toward the optimum and sufficient exploration diver-
sity. Algorithm C.1 summarizes the full S2Q learning process.
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Algorithm C.1 Successive Sub-value Q-learning (S2Q) Framework

1: Initialize unrestricted value network Q∗
θ and its target network Q∗

θ̄
, sub-value networks

[Qsub
θ,k]

K
k=0, encoder-decoder (Eψ, Dψ), and replay buffer B

2: for each training iteration do
3: With probability p = 0.5, fix sub-value index k = 0 for the entire episode
4: for each environment step t do
5: if training then
6: Encode trajectories τt into latent variable zt = Eψ(τt)

7: Decode zt to obtain categorical distribution and reconstructed state: P̂t, ŝt = Dψ(zt)
8: if episode is fixed to k = 0 then
9: Set k = 0

10: else
11: Sample k ∼ P̂t

12: end if
13: Select joint action at ∼ ϵ-greedy(Qsub

k )
14: else
15: Select joint action at ∼ greedy(Qsub

0 )
16: end if
17: Execute joint action at, observe reward rt and next state st+1

18: Store transition (st,at, rt, st+1) in replay buffer D
19: end for
20: Compute TD target y = r + γQ∗

θ̄
(s, τ ,a)

21: Update [Qsub
θ,k]

K
k=0 and Q∗

θ via Lsuccessive and LQ∗ in equations C.3, C.2
22: Update encoder and decoder (E,D) via Llatent in equation C.1
23: end for
24: Periodically update target network Q∗

θ̄

C.3 WEIGHTING FUNCTION IN WEIGHTED TD LEARNING

As explained in Section 2.2, WQMIX updates Qtot toward the target yt by adaptively weighting the
TD error using w(st,at). Building on WQMIX, S2Q introduces weighting function wk, defined as:

wk(st,at) =


1, if Q∗(st, τt,at) ≥ maxa∗

t∈AK ,tQ
∗(st, τt,a

∗
t ), k = 0

1, if Qsub
k (st, τt,at) < yt − αI(at ∈ Ak−1,t) ·Q∗

targ(st, τt,at) k = 1, . . . ,K

wc, otherwise.
(C.5)

Our design of wk is motivated by the following rationale. For k = 0, the weighting rule ensures that
optimality is consistently propagated into Qsub

0 := Qtot, allowing S2Q to rely solely on Qsub
0 during

evaluation without requiring communication. For k ≥ 1, the rule closely resembles the WQMIX
weighting scheme, but instead of directly comparing against the TD target yt, it suppresses the
values of previously identified suboptimal actions before applying the comparison, thereby enabling
the successive extraction of alternative high-value actions. In all other cases, the factor wc acts as a
down-weighting term to moderate updates. A sensitivity analysis ofwc is provided in Appendix H.2.
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D SOFTMAX-BASED EXPLORATION BEHAVIOR OF S2Q

(a) (c)(b)

Figure D.1: Heatmap of joint action distribution under three settings: (a) S2Q (K = 2, T = 1.0),
(b) S2Q (K = 2, T = 0.5), (c) per-agent ϵ-greedy

In this section, we analyze the exploration behavior of S2Q compared to conventional per-agent
ϵ-greedy strategies. To visualize the exploration behavior of each method, we revisit the 2-agent, 3-
action matrix game introduced in Section 4.1, where the optimal joint action is (A,A) with value 8,
and the suboptimal actions (B,B) and (C,C) have values 7 and 6, respectively. Fig. D.1 illustrates
the joint action probabilities under three different settings: (a) S2Q with K = 2 and T = 1, (b) S2Q
with K = 2 and T = 0.5, and (c) conventional per-agent ϵ-greedy exploration.

Figure D.1 demonstrates that S2Q successfully identifies the optimal action while still executing
suboptimal actions with meaningful frequency, even at a modest temperature of T = 0.5. At a higher
temperature of T = 1, the optimal action remains the most frequently executed, while exploration
across suboptimal actions is maximized. In contrast, conventional per-agent ϵ-greedy exploration
concentrates almost exclusively on the optimal action (A,A). This highlights a key limitation of
conventional methods that rely on a single optimal action and independent ϵ-greedy sampling: they
struggle to adapt when the value function changes dynamically. By contrast, S2Q adapts smoothly
to changes in the optimal action, based on its prioritized Softmax-based exploration over tracked
suboptimal actions. This broader exploration provides richer training signals for Q∗, facilitating
faster convergence toward globally optimal solutions.
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E ENVIRONMENT DETAILS

In this section, we provide a detailed description of the environments and scenarios used for evalu-
ating the proposed S2Q. We consider two main benchmarks: the StarCraft Multi-Agent Challenge
(SMAC) (Samvelyan et al., 2019) and the Google Research Football (GRF) environment (Kurach
et al., 2020). As mentioned in Section 5, we further categorize SMAC scenarios based on their
complexity and communication requirements. Specifically, we distinguish between SMAC-Hard+,
which presents challenging coordination tasks with a larger number of units and complex combat
strategies, and SMAC-Comm, which emphasizes tasks requiring explicit inter-agent communication
for effective execution. Appendices E.1, E.2, E.3 provide detailed descriptions of the SMAC-Hard+,
GRF, and SMAC-Comm scenarios discussed in Section 5. In Appendices E.4 and E.5, we detail
SMACv2 (Ellis et al., 2023) and SMAC-Hard (Mixture Opponent) (Deng et al., 2024), where we
conduct additional experiments to further demonstrate the effectiveness of S2Q. The performance
results for SMACv2 and SMAC-Hard (Mixture Opponent) are provided in Appendices G.1 and G.2,
respectively.

E.1 THE STARCRAFT MULTI-AGENT CHALLENGE (SMAC)-HARD+

EnemyAlly

(a) 5m vs 6m

Ally

(b) MMM2

EnemyAlly

(c) 27m vs 30m

Enemy
Ally

(d) Corridor

Enemy

Ally

(e) 6h vs 8z

EnemyAlly

(f) 3s5z vs 3s6z

Figure E.1: Visualizations of SMAC-Hard+ scenarios

SMAC (Samvelyan et al., 2019) is a widely used benchmark designed to test cooperative Multi-
Agent Reinforcement Learning (MARL) algorithms in complex, decentralized settings. Built on top
of the StarCraft II game engine, SMAC presents a series of tactical combat scenarios, where a team
of AI-controlled allies faces off against enemies run by a built-in script. Each scenario differs in
terms of terrain, unit types, and strategic difficulty, requiring agents to master sophisticated combat
tactics such as focus fire, kiting, and exploiting environmental features. A match concludes either
when one side is eliminated or the time limit expires. We provide visualizations of SMAC-Hard+
scenarios in Fig. E.1, and summarize the details of each considered episodes in Table E.1, followed
by a detailed description of the SMAC benchmark.

State space: Global state s aggregates detailed information from all entities on the battlefield. For
allied units, this includes their positions, health, cooldowns, shields if applicable, and unit types.
Enemy data is similar, except it omits the cooldown stats. In addition, the most recent action taken
by each agent is recorded as a one-hot encoded vector.

Observation space: In SMAC, agents’ observations are restricted to allies and enemies within a
sight range of 9 units. Specifically, an agent’s observation vector is composed of four distinct seg-
ments. First, movement capabilities are encoded across four directions (up, down, left, right). Sec-
ond, data about visible enemies includes their relative positions, distances, health, shield values,
unit type, and whether they can currently be targeted. Third, ally-related information mirrors the
enemy format but excludes the agent itself. Finally, self-features reflect the observing agent’s own
condition:its current health, shield level (if any), and unit classification.
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Action space: Agents in SMAC operate using a set of discrete actions. These include movement in
the four primary directions (north, south, east, west), the ability to attack enemies within a range of
6 units, and special abilities limited to certain units such as Medivacs. Agents can also issue a stop
command or perform a no-op action, though the latter is reserved for units that have been eliminated.

Reward function: SMAC incorporates a shaped reward function composed of three main elements:
damage inflicted on enemy units, elimination of those units, and overall victory in the scenario. The
reward is formally defined as:

R =
∑

e∈enemies

∆Health(e) +
∑

e∈enemies

I(Health(e) = 0) · Rewarddeath + I(win) · Rewardwin (E.1)

Here, ∆Health(e) represents the decrease in health of enemy unit e during a given timestep, and I(·)
is an indicator function. Rewarddeath and Rewardwin are set to 10 and 200, respectively.

Table E.1: Detailed descriptions of SMAC-Hard+ scenarios

Map Ally Units Enemy Units State Dimension Obs Dimension Num. of Actions
5m vs 6m 5 Marines 6 Marines 98 55 12

1 Medivac, 1Medivac,
MMM2 2 Marauders, 3 Marauders, 322 176 18

7 Marines 8 Marines

27m vs 30m 27 Marines 30 Marines 1170 285 36

Corridor 6 Zealots 24 Zerglings 282 156 30

3s5z vs 3s6z 3 Stalkers, 3 Stalkers, 230 136 15
5 Zealots 6 Zealots

6h vs 8z 6 Hydralisks 8 Zealots 140 78 14

E.2 GOOGLE RESEARCH FOOTBALL (GRF)

Ally Opponent Ball

(a) academy 3 vs 2 (b) academy 4 vs 3

Figure E.2: Visualizations of GRF scenarios

GRF Kurach et al. (2020) offers a multi-agent soccer environment where each player is controlled
by an autonomous agent. The game models realistic ball physics, player motion, and interaction
mechanics such as tackling and passing. Teams must coordinate to achieve scoring opportunities
while competing against opponents driven by scripted behaviors. From GRF scenarios, we consider
academy 3 vs 1 with keeper and academy 4 vs 2 with keeper scenarios, which we
abbreviate as academy 3 vs 2 and academy 4 vs 3 for brevity. Fig. E.2 illustrates the initial
positions of the entities on the field, while Table E.2 summarizes the considered scenarios.

State space: The global state s consists of all player positions and velocities, as well as ball position
and velocity. The data for both ally and opposing teams are set to same.
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Observation space: The observation for an agent includes local information about the ego player,
nearby teammates, opponents, and ball-related features, all expressed relative to the agent’s current
frame.

Action space: The discrete action space of GRF covers movement in eight directions, sliding, pass-
ing, shooting, sprinting, and standing still, all of which are necessary in order to achieve scoring
opportunities.

Reward function GRF provides two primary reward settings: Scoring and Checkpoint. Scoring
function rewards agents with a +1 reward for scoring a goal and a -1 penalty for conceding one.
While the Checkpoint function provides additional intermideate rewards. For example agents may
receive rewards for successful passes or defensive actions. In our experiments, we follow the more
sparse Scoring function, for more challenging scenarios.

Table E.2: Detailed description of GRF scenarios

Scenario Ally Opponent State Dim Obs Dim Action Dim

academy 3 vs 2 3 central midfield
1 goalkeeper,
1 center back 26 26 19

academy 4 vs 3 4 central midfield
1 goalkeeper,
2 center back 34 34 19

E.3 SMAC-COMM

(a) 1o 2r vs 4r (b) 1o 10b vs 1r (c) 5z vs 1ul (d) bane vs hM

Figure E.3: Visualizations of SMAC-Comm scenarios

SMAC-Comm shares the same state, observation, action space, and reward function as the previ-
ously introduced SMAC-Hard+, but its tasks are specifically designed to emphasize communica-
tion. We illustrate the scenarios from SMAC-Comm considered in our experiments in Fig. E.3, and
summarize them as Table E.3.

Table E.3: Detailed description of SMAC-Comm scenarios

Map Ally Units Enemy Units State Dimension Obs Dimension Num. of Actions
1o 2r vs 4r 1 Overseer, 4 Reapers 68 49 10

2 Roaches

1o 10b vs 1r 1 Overseer, 1 Roach 148 84 7
10 Banelings

5z vs 1ul 5 Zealots 1 Ultralisk 63 35 7

bane vs hM 3 Banelings 1 Hydralisk, 52 35 8
1 Medivac
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E.4 SMACV2

(a) terran 5 vs 5 (b) zerg 5 vs 5 (c) protoss 5 vs 5

Figure E.4: Visualizations of SMACv2 scenarios

SMACv2 (Ellis et al., 2023) extends the original SMAC (Samvelyan et al., 2019) benchmark to pro-
vide a more rigorous testbed for evaluating generalizable cooperative multi-agent learning. While
the state, observation, and action spaces, as well as the reward function, remain similar to SMAC,
several key modifications distinguish SMACv2. First, instead of fixed map configurations, SMACv2
introduces randomized initializations (e.g., unit positions, health, numbers, and attributes), which
prevent agents from overfitting to static scenarios. Second, it emphasizes greater unit diversity and
asymmetric matchups, requiring more sophisticated tactical coordination among agents. Third, the
difficulty scaling mechanism is refined: rather than varying only the number or placement of en-
emy units, environmental factors are also randomized, creating a natural train–test distribution gap.
In our experiments, we consider the terran 5 vs 5, zerg 5 vs 5, protoss 5 vs 5 scenar-
ios. Visualizations for each scenario are provided in Fig. E.4, and the scenario-specific details are
summarized in Table E.4.

Table E.4: Detailed description of SMACv2 scenarios. Probabilities indicate the sampling distribu-
tion for randomized compositions.

Map Ally Units (prob.) Enemy Units (prob.) State Dim Obs Dim Num. Actions

terran 5 vs 5
Marine (0.45) Marine (0.45)

120 82 11Marauder (0.45) Marauder (0.45)
Medivac (0.1) Medivac (0.1)

zerg 5 vs 5
Zergling (0.45) Zergling (0.45)

120 82 11Hydralisk (0.45) Hydralist (0.45)
Baneling (0.1) Baneling(0.1)

protoss 5 vs 5
Zealot (0.45) Zealot (0.45)

130 92 11Stalker (0.45) Stalker (0.45)
Colossus (0.1) Colossus (0.1)

E.5 SMAC-HARD (MIXTURE OPPONENT)

SMAC-Hard (Mixture Opponent) (Deng et al., 2024) shares the same state, observation, action
space, and reward function as the previously introduced SMAC-Hard+, but it incorporates additional
stochasticity by providing multiple opponent strategies. To distinguish it from the tasks from orig-
inal SMAC-Hard+, we attach Hard to each scenario to denote tasks from SMAC-Hard (Mixture
Opponent). We summarize the scenarios we consider in our experiments as Table E.3.

Table E.5: Detailed description of SMAC-Hard (Mixture Opponent) scenarios

Map Ally Units Enemy Units State Dimension Obs Dimension Num. of Actions
2s3z Hard 2 Stalkers, 2 Stalkers 120 80 11

3 Zealots 3 Zealots

3s vs 5z Hard 3 Stalkers, 5 Zealots 68 48 11

5m vs 6m Hard 5 Marines 6 Marines 98 55 12
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F EXPERIMENTAL DETAILS

In this section, we provide the experimental details of the proposed S2Q. All experiments provided
in this paper are conducted on a GPU server equipped with an NVIDIA GeForce RTX 3090 GPU and
an Intel Xeon Gold 6348 (2.60GHz, 28 cores) processor, running Ubuntu 20.04. In Appendix F.1,
we introduce popular CTDE baselines, including VDN, QMIX, and QPLEX. While we follow the
original implementations and loss scaling of the prior baseline CTDE algorithms for shared hyper-
parameters, we focus our parameter search on the hyperparameters newly introduced in S2Q. This
hyperparameter setup is provided in Appendix F.2. Finally, Appendix F.3 details various MARL
methods that address the limitations of monotonic value decomposition, as well as communication-
focused MARL algorithms.

F.1 DETAILS OF CONSIDERED CTDE BASELINES

VDN (Sunehag et al., 2017) is a cooperative MARL method based on value factorization, decom-
posing the joint action-value function into a sum of individual agent value functions, enabling cen-
tralized training with decentralized execution. The global Q-value is defined as:

Qtot(st,at) =

N∑
i=1

Qi(τ it , a
i
t),

where individual Qi depends only on the agent’s own trajectory τ it and the chosen action ait.

QMIX (Rashid et al., 2020a) introduces a more flexible, non-linear function for combining individ-
ual agent utilities into a joint action-value. To ensure that maximizing each agent’s local Qi aligns
with maximizing the global objective, QMIX enforces a monotonicity constraint between the joint
value and the individual utilities, formalized as:

∂Qtot

∂Qi
≥ 0, ∀i,

QPLEX (Wang et al., 2020a) advances the expressiveness of value factorization by introducing a du-
plex dueling architecture while still satisfying the IGM (Individual-Global-Max) property. QPLEX
decomposes the Q-values into advantage functions and formulates IGM as:

argmax
a

Atot(τ ,a) =

 argmaxa1 A
1(τ1, a1),

...
argmaxaN A

N (τN , aN )

 ,

where Atot and Ai represent the joint and individual advantage functions, respectively. The joint
Q-value is then constructed as:

Qtot(τ ,a) =

N∑
i=1

Qi(τ , ai) +

n∑
i=1

(λi(τ ,a)− 1)Ai(τ , ai),

with the weighting factors λi(τ ,a) > 0 generated via a multi-head attention mechanism, enhancing
the flexibility of the model.

Throughout our experiments, results for VDN, QMIX, and QPLEX are based on the implementa-
tions provided in PyMARL2 (Hu et al., 2021), an open-source MARL framework that includes im-
plementations of diverse algorithms along with various improvements, such as TD(λ), larger batch
sizes, and the Adam optimizer. The code is available at: https://github.com/hijkzzz/
pymarl2.
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F.2 HYPERPARAMETER SETUP

In our experiments, while we adopt the default hyperparameter configuration from PyMARL2 (Hu
et al., 2021) for settings shared across CTDE methods, we focus on identifying effective values
for the hyperparameters introduced in S2Q. The best parameters for each scenario are summarized
in Table F.2. According to Table F.2, across a variety of tasks, K = 2, T = 0.1, and α = 1.0
consistently achieve the best performance. While the weighting factor w exhibits some task-specific
variation, values of 0.75 or 0.9 generally perform well. These results demonstrate the robustness and
flexibility of S2Q, achieving high win rates and rapid convergence across diverse scenarios.

Table F.1: Common Q-learning Hyperparameters

Hyperparameter Value
ϵ Decay Value 1.0 → 0.05
ϵ Anneal Time 100000
Target Update Interval 200
Discount Factor γ 0.99
Buffer Size 5000
Batch Size 128
Learning Rate 0.001
Optimizer Adam
Optimizer Alpha 0.99
Optimizer Eps 1e-5
Gradient Clip Norm 10.0
Num GRU Layers 1
RNN Hidden State Dim 64
Double Q True

Table F.2: Scenario-specific hyperparameter setup of S2Q

Scenario K T α w

SMAC-Hard+
5m vs 6m 2 0.1 1.0 0.9
MMM2 2 0.1 1.0 0.9
27m vs 30m 2 0.1 1.0 0.9
corridor 2 0.1 1.0 0.75
6h vs 8z 2 0.1 1.0 0.9
3s5z vs 3s6z 2 0.1 1.0 0.75

GRF
academy 3 vs 2 2 0.1 1.0 0.75
academy 4 vs 3 2 0.1 1.0 0.75

SMAC-Comm
1o 2r vs 4r 2 0.1 1.0 0.9
1o 10b vs 1r 2 0.1 1.0 0.9
5z vs 1ul 2 0.1 1.0 0.9
bane vs hM 2 0.1 1.0 0.9

SMACv2
terran 5 vs 5 2 0.1 1.0 0.75
zerg 5 vs 5 2 0.1 1.0 0.75
protoss 5 vs 5 2 0.1 1.0 0.75

SMAC-Hard (Mixture Opponent)
5m vs 6m Hard 2 0.1 1.0 0.9
2s3z Hard 2 0.1 1.0 0.9
3s vs 5z Hard 2 0.1 1.0 0.9
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F.3 DESCRIPTION OF OTHER MARL METHODS FOR COMPARISON

QMIX (Rashid et al., 2020a): introduces a mixing network that combines per-agent value functions
into a joint action-value under a monotonicity constraint, ensuring consistency between centralized
training and decentralized execution. We base our implementation of QMIX on the following repos-
itory: https://github.com/hijkzzz/pymarl2

WQMIX (Rashid et al., 2020b): extends QMIX by introducing weighted projections in the mixing
process, alleviating the representational limitations of monotonicity and enabling more accurate
learning of optimal joint action-values. We base our implementation of WQMIX on the following
repository: https://github.com/hijkzzz/pymarl2

RiskQ (Shen et al., 2023): introduces a quantile-based value factorization that models joint re-
turn distributions as weighted mixtures of per-agent utilities, satisfying the risk-sensitive IGM prin-
ciple and enabling coordination under uncertainty. The official code can be found at: https:
//github.com/xmu-rl-3dv/RiskQ

PAC (Zhou et al., 2022): leverages counterfactual predictions of optimal joint actions to provide
assistive information for value factorization, using a novel counterfactual loss and variational en-
coding to improve coordination under partial observability. The official code can be found at:
https://github.com/hanhanAnderson/PAC-MARL

FOP (Zhang et al., 2021): factorizes the optimal joint policy in maximum-entropy MARL into indi-
vidual actor-critic policies, with theoretical guarantees of convergence to the global optimum. The
official code can be found at: https://github.com/PKU-RL/FOP-DMAC-MACPF?tab=
readme-ov-file

DOP (Wang et al., 2020d): integrates value function decomposition into multi-agent actor-critic
methods, enabling efficient off-policy learning while addressing credit assignment and centralized-
decentralized mismatch, with guarantees of convergence. The official code can be found at: https:
//github.com/TonghanWang/DOP

MARR (Yang et al., 2024): improves sample efficiency in MARL by introducing a reset strat-
egy and data augmentation, enabling high-replay training in parallel environments with fewer en-
vironment interactions. The official code can be found at: https://github.com/CNDOTA/
ICML24-MARR

MASIA (Guan et al., 2022): enables efficient multi-agent communication by aggregat-
ing received messages into compact, task-relevant representations using a permutation-
invariant encoder and self-supervised objectives, improving coordination and decision-
making. The official code can be found at: https://github.com/chenf-ai/
Multi-Agent-Communication-Considering-Representation-Learning

NDQ (Wang et al., 2019): combines value function factorization with communication minimiza-
tion, enabling agents to act independently most of the time while selectively exchanging messages
using information-theoretic regularizers to improve coordination. The official code can be found at:
https://github.com/TonghanWang/NDQ

MAIC (Yuan et al., 2022): enables agents to generate targeted incentive messages that directly
influence teammates’ value functions, promoting efficient explicit coordination while remaining
compatible with different value function factorization methods. The official code can be found at:
https://github.com/mansicer/MAIC

CAMA (Shao et al., 2023): uses complementary attention to enhance high-contribution enti-
ties and compress low-contribution ones, addressing distracted attention and limited observabil-
ity, thereby improving coordination in cooperative MARL. The official code can be found at:
https://github.com/thu-rllab/CAMA

T2MAC (Sun et al., 2024): enables agents to communicate selectively with trusted partners and
integrate information at the evidence level, improving coordination and communication efficiency in
cooperative MARL. The official code can be found at: https://github.com/ZangZehua/
T2MAC
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G ADDITIONAL EXPERIMENT RESULTS

In this section, we present additional experiment results to further demonstrate the effectiveness of
our proposed S2Q method. In Appendice G.1 and G.2, we provide additional performance evaluation
on SMACv2 (Ellis et al., 2023) and SMAC-Hard (Mixture Opponent) (Deng et al., 2024), while we
extend S2Q to other representative CTDE baselines, VDN and QPLEX, in Appendix G.3.

G.1 PERFORMANCE COMPARISON IN SMACV2

SMACv2: terran_5_vs_5 SMACv2: zerg_5_vs_5 SMACv2: protoss_5_vs_5

Figure G.1: Performance comparison: Average test win rates in the SMACv2 tasks

From Fig. G.1, which shows the performance in SMACv2 scenarios, we can observe that S2Q
demonstrates superior performance over the MARL baselines across all scenarios, achieving both
superior performance and faster convergence. Notably, its advantage is most pronounced in the
zerg 5 vs 5 and protoss 5 vs 5 scenarios, where the high degree of stochasticity induced by
varying ally and enemy team compositions makes the environment particularly challenging. In this
setting, S2Q demonstrates its ability to effectively track the values of suboptimal actions, thereby
enabling more efficient exploration and guiding the Qtot towards the optimal policy.

G.2 PERFORMANCE COMPARISON IN SMAC-HARD (MIXTURE OPPONENT)

SMAC-Hard: 3s_vs_5z_Hard SMAC-Hard: 2s3z_Hard SMAC-Hard: 5m_vs_6m_Hard

Figure G.2: Performance comparison: Average test win rates in the SMAC-Hard (Mixture Opponent)
tasks

Fig. G.2 illustrates the performance on SMAC-Hard (Mixture Opponent) scenarios, including
5m vs 6m Hard, 2s3z Hard, and 3s vs 5z Hard. As mentioned in Appendix E.5, we append
“ Hard” to each scenario name to distinguish from the the scenarios from the SMAC-Hard+ bench-
mark. According to the results, S2Q consistently outperforms all MARL baselines across every
considered task, demonstrating its superiority. Notably, in the 3s vs 5z Hard scenario, where
agents must coordinate precise hit-and-run maneuvers against opponents that exhibit diverse tacti-
cal behaviors, S2Q demonstrates outstanding adaptability. This suggests that S2Q captures subtle
opponent-conditioned value structures that conventional MARL baselines fail to exploit.
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G.3 GENERALITY OF S2Q ACROSS CTDE METHODS

Although our primary discussion of S2Q has been in the context of WQMIX, the proposed proce-
dure is general and readily extends to other CTDE methods, such as VDN (Sunehag et al., 2017) and
QPLEX (Wang et al., 2020a). By replacing the joint action-value function Q∗ with Qtot, S2Q can
be integrated into these value-decomposition baselines without modification. Across all scenarios,
we observed significant performance improvements over the corresponding baselines. Consistent
with the results obtained in WQMIX, the performance gains were most evident in the challenging
6h vs 8z environment, which requires extensive exploration. These results demonstrate the practi-
cality and robustness of S2Q, highlighting its ability to follow changes in the value landscape more
closely and adapt to new optima faster than conventional approaches.

Table G.1: Performance comparison on SMACv2 environments

Scenario VDN VDN+S2Q QPLEX QPLEX+S2Q
5m vs 6m 62.47 ± 11.12 68.25 ± 4.78 58.18 ± 3.52 61.86 ± 2.65
MMM2 0.00 ± 0.00 14.12 ± 2.43 50.78 ± 10.63 58.03 ± 8.27
27m vs 30m 13.75 ± 5.33 61.35 ± 2.33 47.34 ± 8.26 63.18 ± 5.54
Corridor 56.25 ± 26.14 70.49 ± 13.37 48.62 ± 24.02 64.68 ± 18.51
6h vs 8z 8.94 ± 4.31 48.03 ± 9.37 3.44 ± 1.13 41.32 ± 6.23
3s5z vs 3s6z 47.66 ± 19.66 49.82 ± 10.31 43.19 ± 17.02 48.73 ± 10.46
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H ADDITIONAL ABLATION STUDY

In this section, we provide a deeper analysis on S2Q. In Appendix H.1, we provide further analysis
on the hyperparameters K and T in additional tasks, while in Appendix H.2, provide additional ab-
lation study on the suppression constant α and weighting factor wc. Furthermore, in Appendix H.3,
we analyze the role of auxiliary signals in scenarios where communication is not critical, and in Ap-
pendix H.4, provide additional examples of shift in value function along with trajectory analysis in
SMAC-Comm environment. Finally, Appendix H.5 presents computational complexity analysis on
S2Q, to show that the computational overhead from leveraging multiple sub-value functions remains
moderate, compared to the significant performance gain of S2Q.

H.1 HYPERPARAMETER ANALYSIS IN ADDITIONAL TASKS

SMAC-Hard+: MMM2 GRF: academy_4_vs_3SMAC-Hard+: MMM2 GRF: academy_4_vs_3

Figure H.1: Hyperparameter analysis. From left to right: (1) effect of K in MMM2, (2) effect of
temperature T in MMM2, (3) effectK in academy 4 vs 3, and (4) effect of T in academy 4 vs 3

To further emphasize the generality of S2Q beyond the settings examined in Section 5.3, we addi-
tionally evaluate the effects of the number of sub-value networks K and the Softmax temperature T
in two more challenging environments: MMM2 scenario from SMAC-Hard+ and academy 4 vs 3
scenario from GRF.

Number of sub-value functions K: As in earlier results, K = 2 achieves the best overall perfor-
mance in both MMM2 and academy 4 vs 3, offering the strongest balance between convergence
speed and final win rate. In contrast, K = 0 fails to provide meaningful exploratory diversity, while
larger values such as K = 3 introduce increased variance and mild instability. These observations
further support that a moderate number of candidate sub-networks yields a favorable trade-off be-
tween diversity and stability.

Softmax temperature T : A moderate temperature (e.g., T = 0.1) provides the most effective
balance between focused sampling and sufficient exploration. Very low temperature values (T =
0.01) result in overly deterministic behavior early in training, suppressing useful exploration, while
higher temperatures (e.g., T = 1.0) promote excessive exploration and slow convergence. Notably,
T = 0.2 performs competitively, indicating that S2Q remains robust to reasonable variations in
temperature as long as sampling remains sufficiently concentrated on promising sub-values.

Across both environments, we observe trends that closely mirror those reported earlier for
6h vs 8z, demonstrating that the behavior of S2Q is consistent and robust across domains. Over-
all, the additional experiments on SMAC-Hard+ and GRF confirm that S2Q maintains stable and
consistent performance characteristics across diverse and challenging multi-agent environments, re-
inforcing its generality and robustness.
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H.2 ABLATION STUDY ON ADDITIONAL HYPERPARAMETERS

SMAC-Hard+: 6h_vs_8z

(a)

SMAC-Hard+: 6h_vs_8z

(b)

Figure H.2: Hyperparameter analysis. Effect of (a) suppression constant α and (b) weight factor wc.

Suppression constant α: Fig. H.2(a) evaluates the effect of the suppression constant α ∈
[0.1, 0.5, 1.0, 1.5, 2.0], which determines how strongly the values of previously identified actions
are reduced and thereby controls how far sampled suboptimal actions lie from the current optimum.
The results indicate that α = 1.0 yields the best performance: this setting encourages exploration of
meaningful, moderately distant sub-actions that are informative for updating the value landscape. A
smaller value, α = 0.5, also performs well since it biases sampling toward nearby sub-actions that
remain relevant to the optimum. In contrast, a very small value such as α = 0.1 fails to sufficiently
suppress the previously selected optimal actions, preventing the discovery of meaningful suboptimal
actions and resulting in a significant degradation in performance. On the other hand, larger values
(α = 1.5, 2.0) substantially hurt performance: excessive suppression forces sampling of actions that
are very distant from the optimum, producing updates that are less informative (and often mislead-
ing) for tracking the true optimal policy, which destabilizes learning and slows convergence. These
findings suggest that a moderate suppression level is necessary to balance exploration breadth with
the relevance of sampled sub-actions.

Weighting factor wc: Fig. H.2(b) reports the effect of varying the weighting factor wc, which de-
termines how TD-error is scaled by reinforcing corrective signals that reduce underestimation. The
results show that wc = 0.9 yields the highest win rates, striking a balance between effective error
correction and stable value learning. A slightly smaller value, wc = 0.75, also performs well, indi-
cating robustness to moderate relaxations. However, more aggressive reductions such as wc = 0.5
and wc = 0.25 significantly weaken the propagation of TD-error, leading to information loss and
degraded performance. These findings highlight that maintaining a relatively high w ensures that
informative TD signals are consistently transmitted, while still guiding the value functions towards
the optimal values.
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H.3 EFFECT OF AUXILIARY SUPERVISION

SMAC-Hard+: MMM2 SMAC-Hard+: 6h_vs_8z GRF: academy_4_vs_3

Figure H.3: Performance comparison: Average test win rates in the SMAC-Hard+ and GRF task for
MARL algorithms and their communication variant

To demonstrate that the performance gains of S2Q arise from the proposed successive sub-value
learning, rather than the auxiliary latent information, we conduct additional experiments on SMAC-
Hard+ scenarios, including MMM2 and 6h vs 8z) and academy 4 vs 3 scenario from GRF. In
these environments, we equipped all non-communication baselines with the same encoder-decoder
architecture used in S2Q-Comm, and denote these variants by appending “-Comm”. This setup en-
sures that every algorithm receives an identical latent signal derived from reconstructing the global
state, thereby isolating the effect of the auxiliary representations from the effect of S2Q’s successive
sub-value learning.

The results, presented in Fig. H.3 show that injecting these latent-based auxiliary signals has minimal
influence on performance across the considered tasks where communication is not critical for task
success. In some cases, performance even degrades due to the latent introducing additional noise.
Similar trends appear in the GRF academy 4 vs 3 environment, where communication is not the
primary bottleneck. Notably, S2Q-Comm consistently outperforms all baselines, including their “-
Comm” variants. These findings confirm that the advantage of S2Q-Comm does not originate from
the auxiliary state-reconstruction signal or the latent variable itself. Instead, the gains stem from
S2Q’s core mechanisms.

H.4 SHIFT IN VALUE FUNCTION AND ADDITIONAL TRAJECTORY ANALYSIS
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Figure H.4: Value function shift in 5m vs 6m Hard)

In addition to the motivation discussed in Section 4.1 and the trajectory analysis presented in
Section 5.2, we provide further examples of shifts in the value function. Specifically, we ex-
amine value-function changes in SMAC-Hard (Mixture Opponent) 5m vs 6m Hard and GRF
academy 4 vs 3, with results depicted in Fig. H.4 and H.5. In 5m vs 6m Hard, agents initially
focus on greedy attacks to secure easy eliminations, but the value function subsequently learns that
repositioning to form favorable formations yields higher long-term returns, causing the optimal ac-
tion to shift from attack to move.

Similarly, in academy 4 vs 3, agents first attempt low-success long shots, but eventually discover
that approaching the goal or passing increases scoring probability, shifting the optimal action from
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Figure H.5: Value function shift in academy 4 vs 3

shoot to pass. These examples further highlight S2Q’s capability to track and adapt to evolving
optimal behaviors across diverse environments.

HitMoveAlly Enemy
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Figure H.6: Training behavior of S2Q. Left: training step = 0.3M. Right: training step = 2M

In addition, we further investigate the training dynamics of S2Q (K = 2), we analyze the
5z vs 1ul scenario from SMAC-Comm, where the agents must learn to coordinate based on the
latent information z. 6h vs 8z. Unlike scenarios that reward aggressive engagement, the optimal
strategy in 5z vs 1ul is to move and group with the distant ally, while direct attack actions often
lead to heavy losses due to the enemy’s superior strength. As shown in Fig.H.6(a), the action distri-
bution reveals that agents initially favor attack, reflecting a local optimum that prioritizes immediate
engagement. Consequently, the attack ratio increases in the early stages of training. However, as
training progresses, S2Q enables agents to recognize the risks of premature aggression, resulting
in a gradual decline in attack frequency and a corresponding rise in the use of move. Fig.H.6(b)
illustrates how this shift is accompanied by improvements in survival time and overall win rate.

Fig. H.6(c) highlights how S2Q adapts to this changing notion of optimality. Early in training, attack
is tracked as the dominant action (a∗0,t), while move is considered suboptimal. As the value landscape
evolves, Q∗ reassigns higher returns to move, prompting S2Q to increase its execution frequency
through the Softmax-based behavior policy. This dynamic reallocation allows Qsub

0 to align with
the true optimal strategy, thereby reducing reliance on local optima. These findings emphasize that
even in environments requiring implicit coordination and communication, such as 5z vs 1ul, S2Q
effectively leverages its successive sub-value component to explore, track, and ultimately converge
to the optimal policy.
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H.5 COMPUTATIONAL COMPLEXITY

S2Q introduces additional computational overhead due to its use of multiple sub-value functions
and the encoder-decoder architecture for coordinating k-selection. To evaluate this overhead and
demonstrate that it remains minimal relative to performance benefits, we compare S2Q and QMIX
in controlled experiments on an NVIDIA GeForce RTX 3090 GPU and an Intel Xeon Gold 6348
(2.60GHz, 28 cores) processor running Ubuntu 20.04 with PyTorch. In MMM2 and 27m vs 30m
scenarios where QMIX achieves competitive performance, we measure the time required to reach
a 50% win rate. Table H.1 summarizes the results. According to Table H.1, S2Q incurs only a
moderate increase in computation, approximately 8.4% for MMM2 and 3.5% for 27m vs 30m. More
importantly, due to faster learning enabled by successive sub-value function tracking, S2Q reaches
the target win rate of 50% significantly faster than QMIX, demonstrating that the modest overhead
is outweighed by the improved convergence speed and overall performance.

Table H.1: Comparison of training time between S2Q (for different K) and QMIX.

Scenario Metric S2Q (K=1) S2Q (K=2) S2Q (K=3) QMIX

MMM2
Time / 1M 122.0 min 129.3 min 136.5 min 119.3 min
T at 50% win 1.48M 1.28M 1.67M 2.16M
Time at 50% win 180.6 min 165.5 min 228.0 min 257.7 min

27m vs 30m
Time / 1M 241.0 min 245.1 min 258.0 min 236.8 min
T at 50% win 1.39M 1.15M 1.57M 1.86M
Time at 50% win 335.0 min 281.9 min 405.1 min 440.4 min

In addition to time-wise comparison, we also evaluate GPU memory consumption to quantify the
overhead introduced by maintaining multiple sub-value networks. Table H.2 reports peak GPU us-
age for S2Q with different values of K and for QMIX. According to the results, memory usage
increases moderately with K due to the additional sub-networks, but the overall overhead remains
reasonable: in MMM2, S2Q with K = 2 requires only 248 MB more memory than QMIX, and even
K = 3 remains within a 19% increase. A similar pattern holds in the more computationally de-
manding 27m vs 30m scenario, where S2Q(K = 2) uses 336 MB more memory than QMIX. The
incremental cost from K = 2 to K = 3 is also modest, considering the added representational
capacity. Importantly, this memory overhead scales predictably and linearly with K.

Combined with the substantial reduction in training time reported in Table H.1, these results demon-
strate that S2Q achieves significant improvements in learning efficiency while incurring only limited
computational and memory overhead. This confirms that the successive sub-value learning frame-
work offers a favorable trade-off between memory usage and performance gains, even in large-scale
SMAC scenarios.

Table H.2: Comparison of memory usage between S2Q (for different K) and QMIX.

Scenario Metric S2Q (K=1) S2Q (K=2) S2Q (K=3) QMIX
MMM2 Perk GPU usage (MB) 1967.0 MB 2087.0 MB 2188.0 MB 1839.0 MB

27m vs 30m Perk GPU usage (MB) 3665.0 MB 3761.0 MB 4076.0 MB 3425.0 MB
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