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Abstract

We develop a correspondence between the structure of Turing machines and the
structure of singularities of real analytic functions, based on connecting the Ehrhard-
Regnier derivative from linear logic with the role of geometry in Watanabe’s singular
learning theory. The correspondence works by embedding ordinary (discrete) Turing
machine codes into a family of “noisy” codes which form a smooth parameter space.
On this parameter space we consider a potential function which has Turing machines
as critical points. By relating the Taylor series expansion of this potential at such a
critical point to combinatorics of error syndromes, we relate the local geometry to
internal structure of the Turing machine.

The potential in question is the negative log-likelihood for a statistical model,
so that the structure of the Turing machine and its associated singularity is further
related to Bayesian inference. Two algorithms that produce the same predictive
function can nonetheless correspond to singularities with different geometries, which
implies that the Bayesian posterior can discriminate between distinct algorithmic
implementations, contrary to a purely functional view of inference. In the context
of singular learning theory our results point to a more nuanced understanding of
Occam’s razor and the meaning of simplicity in inductive inference.

All of this will lead to theories which are much less rigidly of an
all-or-none nature than past and present formal logic. They will
be of a much less combinatorial, and much more analytical,
character. In fact there are numerous indications to make us
believe that this new system of formal logic will move closer to
another discipline which has been little linked in the past with
logic. This is thermodynamics, primarily in the form it was
received from Boltzmann, and is that part of theoretical physics
which comes nearest in some of its aspects to manipulating and
measuring information.

J. von Neumann, Collected Works V, [43, p. 304]
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1 Introduction

We present a perspective on programs which relates them to the geometry of singularities
in real algebraic geometry [2, 22, 21]. This continues a line of work on algebraic semantics
of linear logic [30, 15, 13] and connections of those semantics to geometry [31, 38] and
statistical learning theory [17, 45]. In this introduction we explain the key ideas of the
present work without requiring any familiarity with this background material.

The concept of an algorithm or program had a long gestation. From a modern per-
spective we can see two primary threads: the refinement of logical debate and structured
arguments starting with Aristotle and the refinement of the idea of an algebraic manipula-
tion or calculation starting with Al-Khwārizmī. Over time these threads came together in
the work of Leibniz and Boole [7] then later Gentzen [19], Turing [39], Brouwer-Heyting-
Kolmogorov [37], Church [12], Curry and Howard [24] and others to give us the modern
synthesis of logic and computation. However, with the rise of machine learning and ar-
tificial intelligence the conceptual landscape under this synthesis has shifted, as already
anticipated by Turing [40] and von Neumann [42, 43]. Soon most sophisticated cognition
on Earth, including the construction of programs, will occur in machines. Thus it may
be appropriate to expand the proper domain of logic to include understanding the laws
of thought that emerge in the minds of large learning machines other than ourselves.1

One way to take this seriously is to search for an embedding of the discrete world of
proofs and programs into the continuous world of machine learning and statistical learning
theory. We know one relevant example: our brains are continuous but can parametrise
effectively discrete forms of reasoning and symbol manipulation [42]. Our main desiderata
for this embedding should be that it be a homomorphism, that is, the internal structure
of proofs and programs should be reflected in the geometric structure of the continuous
space near the image of that program. When the geometry in question is that of the
singularity of a potential function, there is a long tradition in mathematics and physics
of relating the “internal structure” of points to the geometry of singularities [10, 9, 21, 1].

In this paper we study such a homomorphism, that is, a structure preserving map
from programs to singularities. In [14, 17, 45] the map was constructed by considering
synthesis problems, that is, the Bayesian inference of a (noisy) Turing machine code given
input-output examples in the spirit of Solomonoff [35]. In this paper we develop a lan-
guage of error syndromes in which to describe this map and exhibit the sense in which it
is structure-preserving. Finally, we explain how this correspondence offers a new view on
Bayesian statistics, which we term structural Bayesianism. This point of view emphasises
that according to standard principles of model selection we should not only prefer models
that predict well but which further have an internal structure which is optimal. This
provides some theoretical grounding for approaches that attempt to perform structural
inference on neural networks, another important class of singular models [23, 44].

1Interpretability is the new (old) logic.
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1.1 Overview

The paper in overview:

• Section 2: we recall the general setup of synthesis problems and smooth relaxations
of the execution of a UTM, and modulo the details of that smooth relaxation how
we define a statistical model (Section 2.1, Section 2.2). We then recall the definition
of learning coefficients (Section 2.3) and how this geometric invariant controls the
Bayesian learning process according to singular learning theory (Section 2.4).

• Section 3: having associated to a Turing machine M a singularity ([M ], L) we
proceed to introduce what it means to study the geometry of such an object. This
leads to the definition of influence functions gi(x).

• Section 4: we recall the basics of linear logic and its semantics (Section 4.1). Then we
give a sketch of how in this semantics inputs are copied and distributed throughout
the “programs” that are one interpretation of linear logic proofs, and how when the
inputs are distributions this has the semantics of “resample whenever you use an
input” which leads to the fundamental notion of an error syndrome (Section 4.2).
This is further expanded in Section 4.3 which concludes with Theorem 4.8. This
says that derivatives of denotations of plain proofs (an important case being the
proof that encodes the execution of a UTM for t timesteps) can be thought of in
terms of counts of error syndromes.

• Section 5: we introduce a plain proof ψ which encodes reading off the final state of
a simulated machine after the execution of a particular UTM for t steps (Section
5.2) and then apply Section 4 to that proof to define derivatives and express them
in terms of error syndromes (Section 5.3).

• Section 6: we express the Taylor series expansion of the polynomial function H(w)
at a code [M ] in terms of counts of error syndromes (Theorem 6.3).

• Section 7: using Theorem 6.3 we explain how to make three separate connections
between program structure and geometry (summarised in Section 1.1.3 below).

• Section 8: in the conclusion we draw some general lessons from this connection
between programs and singularities for Bayesian inference and interpretability and
introduce the philosophy of structural Bayesianism.
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Figure 1: The parameter spaceW with coordinates w1, . . . , wd parametrises “noisy codes”
which specify for each entry on the description tape of a UTM a distribution over possible
values. When executing such a noisy Turing machine code on an input x for t steps of
the simulated machine the UTM can experience read errors when accessing the code on
the description tape, and the pattern of such errors determines an error syndrome. Any
particular error syndrome may flip the output of the simulated machine from the correct
output y = y(x) to the incorrect output y(x).

In the rest of this section we sketch the main results. First we recall the general
situation of Bayesian inference of Turing machine codes considered in [14, 17, 45], which
is depicted in Figure 1.

1.1.1 Inductive Inference of TMs

We suppose there is a computable function y = y(x) with y ∈ {0, 1} and x ∈ Σ∗ for some
alphabet of symbols Σ where in this paper Σ∗ denotes strings of positive length. That is,
we are given a language L = {x ∈ Σ∗ | y(x) = 1}. The learning problem, which we refer
to as a synthesis problem, is to infer a Turing machine code that explains a given dataset
Dn = {(xi, yi)}ni=1 of examples with yi = y(xi) and xi ∼ q(x) for some given distribution
over inputs with finite support I ⊆ Σ∗. We refer to a Turing machine M as a classical
solution if M(x) = y(x) for all x ∈ I.2

We can perform Bayesian inference to assign probabilities to various Turing machines
M represented by their codes [M ] for a particular universal Turing machine (UTM) which
we denote U . However, this approach does not “see” the internal structure of a Turing
machine. On the theory that internal structure is revealed by the pattern of responses of
a system to perturbations, we consider perturbations of the dynamical system U simu-

2We will be more precise about the meaning of M(x) below, but note that it will involve a timeout.
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lating M of the following kind: when the UTM performs an operation, it reads from the
description tape with some probability of error, obtaining enough samples to simulate the
machine from the first step. That is, we view the connection of the description tape to
the rest of the UTM as a noisy channel. The code w for a noisy Turing machine specifies
the precise errors that can occur and their probability. In this way we can include the
ordinary Turing machine codes in a larger continuous space W . On this space we define
the negative log-likelihood

Ln(w) = − 1

n

n∑
i=1

log p(yi|xi, w) (1)

for any noisy Turing machine code w ∈ W , and its average L(w) = EDn [Ln(w)] over all
possible datasets. This is an analytic function and the global minima of L include Turing
machinesM which are solutions in the above sense. The singularity assigned in [17, 45] to
the pair consisting ofM and the synthesis problem is the germ ([M ], L) (see Definition 2.4
below). Of course it remains to explain precisely how to assign probabilities to yi ∈ {0, 1}
given an input xi and a noisy Turing machine code w (we will get to this in Section 2.1).

1.1.2 Error Syndromes

With this preparation we can sketch the idea of error syndromes, influence functions and
how they relate the structure of M to the geometry of ([M ], L). An error syndrome γ
records the pattern of errors encountered while U simulates M for some fixed number t
of steps. Let M be a classical solution and let U(x, γ) denote the “output” (the entry on
the state tape of the UTM) obtained on input x with error syndrome γ when simulating
M for t steps. If we only allow a single error on the ith entry of the description tape the
influence function of weight one is (Section 6.3)

gi(x) =
∣∣∣{γ | U(x, γ) ̸= y(x)

}∣∣∣ . (2)

That is, gi ∈ NI assigns to each input x the number of those error syndromes, with one
error localised to the ith entry of the description tape, which cause an output error. Up
to second-order the main structural information there is to know about the germ ([M ], L)
is whether the singularity is nondegenerate, that is, whether its Hessian is invertible. One
can show that this geometry of L is the same as the geometry of a polynomial function
H and our results are formulated about this polynomial (Section 3).

The Hessian of H can be described in terms of influence functions (Corollary 6.4)

1

2

∂2

∂wi∂wj
H
∣∣∣
w=[M ]

= Ex
[
gi(x)gj(x)

]
(3)

where Ex[−] denotes expectation with respect to q(x) and w1, . . . , wd are natural coordi-
nates on the space of noisy TM codes W at [M ]. It follows that ([M ], L) is nondegenerate
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if and only if the set of influence functions is linearly independent, or what is the same,
if every bit of the code of M influences the computation in an independent way. This
provides the first hint of a nontrivial relation between the geometry of ([M ], L) and the
structure of the Turing machine (see Section 6.4).

More generally for a nonzero multi-index k = (k1, . . . , kd) we have (Lemma 3.3)

∂|k|

∂wk11 · · · ∂wkdd
H
∣∣∣
w=[M ]

=
∑
i,j̸=0
i+j=k

C(i, j)Ex
[
gi(x)gj(x)

]
(4)

where the C are some combinatorial factors and gi(x) is a general influence function,
which can be expressed in terms of counts of error syndromes subject to the condition
that the number of errors in each entry of the description tape is at most the integer
specified in i (Theorem 6.3). In this precise sense, the combinatorics of error syndromes
controls the geometry of H and thus of L.

1.1.3 Programs as Singularities

We claim that typical Turing machine codes are highly degenerate (see Section 7.4 for an
example). That is, the effects of different entries on the description tape are highly corre-
lated in terms of the effect that errors in these bits have on the output. We claim further
that the pattern of these correlations reflects internal structure of Turing machines. Since
there is no general formal definition of “internal structure” of programs to compare to,
evidence for this claim takes the form of the development (in this paper and its sequels)
of examples of program structure, together with a study of how this structure is reflected
in correlations of influence functions (Figure 2).

In this paper we give three examples:

• If a Turing machineM has run-time error correction then the Taylor series expansion
of H at [M ] has many vanishing lower order terms; this leads to upper bounds on
the learning coefficient of L (Section 7.1).

• It is apparent from (3) that Turing machines which process subsets of the input using
independent control paths should have that structure reflected in their geometry (see
Section 7.2).

• In Section 7.4 we study a Turing machine detectA(0) which recognises the language
consisting of all strings in {A,B} which contain an A. We compute explicitly the
polynomial H to second order and diagonalise its Hessian in local coordinates to
exhibit how the geometry relates to the structure of the machine.
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Combinatorics of error syndromes

''

Program structure +3

77

Geometric structure

Figure 2: The relationship between program structure and geometry we establish works
by relating both to the combinatorics of error syndromes, which are patterns of flips in
bits on the description tape of a UTM which affect the output of the simulated machine.

Symbol Description Reference
γ Error syndrome Definition 4.9
U Staged pseudo-universal Turing machine Section 5.1
W Parameter space of noisy Turing machines Section 2
d Dimension of W Equation (10)

W code Set of (deterministic) Turing machine codes Section 2
[M ] The code of a Turing machine M Definition 2.2

∆stept Execution of a noisy Turing machine for t steps Equation (11)
L(w) Average negative log-likelihood function Section 2.2
K(w) KL divergence Section 2.2
H(w) Polynomial function comparable to K Definition 2.8
gi(x) Influence function measuring the effect of errors of

pattern i on input x
Definition 3.2

As(x) Count of weight s error syndromes that cause out-
put errors on input x

Definition 5.8

Ex[−] Expectation with respect to q(x) Section 3
λ([M ], q) Local learning coefficient of a Turing machine M Section 6

ψ Plain proof in intuitionistic linear logic Definition 4.2
π Linear proof (usually the linear part of ψ) Definition 4.2
f τψ Polynomial computing the denotation of ψ Definition 4.5

J·K Denotational semantics operator Section 4.1
U(x, γ) Evaluation of U input x and error syndrome γ Definition 5.6

Table 1: Key symbols used throughout the paper and their descriptions.
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2 Background

2.1 From Turing Machine to Singularity

We recall the treatment of inductive inference in [14, 17], assuming familiarity with Turing
machines at the level of [3]. Our conventions for Turing machines are as in [14, §6.1].
We denote by Σ the set of symbols and Q the set of states. The set Σ is assumed to
contain some designated blank symbol □ which is the only symbol that is allowed to
occur infinitely often on the tape. Often one also designates a starting state.

The configuration of a Turing machine M is an element
(
(σu)u∈Z, q) of Σ

Z ×Q where
q is the current state and the symbol in the square in position u relative to the head is
σu (so σ0 is the symbol currently under the tape head, σ−1 is the symbol immediately to
the left of the tape head). Observe that the configuration of the tape actually lies in the
smaller set of functions which are finitely supported, in the following sense:

Definition 2.1. We write

ΣZ,□ = {f : Z −→ Σ | f(u) = □ except for finitely many u} .

Given a finite alphabet Σ and set of states Q a Turing machine M for this alphabet
and set of states is identified with its transition function

δ : Σ×Q −→ Σ×Q× {L, S,R} . (5)

The interpretation is that when the machine reads the symbol σ and is in state q it
writes σ′, transitions to state q′ and moves in direction d (Left, Stay or Right) where
δ(σ, q) = (σ′, q′, d). We sometimes write δ0(σ, q), δ1(σ, q), δ2(σ, q) for σ

′, q′, d respectively.
The set of Turing machines with this alphabet and these states is

W code =
∏
σ,q

Σ×Q× {L, S,R} (6)

where unless specified otherwise, σ always ranges over Σ and q over Q. We think ofW code

as a set of codes since the tuples (σ, q, σ′, q′, d) are, when encoded on the description tape
of a Universal Turing Machine (UTM) for all σ, q, a code for the Turing machine with the
given transition function.

Definition 2.2. If M is a Turing machine with alphabet Σ and set of states Q, then the
point in W code corresponding to M is the code of M and is denoted [M ].

In this paper Σ, Q are viewed as fixed and all Turing machines have the same set of
symbols and states. Thus all Turing machines have codes in W code. See Appendix A.7
for some comments on this restriction.

Definition 2.3. Given a set Z we denote by ∆Z the simplex of Z which is

∆Z :=
{
f : Z −→ [0, 1] |

∑
z∈Z

f(z) = 1
}
. (7)
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A noisy Turing machine is given by a function

δ : Σ×Q −→ ∆Σ×∆Q×∆{L, S,R} (8)

so the set of all noisy Turing machines is

W :=
∏
σ,q

∆Σ×∆Q×∆{L, S,R} . (9)

This is a manifold with corners of dimension

d := dimW =
∑
σ,q

(|Σ| − 1 + |Q| − 1 + 2) = |Σ||Q|
(
|Σ|+ |Q|

)
. (10)

Again, we do not distinguish between a machine and its code, which are the points of W .
The interpretation of a noisy Turing machine code is that when the UTM attempts to
simulate the machine on an input x, it has some probability of read errors when it accesses
the description tape. For instance if the second component of δ(σ, q) is q′ ∈ ∆Q then
when the UTM attempts to determine what state to transition the simulated machine to
when it reads σ and is in state q, it receives from the description tape a sample from the
distribution q′. That is, communication between the description tape and other parts of
the UTM are a noisy channel (see Appendix A.5 for some elaboration).3

Different ways of thinking about the operation of the UTM in the presence of this
noise channel lead to different smooth relaxations [14], by which we mean in particular
the specification of smooth functions ∆stept for all integers t ≥ 1 which make the diagram

Σ∗ ×W
∆stept

// ∆Q

Σ∗ ×W code

OO

stept
// Q

OO
(11)

commute, where the bottom row is the usual execution of the UTM for t steps of the
simulated machine, and the vertical maps are the canonical inclusions. We read

∆stept(x,w) =
∑
y

∆stept(x,w)y · y ∈ ∆Q (12)

as saying that when the UTM executes the noisy code w on a (deterministic) input
x ∈ Σ∗ for t steps, the distribution over the state that results from propagating this un-
certainty about the code to uncertainty about the final state of the simulated machine is

3There is an existing literature on noisy Turing machines, with some variations in the definition.
Unlike [5] we do not consider random errors in every part of the configuration of the Turing machine. For
example, we do not introduce random errors on the tape squares. Our noise is restricted to determining
the tuples in the description to execute.
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{∆stept(x,w)y}y∈Q. If there is no uncertainty in the code, there is no uncertainty in the
state. The precise smooth relaxation we have in mind is recalled in Section 5.2.

This becomes a problem of inductive inference [14, §7] if we observe the final state y of
the execution of some unknown machine when run on some inputs x ∈ Σ∗, and we wish to
know which Turing machine explains these observations. If our model of the propagation
of uncertainty is (12) then the conditional distribution of the state y ∈ Q given x,w is4

p(y|x,w) = ∆stept(x,w) (13)

where we assume t is fixed; for a more general class of synthesis problem see [45] and
also Appendix A.3. According to Bayes’ rule if we observe a set of inputs and final states
Dn = {(xi, yi)}ni=1 the probability p(w|Dn) of a given noisy code w is

p(w|Dn) =
p(Dn|w)φ(w)

p(Dn)
=

1

Zn
φ(w)

n∏
i=1

p(yi|xi, w) (14)

where φ(w) is our prior belief in codes, and Zn := p(Dn) is a normalising constant which
is independent of w. Thus the degree of our belief in w is controlled by the quantity

Ln(w) = −
n∑
i=1

1

n
log p(yi|xi, w) (15)

which is called the negative log-likelihood, via the relationship

p(w|Dn) =
1

Zn
exp(−nLn(w))φ(w) , (16)

Zn =

∫
exp(−nLn(w))φ(w)dw . (17)

Our philosophical position here is that ultimately the explanations we wish to consider
are the (honest) Turing machine codes w ∈ W code, but in executing these codes with the
UTM we cannot avoid some small (perhaps extremely small) possibility of this execution
being corrupted by read errors of the kind modelled by small perturbations within W .

Given Turing machines M1,M2 we compare codes [M1], [M2] ∈ W code by comparing
the conditional probability that, given Dn, the explanation lies in a small neighbourhood
Wi of [Mi]. These probabilities are

p(Wi | Dn) =
1

Zn

∫
W
exp(−nLn(w))φ(w)dw . (18)

It turns out that, asymptotically as n becomes large, this comparison is determined by
the geometry at these points of the average negative log-likelihood

L = −
∑
x∈I

q(x)
∑
y∈Q

q(y|x) log p(y|x,w) .

4For expository purposes we give here a simplified form of the model, see Section 2.2 for details.
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We explain how this comparison works in detail in Section 2.4. For now we take this
as motivation to introduce the mathematical concept which captures the behaviour of a
function at a point:

Definition 2.4. A germ of continuous (resp. analytic) real-valued functions on a space X
is an equivalence class of pairs (U, f) where U is an open neighbourhood of x, f : U −→ R
is continuous (resp. analytic) and we say two such pairs are equivalent (U, f) ∼ (V, g) if
there exists an open neighbourhood Z of x with Z ⊆ U ∩V and f(z) = g(z) for all z ∈ Z.

This provides the basic setting where we associate to a Turing machine M the germ
([M ], L) of an analytic function, and some property of this germ is relevant to the question
of whether or not we should prefer M as an explanation of the observed data, relative to
some other candidate Turing machine.

We only consider deterministic synthesis problems for which there is a true function
y = y(x) from I to Q and the true conditional distribution q(y|x) = δy=y(x) puts all
probability mass on this correct output. We suppose that two states {0, 1} ⊆ Q have
been identified (which we could read as for example reject, accept) and that y(x) ∈ {0, 1}
for all x ∈ I. For z ∈ {0, 1} we sometimes write z = z + 1 modulo 2.

Definition 2.5. Given a Turing machine M we let

M(x) := stept(x, [M ]) ∈ Q

denote the state after executing M for t steps on input x.5

Definition 2.6. A Turing machine M is a classical solution if M(x) = y(x) for all x ∈ I.

Remark 2.7. By commutativity of (11) to be a classical solution is equivalent to

∆stept
(
x, [M ]

)
y(x)

= 1 , ∀x ∈ I .

Definition 2.8. We define

H(w) =
∑
x

q(x) p
(
y ̸= y(x) | x,w

)2
(19)

where y = y(x) is the true output.

To be explicit

p
(
y ̸= y(x) | x,w

)
=

∑
z∈Q,z ̸=y(x)

∆stept(x,w)z . (20)

For the smooth relaxation ∆stept we use in this paper, the function H is a polynomial
function of w. By construction the zeros ofH among the classical codesW code are precisely

5We may also assume there is some common initialisation state init ∈ Q.
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the classical solutions. One can show [17, Lemma D.2] that the zeros of H all lie on the
boundary of the probability simplex, but we will not need that result here.

When things are set up correctly (see Section 2.2 below) the average log-likelihood
L(w) of the model is comparable to H(w) up to an additive constant and so it suffices for
many purposes to study the geometry of the polynomial function H(w).

Definition 2.9. The algebraic singularity associated to a classical solution M is the
function germ ([M ], H). This singularity depends on the UTM, the smooth relaxation
(11) and the time cutoff t.

2.2 Details of the Model

For somewhat technical reasons the model we actually use is a slight variation on (13).
The reader is advised to skip this section on a first reading. Before giving the complete
definition of the model, here are the two issues with the naive definition in (13):

• Correct vs Incorrect. It is convenient to read the prediction from a single tape
square of the UTM. Since we focus in this paper on the case of recognising languages,
this should be a state of the simulated machine, as in (13). However, it is unnecessary
to restrict the machine to two states during operation. So we simply measure the
probability assigned by the code to the correct final state and everything else.

• Moving off the Boundary. It is convenient to analyse a polynomial H(w) that
is comparable to the (analytic, but not polynomial) KL divergence K(w). This is
possible (see Appendix B.2) but requires that we move the true distribution q and
the model p “off the boundary” of the probability simplex ∆Q. From a Bayesian
point of view this can be thought of as insisting that zero probabilities are not
realistic, so we introduce some (very small) chance of error.

Given the setting of the previous section, we define

pZ/2(z|x,w) =

{
p(z|x,w) z = y(x)∑

y∈Q,y ̸=y(x) p(y|x,w) z ̸= y(x)

where p(y|x,w) is as in (13). That is, pZ/2(z|x,w) is a distribution over z ∈ {0, 1} and

pZ/2(y(x)|x,w) = p(y(x)|x,w) .

For 0 < µ < 1 let εµ : ∆Q −→ ∆Q move a probability distribution x a fraction µ towards
the barycenter b, i.e. the maximum entropy distribution (see Appendix B.3)

εµ(x) = (1− µ)x+ µb .
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We fix some small value of µ, perhaps so small that with high probability the distinction
from zero is never noticed in our experiments. The true distribution and statistical model
we use in this paper are

qµ(y|x) = εµq(y|x) , pZ/2µ (y|x,w) = εµp
Z2(y|x,w) .

We let Lµ be the average log-likelihood defined with qµ, pµ.

Definition 2.10. We say that two analytic functions f(w), g(w) on an open subset U ⊆
Rd are comparable (or comparable up to constants) if there exist c, d > 0 such that

c · g(x) ≤ f(x) ≤ d · g(x) , ∀x ∈ U .

It is easy to check that this is an equivalence relation on the set of analytic functions on
U , and we write f ∼ g when f, g are comparable.

Recall that we say the true distribution qµ is realisable by the model pµ if there exists
w ∈ W with pµ(y|x,w) = qµ(y|x) for all x ∈ I, y ∈ {0, 1}. But since εµ is injective that
is just to say that pZ/2(y|x,w) = q(y|x) for all x, y which is to say that p(y(x)|x,w) = 1
for all x ∈ I. Since this is independent of µ we will simply say that the true function is
realisable. In particular this is true if any classical solution exists.

Lemma 2.11. If the true function is realisable by w∗ then the KL divergence

Kµ(w) = DKL(qµ || pZ/2µ (w)) (21)

is comparable to the polynomial 1
2
H(w) in some open neighbourhood of w∗. In particular,

the average log-likelihood Lµ(w) is comparable to 1
2
H(w) + Lµ0 where Lµ0 is a constant,

the entropy of the true distribution qµ.

Proof. By Lemma B.6 applied to qµ, pµ we find that Kµ(w) is comparable to 1
2
Hµ(w) in

some neighbourhood of w∗, where Hµ(w) is defined by

Hµ(w) =
∑
x∈I

q(x)
∑
z∈Z/2

(
pZ/2µ (z|x,w)− qµ(z|x)

)2
.

By Appendix B.3 this is equal to

1
2
(1− µ)2

∑
x∈I

q(x)
[(
pZ/2(y(x)|x,w)− 1

)2
+ pZ/2

(
y(x) | x,w

)2]
= (1− µ)2

∑
x∈I

q(x) pZ/2
(
y(x) | x,w

)2
which is (1− µ)2H(w), proving the claim.

Note that the zeros of Kµ(w) are by injectivity of εµ the same those of DKL(q||p(w)).
In the rest of this document we write K,L for Kµ, Lµ.
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Definition 2.12. The analytic singularities associated to a classical solution M are the
function germs ([M ], K), ([M ], L). These singularities depends on the UTM, the smooth
relaxation (11), the time cutoff t and µ > 0.

Note that the germ is independent of µ up to the comparability relation. Since K,L
differ by a constant there is no essential difference and we use both in the sequel.

2.3 Learning Coefficients

Given a compact semi-analytic subset Ω ⊆ Rd, an analytic real-valued function f on Ω
and a smooth positive function φ : Ω −→ R we consider the zeta function

ζ(z) =

∫
Ω

|f(w)|zφ(w)dw . (22)

This defines a holomorphic function on the half-plane Re(z) > 0 in C and provided f
vanishes somewhere on Ω the zeta function can be analytically continued to a meromorphic
function on all of C with poles on the negative real line which are rational numbers and
have a greatest element [47, §4.5], [26, Corollary 3.10]. If −λ is the largest pole then λ is
called the real log canonical threshold of the pair f, φ and is denoted RLCTW (f ;φ).

In the setting of singular learning theory [46] we specify a triple (p, q, φ) consisting
of a model p(y|x,w) a true distribution q(y|x), q(x) and a prior distribution φ(w) over
some semi-analytic subset W ⊆ Rd which we refer to as parameter space. These have
been defined in Section 2. Recall that q(x) is a distribution supported on I ⊆ Σ∗ and we
assume q(y|x) is associated to what [17] calls a deterministic synthesis problem, that is,
it is the distribution associated to a function y = y(x). The prior φ(w) does not play a
significant role in this paper and may be chosen to be a (normalised) Lebesgue measure.

Let K : W −→ R denote the KL divergence associated to this choice of triple

K(w) =

∫
q(y|x) log q(y|x)

p(y|x,w)
q(x)dx . (23)

Note that with

L(w) = −
∫
q(y|x) log p(y|x,w)q(x)dx

we have K(w) = −H(q) + L(w) where H(q) is the entropy.
Taking f = K in (22) we obtain the real log canonical threshold, which is also called

the learning coefficient [47, §7] and denoted

λ = RLCTW (K;φ) .

By [26, Proposition 3.9] this global learning coefficient is the minimum

λ = min
x∈V

RLCTWx(K;φ)
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over the set V = {w ∈ W |K(w) = 0}. HereWx is a compact semi-analytic neighbourhood
of x ∈ V , which by the proof of [26, Proposition 3.9] may be chosen sufficiently small that
the RLCT is independent of the choice of neighbourhood. When x = [M ] is the code of
a Turing machine which is a classical solution we call this the local learning coefficient of
M associated to the synthesis problem encoded by q.

Definition 2.13. The local learning coefficient of M for the synthesis problem q is

λ([M ], q) := RLCTW[M ]
(K;φ) (24)

where W[M ] is a sufficiently small compact semi-analytic neighbourhood of [M ].

Lemma 2.14. Let H be the polynomial function of Definition 2.8. Then

RLCTW[M ]
(K;φ) = RLCTW[M ]

(H;φ) .

Proof. Follows from Lemma 2.11 and [46, §7].

Definition 2.15. We define the Newton polyhedron of M to be

P(M) = conv
{
k ∈ Nd

∣∣∣ ∂|k|

∂wk11 · · · ∂wkdd
H
∣∣∣
w=[M ]

̸= 0
}
. (25)

The Newton polyhedron of M is the convex hull of the set of monomials wk represented
as points k in Rd with nonzero coefficients in the Taylor series expansion of H at [M ].
The distance l = l(M) of the Newton polyhedron is

l(M) = inf{s ≥ 0 | (s, s, . . . , s) ∈ P(M)} . (26)

Note that by Theorem 6.3 the Newton polyhedron encodes some information about
the error syndromes with weight ≤ k which cause output errors in the execution of M .

Proposition 2.16. λ([M ], q) ≤ 1/l(M).

Proof. Let I = ⟨H⟩ be the ideal generated by H in the ring of germs of analytic functions
at [M ] (let us change coordinates so this is at the origin). Then using the notation of [26,
Proposition 4.3] it follows from [26, Proposition 4.8] that

λ([M ], q) = RLCT0(I; 1) ≤ RLCT0(mon(I); 1) .

Now mon(I) is generated by wk with ∂|k|

∂w
k1
1 ···∂wkdd

H
∣∣
w=[M ]

̸= 0 and hence the claim follows

from [26, Theorem 4.18].
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2.4 Free Energy and Comparison of Classical Solutions

In this paper we establish relations between internal structure of a Turing machine M
and the geometry of the associated singularities ([M ], H), ([M ], L), ([M ], K). By further
linking the geometry of these singularities, quantified by the local learning coefficient
λ([M ], q), to the Bayesian learning process for the synthesis problem, we link the internal
structure of M with the behaviour of this process.

The central role played by the learning coefficient λ in controlling the asymptotic
form of the Bayesian posterior is captured by the free energy, which is the negative
logarithm of the marginal likelihood [46]. For a dataset Dn = {(xi, yi)}ni=1 of size n with
(x, y) ∼ q(x, y).6 Given a prior φ(w) over codes w ∈ W , the posterior is defined by (16)
with normalising constant Zn. The free energy is defined to be

Fn := − logZn = − log

∫
W

exp(−nLn(w))φ(w)dw. (27)

Under some technical conditions the asymptotic behaviour of Fn as n → ∞ is governed
by Watanabe’s free energy formula [47, §6.3], which asserts that

Fn = nLn(w
∗) + λ log n+Op(log log n), (28)

where w∗ ∈ W minimises the average negative log-likelihood L(w) and λ is the learning
coefficient. In this paper we assume the true distribution is realisable, so that the relevant
conditions are satisfied.

This provides a natural asymptotic comparison between competing candidate explana-
tions in the synthesis problem: given two classical solutions M1,M2 with respective codes
[M1], [M2] ∈ W code, the posterior probability mass contained in a small neighbourhood
of each solution can be approximated in terms of the asymptotic behaviour of the free
energies associated to those neighbourhoods. Our treatment follows [46, §7.6], [48], [11]
and we refer to these references for full details. In the context of program synthesis these
ideas were previously discussed in [17, 45].

Let W1,W2 ⊆ W be sufficiently small compact semi-analytic neighbourhoods of
[M1], [M2] respectively, and let

Fn(Wi) := − log

∫
Wi

exp(−nLn(w))φ(w)dw.

Then the posterior mass in Wi is approximately exp(−Fn(Wi)) and

Fn(Wi) = nLn([Mi]) + λ([Mi], q) log n+Op(log log n) .

Since both M1,M2 are classical solutions L([M1]) = L([M2]). Thus in the large-sample
limit the posterior probability assigned to each classical solution is controlled by the local

6In this section n means the number of samples, elsewhere in the paper it is n = |Σ|.
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learning coefficient, and the posterior will increasingly concentrate around the solution
with the smaller learning coefficient. This explains why we are interested in understand-
ing the kinds of internal structures of Turing machines M which lead to lower learning
coefficients λ([M ], q): the posterior will tend to prefer such machines among all other
classical solutions for the same synthesis problem.

Remark 2.17. There can be nontrivial competition between the order n, log n, log log n
and constant order terms in the asymptotic expansion of the free energy. Particularly for
program synthesis we expect that some of these lower order terms may play a significant
role, and the emphasis here on the learning coefficient should be viewed as an appropriate
starting point for the theory but not the complete story.

Remark 2.18. While the discussion above compares classical solutions, the Bayesian
posterior assigns nonzero mass to any neighbourhood in W with positive prior measure.
In particular, a machine M ′ which is not a classical solution but which fits the data well
on average and has a small learning coefficient λ([M ′], q) may dominate a classical solution
M in the posterior for small to moderate n, despite being wrong in the limit.

This phenomenon is due to the competition between the loss term nLn([M
′]) and the

complexity term λ([M ′]) log n in the free energy. Such competition can induce Bayesian
transitions in the posterior, where the dominant contribution to the marginal likelihood
shifts from one region of parameter space to another as n increases [46, §7.6], [11].

3 Geometry

Given a synthesis problem we have associated in Section 2.1 to a classical solution M the
germ ([M ], L) of an analytic function. The claim made in the introduction is that there is
some relation between the “structure” ofM and the geometry of the germ. In this section
we explain in a self-contained way what we mean by this geometry, and sketch the first
layer of the relation to the structure of M .

The germ ([M ], L) is equivalent to the information of all the Taylor series coefficients

∂|α|L

∂α1w1 · · · ∂αdwd

∣∣∣
w=[M ]

(29)

where w1, . . . , wd are the coordinates of the parameter spaceW and for α = (α1, . . . , αd) ∈
Nd we write |α| =

∑d
i=1 αi. Thus, roughly speaking, the geometric information comes in

layers with the rth layer corresponding to the information in the Taylor series coefficients
with |α| ≤ r. In this section we analyse the first two layers. For the higher layers we need
more algebraic geometry. As explained in the previous section, we find it easier to analyse
the geometric information in the Taylor series expansion of the polynomial function H,
and deduce from this geometric information about L,K (see Section 2.2).

Remark 3.1. In this section the choice of coordinates w1, . . . , wd is arbitrary. Note that
the wi are not probabilities themselves, since these are not all independent. Later we will
describe explicit coordinates in a neighbourhood of a Turing machine code.
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We assume that there is a given true function y = y(x) from I to {0, 1} ⊆ Q and
that M is a classical solution. Thus H([M ]) = 0 and ∇H([M ]) = 0. The second-order
information in the germ is contained in the Hessian matrix

Hess(H, [M ]) =

(
∂2H

∂wi∂wj

∣∣∣
w=[M ]

)
1≤i,j≤d

. (30)

The geometry we are interested in does not depend on any choice of local coordinates.
Since Hess(H, [M ]) is real symmetric and therefore diagonalisable, that means we are
interested in the eigenvalues and eigenvectors of this matrix.

Definition 3.2. Given i ∈ Nd the influence function

gi : Σ
∗ −→ R

is defined by

gi(x) =
∂|i|

∂wi11 · · · ∂widd
p
(
y ̸= y(x) | x,w

)∣∣∣
w=[M ]

. (31)

When i = ei is the ith standard basis vector we write gi(x) for gi(x).

In the coordinates that we will choose later at the point [M ] inW , each index 1 ≤ i ≤ d
will correspond to a particular direction to vary a particular bit in the code [M ] away from
its given value, and the derivative gi(x) measures the rate of change of the probability of
the incorrect outputs with respect to this variation.

By the assumption that M is a classical solution, we have g0(x) = 0 where 0 =
(0, . . . , 0) means no derivatives.

Lemma 3.3. Let |k| > 0. Then

∂|k|

∂wk11 · · · ∂wkdd
H
∣∣∣
w=[M ]

=
∑
i,j̸=0
i+j=k

C(i, j)Ex
[
gi(x)gj(x)

]
(32)

where C(i, j) =
∏d

s=1

(
is+js
is

)
, Ex[−] denotes expectation with respect to q(x) and i, j ∈ Nd.

Proof. For the duration of this proof we write

g(x,w) = p
(
y ̸= y(x) | x,w

)
.

Recall that given functions p(w), q(w) we have

∂|k|

∂wk11 · · · ∂wkdd

[
p(w)q(w)

]
=
∑

0≤i≤k

{ d∏
s=1

(
ks
is

)} ∂|i|

∂wi11 · · · ∂widd
p(w)

∂|j|

∂wj11 · · · ∂wjdd
q(w)

where i ≤ k means is ≤ ks for 1 ≤ s ≤ d and j = k− i. Recall that
(
0
0

)
= 1 by convention.
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Substituting p(w) = q(w) = g(x,w) we have

∂|k|

∂wk11 · · · ∂wkdd
H(w) =

∑
x

q(x)
∑
i,j≥0
i+j=k

C(i, j)
∂|i|

∂wi11 · · · ∂widd
g(x,w)

∂|j|

∂wj11 · · · ∂wjdd
g(x,w) .

Evaluating at w = [M ] we obtain

∂|k|

∂wk11 · · · ∂wkdd
H(w)

∣∣∣
w=[M ]

=
∑
x

q(x)
∑
i,j≥0
i+j=k

C(i, j)gi(x)gj(x) .

Since g0(x) = 0 we obtain the result.

In particular for 1 ≤ i ≤ d
∂

∂wi
H
∣∣∣
w=[M ]

= 0 .

That is, [M ] is a critical point of H, which is why we call the germ ([M ], H) a singularity.
Another important special case is when k = ei + ej for 1 ≤ i, j ≤ d. Then when i ̸= j
we have two summands indexed by (i, j) equal to (ei, ej), (ej, ei) and when i = j just one
summand with i = j = ei, so in either case

∂2

∂wi∂wj
H
∣∣∣
w=[M ]

= 2Ex
[
gi(x)gj(x)

]
. (33)

Let I ⊆ Σ∗ be the set of allowed inputs. If we write P for the |I| × d matrix

P =
(
gi(x)

)
x,i

then we have shown

Hess(H, [M ]) = 2P TQP = 2(Q1/2P )T (Q1/2P ) (34)

where Q is the diagonal matrix with entries q(x). This means that the spectrum of the
Hessian is the same as the singular values of Q1/2P . In particular the Hessian and Q1/2P
have the same rank, which is the rank of P .

Lemma 3.4. Let V be the space of functions in RI spanned by g1, . . . , gd. Then the rank
of Hess(H, [M ]) is equal to dim(V ). In particular, the Hessian is nondegenerate if and
only if the gi are linearly independent.

We have seen in Section 2 how inductive inference on Turing machines, viewed from the
perspective of embedding ordinary codes into noisy codes, boils down to the comparison
of integrals of the posterior over regions of parameter space (18) and how the asymptotics
of those comparisons are sensitive to the geometry of the analytic function L : W −→ R
around a code [M ]. That is, to the geometry of the germ ([M ], L). Studying the geometry
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of this germ has now lead us to the following question: what does it mean computationally
for there to be a linear dependence relation

d∑
i=1

aigi(x) = 0 , ∀x ∈ I . (35)

In the rest of the paper we explore this question, which we answer in Section 6.4.

4 Derivatives and Errors for Plain Proofs

4.1 Linear Logic

In this paper linear logic means first-order intuitionistic linear logic with connectives
⊗,&,⊸, ! along with the corresponding introduction rules and cut-elimination transfor-
mations from [28, 6]. Our use of linear logic follows [15, 16, 14]. For an introduction we
recommend [20, 28, 29].

In this paper the role of linear logic is that by encoding the step function of a UTM
into this logic, and then making use of the semantics of linear logic in vector spaces, we
obtain a natural smooth relaxation of the execution of the UTM in the sense of (11). In
particular, this provides a definition of the probability p(y ̸= y(x)|x,w) of an output error
on some input x when w is a noisy Turing machine. The reader who is willing to take
this probabilistic model at face value is encouraged to skip this section on a first reading.

Fix an algebraically closed field k.7 Given formulas (or synonymously, types) A,B the
definition of the Sweedler semantics [29, 30, 13] of linear logic in the category of vector
spaces over k, which we denote by J−K, associates a vector space JXK to each atomic
formula X, and to A,B, the vector spaces determined by the following rules:

JA⊗BK = JAK ⊗ JBK
JA&BK = JAK ⊕ JBK

JA⊸ BK = Homk(JAK, JBK)
J!AK =!JAK

where !V denotes the universal cocomutative coassociative coalgebra of V (referred to here
as simply the cofree coalgebra). The universal morphism is usually denoted dV :!V −→ V
or just d. An explicit description of the cofree coalgebra is [30]

!V =
⊕
P∈V

SymP (V ) (36)

where SymP (V ) = Sym(V ) is the symmetric algebra with its canonical structure as a
coalgebra. If V is of dimension n and e1, . . . , en is a basis for V then as a vector space

7We take k = C but all coefficients are taken to be real.
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there is an isomorphism Sym(V ) ∼= k[e1, . . . , en]. The denotations of proofs are defined
such that if ρ is a proof of A, written ρ : A, then JρK ∈ JAK. In particular φ : A ⊢ B then
JφK : JAK −→ JBK is a linear transformation. We sometimes write φ(ρ) : B for the cut
of φ, ρ and think in this way of φ as defining a function from cut-elimination equivalence
classes of proofs of A to such equivalence classes of proofs of B. If

ψ : !A1, . . . , !Ar ⊢ B

is a proof, and ρi : Ai, then we also sometimes write

ψ(ρ1, . . . , ρr) : B (37)

for the proof obtained by cutting ψ against the promotions of the ρi to proofs of ⊢ !Ai.
These denotations of proofs are constructed using the structural maps of the functors

⊗,&,⊸ as well as !. We briefly recall the latter. Given v1, . . . , vs ∈ V , the corresponding
vector in SymP (V ) is written using a ket

|v1, . . . , vs⟩P := v1 ⊗ . . .⊗ vs ∈ SymP (V ). (38)

The identity element 1 ∈ SymP (V ) is denoted by |∅⟩P . For a subset I = {i1, . . . , ip} we
denote by vI the sequence vi1 , . . . , vip and I

c is the complement of I. With this notation,
the universal map d is defined by

d|∅⟩P = P, d|v⟩P = v, d|v1, . . . , vs⟩P = 0 s > 1 (39)

and the comultiplication on !V is defined by

∆|v1, . . . , vs⟩P =
∑

I⊆{1,...,s}

|vI⟩P ⊗ |vIc⟩P (40)

where I ranges over all subsets including the empty set. In particular

∆|∅⟩P = |∅⟩P ⊗ |∅⟩P . (41)

We write An = A& . . . &A where there are n copies of A.

4.1.1 Proofs

A proof in linear logic is a decorated tree that represents the application of deduction
rules to instances of axioms; see [20, 28]. Following the Brouwer-Heyting-Kolmogorov
interpretation [37] of intuionistic proof, or the Curry-Howard correspondence [24], we can
think of proofs in intuitionistic linear logic as algorithms which take inputs in the form of
proofs of their hypotheses and produce an output which is the proof of their conclusion.

In general a proof in linear logic, viewed as an algorithm, will use a different number
of copies of its inputs depending on other inputs. For example the multiplication of
Church numerals iterates one of its inputs a number of times specified by another of its
inputs. Such a proof is not plain, in the sense of the following definitions. The defining
characteristic of a plain proof is that the number of copies of each input required to
compute the output is a property of the proof itself and does not depend on the inputs.
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Definition 4.1. A linear proof will mean a proof in linear logic which only uses the
connectives ⊗,&,⊸ with the corresponding introduction rules.

Throughout in the hypotheses nA means

n times︷ ︸︸ ︷
A, . . . , A.

Definition 4.2. A proof ψ of a sequent !A1, . . . , !Ar ⊢ B for r ≥ 0 is plain if it is
equivalent under cut-elimination to

π...
n1A1, . . . , nr Ar ⊢ B

der
n1 !A1, . . . , nr !Ar ⊢ B

ctr/wk
!A1, . . . , !Ar ⊢ B

for some linear proof π and non-negative integers n1, . . . , nr where for ni > 1 in the final
step there is a corresponding contraction rule, and if ni = 0 the final step involves a
weakening rule. We refer to ni as the degree of Ai. We call π the linear part of ψ.

Remark 4.3. In this paper all plain proofs have positive degrees ni > 0 for 1 ≤ i ≤ r.

A proof is component-wise plain if it is obtained by tensoring together a sequence of
plain proofs; see [16, Definition 3.5].

Example 4.4. Many simple data types such as booleans, integers and binary integers
have a natural encoding as types in linear logic. Some of these are reviewed in [13, §3],
among which are the Church numerals m, m ≥ 0, (for some given formula A) of type

m : intA = !(A⊸ A) ⊸ (A⊸ A)

and the integers i, 0 ≤ i < n for fixed n > 0 of generalised Boolean type

i : nboolA = An ⊸ A.

These proofs are all plain. Generally we write types with bold letters, and denote proofs
with underlines. The proof i encodes a projection onto one of n factors.

4.1.2 Denotations of Plain Proofs

The denotation of a plain proof ψ is defined by a set of polynomials f τψ which will play an
important role in the sequel and which we now define. Here ψ :!A1, . . . , !Ar ⊢ B denotes
a plain proof with linear part π : n1A1, . . . , nrAr ⊢ B as in Definition 4.2. Suppose given
finite sets of proofs Pi of Ai and Q of B. Assume that {JνK}ν∈Q is linearly independent
in JBK and that

{π(X1, . . . , Xr) | Xi ∈ Pni
i } ⊆ Q. (42)

Our polynomials have variables {xij}1≤i≤r,1≤j≤ni .
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The way denotations work is that

JψK
(
|∅⟩Jρ1K ⊗ · · · ⊗ |∅⟩JρrK

)
= Jψ(ρ1, . . . , ρr)K

= Jπ
( n1 times︷ ︸︸ ︷
ρ1, . . . , ρ1, . . . ,

nr times︷ ︸︸ ︷
ρr, . . . , ρr

)
K

where ψ(ρ1, . . . , ρr) recall is defined by cutting ψ against the promotions of the ρi : Ai as
in (37). However there is more information in the denotation JψK than is in this formula,
and it is this information that is surfaced when we take derivatives.

Definition 4.5. Given τ ∈ Q we define

f τψ =
∑

γ1,...,γr

δτ=eval(π,γ)

r∏
i=1

ni∏
j=1

xiγi(j) (43)

where γi ranges over all functions {1, . . . , ni} −→ Pi, and eval(π, γ) means

eval(π, γ) = π(γ1(1), . . . , γ1(n1), . . . , γr(1), . . . , γr(nr)), (44)

The next lemma says that JψK is computed by these polynomials f τψ. Given a set A we
denote by kA the free vector space on the set, that is, the vector space with the elements
of A as a basis.

Lemma 4.6. There exists a unique function Fψ making the diagram

!JA1K ⊗ . . .⊗!JArK JBK

kP1 × . . .× kPr kQ

JψK

ι

Fψ

J−K

commute, where ι maps an element(∑
ρ∈P1

λ1ρρ, . . . ,
∑
ρ∈Pr

λrρρ
)
∈ kP1 × . . .× kPr (45)

to the tensor
|∅⟩∑

ρ∈P1
λ1ρJρK ⊗ . . .⊗ |∅⟩∑

ρ∈Pr λ
r
ρJρK . (46)

The function Fψ maps (45) to ∑
τ∈Q

f τψ

∣∣∣
xiρ=λ

i
ρ

· τ . (47)

Proof. See [16, Proposition 3.8].

The papers [14], [15], [16] give an interpretation of the polynomials f τψ using a prob-
abilistic semantics. Recall from Definition 2.3 that associated to every finite set Z there
is a simplex ∆Z. The following is [14, Proposition 5.3].
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Proposition 4.7. There is a unique function

∆ψ : ∆P1 × . . .×∆Pr −→ ∆Q (48)

which makes the diagram

!JA1K ⊗ . . .⊗!JArK JBK

∆P1 × . . .×∆Pr ∆Q

JψK

∆ψ

inc J−K (49)

commute.

That is, probability distributions are sent to probability distributions by JψK. By
uniqueness of such a function ∆ψ has the same equation as Fψ. Note that ∆P ⊆ kP and
so the left hand vertical arrow in (49) is a restriction of the ι in Lemma 4.6.

In the next section we explain how to think about this function ∆ψ and what it means
to propagate uncertainty through ψ (which we mean evaluate ∆ψ on input distributions,
representing uncertainty about proofs in Pi). See also [14, Section 5.1].

4.2 Evaluating Programs in Vector Spaces

From the point of view of linear logic the inputs to a Turing machine (encoded by its step
function) are represented as proofs, and these inputs are “distributed” through the steps
of the Turing machine by contraction rules, to eventually be “unpackaged” by dereliction
rules and consumed by linear parts of the proof. Semantically, the contraction or copying
step is represented by comultiplication ∆ on the coalgebra !JAK and the dereliction step
by the counit d : !JAK −→ JAK. For background on the cofree coalgebra see [29, 30, 15].

For example if ρ : A is a proof representing such an input (say some bit in the code of
a Turing machine on the description tape of a UTM) then a pair of copies are made via

∆|∅⟩JρK = |∅⟩JρK ⊗ |∅⟩JρK . (50)

At the point where these copies are to be used, they are “unpackaged” by derelictions

(d⊗ d)∆|∅⟩JρK = JρK ⊗ JρK . (51)

Since the comultiplication is co-associative, we have (1⊗∆)∆ = (∆⊗ 1)∆ and following
standard practice we denote both maps by ∆2. Similarly, ∆n denotes all possible ways of
arranging n comultiplications, one after another (which are the same linear map). Thus
to make and consume n copies we are computing

d⊗n∆n−1|∅⟩JρK = d⊗n
(
|∅⟩JρK ⊗ · · · ⊗ |∅⟩JρK

)
= JρK ⊗ · · · ⊗ JρK . (52)
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A plain proof ψ : ! ⊢ B is, by definition, a linear part π below which are derelictions and
contractions (and possibly weakenings). Thus its denotation is, roughly speaking and
accounting for only one input of type A, of the form JπKd⊗n∆n−1. Thus we may compute
JψK|∅⟩JρK by applying the denotation JπK of the linear part to the above:

JψK|∅⟩JρK = JπKd⊗n∆n−1|∅⟩JρK = Jπ(ρ, . . . , ρ)K . (53)

To compute derivatives of denotations of proofs is to provide inputs other than vacuums
|∅⟩JρK [14, Corollary 4.5]. This has an easy to understand effect on the set of copies that
are provided throughout the proof:

d⊗n∆n−1|JνK⟩JρK = d⊗n
( n∑
i=1

|∅⟩JρK ⊗ · · · ⊗ |JνK⟩JρK︸ ︷︷ ︸
ith

⊗ · · · ⊗ |∅⟩JρK
)

=
n∑
i=1

JρK ⊗ · · · ⊗ JνK︸︷︷︸
ith

⊗ · · · ⊗ JρK . (54)

That is, among all the n copies of ρ that are produced to be unpackaged and consumed
in the proof, we substitute exactly one copy with ν. This is the central idea in Ehrhard-
Regnier’s notion of derivative [18]. If we now apply a linear proof π to this

JπKd⊗n∆n−1|JνK⟩JρK =
n∑
i=1

Jπ(ρ, . . . , ν, . . . , ρ)K . (55)

Hence

JπKd⊗n∆n−1|JνK − JρK⟩JρK =
n∑
i=1

{
Jπ(ρ, . . . , ν, . . . , ρ)K − Jπ(ρ, . . . , ρ, . . . , ρ)K

}
. (56)

Now suppose that we have a linear combination
∑

ρ xρρ. Then

d⊗n∆n−1|∅⟩∑
ρ xρJρK = d⊗n

(
|∅⟩∑

ρ xρJρK ⊗ · · · ⊗ |∅⟩∑
ρ xρJρK

)
=
∑

ρ1,...,ρn

xρ1 · · ·xρnJρ1K ⊗ · · · ⊗ JρnK .

If these copies are to be consumed in the linear part π of the overall component-wise plain
proof ψ (which is roughly πd⊗n∆n−1) then we end up with an output

JψK|∅⟩∑
ρ xρJρK = JπKd⊗n∆n−1|∅⟩∑

ρ xρJρK

=
∑

ρ1,...,ρn

xρ1 · · ·xρnJπ(ρ1, . . . , ρn)K

=
∑
τ

{ ∑
ρ1,...,ρn

δτ=π(ρ1,...,ρn)xρ1 · · ·xρn
}

JτK

=
∑
τ

f τψJτK (57)
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where f τψ is the polynomial of Definition 4.5 in the special case where there is a single input
and ρ runs over the proofs chosen in P . Note that if

∑
ρ xρρ is a probability distribution,

then we can define p(τ) := f τψ in which case

p(τ) =
∑
γ

p(τ |γ)p(γ) (58)

where p(τ |γ) := δτ=π(ρ1,...,ρn) and p(γ) := xρ1 · · ·xρn . Here γ ranges over sequences of
proofs ρ1, . . . , ρn. Note that the linear part π requires n inputs, and when we evaluate ψ
on a linear combination (as opposed to the denotation of a proof) we can end up passing
the linear part sequences other than ρ, . . . , ρ as in the normal evaluation (53).

Thus the polynomials f τψ, which are the central algebraic objects, can be thought of as
presenting the probabilities of output states τ by marginalising out some random variable
γ which represents a sequence of n choices of proofs of type A. This random variable γ is
the central object of the present paper, and we explain in the next section how to think
of it as an error syndrome.

4.3 Error Syndromes for Plain Proofs

4.3.1 Special Case

We begin with the case ψ : !A ⊢ B where ψ has a single input with linear part π : nA ⊢ B
and we restrict to the case where our set of allowed proofs is P = {0, 1}. We consider a
situation in which 0 is the “correct” input and 1 is an error. So the correct output is

ψ(0) = π(0, . . . , 0)

and an error syndrome γ is by definition an assignment to every computation path through
the proof of either a 0 (meaning that this path experiences no error) or 1 (meaning that for
this path there is an error). This explains the term error syndrome which is the standard
terminology for such a pattern in the theory of error correcting codes.

Theorem 4.8. We have

JψK|J1K − J0K⟩J0K =
∑
τ ̸=ψ(0)

Aτ

{
JτK − Jψ(0)K

}
(59)

where Aτ is a non-negative integer defined for τ ̸= ψ(0) by

Aτ =
∣∣∣{1 ≤ i ≤ n | π(0, . . . ,

i

1, . . . , 0) = τ
}∣∣∣

the count of the number of weight one error syndromes that produce τ .
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Proof. We consider a linear combination of these denotations in JAK with coefficients
x0, x1 and then differentiate the output probabilities obtained using (57):{ ∂

∂x1
− ∂

∂x0

}
JψK|∅⟩x0J0K+x1J1K

∣∣∣
x0=1,x1=0

=
∑
τ

∑
ρ1,...,ρn

δτ=π(ρ1,...,ρn)

{ ∂

∂x1
− ∂

∂x0

}(
xρ1 · · · xρn

)∣∣∣
x0=1,x1=0

JτK

=
n∑
i=1

∑
τ

∑
ρ1,...,ρn

δτ=π(ρ1,...,ρn)

{
xρ1 · · ·

∂

∂x1
(xρi) · · ·xρn−

xρ1 · · ·
∂

∂x0
(xρi) · · ·xρn

)∣∣∣
x0=1,x1=0

JτK

=
n∑
i=1

{
Jπ(0, . . . ,

i

1, . . . , 0)K − Jψ(0)K
}

=
∑
τ ̸=ψ(0)

Aτ

{
JτK − Jψ(0)K

}
.

Note that under the prevailing hypotheses the set {JτK}τ is linearly independent, hence
{JτK − Jψ(0)K}τ ̸=ψ(0) is linearly independent. The conclusion follows from [14, Corollary
4.5] which shows that the quantity calculated above is JψK|J1K − J0K⟩J0K.

In general we can express the derivatives of f τψ in terms of combinatorics of higher-
weight error syndromes that produce τ .

4.3.2 General Case

Let ψ be a plain proof of a sequent !A1, . . . , !Ar ⊢ B as in Definition 4.2 with linear part
π : n1A1, . . . , nrAr ⊢ B as in the following diagram:

π...
n1A1, . . . , nr Ar ⊢ B

der
n1 !A1, . . . , nr !Ar ⊢ B

ctr/wk
!A1, . . . , !Ar ⊢ B

For 1 ≤ i ≤ r we assume given a finite set Pi of proofs of Ai of size pi + 1 = |Pi| and a
set of proofs Q of B satisfying the hypotheses of Lemma 4.6. We further assume given
an enumeration of these proofs via bijections

{0, 1, . . . , pi}
∼=−→ Pi (60)

for each 1 ≤ i ≤ r and

{0, 1, . . . , |Q| − 1}
∼=−→ Q . (61)
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Even if Ai = Aj for i ̸= j and Pi = Pj as sets, we still allow the enumerations of these sets
to be different for i and j. By abuse of notation we treat these enumerations as equalities,
and refer to an element of Pi by its corresponding integer 0 ≤ j ≤ pi. We further assume
these enumerations are chosen so that ψ(0, . . . , 0) = 0. Following [14] we write

( pi∑
j=0

xij · j
)r
i=1

∈
r∏
i=1

∆Pi

for a generic input to the map ∆ψ of Proposition 4.7. Note that ∆Pi ⊆ Rpi is a manifold
with corners, where we give the ambient space the coordinates {xij}

pi
j=0. The distribution

in ∆Pi concentrated at 0 we simply denote by 0, that is,

0 = (1, 0, . . . , 0) ∈ ∆Pi .

We write 0 for the sequence
(
0
)r
i=1

and 0 = (1, 0) ∈ ∆Q. We are interested in

T0(∆ψ) : T0

( r∏
i=1

∆Pi
)
−→ T0

(
∆Q

)
and higher-order derivatives.

The linear part π takes ni inputs of type Ai for 1 ≤ i ≤ r. These correspond to ni
different computation paths in which different copies of the ith input are used differently
in the algorithm represented by the proof.8 On each of those paths we have pi distinct
types of error (the elements of Pi other than 0). An error syndrome, as defined below,
assigns to each computation path either a 0 (no error) or a particular type of error. In
what follows |S| denotes the cardinality of a finite set S.

Definition 4.9. An error syndrome γ is a sequence of functions γ1, . . . , γr where

γi : {1, . . . , ni} −→ {0, . . . , pi} 1 ≤ i ≤ r .

Hence |γ−1
i (j)| for 1 ≤ i ≤ r, 1 ≤ j ≤ pi is the number of errors of type j that occur in

input i in the syndrome. The total number of errors in the ith input is

|γi| =
∣∣∣{1 ≤ c ≤ ni | γi(c) ̸= 0

}∣∣∣ .
The weight of the error syndrome is

wt(γ) = (s1, . . . , sr) ∈
r∏
i=1

Npi

where
si = (si1, . . . , s

i
pi
) , sij = |γ−1

i (j)| .

30



Figure 3: The plain proof ψ has r inputs, and ni computation paths leading from the
ith input. In this depiction of an error syndrome γ, integers 1 ≤ j ≤ pi are represented
as colours with a different set of colours (proofs) for each i. Here for example γ1 is the
function corresponding to the integer sequence 1, 2, 1, 2, 1, 0, 2, 2, 0. The corresponding
factor in the monomial associated to γ in f τψ is (x10)

2(x11)
3(x12)

4 with xi0 factors being
associated to “no error” (the integer 0). Note that different orderings of the integer
sequence represent distinct error syndromes but contribute the same monomial; this is
the origin of coefficients in f τψ other than 1.

Definition 4.10. Let γ be an error syndrome. Then we define

eval(π, γ) = π
(
γ1(1), . . . , γ1(n1), γ2(1), . . . , γ2(n2), . . . γr(1), . . . , γr(nr)

)
. (62)

Theorem 4.11. Let ki ∈ Npi for 1 ≤ i ≤ r and set k = (k1, . . . ,kr). Then

JψK
( r⊗

i=1

∣∣∣(J1K − J0K
)⊗ki1 , . . . , (JpiK − J0K

)⊗kipi〉
J0K

)
=
∑
τ∈Q

∑
0≤s≤k

Sk
sA

s
τJτK (63)

where As
τ is a non-negative integer defined by

As
τ =

∣∣∣{γ | wt(γ) = s and eval(π, γ) = τ
}∣∣∣ (64)

the count of the number of weight s error syndromes that produce τ . Here s ≤ k means
sij ≤ kij for all 1 ≤ i ≤ r, 1 ≤ j ≤ pi and

Sk
s =

r∏
i=1

{
δni≥|ki|(−1)|k

i|−|si| (ni − |si|)!
(ni − |ki|)!

pi∏
j=1

kij!

(kij − sij)!

}
(65)

where |si| =
∑

j s
i
j, |ki| =

∑
j k

i
j.

8This will become more explicit in the special case of the encoding of the pseudo-UTM step func-
tion below, but the cut-elimination algorithm of of [16, Proposition 3.6] provides a general notion of
computation path when ψ is the cut of multiple component-wise plain proofs.
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Proof. In a neighbourhood of 0 ∈ ∆Pi we can parametrise the probability simplex via a
smooth immersion of manifolds with corners

ιi : [0, ε)
pi −→ ∆Pi (66)

(wi1, . . . , w
i
pi
) 7→ (1−

pi∑
j=1

wij, w
i
1, . . . , w

i
pi
) (67)

with

T0(ι)
( ∂

∂wij

)
=

∂

∂xij
− ∂

∂xi0
∈ T0

(
∆Pi

)
for 1 ≤ j ≤ pi. The composite

∏r
i=1[0, ε)

pi

∏
i ιi //

∏r
i=1 ∆Pi

∆ψ
// ∆Q

has derivative, writing ι =
∏

i ιi and letting ki ∈ Npi

r∏
i=1

∂|k
i|

∂(wi1)
ki1 · · · ∂(wipi)

kipi
(∆ψ ◦ ι)

∣∣∣
w=0

=
∑
τ∈Q

r∏
i=1

∂|k
i|

∂(wi1)
ki1 · · · ∂(wipi)

kipi
f τψ

∣∣∣
w=0

· τ (68)

Abbreviating x10 = 1, x11 = 0, . . . , x20 = 1, . . . to x0 = 1,x̸=0 = 0 we can write the coefficient
of τ in this expression as

r∏
i=1

pi∏
j=1

[ ∂

∂xij
− ∂

∂xi0

]kij
f τψ

∣∣∣
x0=1,x ̸=0=0

(69)

=
r∏
i=1

pi∏
j=1

kij∑
s=0

(
kij
s

)
(−1)k

i
j−s
[ ∂

∂xij

]s[ ∂

∂xi0

]kij−s
f τψ

∣∣∣
x0=1,x ̸=0=0

(70)

Hence by [14, Corollary 4.5], (68) is equal to the left hand side of (63), noting that the |−⟩
symbols are multi-linear in their entries. On the other hand, we can by [14, Proposition
4.3] compute (68) by expanding f τψ:

∑
γ

δτ=eval(π,γ)

{ r∏
i=1

pi∏
j=1

∂k
i
j

∂(wij)
kij

}(
x1γ1(1) · · ·x

1
γ1(n1)

· · · xrγr(1) · · ·x
r
γr(nr)

)∣∣∣
w=0

=
∑
γ

δτ=eval(π,γ)

{ r∏
i=1

pi∏
j=1

∂k
i
j

∂(wij)
kij

}( r∏
i=1

(1−
pi∑
j=1

wij)
ni−|γi|(wi1)

|γ−1
i (1)| · · · (wipi)

|γ−1
i (pi)|

)∣∣∣
w=0

=
∑
γ

δτ=eval(π,γ)

r∏
i=1

{ pi∏
j=1

∂k
i
j

∂(wij)
kij

(
(1−

pi∑
j=1

wij)
ni−|γi|(wi1)

|γ−1
i (1)| · · · (wipi)

|γ−1
i (pi)|

)}∣∣∣
w=0

.

(71)
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Next we apply Lemma 4.12 below to each i separately. We find that (71) is equal to a
sum over γ of δτ=eval(π,γ) times the product from i = 1 to r of the delta functions

δ|ki|≤niδ|γ−1
i (1)|≤ki1

· · · δ|γ−1
i (pi)|≤kipi

multiplied by the coefficient

(−1)|k
i|−|γi| (ni − |γi|)!

(ni − |ki|)!

p∏
j=1

kij!

(kij − |γ−1
i (j)|)!

.

Hence the coefficient of τ in (68) is

∑
γ

δτ=eval(π,γ)

r∏
i=1

{
δni≥|ki|(−1)|k

i|−|γi| (ni − |γi|)!
(ni − |ki|)!

pi∏
j=1

δkij≥|γ−1
i (j)|k

i
j!

(kij − |γ−1
i (j)|)!

}
.

The combinatorial factor depends only on the weight of γ so we can write (68) as

r∏
i=1

∂|k
i|

∂(wi1)
ki1 · · · ∂(wipi)

kipi
(∆ψ ◦ ι)

∣∣∣
w=0

=
∑
τ

∑
γ

δτ=eval(π,γ)δk≥wt(γ)S
k
wt(γ)τ

=
∑
τ

∑
s≤k

Sk
sA

s
ττ

using the notation of (65), as claimed.

Lemma 4.12. Given variables y1, . . . , yp and integers b, c1, . . . , cp ≥ 0 we have

∂a1

∂ya11
· · · ∂

ap

∂y
ap
p

{(
1−

p∑
j=1

yj
)b
yc11 · · · ycpp

}∣∣∣
y=0

= δ|a|−|c|≤bδc1≤a1 · · · δcp≤ap(−1)|a|−|c| b!

(b− (|a| − |c|))!

p∏
j=1

aj!

(aj − cj)!

where |a| =
∑p

j=1 aj, |c| =
∑p

j=1 cj.

Proof. The left hand side is clearly zero unless cj ≤ aj for all j, in which case we get for
each 1 ≤ j ≤ p a factor of

(
aj
cj

)
from all the ways of assigning cj copies of

∂
∂yj

to y
cj
j and

then another factor of cj! from the cj derivatives of y
cj
j yielding the factor

aj !

(aj−cj)! . Then

∂a1−c1

∂ya1−c11

· · · ∂
ap−cp

∂y
ap−cp
p

(
1−

p∑
j=1

yj

)b∣∣∣
w=0

contributes the remaining factors.
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Remark 4.13. The sum in (63) includes s = 0 = (0, . . . , 0). However there is only one
error syndrome γ of weight 0, the constant function assigning 0 to every computation
path. Moreover by hypothesis if γ = 0 denotes this syndrome then

eval(π, γ) = ψ(0) = 0

that is, A0
τ = δτ=0. We note that when s = 0, the combinatorial factor simplifies

Sk
0 =

r∏
i=1

{
δni≥|ki|(−1)|k

i| ni!

(ni − |ki|)!

}
.

Remark 4.14. Note that provided |ki| ≤ ni for 1 ≤ i ≤ r

Sk
k =

r∏
i=1

pi∏
j=1

kij! .

5 Derivatives of a Universal Turing Machine

Recall that to define our probabilistic model p(y|x,w) of final states y of our UTM sim-
ulating a noisy Turing machine w for t steps on input x, we have in (11) of Section 2.1
assumed that we were given a smooth relaxation of the function

Σ∗ ×W code stept
// Q . (72)

This is constructed as follows: first we encode Σ∗, W code, Q as types and their elements as
proofs, then we define a plain proof ψ which computes stept and then from this we obtain
a denotation ∆ψ which by Proposition 4.7 makes the required diagram (11) commute.
This ∆ψ is our smooth relaxation ∆stept. Our model p(y|x,w) has already been defined
given this smooth relaxation (see (20) and Section 2.2) and the derivatives ofH are related
to derivatives of ∆ψ.

In this section we first define U (Section 5.1), then we define ψ (Section 5.2) and
then we specialise the discussion earlier of error syndromes for plain proofs to abstractly
describe error syndromes for ψ (Section 5.3).

5.1 Staged Pseudo-UTM

Recall that in a Turing machine with multiple tapes, at each timestep the heads for each
tape read the current symbol and, as a function of that sequence of symbols and the current
state, the machine transitions to a new state, writes to all of the tapes simultaneously
and moves each head [3]. We assume our UTM has a description tape (which contains the
specification of the TM to simulate), a staging tape (which is used to avoid overloading the
states of the UTM with the description tape information), a state tape (which contains
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the current state of the simulated machine) and a working tape (which is the state of the
tape of the simulated machine).

An example of a pseudo-UTM U with these features is presented in this section. Note
that this is not a universal machine because we assume the symbols and states of the
simulated machine can be encoded on single tape squares. However, for the purposes of
comparing any finite set of Turing machines this is sufficient (see Appendix A.7).

We now introduce the staged pseudo-UTM U following [17].9 Simulating a Turing
machineM with tape alphabet ΣM and set of states QM on a UTM generally requires the
specification of an encoding of ΣM and QM into strings in the tape alphabet ΣUTM of the
UTM. From the point of view of this paper it is not clear that this additional complexity
is interesting, and it is a significant obstacle to doing calculations by hand. As such given
Σ, Q we consider a staged pseudo-UTM whose alphabet is

ΣUTM = Σ ∪Q ∪ {L,R, S} ∪ {X,□}

where the union is disjoint and □ is the blank symbol (which is distinct from the blank
symbol of the simulated machines). We emphasise that there is no theoretical obstacle to
considering a staged UTM of the same design but which makes use of encoded alphabets
and states, or even to using a general UTM; we only restrict to the staged pseudo-UTM
to make it tractable to reason about the resulting geometry.

Such a machine is capable of simulating any machine with tape alphabet Σ and set
of states Q but cannot simulate arbitrary machines and is not a UTM in the standard
sense. The adjective staged refers to the design of the UTM. The set of states is

QUTM = { compSymbol, compState, copySymbol, copyState, copyDir,

¬compState, ¬copySymbol, ¬copyState, ¬copyDir,
updateSymbol, updateState, updateDir, resetDescr }.

The UTM has four tapes numbered from 0 to 3, which we refer to as the description tape,
the staging tape, the state tape and the working tape respectively. We write

n = |Σ| , m = |Q| , N = nm . (73)

Then initially the description tape contains a string of the form

Xσ1q1σ
′
1q

′
1d1σ1q1σ

′
1q

′
1d1 . . . σNqNσ

′
Nq

′
NdNX,

corresponding to the tuples which define M , with the tape head initially on σ1. The
staging tape is initially a string XXX with the tape head over the second X. The state

9We make the following amendment: we introduce a new symbol e, let the symbols a, c, d, e stand for
generic symbols which are not X, and let b stand for a generic symbol (which may be X). In [17], there
is only a, b, c, d and all of these are required to not be X. Other than this, our presentation is identical
to [17].

35



tape has a single square containing some distribution in ∆Q, corresponding to the initial
state of the simulated machine M , with the tape head over that square. Each square on
the working tape is some distribution in ∆Σ with only finitely many distributions different
from □. The UTM is initialized in state compSymbol.

The specification of U is given in Figure 4. It consists of two phases; the scan phase
(middle and right path), and the update phase (left path). During the scan phase, the
description tape is scanned from left to right, and the first two squares of each tuple are
compared to the contents of the working tape and state tape respectively. If both agree,
then the last three symbols of the tuple are written to the staging tape (middle path),
otherwise the tuple is ignored (right path). Once the X at the end of the description tape
is reached, the UTM begins the update phase, wherein the three symbols on the staging
tape are then used to print the new symbol on the working tape, to update the simulated
state on the state tape, and to move the working tape head in the appropriate direction.
The tape head on the description tape is then reset to the initial X.

We define the period of the UTM to be the smallest nonzero time interval taken for the
tape head on the description tape to return to the initial X, and the machine to reenter
the state compSymbol. If the number of tuples on the description tape is N , then the
period of the UTM is P = 10N +6. Moreover, other than the working tape, the position
of the tape heads are P -periodic.

5.2 Encoding of the Step Function

We encode the function (72) as a plain proof which can be described schematically as

ψ :
{
type encoding Σ∗},{type encoding W code

}
⊢
{
type encoding Q

}
. (74)

This is an encoding in the sense that cutting ψ against a proof encoding a string x ∈ Σ∗

on the work tape and a proof encoding w ∈ W code yields a proof equivalent under cut-
elimination to stept(x,w), the state after U has simulated w on input x for t steps.

In Appendix C we define a component-wise plain proof hUrelstept which encodes the
UTM U running for t cycles, that is, simulating t steps of a Turing machine (see Definition
C.5). The component of this component-wise plain proof that produces the state of the
simulated machine after t steps has type

dscr⊗ stg⊗ !mbool⊗ !nbool
⊗2h+1 ⊗ !13bool ⊢ mbool . (75)

The notation is defined in full in the appendix, but in summary:

• Proofs of type dscr encode configurations of the description tape, where

dscr =
N⊗
i=1

(
!nbool︸ ︷︷ ︸

σ′
i

⊗ !mbool︸ ︷︷ ︸
q′i

⊗ !3bool︸ ︷︷ ︸
di

)
. (76)

• Proofs of stg encode configurations of the staging tape.
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compSymbol

updateSymbol compState ¬compState

updateState copySymbol ¬copySymbol

updateDir copyState ¬copyState

resetDescr copyDir ¬copyDir

go to compSymbol

X,b,c,d

LLSS

a,b,c,a

RLSS

else

RLSS

a,X,c,d

SRSS

a,e,c,d

write a,X,c,e
SRSS

a,b,a,d

RSSS

else

RSSS

a,b,c,d

RSSS

a,X,c,d

SRSS

a,e,c,d

write a,X,e,d
SRSS

a,b,c,d

write a,a,c,d
RRSS

a,b,c,d

RRSS

a,X,c,d

SRSS

a,e,c,d

write a,X,c,d
SLSb

a,b,c,d

write a,a,c,d
RRSS

a,b,c,d

RRSS

a,b,c,d

LSSS X,b,c,d

RSSS

a,b,c,d

write a,a,c,d
RLSS

a,b,c,d

RLSS

Figure 4: The staged pseudo-UTM U . The nodes, except for go to compSymbol, are
states of U and an arrow q → q′ has the following interpretation: if the UTM is in state
q and sees the tape symbols (on the four tapes) as indicated by the source of the arrow,
then the UTM transitions to state q′, writes the indicated symbols (or if there is no write
instruction, simply rewrites the same symbols back onto the tapes), and performs the
indicated movements of each of the tape heads with R, S, L standing for Right, Stay,
Left. The symbols a, c, d, e stand for generic symbols which are not X, and b stands for
a generic symbol (which may be X).
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• Proofs of !mbool encode initial states of the simulated machine (i.e. elements of Q
which has size m).

• Proofs of !nbool
⊗2h+1 encode configurations of the work tape (that is, 2h+1 elements

of Σ where we note that the work tape is encoded relative to the head, so this means
there are h entries to the right of the head and h entries to the left).

• Proofs of !13bool encode the state of the UTM itself (i.e. an element of QUTM).

Definition 5.1. We define ψ to be the plain proof obtained by cutting the component of

hUrelstept with type (75) against the following inputs

XXX : stg , init : !mbool , compSymbol : !13bool

which respectively encode putting XXX on the staging tape, some initialisation state on
the state tape and starting the UTM in the initial state compSymbol. Here the underlines
refer to proofs encoding a given piece of data. This proof has type

ψ : dscr︸︷︷︸
w

⊗ !nbool
⊗2h+1︸ ︷︷ ︸

x

⊢ mbool

realising the schematic in (74).10

We work with fixed sets of proofs (see [16, Appendix B] for definitions):

Pdscr
i =


{JjK}j=0,...,n−1 ⊆ JnboolK, i = 1 mod 3,

{JjK}j=0,...,m−1 ⊆ JmboolK, i = 2 mod 3,

{JjK}j=0,1,2 ⊆ J3boolK, i = 0 mod 3.

(77)

Remark 5.2. These proofs are used to encode elements of Σ, Q and directions to move.
There is a subtlety: while all the squares of the sample “type” (σ′, q′ or d) are encoded
by the same formula and have the set of proofs, later it will be important that different
squares on the description tape use different enumerations in the sense of (60). The
enumerations are arbitrary, except that we always choose 0 to label the symbol, state or
direction which appears in this position in the code [M ] of the chosen Turing machineM .

Since ψ is plain [16, Lemma 3.4] we may pass to probability distributions (Proposition
4.7) to obtain the function

∆ψ : Σ∗ ×
N∏
i=1

(
∆Σ×∆Q×∆{L, S,R}

)
−→ ∆Q . (78)

Since we do not allow uncertainty in the input x we restrict the function to Σ∗ ⊆ ∆Σ∗.

Definition 5.3. The smooth relaxation ∆stept in (11) is ∆ψ.

10On the left hand side of the turnstile tensors may be exchanged for commas, and freely permuted.
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5.3 Error Syndromes for U
Error syndromes for U are determined by the linear part π of the proof ψ encoding stept

defined in the previous section. Abstractly we know ψ is a plain proof and thus there
are uniquely determined integers c, d (with various sub- and superscripts) which are the
degrees of each input with

π :
N⊗
i=1

(
csymi nbool⊗ cstatei mbool⊗ cdiri 3bool

)
⊗

h⊗
i=−h

bi nbool ⊢ mbool . (79)

However it is not necessarily trivial to compute these integers or enumerate the compu-
tation paths that they count. Later in Section 6.2 we do this explicitly when t = 2. In
any case, we can now formally define error syndromes for U to be error syndromes in
the sense of Definition 4.9 associated to the pair consisting of the plain proof ψ of the
previous section with linear part π.

Remark 5.4. Because of the way that the UTM is designed, the number of computation
paths starting at a square on the description tape depends on the type of the square
but not its position on the tape. That is, there exist integers csym, cstate, cdir such that
csymi = csym, cstatei = cstate and cdiri = cdir for all 1 ≤ i ≤ N .

It is important to keep in mind that since we study geometry locally at a code [M ]
error syndromes are always considered relative to a particular Turing machine. To make
this explicit, let us now:

Fix a Turing machine M so that “errors” are variations away from [M ].

That is, error syndromes describe variations away from this code as a string on the
description tape of the UTM (see Remark 5.2). We also do not consider derivatives with
respect to the tape squares encoding the input x and thus do not consider them in the
definition of error syndromes. So to be explicit:

Definition 5.5. An error syndrome γ for U is a sequence of functions γ1, . . . , γ3N where

γi : {1, . . . , ni} −→ {0, . . . , pi} 1 ≤ i ≤ 3N .

and

ni =


csym i = 1 mod 3

cstate i = 2 mod 3

cdir i = 3 mod 3

, pi =


n− 1 i = 1 mod 3

m− 1 i = 2 mod 3

2 i = 3 mod 3

where γi(j) = 0 is always interpreted as no error that is, whatever symbol, state or
direction is in this position of the description of some fixed background machine [M ].
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The tuples s,k of Section 4.3.2 belong to

r∏
i=1

Npi =
N∏
a=1

[
N|Σ|−1 × N|Q|−1 × N2

]
. (80)

To make this more concrete, suppose s ∈
∏r

i=1Npi is such a tuple and that 1 ≤ a ≤ N is
the index of a tuple σqσ′q′d in [M ] and that

s =
(
· · · ,

a︷ ︸︸ ︷
u

N|Σ|−1
, v
N|Q|−1

,w
N2
, . . .

)
. (81)

If wt(γ) = s for some error syndrome γ, then out of all the computation paths leading
from the description square containing σ′ in [M ] the count of those assigned errors of each
type given by elements of Σ \ {σ′} is given by u, and similarly v,w count assignments of
errors of various types to computation paths out of q′, d respectively.

Definition 5.6. Given an input x and error syndrome γ we define

U(x, γ) = π
(
γ, x
)

(82)

where as in (62) the right hand side involves placing the outputs of all the γi as inputs to
π in the correct positions. In particular if γ = 0 is the constant function then

U(x,0) =M(x) .

Remark 5.7. Note that
r∑
i=1

pi = |Q||Σ|
(
|Σ|+ |Q|) = d

the dimension of the parameter space W . Hence we may also write s,k ∈ Nd.

With this preparation everything in Section 4.3 applies verbatim to the analysis of
derivatives of the plain proof ψ. We denote by As(x) the error syndrome count from (64)
with τ the alternative output to the correct output M(x), that is:

Definition 5.8. Given s ∈
∏r

i=1 Npi and x ∈ Σ∗

As(x) =
∣∣∣{γ | wt(γ) = s and U(x, γ) ̸=M(x)

}∣∣∣ (83)

denotes the count of weight s error syndromes γ which, when we evaluate the UTM with
[M ] on the description tape, deviations from the code given by γ, and x on the work tape,
produce the incorrect output.

Remark 5.9. Note that by definition, A0(x) = 0 for all x.

Since ψ is defined by cutting t component-wise plain proofs against one another, we
can from the proof that the cut of component-wise plain proofs is component-wise plain
[16, Proposition 3.6] derive the linear part π of ψ from the linear parts of each of these
individual step functions. This gives us an explicit form of the computation paths through
ψ and thus the error syndromes. In the next section we present the computation paths
in a special case.
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6 Error and Geometry

In Section 2 we outlined a perspective on inductive inference over Turing machines, where
we believe that a Turing machine is an explanation for our observations to the extent
that the posterior concentrates around it in a continuous parameter space of “noisy”
Turing machines. We sketched how our preferences for Turing machines are dominated,
asymptotically in the number of samples n from the generating process, by the geometry
of the average log-likelihood L at the code [M ] of our machine.

This geometry was related in Section 3 to the derivatives of the function that prop-
agates uncertainty about Turing machine codes through our UTM to uncertainty about
final states of those simulated machines. Section 4 showed that these derivatives can be
understood in terms of the combinatorics of error syndromes (Theorem 4.8). If we put
this all together, we can make some progress into understanding the underlying geometry
of inductive inference.

As in Section 5.3, we now fix in addition to the staged pseudo-UTM U a particular
classical solution M . That is, a Turing machine with M(x) = y(x) for all x ∈ I.

6.1 Graphical Model

We consider the evolution of the random variables involved in the computation of U as
encoded in linear logic in the previous section. This was previously discussed in [14, §6.2].

To each pair consisting of a tape square of U and a time step µ within the cycle there
is a corresponding random variable. There is also a random variable for each time step t
ranging over all possible states of U . The semantics of the encoding of the step function
of U give the random variables at timestep µ+1 as functions of those at timestep µ. This
defines a directed graphical model (DGM) for one cycle of the UTM (so one simulated
step) as shown in Figure 5. This has been simplified by the method in Section D.

We indicate in the left-most column the entry [M ]i in the code ofM which is currently
under the UTM head. One particular square, of σ′ type, is highlighted and denoted θ.
Paths in the DGM that start from θ (or other random variables on the description tape)
and end at the state q in some future cycle are the computation paths of U which are
enumerated carefully in the next section. Further details are given in Appendix D.

6.2 Computation Paths for U
In this section we enumerate the computation paths for the pseudo-UTM U from each
of its 3N inputs (which recall represent squares on the description tape, which contains
N tuples) to the final state represented by the type B. Recall that we write description
tape entries as σ, q, σ′, q′, d. For each index 1 ≤ j ≤ N we represent the corresponding
tuple by σj, qj, σ

′
j, q

′
j, dj. Computation paths may be inferred from stacking two copies of

Figure 5 to represent two cycles of the UTM.
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X X X q σ−h−1 σ−h . . . σ−1 σ0 σ1 . . . σh σh+1 compSymbol 10N + 6

X X X q σ−h−1 σ−h . . . σ−1 σ0 σ1 . . . σh σh+1 resetDescr 10N + 5

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

X X X q σ−h−1 σ−h . . . σ−1 σ0 σ1 . . . σh σh+1 resetDescr 5N + 4

X X s2 q σ−h . . . σ−1 σ0 σ1 . . . σh updateDir 5N + 3

X s1 s2 q σ−h . . . σ−1 σ0 σ1 . . . σh updateState 5N + 2

s0 s1 s2 q σ−h . . . σ−1 σ0 σ1 . . . σh updateSymbol 5N + 1

s0 s1 s2 q σ−h . . . σ−1 σ0 σ1 . . . σh compSymbol 5N

...
...

...
...

...
...

...
...

...
...

...
...

...

s0 s1 s2 q σ−h . . . σ−1 σ0 σ1 . . . σh compSymbol i+ 2

[M ]i+2 s0 s1 s2 q σ−h . . . σ−1 σ0 σ1 . . . σh φ i+ 1

[M ]i+1 s0 s1 s2 q σ−h . . . σ−1 σ0 σ1 . . . σh φ i

θ s0 s1 s2 q σ−h . . . σ−1 σ0 σ1 . . . σh φ i− 1

s0 s1 s2 q σ−h . . . σ−1 σ0 σ1 . . . σh φ i− 2

s0 s1 s2 q σ−h . . . σ−1 σ0 σ1 . . . σh compSymbol i− 3

...
...

...
...

...
...

...
...

...
...

...
...

...

s0 s1 s2 q σ−h . . . σ−1 σ0 σ1 . . . σh compSymbol 5

[M ]5 s0 s1 X q σ−h . . . σ−1 σ0 σ1 . . . σh φ 4

[M ]4 s0 X X q σ−h . . . σ−1 σ0 σ1 . . . σh φ 3

[M ]3 X X X q σ−h . . . σ−1 σ0 σ1 . . . σh φ 2

X X X q σ−h . . . σ−1 σ0 σ1 . . . σh φ 1

X X X q σ−h . . . σ−1 σ0 σ1 . . . σh compSymbol 0

Figure 5: Directed graphical model for a cycle of U . Shown is a complete cycle
of the staged pseudo-UTM U . Vertices represent random variables and arrows show the
dependence relations. Columns are respectively random variables representing the squares
on the description tape (column 1, counting from the left), staging tape (columns 2− 4),
state tape (column 5), work tape squares, UTM state (second column from the right) and
the timestep µ of the UTM within the cycle (rightmost column). Shown for reference is
a random variable θ corresponding to a σ′ entry on the description tape.

42



q 2P

σ0 P

θ 0

Figure 6: A collapsed version of two stacked diagrams as in Figure 5 (that is, two
simulated timesteps of a TM, considering a possible error in either the symbol to write
σ′ or the direction to move d) showing only paths that begin at θ and end at q. Dashed
lines stand for N computation paths (where N is the number of tuples on the description
tape) and P for the number of UTM steps required to simulate a single step of M .

q 2P

θ q P

θ 0

Figure 7: A collapsed version of two stacked diagrams as in Figure 5 (that is, two
simulated timesteps of a TM, considering a possible error in the state to transition q′ to
on the description tape) showing only paths that begin at θ and end at q.
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In Figure 6 and Figure 7 we present a graphical model of the random variables involved
in the forward propagation of uncertainty through the UTM from the description tape.
The computation paths through the plain proof encoding 2P steps of the staged pseudo-
UTM (so two steps of the simulated machine) which begin at a description tape entry θ
and end at q depend on whether θ is a σ′, q′ or d-type square:

• σ′-type: there are computation paths from θ to q

Γj 1 ≤ j ≤ N (84)

as shown in Figure 6. This path goes through the σ0 after one simulated timestep
and then through the second entry on the staging tape to q. In the second cycle
of the UTM, simulating the second step of the machine, the first two squares of
each description tuple are read and compared to σ0, q. One copy of σ0 is used in
each comparison, and the computation path Γj represents the copy of σ0 (which is
produced using one copy of θ) being used in the comparison with σj, the symbol on
the jth tuple of the description tape. This comparison affects which state is written
to the staging tape and eventually used to produce q.

• q′-type: there are computation paths from θ to q

Λj 1 ≤ j ≤ N , Ω , Ξ (85)

as shown in Figure 7. The path Λj goes through the q after one simulated timestep
and represents θ first being used to compute the state after one step, and then
this output being used in the comparison with qj in order to update the staging
tape. There is another computation path Ω where θ is used directly to produce
the state in the second step. There is one additional computation path Ξ where
θ is used to compute the state after one simulated timestep, and then no match
on the description tape is found, and so this state is carried through to the second
simulated timestep.

• d-type: there are computation paths from θ to q

Θj 1 ≤ j ≤ N (86)

as shown in Figure 6. As above this path goes through σ0 and represents the copy of
σ0 (and thus θ) used in the comparison with σj. The difference is that the original
θ affects σ0 in this case through the direction the tape head moves in the first step,
rather than by writing a symbol.

6.3 Influence Functions

We return to the question of understanding the computational content of the influence
functions (Definition 3.2) for i ∈ Nd (see Remark 5.7)

gi(x) =
∂|i|

∂wi11 · · · ∂widd
p
(
y ̸= y(x) | x,w

)∣∣∣
w=[M ]

. (87)
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However first we have to fix coordinates. In Section 3 the local coordinates w1, . . . , wd
at [M ] in W were arbitrary (Remark 3.1). However, now we have to fix the coordinates
to be as specified in (67). That is, w parametrises deviations in the probability simplex
from [M ] (which is w = 0) with one coordinate for each position on the description tape
and each symbol, or state or direction other than the one given in that position in [M ].

Corollary 6.1. For 0 ̸= k ∈ Nd

gk(x) =
∑

0̸=s≤k

Sk
sA

s(x) (88)

where Sk
s is as in (65) and As(x) is as in Definition 5.8.

Proof. Immediate from (68) in the proof of Theorem 4.11 since ∆ψ = ∆stept(x,w) when
we take local coordinates around [M ]. We can assume 0 ̸= s by Remark 5.9.

Example 6.2. Let k = ek be the standard basis vector in Rd for some 1 ≤ k ≤ d. Such
an index corresponds to a tuple on the description tape, within that tuple one of the three
squares σ′, q′, d and within that square one of the possible values z other than what is
specified in [M ]. Then wk = 0 means the same value appearing in [M ] and wk = 1 means
that we replace that entry by some other symbol, state or direction.

Then we write gk(x) for gk(x) and this function measures the infinitesimal variation
in the probability of an output error caused by an infinitesimal variation in the code in
this particular square, away from its value in [M ] towards z. We have (see Remark 4.14)

gk(x) = Sk
kA

k(x) = Ak(x) =
∣∣∣{γ | wt(γ) = ek and U(x, γ) ̸=M(x)

}∣∣∣ .
We also denote this quantity simply by Ak(x). To say that wt(γ) = ek is to say that γ
assigns no error to the computation paths from all other squares on the description tape,
assigns to exactly one computation path from the square associated to k an error, and
that error is of type z. Note that since there are generally many computation paths, such
an error syndrome is far from unique.

Combining this with Lemma 3.3 we obtain

Theorem 6.3. For |k| > 0

∂|k|

∂wk11 · · · ∂wkdd
H
∣∣∣
w=[M ]

=
∑
i,j ̸=0
i+j=k

∑
0 ̸=s≤i
0 ̸=t≤j

C(i, j)Si
sS

j
t Ex

[
As(x)At(x)

]
(89)

where C(i, j) =
∏d

s=1

(
is+js
is

)
, Ex[−] denotes expectation with respect to q(x) and i, j ∈ Nd.
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Proof. We have by Lemma 3.3

∂|k|

∂wk11 · · · ∂wkdd
H
∣∣∣
w=[M ]

=
∑
i,j̸=0
i+j=k

C(i, j)Ex
[
gi(x)gj(x)

]

=
∑
i,j̸=0
i+j=k

C(i, j)Ex
[( ∑

0̸=s≤i

Si
sA

s(x)
)( ∑

0 ̸=t≤j

Sj
tA

t(x)
)]

=
∑
i,j̸=0
i+j=k

∑
0 ̸=s≤i
0 ̸=t≤j

C(i, j)Si
sS

j
t Ex

[
As(x)At(x)

]
(90)

as claimed.

The only part of (89) that depends on the machine M are the correlation functions
Ex
[
As(x)At(x)

]
. It is in this sense that the combinatorics and statistics of error syndromes

determine the geometry of H at [M ]. An important special case is the Hessian of H:

Corollary 6.4. For 1 ≤ i, j ≤ d we have

∂2

∂wi∂wj
H
∣∣∣
w=[M ]

= 2Ex
[
Ai(x)Aj(x)

]
. (91)

Remark 6.5. In the analysis of Boolean functions f : {0, 1}n −→ {0, 1} one often studies
the influence of the i-th variable on f , denoted

Infi(f) = Pr
x

[
f(x) ̸= f(x⊕i)

]
,

where x⊕i is obtained from x by flipping its i-th bit. That is, Infi(f) is the probability
that flipping the i-th bit in the input flips the value of the function. A rich theory has
developed around these notions, often called the Fourier (or spectral) analysis of Boolean
functions, culminating in classical results such as the Poincaré inequality, KKL theorem,
Friedgut’s junta theorem, and so on [32].

The influence functions gi(x) of this paper are conceptually similar, but distinct, in
that they measure the infinitesimal rate at which perturbing the ith bit in the code of the
Turing machine M changes the probability of an output error on x. By Example 6.2 this
is a count of weight one error syndromes which induce an output error on x.

6.4 Meaning of Nondegeneracy

The germ ([M ], H) is nondegenerate if and only if the functions {gi}di=1 are linearly in-
dependent (Lemma 3.4). Hence by Lemma 2.11 and Lemma B.1 the same is true of
([M ], L). We can now understand the computational content of this condition: it says
that the pattern of counts of error syndromes in the ith square of the description tape
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which flip the output state cannot be computed from the pattern for the other squares of
the description tape. In short, nondegeneracy means that different parts of the code have
different effects.

More generally, the geometry of the singularity ([M ], H) is determined by structure
in the Taylor series expansion, which by Theorem 6.3 the same thing as structure in the
combinatorics of error syndromes. That is, whenever we can show that the effect on the
final state of errors in some bits interact with errors in other bits, we can expect this to
show up in the combinatorics and thus potentially in the geometry of ([M ], H). In this
way, we predict a general correspondence between geometric structure of the singularity
and the internal structure of the Turing machine. Several particular cases are presented
in the next section.

7 Examples

7.1 Error-Correction

The concepts of fault-tolerance and error-correction have been present in theoretical com-
puter science since its earliest foundational works [41]. Von Neumann demonstrated that
a bounded level of noise or faults occurring at the level of individual elements can be
systematically mitigated. His method involved structuring computations redundantly
by executing each computational step multiple times independently and using majority
voting. In this way he showed that local errors could be corrected with high probability.

Other frameworks for fault-tolerance have been developed, including the formal no-
tion of fault-tolerant Turing machines [33, 36]. Such machines explicitly incorporate
mechanisms for detecting and correcting faults that occur at the level of transitions, tape
symbols, or internal states during computation. Under some conditions Çapuni and Gács
[8, 49] have constructed general machines of this kind.11

Definition 7.1. For any integer C ≥ 0 we say that a Turing machine M can correct
errors of weight ≤ C on I ⊆ Σ∗ if for any error syndrome γ ∈ Nd with |wt(γ)| ≤ C

U(x, γ) =M(x) ∀x ∈ I . (92)

Hidden in the notation is that M(x) is the state after running the machine for a fixed
number t of steps. So informally this definition says: if we simulate M on the UTM U
for t steps and, when this execution would make use of a sample from the distributions
of symbols on the description tape, we make use of the outcomes provided by γ, the
resulting state U(x, γ) is M(x), that is, the outcome is the same as if there had been no
errors (here errors are any time the sample we obtain is different from the entry in that

11We distinguish between noisy Turing machines and probabilistic Turing machines. While probabilistic
Turing machines employ randomness deliberately as a computational resource, noisy or fault-tolerant
Turing machines address a fundamentally different challenge: preserving computational correctness and
universality despite the involuntary introduction of random faults.
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position in [M ]). We note again the unusual model of noisy execution of a UTM that we
are employing (see Appendix A.5).

Corollary 7.2. If M is able to correct errors of weight ≤ C then

λ([M ], q) ≤ d

2(C + 1)
. (93)

Proof. If i, j ̸= 0 and s ≤ i, t ≤ j,i+ j = k then from |s| ≥ C + 1,|t| ≥ C + 1 we deduce

|k| = |i|+ |j| ≥ |s|+ |t| ≥ 2C + 2 .

It follows from Theorem 6.3 that we have

∂|k|

∂wk11 · · · ∂wkdd
H
∣∣∣
w=[M ]

= 0

unless |k| ≥ 2(C + 1) since by assumption As(x) = 0 for all |s| ≤ C. Then the Newton
polyhedron P(M) is the convex hull of points k with |k| ≥ 2(C + 1). Since this set is
itself convex, this means that

P(M) ⊆ {k | |k| ≥ 2(C + 1)}

and in particular (s, s, . . . , s) ∈ P(M) implies ds ≥ 2(C + 1) and so s > 2(C+1)
d

. The

distance l(M) is the infimum of a subset of [2(C+1)
d

,∞] and hence l(M) ≥ 2(C+1)
d

. Thus
1

l(M)
≤ d

2(C+1)
and the claim now follows from Proposition 2.16.

Note that any Turing machine can correct C = 0 errors, in which case the upper
bound of (93) is d

2
, the universal bound on the learning coefficient [46, §7], [26, §4.2.3].

Remark 7.3. If M does not make use of all the states in Q, it might be modified in such
a way as to implement error-correction. This will on the one hand tend to increase the
learning coefficient [14, §3] because the machine uses more tuples, but on the other hand
by the Corollary the implementation of error-correction will tend to decrease the learning
coefficient. It is an important open question whether error-correction can be made “net
negative” in this sense for Turing machines.

It seems that simple majority voting schemes can be useful in this regard if we assume
the error-correction itself is not subject to errors. However, as with [8] and the existing
literature on similar questions, the real problem is to allow errors in the part of the
description that implement error-correction. Answering this open question would have
important implications for the character of programs that are given high probability by
the posterior.

Remark 7.4. A relation between error sensitivity of neural networks in their forward pass
and generalisation error has been noted by [4]. It has also been suggested that evolution
in the presence of noise tends to produce error-correcting codes and modularity [27].
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7.2 Control Flow

Suppose that I can be written as a disjoint union I = I1 ⊔ I2 and the Turing machine
M on input x first classifies whether x belongs to I1 or I2 and then executes separate
control paths for each subset. We divide the tuples (and thus the parameters w1, . . . , wd)
into three blocks, where the first and second blocks correspond to tuples in the first and
second control path and the third block performs the classification of the input.

Then for x ∈ I1 we have gj(x) = 0 for any j in the second block, and for x ∈ I2 we
have gi(x) = 0 for any i in the first block, since no error syndrome in one block can affect
the output for inputs handled by the other block. Hence for i in the first block and j in
the second we have by Corollary 6.4

1

2

∂2

∂wi∂wj
H
∣∣∣
w=[M ]

= Ex
[
gi(x)gj(x)

]
= 0 . (94)

This means that there is a block structure in the Hessian of H

Hess(H, [M ]) =

H1 0 A13

0 H2 A23

A31 A32 A33

 . (95)

This is the geometric signature of control flow in the Turing machine.

Remark 7.5. In general, increasing degeneracy of H looks like vanishing of higher deriva-
tives, or relations among these derivatives; in turn this by Theorem 6.3 takes the form of
certain functions f(x) with the property that Ex[f(x)] = 0. That is, as statistical patterns
on the sample space [34]. These combinatorial relations among error syndrome counts
in return reflect the patterns by which parts of the Turing machine code coordinate to
produce the output.

7.3 Nondegenerate Direction for detectA

We use the example of the synthesis problem detectA from [17] to illustrate the corre-
spondence between geometry and structure. Recall that

Σ = {0, 1, 2} = {□, A,B},
Q = {0, 1} = {reject, accept} .

Consider the function f : {A,B}∗ −→ {reject, accept} that returns accept if the string
contains at least one A, and reject otherwise. In Figure 8 we give two Turing machines
that implement this function when the string is initially placed on the work tape with
the head over the first symbol (arranged to the right on the tape). The machines are
initialised in the reject state.

We consider errors which perturb the state q′ transitioned to by both machines, when
s = A and q = reject. That is, the variation

(A, reject, ?, accept → reject, ?) . (96)
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σ q σ′ q′ d
□ reject □ reject Stay
□ accept □ accept Stay
A reject A accept Stay
A accept A accept Stay
B reject B reject Right
B accept B accept Stay

(a) detectA(0)

σ q σ′ q′ d
□ reject B reject Right
□ accept □ accept Left
A reject □ accept Left
A accept □ accept Left
B reject □ reject Right
B accept □ accept Left

(b) detectA(1)

Figure 8: (a) A natural implementation of detectA. Each row is a tuple of the form
(σ, q, σ′, q′, d). (b) A second, distinct machine implementing the same function, implicitly
given in [17, Example 3.5] and discovered there by MCMC-based program synthesis.

We let θ denote the random variable representing this q′-type square on the description
tape (terminology of Section 6.2). Hence if we use the UTM to simulate the TMs for two
steps, the computation paths from θ to the final state q are

Λ□,reject, . . . ,ΛB,accept,Ω,Ξ

where we note N = 6 and we label computation paths by the associated s, q for the tuple.
Hence an error syndrome is a sequence γ ∈ {0, 1}8 where we recall 0 is read as the symbol
present in the code [M ] and 1 as the alternative presented in the variation (96). So for
example γ = (1, 0, 0, 0, 0, 0, 0, 0) (we write 10000000) means that we evaluate the UTM
on a given input, using as our values of the entry θ the states

Λ□,reject = reject,Λ□,accept = accept, . . . ,ΛB,accept = accept,Ω = accept,Ξ = accept

where the fact that the first entry of γ is 1 is what causes the first state here to be reject.
What this means is that, while evaluating the UTM with [detectA(0)] on its description
tape and x on its work tape, in the second cycle of P steps of the UTM when we go to
compare □, reject with σ′

0, q
′ we use the state computed in the first step using the tuple

A, reject, A, reject, Stay rather than A, reject, A, accept, Stay .

In all other computation paths we use the tuple with accept, that is, without the error.
For example on input x = A with error syndrome 10000000, we have (writing σ0 = A, q =
reject for the inital symbol and state, σ′

0, q
′ for the symbol and state after one timestep

of the simulated machine and q′′ for the state after two timesteps)

q′′(A) = q′′
(
σ′
0(A, reject), q

′(A, reject,
□,reject

θ ), . . . , q′(A, reject,
B,accept

θ ),
7

θ,
8

θ
)

= q′′
(
A, q′(A, reject, 1), q′(A, reject, 0), . . . , q′(A, reject, 0), 0, 0

)
= q′′

(
A, reject, accept, . . . , accept, 0, 0

)
= accept .
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The syndrome γ = 00100000 is more interesting. This corresponds to an error occurring
in the copy of θ used to compute q′ in the comparison of the current symbol and state
with the first two squares A, reject of the third tuple of detectA(1). Thus

q′′(A) = q′′
(
σ′
0(A, reject), . . . , q

′(A, reject,
A,reject

θ ), q′(A, reject,
A,accept

θ ), . . . ,
7

θ,
8

θ
)

= q′′
(
A, . . . , q′(A, reject, 1), q′(A, reject, 0), . . . , 0, 0

)
= q′′

(
A, . . . , reject, accept, . . . , 0, 0

)
= accept .

While scanning the description tape the UTM tries to compare A, reject with the current
symbol and state, gets a match on the first and then (mistakenly) a match on the second
(due to the error in computing q′, which should be accept after the first step, but due to
the error in θ is instead reject). Hence the UTM writes accept to the staging tape. It
then moves on to the comparison for the tuple beginning A, accept and receives a second
match, writing accept to the staging tape again.

We see that none of the syndromes of weight one can cause an error (that is, flip the
output from accept to reject) on the input x = A. However with syndrome γ = 00000010
and x = BA there is an output error, as

q′′(BA) = q′′
(
σ′
0(B, reject), q

′(B, reject,
□,reject

θ ), . . . , q′0(B, reject,
B,accept

θ ),
7

θ,
8

θ
)

= q′′
(
A, reject, . . . , reject, 1, 0

)
= reject .

Continuing in this way we fill out the tables in Figure 9.
As we have explained in Section 3, to second order the geometry of the singularity germ

([detectA(j)], L) for j ∈ {0, 1} is closely related to the geometry of the configuration of the

functions {g(j)i }di=1 in the vector space of functions. From Figure 9 we compute, viewing the
functions g(j) as vectors of coefficients in the basis of functions on A,B,AB,BA,AA,BB
(in that order)

g(0) =
(
0 0 0 1 0 0

)T
, (97)

g(1) =
(
0 0 0 1 0 0

)T
(98)

by counting the number of red entries for each x.
If we assume all the inputs have equal probability 1

6
, and computing the Hessian with

respect to just the variable w (which has value w = 0 when the state q′ in (96) is accept
and the value w = 1 when it is reject) then by (34) we have for j ∈ {0, 1}

Hess(L, [detectA(j)]) =
1

3
(g(j))Tg(j) =

1

3
. (99)

Thus in local coordinates around [detectA(j)] we have L = 1
3
w2 + O(w3). Even though

these two Turing machines are distinct, their differences are irrelevant to errors in this
particular tuple, so they have the same geometry in the w direction.

51



Syndrome x
∗0 A accept
01 A accept
∗0 B reject
01 B reject
∗0 AB accept
01 AB accept
∗0 BA accept
01 BA reject
∗0 AA accept
01 AA accept
∗0 BB reject
01 BB reject

(a) detectA(0)

Syndrome x
∗0 A accept
01 A accept
∗0 B reject
01 B reject
∗0 AB accept
01 AB accept
∗0 BA accept
01 BA reject
∗0 AA accept
01 AA accept
∗0 BB reject
01 BB reject

(b) detectA(1)

Figure 9: Influence functions for weight one error syndromes for the two Turing machines
implementing detectA. Here ∗ stands for any element of {0, 1}6 and 0 = 000000.

7.4 Full geometry of detectA

In this section we complete the analysis by studying the geometry at detectA(0) to second-
order in all coordinate directions. By Corollary 6.4 to compute the second-order deriva-
tives of H at w = [M ] we need to count error syndromes of weight one which change the
output from M(x) = y(x) (that is, cause an output error). As explained in Remark 6.2
we use 1 ≤ k ≤ d to index triples consisting of

• One among the N = |Σ||Q| tuples on the description tape

• Within that tuple, one of the three positions σ′, q′, d

• For that position, a variation away from the entry of [M ] in that position.

For detectA(0) we have d = 30 and the enumeration is given in Figure 10. From now on
indices 1 ≤ k ≤ d are associated with triples as indicated by this Figure.

For each 1 ≤ k ≤ d and input x, Ak(x) is the number of computation paths leading
from the description tape square associated to k which, when the type of error indexed
by k is introduced, lead to an output error. We compute Ak(x) for all k and x in

X = {A,B,AB,BA,AA,BB} (100)

when we run the simulated machine for two steps t = 2. We use the notation for compu-
tation paths

Γj,Λj,Ω,Ξ,Θj 1 ≤ j ≤ N
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introduced in Section 6.2.

Lemma 7.6. Ak(x) = 0 for all k /∈ {3, 13, 18, 23, 24, 25} and x ∈ X.

Proof. We explain a few cases in detail and leave the remaining cases to the reader. For
k = 1 the relevant computation paths are of type Γj (here the j indexes tuples on the
description tape and is unrelated to k). If in computing the symbol under the head σ0
after one simulated timestep we use the variation □ → A for the first tuple in Figure 10,
this does not affect σ0 because the head never starts over a □. Thus no output error can
occur as a result of this variation, and so Ak(x) = 0 for k ∈ {1, 2, 6, 7} and x ∈ X. The
same logic applies to k ∈ {4, 5, 9, 10} with Γj replaced by Θj.

Since the machine starts in state reject the variations k ∈ {16, 17, 19, 20, 26, 27, 29, 30}
similarly cannot affect σ0 after one timestep along the computation paths Γj,Θj and so
Ak(x) = 0 also in these cases for all x ∈ X.

When k = 8 we have to consider computation paths Λj,Ω,Ξ. Along the former,
again since the head never starts over □, there can be no induced output error. The
other computation path Ω is more subtle: note that detectA(0) does not move the head
once it transitions into state accept, so under normal operation it cannot reach the pair
(□, accept). Hence an error in Ω cannot cause an output error. For Ξ, we check each x
and observe that a match on the description tape is always found and so this computation
path is never taken. Thus, A8(x) = 0 for all x.12

For k ∈ {11, 12} if x begins with a B this tuple is irrelevant. If it starts with A
then the machine transitions into state accept and it is irrelevant what is written to the
tape as σ0 (because the machine can never exit state accept). Hence errors of type k on
computation paths Γj cannot cause an output error.13 For similar reasons Ak(x) = 0 for
all k ∈ {14, 15} and x ∈ X.

For k ∈ {21, 22} if x begins with A this tuple is irrelevant. If x begins with B then
the machine stays in state reject and moves right, so σ0 (the symbol under the head after
one simulated timestep) is independent of what is written to the tape in the first step.
Hence Ak(x) = 0 for all x.14

Finally when k = 28 we have to consider computation paths Λj,Ω,Ξ. Since we start
in state reject no error on path Λj can cause an output error. For Ω, there is no way for
the machine under normal operation to reach state accept with the head over B, so again
this cannot contribute an output error. Lastly, a match on the description tape is always
found, so Ξ cannot contribute an output error. Hence Ak(x) = 0 for all x also in this
case.

12Note how if we were to consider error syndromes of higher weight we would have to consider the
possibility that the machine reaches □, accept due to another error, thus making Ω for k = 8 relevant.

13Notice the possibility for an output error from higher weight syndromes implicit in this reasoning.
14Note that if we had an error of type 22 and an error of type 24 then the machine would write an A

and have the head stay over it, to be read in the second step. This suggests some third-order derivative
may be nonzero, in a way that reflects the structure of the machine.
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The reader is encouraged to work through the proof of Lemma 7.6 in detail, since
this example illustrates the way in which concretely the behaviour of a Turing machine
is reflected in combinatorics of error syndromes. It is quite intuitive why the variations
that remain to be considered in Figure 10 (that is, variations other than the ones marked
in blue which are ruled out by the Lemma) should be the most critical parts of the code.

σ q σ′ q′ d

□ reject
1

□ → A,
2

□ → B
3

reject → accept
4

Stay → Left,
5

Stay → Right

□ accept
6

□ → A,
7

□ → B
8

accept → reject
9

Stay → Left,
10

Stay → Right

A reject
11

A→ □,
12

A→ B
13

accept → reject
14

Stay → Left,
15

Stay → Right

A accept
16

A→ □,
17

A→ B
18

accept → reject
19

Stay → Left,
20

Stay → Right

B reject
21

B → □,
22

B → A
23

reject → accept
24

Right → Stay,
25

Right → Left

B accept
26

B → □,
27

B → A
28

accept → reject
29

Stay → Left,
30

Stay → Right

Figure 10: Local coordinates at [detectA(0)] in the space of noisy Turing machines. The
rows are indexed by σ, q pairs (first two columns) and then for each of the three associated
squares σ′, q, d on the description tape we enumerate the valid variations in the entry in
that square away from its value in detectA(0). These variations are exactly the valid
values taken by an error syndrome on that square. The variations also provide the local
coordinates at [detectA(0)] in the space of noisy TM codes. Entries marked in blue do
not contribute to error syndromes of weight one which can flip the output.

In what follows, we enumerate the tuples on the description tape following the rows
of Figure 10. We sometimes view functions X → R as vectors in the natural way, using
the ordering in (100).

Lemma 7.7. For k = 3 the relevant computation paths are Λj for 1 ≤ j ≤ N and Ω and
so the error syndromes with weight one can be described by tuples

ej =
(Λ1

0 , . . . ,
Λj

1 , . . . ,
ΛN
0 ,

Ω

0,
Ξ

0
)

1 ≤ j ≤ N (101)

eN+1 =
(Λ1

0 , . . . ,
Λj

0 , . . . ,
ΛN
0 ,

Ω

1,
Ξ

0
)

(102)

eN+2 =
(Λ1

0 , . . . ,
Λj

0 , . . . ,
ΛN
0 ,

Ω

0,
Ξ

1
)

(103)

The values of U(x, γ) are given by Table 2 and the function A3 is

A3 =
(
0, 1, 0, 0, 0, 0

)
(104)

viewed as a vector in RX .

54



Proof. Recall U(x, γ) is the result of executing the UTM with error syndrome γ on input
x. When we write γ = ej in the context of the current lemma, we are implicitly considering
the error syndrome that assigns 0 to all computation paths other than the ones starting
at the position in the description tape indexed by k = 3, and just describing the values
assigned by γ to the computation paths starting at k = 3.

Note that since the head never starts over a blank symbol, γ = ej for 1 ≤ j ≤ N
does not affect the output of the UTM. Hence all but the last column of Table 2 contain
whatever output M would give on that input. An error on the computation path Ω leads
to error only when x = B so that after the first step the machine has σ0 = □, q = reject
and then it erroneously transitions to accept. That is,

U(x, eN+1) =

{
M(x) x ̸= B

accept x = B
(105)

The computation path Ξ is never taken for the inputs considered here, so γ = e8 does not
affect the output of the UTM.

This completes the calculation of Table 2 and the values of Ak(x) follow by summing
the errors in each row.

x
γ

e1 e2 e3 e4 e5 e6 e7 e8

A
B
AB
BA
AA
BB

Table 2: Values of U(x, γ) for different x and γ and k = 3. To save space we use for
accept, for reject, and we colour an output red if this is incorrect, i.e. an error.

Lemma 7.8. For k = 13 the relevant computation paths are Λj for 1 ≤ j ≤ N,Ω,Ξ.
With the notation of (101), (103) the function A13 is

A13 =
(
0, 0, 0, 1, 0, 0

)
(106)

viewed as a vector in RX .

Proof. For x ∈ {B,BB} none of these computation paths are used. If x = BA then
errors in the Λj computation paths cannot affect the output, but

U(BA, e7) = reject
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is an output error induced by an error in Ω. Otherwise the first symbol of x is A, in which
case errors on Ω cannot lead to output errors and we need only consider the computation
paths Λj. The two relevant tuples on the description tape are j ∈ {3, 4}.

We have U(A∗, e3) = accept which is correct, even though an error occurred on the
computation path Λ3. In detail: if we use the modified tuple (A, reject, A, reject, Stay)
in the first step we will have σ0 = A, q = reject after one timestep, which the UTM
then compares with (A, reject) on the description tape during the scan phase and finds a
match. It then writes accept to the q′ part of the staging tape (following the unmodified
form of the third tuple). Note that the UTM finds a second match with (A, accept) and
writes accept to the staging tape for a second time.

In contrast, we have U(A∗, e4) = accept. When checking A, accept for a match on the
description tape with σ0 = A, q = reject does not find a match. Hence the UTM does not
match to any tuple and at the end of the scan phase X remains on the staging tape, so
it leaves the TM state unchanged with accept.

The computation path Ξ is never taken for the inputs considered here, so γ = e8 does
not affect the output of the UTM. These calculations are summarised in Table 3.

x
γ

e1 e2 e3 e4 e5 e6 e7 e8

A
B
AB
BA
AA
BB

Table 3: Values of U(x, γ) for different x and γ and k = 13.

Lemma 7.9. For k = 18 the relevant computation paths are Λj for 1 ≤ j ≤ N,Ω and Ξ.
With the notation of (101), (103) the function A18 is

A18 =
(
1, 0, 1, 0, 1, 0

)
(107)

viewed as a vector in RX .

Proof. Again there can be no output errors when x ∈ {B,BB,BA}. However when x
begins with A and we have the error of type k = 18 on computation path Ω we have
U(A∗, e7) = reject which is an output error. Lastly, the computation path Ξ is never
taken. These results are in Table 4.
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x
γ

e1 e2 e3 e4 e5 e6 e7 e8

A
B
AB
BA
AA
BB

Table 4: Values of U(x, γ) for different x and γ and k = 18.

Lemma 7.10. For k = 23 the relevant computation paths are Λj for 1 ≤ j ≤ N,Ω and
Ξ. With the notation of (101), (103) the function A23 is

A23 =
(
0, 1, 0, 1, 0, 2

)
(108)

viewed as a vector in RX .

Proof. Again there can be no output errors when x ∈ {A,AB,AA}. The behaviour
of U on inputs beginning with B is quite complex. Firstly if x ∈ {B,BA} we have
U(x, e7) =M(x). But U(BB, e7) = accept. For the Λj computation paths, we can ignore
most columns depending on the second symbol in the input.

U(B, e1) = reject , U(B, e2) = accept

U(BA, e3) = reject , U(BA, e4) = accept

U(BB, e5) = reject , U(BB, e6) = accept .

The computation path Ξ is irrelevant. These calculations are summarised in Table 5.

x
γ

e1 e2 e3 e4 e5 e6 e7 e8

A
B
AB
BA
AA
BB

Table 5: Values of U(x, γ) for different x and γ and k = 23.
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Lemma 7.11. For k = 24 the relevant computation paths are Θj for 1 ≤ j ≤ N so the
error syndromes with weight one can be described by tuples

ej =
(Θ1

0 , . . . ,
Θj

1 , . . . ,
ΘN
0
)

1 ≤ j ≤ N . (109)

The values of U(x, γ) are given in Table 6

A24 =
(
0, 0, 0, 2, 0, 0

)
(110)

viewed as a vector in RX .

Proof. For x /∈ {B,BA,BB} we have U(x, ej) = M(x) for all j. For any x that begins
with B, the effect of introducing a k = 24 type error is to stay rather than move right in
the first step, so that σ0 = B after one step. Thus U(BB, ej) = M(BB) = reject for all
j, as this is any case the symbol under the head under normal execution. We can ignore
j ∈ {2, 4, 6} since the machine is in state reject after one step. The remaining cases are

U(B, e1) = reject , U(B, e3) = reject , U(B, e5) = reject

U(BA, e1) = accept , U(BA, e3) = reject , U(BA, e5) = reject

These calculations are summarised in Table 6.

x
γ

e1 e2 e3 e4 e5 e6

A
B
AB
BA
AA
BB

Table 6: Values of U(x, γ) for different x and γ and k = 24.

Lemma 7.12. For k = 25 the relevant computation paths are Θj for 1 ≤ j ≤ N so the
error syndromes with weight one can be described by tuples as in (109). Then

A25 =
(
0, 0, 0, 1, 0, 0

)
(111)

viewed as a vector in RX .

Proof. For x /∈ {B,BA,BB} we have U(x, ej) = M(x) for all j. For any x beginning
with B introducing a k = 24 type error causes the head to move left rather than right
in the first timestep, so U(B, ej) = M(B) = reject for all j since the symbol to the left
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of the first symbol on the work tape is a blank. It is also easy to see that U(BB, ej) =
M(BB) = reject for all j. When x = BA we have

U(BA, e2) = U(BA, e4) = U(BA, e6) =M(BA) = accept

since these tuples never match to the state reject after one timestep. Finally

U(BA, e1) = accept 15 , U(BA, e3) = reject , U(BA, e5) = accept .

These calculations are summarised in Table 7.

x
γ

e1 e2 e3 e4 e5 e6

A
B
AB
BA
AA
B

Table 7: Values of U(x, γ) for different x and γ and k = 25.

Given the above we compute the functions {g3, g13, g18, g23, g24, g25} and then the ma-
trix P of Section 3 is

3 13 18 23 24 25 (24 zero columns)
A 0 0 1 0 0 0
B 1 0 0 1 0 0
AB 0 0 1 0 0 0
BA 0 1 0 1 2 1
AA 0 0 1 0 0 0
BB 0 0 0 2 0 0

(112)

If we assume all the inputs have equal probability 1
6
then by (34) we have

Hess(H, [detectA(0)]) = 1
3
P TP = 1

3

(
P ′ 0
0 0

)
(113)

where (ordering the variables as in (112))

P ′ =


1 0 0 1 0 0
0 1 0 1 2 1
0 0 3 0 0 0
1 1 0 6 2 1
0 2 0 2 4 2
0 1 0 1 2 1

 . (114)

15Note that here the UTM executes two tuples.
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From this we see that e18 is an eigenvector of eigenvalue λ1 = 3, and that

P ′(e24 − 2e13) = P ′(e25 − e13) = 0 .

Hence zero is an eigenvalue of multiplicity two. Indeed the characteristic polynomial is

p(λ) = λ2(λ− 3)(λ3 − 13λ2 + 41λ− 24) .

Let λ2, λ3, λ4 denote the roots of the cubic factor, which are approximately 0.76, 3.73, 8.52.
Then in local coordinates v1, . . . , v30 at [detectA(0)] we have

H = v21 +
4∑
i=2

1
3
λiv

2
i +O(v3) . (115)

Remarkably, there are only four out of thirty directions in the space of noisy TMs in which
the function H is nondegenerate. The majority of the possible weight one errors do not
affect the performance of the machine (on inputs in X when run for two steps).

Note that the behaviour of the machine when it is in state accept and reading an A
(which is the only way to be in state accept) is critical in our two step machine; introducing
an error in the state part of this tuple is therefore one of the most obvious ways to cause
an output error and we would therefore expect H to be strongly curved in this direction.
This is what the geometric analysis shows: the direction v1 corresponding to e18 is one
of the natural coordinates associated to the eigenvectors of the Hessian of H, and it has
a large positive eigenvalue. Thus we see a direct relationship between the local geometry
of H at [detectA(0)] and the structure of the Turing machine.

Remark 7.13. Recall that it is the geometry of the average negative log-likelihood L(w)
that we are ultimately interested in, and the polynomial H(w) is just a convenient way to
access (some of) that geometry, since the two functions are comparable. Thus the above
observations about H in local coordinates should not be overinterpreted. However, it is
true that (115) implies that the Hessian of L also has rank 4 at [detectA(0)] and moreover,
we can relate their eigenvalues to some extent (see Appendix B).

Remark 7.14. It is clear by examining P ′ that a basis for the kernel is −2e13+e24,−e13+
e25. This gives two additional zero curvature directions in addition to the 24 identified in
Lemma 7.6. By Lemma B.1 these are also directions in the kernel of the Hessian of L,
that is, they are genuinely part of the geometry of the statistical learning problem.

In the notation of Figure 10 these directions are

−2
( 13

accept → reject) +
24

Right → Stay,

−1
( 13

accept → reject) +
25

Right → Left .

Note that at the boundary point [detectA(0)] of W these tangent vectors point outside of
the space of noisy TM codes. Nonetheless they indicate an interesting and non-obvious
way to trade-off these two tuples, reflecting non-trivial structure of the machine.
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8 Conclusion

One of the central lessons of logic and computer science for mathematics is to pay attention
to the distinction between an algorithm and the function it computes. In statistical
learning theory we often treat models as functions which assign probabilities to data, and
ignore how those functions are implemented. In this section we explain how, within the
framework of SLT, there is a natural sense in which the internal structure of probabilistic
models as algorithms play an important role in Bayesian statistics.

To compare the evidence for two candidate models p(y|x,w1), p(y|x,w2) of a condi-
tional distribution q(y|x) with respect to a dataset Dn, we integrate the posterior over
neighbourhoods Wi of w

i. If for simplicity we assume that w1, w2 are both true parame-
ters, then we know from SLT that asymptotically in n this comparison is determined by
the local geometry of the KL divergence K(w) at each wi (see Section 2.4). This geometry
is a reflection of the pattern of variation of the probabilities as w is varied near wi

p(y|x,w) ≈ p(y|x,wi) for w ≈ wi . (116)

In many cases, such as when the probabilistic model p(y|x,w) is parametrised by a neural
network or as here by a noisy TM, variations in the parameter w are localised microscopic
changes in the algorithm that computes these probabilities (e.g. weights associated to
connections between specific neurons, or probabilities of specific errors in the UTM read-
ing the Turing machine description). Thus the geometry of K(w), and consequently the
preferences of the posterior, are related to how such variations in the algorithm affect (or
do not affect) the output probabilities. If the probabilities are computed by algorithms
which have hidden variables, hierarchical structure or are composed of multiple informa-
tion processing modules, then we expect these statistical models to be singular and that
“the knowledge or grammar to be discovered corresponds to singularities” [46, §1.2].

To make this more precise: some changes in the algorithm underlying our model are
either just irrelevant to the outputs, or can be compensated by coordinated changes in
other parts, leading to changes in w that do not change the output probabilities. These
totally flat directions in the geometry of K(w), or degeneracies, are signatures of the
possible trade-offs among parts of the algorithm, and in turn reflect the internal structure.
More refined information is obtained by considering coordinated changes in the algorithm
that do not change the probabilities up to some order in a small perturbation parameter
ε measuring how far we deviate from the original algorithm.

In the framework developed in this paper we have studied concrete examples of both
kinds of changes: in our study of the Turing machine detectA(0) we found that changes
in 24 out of 30 directions at this code are irrelevant to outputs to second order, and in
Remark 7.14 we exhibit two linearly independent coordinated changes in the code that
together do not change the output probabilities up to second order.
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8.1 Structural Bayesianism

All this leads to the hypothesis that the internal computational structure of Turing ma-
chines, and potentially other singular models such as neural networks, is encoded in the
geometry of the KL divergence and may be discoverable from data [25, 23, 44].

We view this as a strong motivation for taking interpretability of singular models,
including neural networks, seriously as a mathematical science. This philosophy, which
we refer to as structural Bayesianism, says that the model selection principles at the
heart of Bayesian statistics dictate in many cases that the posterior can “see” the internal
structure of the algorithms computing probabilities in the model, and consequently the
posterior can prefer some kinds of algorithmic structures over others. That is, the posterior
concentrates probability mass on programs that not only predict well but predict properly.
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A Frequently Asked Questions

So, you have questions.

A.1 Does the geometry depend on the encoding?

We have described how to associate the germ of a singularity to a Turing machine M , or
more precisely to the code of this machine [M ] for a particular pseudo-UTM. There are
many choices involved in producing this geometric object, including: the choice of UTM,
the choice of encoding of the step function of that UTM into linear logic, and the choice
to use linear logic at all to construct the smooth extension. In this section we address
some of the natural questions about these choices.
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A.1.1 Choice of UTM

There is no question of this geometry being canonically associated to M , and indeed it is
our opinion that it is probably unreasonable to expect any such canonical association: at
some conceptual level the geometry of L (or H) at [M ] is determined by the particular way
we choose to introduce errors into the execution, and this in turn is determined by how
we think about executing that code. Different UTMs will lead to different geometries. In
our understanding this is a reflection of the fact that the notion of “internal structure” in
a Turing machine is not intrinsic to the tuples themselves, but to the dynamical system
that represents their execution (that is, what a UTM does with that code for the TM).

The reader should recall that there are UTMs other than the “simulation type” UTM.
For example, given any particular TM we can augment a simulation-type UTM U sim

with special subroutines that recognise some part of the TM and consult a look-up table
encoded in the UTM’s specification in order to skip an arbitrary amount of computation
and directly return the answer. Let us call this U cheat. Any structure internal to the part
of the TM M that is skipped will not be visible in the geometry for [M ] on U cheat.

Even if we stick to simulation-type UTMs, there are many variations. Some, like
our staged pseudo-UTM, are convenient for doing calculations but may strike the reader
as unnatural in various ways. We could hypothesise that some aspects of the geometry
are independent of these variations to some degree, just like Kolmogorov complexity is
independent of the chosen UTM to some degree, but there is no present theory which
makes such claims and it is unclear what statement one could even hope for.

A.1.2 Choice of Linear Logic

We choose to compute the propagation of uncertainty about Turing machine codes through
the execution of a UTM by encoding the step function of the UTM into linear logic and
using the Sweedler semantics [30, 16, 14]. This is somewhat roundabout and the reader
is forgiven for wondering if “all this linear logic stuff is really necessary”. The answer is
No!

There is a (perhaps kinder) version of this paper which eschews linear logic completely,
presents the computation paths of Appendix D as a fait accompli and presents a model of
noisy execution of TM codes in those terms and derives geometry in that way. The reader
is encouraged to get their hands dirty with the calculations in Section 7.4 to see how
the associated mode of thought engages with computation paths and does not depend on
linear logic at all. This is an entirely valid way of approaching the theory.

Nonetheless, our opinion is that while this presentation is easier to approach it is
ultimately shallower, as it obscures the influence of Ehrhard-Regnier’s idea of derivatives
of proofs. Note that by Theorem 4.11 the geometry considered here is an object of proof
theory in its own right (modulo the business with minus signs and the antipode). Moreover
in that version of the paper, dear reader, you are asking where this notion of computation
path comes from. There is some elegance (in the Kolmogorov complexity sense) of simply
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saying “encode the UTM in linear logic” and then following that to its logical conclusion,
but we accept that this elegance is only visible if you know linear logic (there’s that UTM
dependence of K). From a practical point of view one can think of linear logic as a useful
term language to describe the algorithm for executing the UTM.

A.1.3 Choice of Encoding

Once one has fixed a UTM and decided to use linear logic to construct a smooth relaxation
of its step function, there are still multiple encodings into linear logic [16]. Variations are
possible which would conceivably change the geometry of the final germ ([M ], L). Once
again, we think of these encodings as a compact specification of the computation paths
which in turn determine how error can affect the simulation of the machine. We have
provided one specification that we find natural, but we have no ground to assert that there
are no other natural specifications. The claim of this paper is to construct an example
of a structure preserving map from Turing machines to singularities. There is no claim,
explicitly or implicitly, that this homomorphism is unique.

A.2 Is everything in the geometry computationally meaningful?

Since every coefficient in the Taylor series expansion of H has been given a computational
interpretation in terms of correlations of error syndrome statistics in Theorem 6.3, it is
possible to answer Yes in a formal sense provided we restrict this statement to the aspects
of the geometry of H that are shared with L (Section B.1).

Our present intuition is that this answer seems overly strong, but since we don’t have a
clear definition of what “counts” as computational structure of a Turing machine it seems
impossible to give a definitive answer. On the other hand, it seems plausible that geometry
of the singularity ([M ], L) that initially seems very remote from computer science may
eventually be seen to be intimately connected to basic concepts in that field.

A.3 Why is there a uniform number of time steps t

In our conceptual framing in terms of synthesis problems and statistical learning, we are
interested in two classical solutions M1,M2 and how the Bayesian posterior distinguishes
them. Let us suppose that for all x ∈ I not only do M1(x) = y(x),M2(x) = y(x) in the
sense of the main text, but the machines both halt (i.e. enter some static state).

Then, given a dataset size n the question is: does the posterior assign higher probability
to a neighbourhood ofM1 orM2? Since the dataset is finite and all inputs are finite strings,
and since M1,M2 are assumed to be classical solutions and to halt, it may seem that there
is some t such that comparing them using this number of steps is sufficient. This is almost
correct, but note that the local geometry is sensitive to execution traces of the machines
that involve errors, and such traces may fail to halt. Thus the geometry can be sensitive
to arbitrary numbers of timesteps even if the machines would usually halt on all allowed
inputs within a given timeout.
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More general synthesis problems are considered in [14, 45] but this introduces addi-
tional complexity and in this paper we follow [17] in making the simplification of fixing
t. We admit this as a limitation of the current presentation. It would be interesting if
there was an argument to the effect that non-stably halting machines are exponentially
suppressed in the posterior, which would provide a more principled reason for fixing t.

A.4 Why is the input distribution given finite support?

See the previous section: if we fix a finite number of timesteps then only a finite subset
of the possible inputs can be computed. Note that finite numbers can be big: take t≫ 0
and I ⊇ Σk for all k ≤ K for K ≫ 0.

A.5 How should I think about this model of noisy computation?

We refer the reader to Section 5.1 for a description of the staged pseudo-UTM, herein just
“UTM”. The remarks in this section expand on those in Section 1.1.1.

Recall that the squares of the description tape are of the form σ, q, σ′, q′, d. To com-
pute the probabilities p(y|x,w) as in Section 2.1 the string x is placed on the work tape
of the UTM, w is arranged in the squares of type σ′, q′, d on the description tape and
then the (smooth relaxation of the) UTM is executed for t steps before reading off the
distribution over symbols y on the state tape (meaning the tape which records the state
of the simulated machine).

Note that we do not allow uncertainty in the inputs x. There is a distribution q(x)
over inputs, but this is irrelevant: the UTM only ever begins execution with a definite
string x on its work tape. We of course allow uncertainty on the squares of the description
tape coming from w (there is never uncertainty about the squares of type σ, q). While
there is initially no uncertainty on the work, state or staging tapes, the uncertainty on the
description tape propagates to these tapes as well. There may also be some uncertainty
in the state of the UTM (e.g. between copySymbol and ¬ copySymbol) but the design of
the staged pseudo-UTM mean that this uncertainty is “resolved” at the end of every cycle.

The usphot of using the encoding of the step function of the UTM into linear logic to
propagate uncertainty is that, following the logic of Section 4.2, whenever the UTM wants
to read from a square on the description, work or staging tapes with uncertainty, it draws
a sample. But there is a catch: these samples must all be independent. What that means
is that the UTM must recurse backwards to sample, in the previous step, all tape squares
necessary to produce the tape square it originally wanted to read. These “requests for
samples” propagate backwards through all previous steps until they cash out in (many)
requests for samples from the original sources of uncertainty on the description tape.

These “chains of requests” from the final output state y to the squares on the descrip-
tion tape are precisely the computation paths (Appendix D). Reading them forwards,
these computation paths specify how one of a number of independent samples from some
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error distribution on the description tape is to be routed through the execution of the
UTM to be “consumed”. This backwards chaining of requests is made precise by the
cut-elimination rules for promotion and contraction, and this explains why linear logic is
a particularly natural language to reason about this kind of noisy computation model.

A.6 Why use TMs? Why not proofs or lambda terms?

The parameter spaceW is part of the space of denotations of a linear logic formula, which
has as proofs configurations of the description tape of a UTM. For a linear logician, it
might seem natural to instead consider general proof synthesis for a general type A and
W ⊆ JAK relative to some proof ψ : !A, !C ⊢ B which plays the role of the (iterated)
step function of the UTM in the present paper with some function y : !C ⊢ B as the
analogue of the synthesis problem. And indeed, this geometrisation of proof synthesis is
what [16, 14] were originally setting out to do!

There are however two problems: firstly, there is the technical problem of the prop-
agation of uncertainty through non-plain proofs [16]. It is not currently known if this
holds for proofs ψ which are not plain. Putting that aside, the above theory could be
constructed exactly as in this paper for any plain proof ψ, but then the question becomes:
what are the natural examples we can actually compute with? Turing machine codes
provide a natural “flat” class of examples that are short, can be constructed by hand, and
which have a clear conceptual content.

A.7 Why not a real UTM?

The staged pseudo-UTM U is not universal, because it assumes the alphabet symbols and
states of the simulated machine can be encoded as single symbols and states of the UTM.
That is, Σ ∪ Q ⊆ ΣUTM. In a similar spirit to Appendix A.3, note that by enlarging
Σ, Q we can in this way accommodate any finite set of Turing machines as codes on our
pseudo-UTM and this suffices for our purposes.

A.8 Why not smooth relaxation X?

There are many smooth relaxations of a UTM in the sense of Section 2.1. Maybe you have
one in mind. Any such smooth relaxation gives rise to a KL divergence K whose geometry
is relevant to the learning process defined with respect to that smooth relaxation. For
many such relaxations there will be a relation between the local learning coefficient and
invariants like program length, as described in [17, 45] because un-used bits will often
correspond to degeneracy.

However, generically a smooth relaxation X will have no deeper relation between the
geometry of K : W −→ R and the internal structure of the machine being simulated
[M ] ∈ W , because there will be no precise and general relation between perturbations
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away from [M ] within W and computationally meaningful perturbations of the execution
of M as a dynamical system.

In our opinion, the nontrivial contribution being made in the series of papers [14, 17, 45]
and continued here is to construct a smooth relaxation where such a precise relation does
exist. One way of observing this is that the geometry ofK is here related to the derivatives
of H which are, by Theorem 4.11, denotations of proofs in differential linear logic. In some
sense the geometry of the synthesis problem is an object of proof theory. Arguably the
degeneracies observed in Section 7.4 arise from patterns that can also be expressed in the
syntax. These are strong statements about the logical status of the geometry of K which
are not true of general smooth relaxations.

B Comparable Functions

We make some basic remarks about comparable functions (see Definition 2.10).

Lemma B.1. Let f, g : Rd → R be real analytic functions on an open neighbourhood U
of the origin, with local minima at the origin. Suppose there exist constants c, d > 0 such
that

c · f(x) ≤ g(x) ≤ d · f(x) (117)

for all x ∈ U . Let Qf and Qg be the Hessian matrices of f and g at the origin, respectively.
Then:

(i) ker(Qf ) = ker(Qg).

(ii) For any eigenvector v of Qf with eigenvalue λf > 0, we have c ·λf ≤ vTQgv ≤ d ·λf .

Proof. Since f and g have local minima at 0, we have f(0) = g(0) = 0, ∇f(0) = ∇g(0) =
0, and both Qf and Qg are positive semidefinite. The Taylor expansions around the origin
are:

f(x) =
1

2
xTQfx+O(∥x∥3) (118)

g(x) =
1

2
xTQgx+O(∥x∥3) (119)

For (i) it suffices to show ker(Qf ) ⊆ ker(Qg). Let v ∈ ker(Qf ), so Qfv = 0 and vTQfv = 0.
For sufficiently small t, consider x = tv ∈ U :

f(tv) =
1

2
t2vTQfv +O(t3) = O(t3) (120)

By our growth rate assumption, we have:

g(tv) ≥ c · f(tv) = c ·O(t3) = O(t3) (121)

g(tv) ≤ d · f(tv) = d ·O(t3) = O(t3) (122)
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However, we also know:

g(tv) =
1

2
t2vTQgv +O(t3) (123)

For these equations to be consistent, we must have vTQgv = 0. Since Qg is positive
semidefinite, this implies Qgv = 0, and therefore v ∈ ker(Qg).

For (ii) let v be an eigenvector of Qf with eigenvalue λf > 0, so Qfv = λfv and
vTQfv = λf∥v∥2. Without loss of generality, we can assume ∥v∥ = 1.

For small t, consider x = tv:

f(tv) =
1

2
t2vTQfv +O(t3) =

1

2
t2λf +O(t3) (124)

g(tv) =
1

2
t2vTQgv +O(t3) (125)

From our growth rate constraint, we have:

c · f(tv) ≤ g(tv) ≤ d · f(tv) (126)

Substituting the expansions:

c ·
(
1

2
t2λf +O(t3)

)
≤ 1

2
t2vTQgv +O(t3) ≤ d ·

(
1

2
t2λf +O(t3)

)
(127)

Dividing by 1
2
t2 and taking the limit as t→ 0, we obtain:

c · λf ≤ vTQgv ≤ d · λf (128)

This establishes the desired bounds on the quadratic form vTQgv for any eigenvector v of
Qf with positive eigenvalue λf .

Remark B.2. Lemma B.1 establishes that two real analytic functions with comparable
growth rates near a common minimum point have Hessian matrices with identical kernels.
Thus the ellipsoids defined by the quadratic forms have the same “flat directions” and
further their curvatures in other directions maintain bounded ratios as

c ≤ vTQgv

λf
≤ d .

Suppose that v, v′ are two eigenvectors of Qf with distinct eigenvalues λ, λ′. Define
the curvatures of Qg in these directions as

µ = vTQgv , µ′ = (v′)TQgv
′ .

Then we have

µ

µ′ =
µ

λ
· λ

′

µ′ ·
λ

λ′
≤ d

c
· λ
λ′
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and similarly with the lower bound, giving

c

d
· λ
λ′

≤ µ

µ′ ≤
d

c
· λ
λ′
. (129)

This is applied in the following way: suppos the ratio of λ to all other eigenvalues of Qf

is large (i.e. v is the most curved direction). Then the ratio of the curvatures µ
µ′

for Qg

also can’t be too small. In our applications, while c can be chosen close to 1, d may be
large, so that (129) need not be very informative.

Definition B.3. Let S : R>0 −→ R be defined by

S(u) = − log u+ u− 1 .

We will prove that S is comparable to 1
2
(u− 1)2.

Lemma B.4. Given 0 < c < 1 and d > 1 there exists δ > 0 such that

c · 1
2
(u− 1)2 ≤ S(u) ≤ d · 1

2
(u− 1)2 (130)

whenever |1− u| < δ.

Proof. We compute S ′(u) = − 1
u
+ 1, S ′′(u) = 1

u2
, S(3)(u) = − 2

u3
so S(1) = 0, S ′(1) =

0, S ′′(1) = 1 and so for some a between 1 and u

S(u) = 1
2
(u− 1)2 − 1

3a3
(u− 1)3 .

For a constant 0 < c < 1 we have c · 1
2
(u− 1)2 ≤ S(u) if and only if

1
3a3

(u− 1)3 ≤ 1
2
[1− c](u− 1)2

which is automatic if u ≤ 1 and for u > 1 holds if and only if

u ≤ 1 + 3a3

2

[
1− c

]
. (131)

Similarly if 1 < d we have S(u) ≤ d · 1
2
(u− 1)2 if and only if

1
2

[
1− d

]
(u− 1)2 ≤ 1

3a3
(u− 1)3

which is automatic if u = 1 and for u ̸= 1 is equivalent to

1 + 3a3

2

[
1− d

]
≤ u . (132)

It follows that given c, d as described, (130) will hold provided

|1− u| < δ = 3a3

2
min

{
|1− c|, |1− d|

}
(133)

as claimed.

Note that we can make the constants c, d as close to 1 as we wish (respectively from
below and above) by taking δ sufficiently small.
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B.1 Geometry of Comparable Functions

Let U be an open neighbourhood of 0 ∈ Rd and f : U −→ R a non-negative and non-
constant analytic function with f(0) = 0. Let g : U −→ R be a comparable analytic
function, say with c, d > 0 such that

cf(x) ≤ g(x) ≤ df(x) , ∀x ∈ U . (134)

By resolution of singularities (e.g. [46, Theorem 2.3]) there is a triple (W,U, h) where
W is an open set in Rd which contains 0, U is a d-dimensional real analytic manifold,
h : U −→ W is a real analytic map, such that h is proper and with

W0 = {x ∈ W | f(x) = 0} , U0 = {u ∈ U | f(h(u)) = 0}

h induces an analytic isomorphism of U \U0 withW \W0. Further, for every point P ∈ U0

there are local coordinates u1, . . . , ud of U with origin P such that

f(h(u)) = u2k11 u2k22 · · ·u2kdd

where k1, . . . , kd are non-negative integers, and the Jacobian determinant of x = h(u) is

g′(u) = b(u)uh11 · · ·uhdd

where b(u) is nonzero in the local chart and h1, . . . , hd are non-negative integers.
By (134) we have in any such local chart that

cu2k11 u2k22 · · ·u2kdd ≤ g(h(u)) ≤ du2k11 u2k22 · · ·u2kdd

and hence by [47, Theorem 2.6] there exists an open set within the coordinate chart
around P such that, on this open set, there is defined a real analytic function t(u) with

g(h(u)) = t(u)f(h(u)) .

That is to say, the ratio t(u) = g(h(u))/f(h(u)) is well-defined near P on the resolution,
even though it may be not be defined on the original space. Since c ≤ t(u) ≤ d on this
neighbourhood of P we have that t(u) is a unit in the ring of analytic functions. In
paticular, in the local ring Oan

P of germs of analytic functions on U at P we have that
f ◦ h and g ◦ h generate the same ideal

⟨g(h(u))⟩ = ⟨f(h(u))⟩

and thus Oan
P /⟨f ◦ h⟩ ∼= Oan

P /⟨g ◦ h⟩. Thus any geometric property of f that factors
through the resolution is shared by g. This includes the real log canonical threshold (i.e.
learning coefficient).
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B.2 Functions Comparable to the KL divergence

Let q(x) be a probability distribution on a non-empty finite set I with q(x) > 0 for all
x ∈ I. Let Q be a non-empty finite set. We suppose given a conditional distribution
q(y|x) over y ∈ Q given x ∈ I such that q(y|x) > 0 for all y ∈ Q. Let p(y|x,w) be a
model defined on some W ⊆ Rd with open interior. Define

H(w) =
∑
x∈I

q(x)H(w, x) , H(w, x) =
∑
y∈Q

(
p(y|x,w)− q(y|x)

)2
,

L(w) =
∑
x∈I

q(x)L(w, x) , L(w, x) = −
∑
y∈Q

q(y|x) log p(y|x,w) .

K(w) =
∑
x∈I

q(x)K(w, x) , K(w, x) =
∑
y∈Q

q(y|x) log q(y|x)
p(y|x,w)

.

We assume p(y|x,w) is continuous in w ∈ W and that p(y|x,w) > 0 for all x ∈ I, y ∈ Q
and w ∈ W , so that the above expressions are well-defined.

Remark B.5. When the true distribution q(x, y) = q(y|x)q(x) is realisable by a statistical
model q(y|x) = p(y|x,w∗) for some w∗ (which may be on the boundary of W ) and we
may replace W by an infinitesimal neighbourhood of w∗. Since p(y|x,w) is a continuous
function of w and there are only finitely many x ∈ I and y ∈ Q, this means we may
assume that given any ε > 0 we have simultaneously

∣∣p(y|x,w) − q(y|x)
∣∣ < ε for all x, y

and w. Since q(y|x) > 0 this means we may assume p(y|x,w) > 0 for all w, explaining
the reason we adopt this hypothesis.

Lemma B.6. Given 0 < c < 1 and d > 1 let δ > 0 be as in (133). If∣∣∣∣∣p(y|x,w)q(y|x)
− 1

∣∣∣∣∣ < δ ∀x ∈ I, y ∈ Q,w ∈ W (135)

then 1
2
H(w) is comparable to K(w).

Proof. We can apply Lemma B.4 to u = p(y|x,w)
q(y|x) to obtain

d
2

(
p(y|x,w)
q(y|x)

− 1

)2

≤ − log
p(y|x,w)
q(y|x)

+
p(y|x,w)
q(y|x)

− 1 ≤ d
2

(
p(y|x,w)
q(y|x)

− 1

)2

which we can multiply by q(y|x) and sum over y ∈ Q to obtain

c
2
H ′(w, x) ≤ K(w, x) ≤ d

2
H ′(w, x) (136)

where

H ′(w, x) =
∑
y∈Q

q(y|x)

(
p(y|x,w)
q(y|x)

− 1

)2

.
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Thus K(w, x) is comparable to H ′(w, x). Now

H ′(w, x) =
∑
y∈Q

q(y|x)−1
(
p(y|x,w)− q(y|x)

)2
and if we let Cx = infy∈Q q(y|x)−1 and Dx = supy∈Q q(y|x)−1 then

CxH(w, x) ≤ H ′(w, x) ≤ DxH(w, x)

so H ′(w, x) is comparable to H(w, x). By transitivity H(w, x) is comparable to K(w, x),
or more explicitly we have for all x,w

cCx
2
H(w, x) ≤ K(w, x) ≤ dDx

2
H(w, x) .

Multiplying through and taking the sum over x ∈ I

cC · 1
2
H(w) ≤ K(w) ≤ dD · 1

2
H(w)

where C = infx∈I Cx, D = supx∈I Dx as desired. Of course if K(w) is comparable to
1
2
H(w) it is comparable to H(w) but since we control c, C, d,D this is more natural.

Remark B.7. In the proof note that q(y|x) ≤ 1 so q(y|x)−1 ≥ 1 and so 1 ≤ Cx and thus
1 ≤ C. Hence, possibly by shrinking δ we can take the constant cC in the lower bound
as close as we like to 1. The upper bound is less trivial to deal with, because if there are
y for which q(y|x) is very small, D is large. For this reason the comparability of K(w) to
a sum of squared differences is not trivial when q does not have full support. In Section
B.3 we explain one way to deal with this.

Remark B.8. As in Remark B.5, we typically arrange for (135) to hold by shrinking W
to a small neighbourhood of a true parameter.

Remark B.9. Recall that K(w) = L(w) − C where C is the entropy of the true distri-
bution (which does not depend on w). Thus L(w) is comparable to 1

2
H(w) + C. If we

assume we are working in a neighbourhood of a true parameter w∗ so that K(w∗) = 0
then L(w∗) = C so that L(w) is comparable to 1

2
H(w) + L(w∗).

B.3 Moving Away From the Boundary

We define for µ > 0 the interpolation between a probability distribution and the barycen-
ter b =

∑
q∈Q

1
|Q|q of the probability simplex by

εµ : ∆Q −→ ∆Q ,

εµ(x) = (1− µ)x+ µb
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where we write probability distributions as vectors in ∆Q ⊆ RQ and denote them with
bold letters. Note that

∥εµ(x)− εµ(y)∥2 = ∥(1− µ)(x− y)∥2 = (1− µ)2∥x− y∥2 .

Let I,Q and q(x) be as in Section B.2. We assume given a conditional distribution q(y|x)
but we do not assume that q(y|x) > 0 for all y ∈ Q. Nonetheless the distribution

qµ(y|x) = εµq(y|x) ∈ ∆Q

does have this property. Similarly, let p(y|x,w) be a model parametrised by w ∈ W which
is continuous, but not necessarily positive on all y. We define

pµ(y|x,w) = εµp(y|x,w)

which once again, is positive on all y. Assuming the hypothesis of Lemma B.6 for qµ, pµ
we obtain that the KL divergence Kµ(w) between qµ and pµ is comparable to

Hµ(w) =
∑
x∈I

q(x)∥εµp(y|x,w)− εµq(y|x)∥2

=
∑
x∈I

q(x)(1− µ)2∥p(y|x,w)− q(y|x)∥2

= (1− µ)2H(w) .

Remark B.10. The idea of moving distributions p off the boundary in the context of
program synthesis was introduced in [14], but the elegant trick of applying it to both p, q
is due to Waring [45].

C Details of the Step Function of U
The proof hrelstep of Proposition [16, 5.5] encodes one step of a Turing machine in linear
logic. In Section 5.1 we considered simulated Turing machines with tape alphabet given
by some fixed set Σ, with set of states some fixed set Q. Here we fix these sets to be as
follows, where n,m ≥ 1:

Σ = {0, . . . , n− 1}, Q = {0, . . . ,m− 1}, D = {0, 1, 2} = {Left, Stay, Right}. (137)

and we consider a staged pseudo-UTM U . There are N = nm tuples associated to the
transition function of M . The aim of this section is to adapt hrelstep, for h > 0, to a
proof hUrelstep sufficiently capturing and simulating the computation of U for a single
simulated step of M (which amounts to 10N + 6 steps of U).

One way to approach this would be to come up with a generic encoding of Turing
machines with k > 0 tapes in linear logic and then specialise to the particular case of U .
This is possible, but we simplify things by making use of the following properties of U :

76



(i) The description tape, staging tape, and state tape are of determined, finite length.

(ii) The head position of the description tape depends only on the time step µ of U .

(iii) The head positions of the staging tape depends only on the state of U .

(iv) The head position of the state tape never changes.

(v) The symbols and states of the simulated machine can be encoded in single tape
squares of the U .

Let µ, h ≥ 0 be an integers with µ ≤ 10N +6. We define a type µ
hUtur along with a proof

µ
hUrelstep : µhUtur ⊢

µ+1
h Utur (138)

encoding a single step of U at position µ within the overall cycle of the staged pseudo-
UTM (see Section 5.1). By properties (i)-(v), we can reduce to a finite set of squares which
are used in a single, fixed timestep of U . For each of these squares we will construct a
plain proof and another plain proof encoding the updates of the states of U . Following
[16], the proof µhUrelstep will then be given by promoting these proofs, taking a tensor
product, and performing contractions. We construct the proof associated to these squares
one tape at a time.

In the following the base type A is chosen so that all required denotations are linearly
independent; this is possible by [16, Appendix A]. Nothing depends on the choice of A
and we generally drop it from the notation and write bool for boolA.

We will make extensive use of the following two lemmas:

Lemma C.1. Given k ≥ 1 and any function f : {0, ..., n − 1}k → {0, ...,m − 1}, there
exists a proof F of k nbool ⊢ mbool which encodes f .

Proof. The proof is by induction on k, with k = 1 being Lemma [16, 4.7]. Assuming the
lemma holds for k−1 we for each 0 ≤ z ≤ n−1 let Fz be the proof of (k−1) nbool ⊢ mbool
encoding the function

f(−, z) : {0, ..., n− 1}k−1 → {0, ...,m− 1} .

Then the proof

F0...
Am, (k − 1) nbool ⊢ A ...

Fn−1...
Am, (k − 1) nbool ⊢ A

&R
Am, (k − 1) nbool ⊢ An A ⊢ A

⊸ L
Am, (k − 1) nbool, nbool ⊢ A

⊸ R
(k − 1) nbool, nbool ⊢ mbool
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encodes f .

Similarly it follows that:

Lemma C.2. Let n1, n2,m ≥ 1 and consider a function

f : {0, . . . , n1 − 1} × {0, . . . , n2 − 1} −→ {0, . . . ,m− 1} (139)

there exists a proof F of n1bool, n2bool ⊢ mbool which encodes f .

C.1 The description tape

The description tape of U is

Xσ1q1σ
′
1q

′
1d1 . . . σNqNσ

′
Nq

′
NdNX (140)

The natural orders 0 < . . . < n − 1, 0 < . . . < m − 1 on Σ, Q respectively induce the
lexicographical order on the set Σ × Q which means the information of the description
tape can be compressed to tuples of size 3 instead of size 5 as follows:

σ′
1q

′
1d1 . . . σ

′
Nq

′
NdN (141)

where we have dropped the X at the beginning and at the end of the tape as these are
only used in the definition of U as a Turing machine and will not be used in the encoding.
Here σ′

i ∈ Σ, q′i ∈ Q, di ∈ D for 1 ≤ i ≤ N . We use the type descr and proofs P i
dscr

introduced in Section 5.2.
For each i = 1, . . . , 3N we define a proof Sdscr

µ,i of the following sequent:

Sdscr
µ,i :


nbool ⊢ nbool, i = 1 mod 3,

mbool ⊢ mbool, i = 2 mod 3,

3bool ⊢ 3bool, i = 0 mod 3,

(142)

Each of these consist of an Axiom-rule encoding the identity function. For example, Sdscr
µ,1

is the following proof:

Ax
nbool ⊢ nbool

We define the proof associated to the description tape as the tensor of all of these:

Sdscr
µ =

3N⊗
i=1

Sdscr
µ,i : dscr ⊢ dscr. (143)

Note that this proof is independent of µ.
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C.2 The staging tape

We label these squares s0, s1, s2. If Σi
stage denotes the set of symbols which may appear

on square si for i = 0, 1, 2, then:

Σi
stage =


Σ ∪ {X}, i = 0,

Q ∪ {X}, i = 1,

D ∪ {X}, i = 2.

(144)

We introduce the following type:

stg = !n+1bool︸ ︷︷ ︸
σ′

⊗ !m+1bool︸ ︷︷ ︸
q′

⊗ !4bool︸ ︷︷ ︸
d

(145)

where we have decorated each factor with the kind of information that is written to the
staging tape during the execution of the UTM. We introduce sets of proofs:

Pstg
i =


{JjK}j=0,...,n ⊆ Jn+1boolK, i = 0,

{JjK}j=0,...,m ⊆ Jm+1boolK, i = 1,

{JjK}0≤j≤3 ⊆ J4boolK, i = 2.

(146)

For each i = 0, 1, 2 we define a proof Sstage
µ,i . By convention X is encoded as n,m, 3.

We show the details for i = 0 and leave i = 1, 2 to the reader. Say 0 ≤ µ ≤ 5N . If
µ ∈ {0, 1, 3, 4} mod 5 then Sstage

µ,0 consists of a single Axiom-rule. Now say µ = 2 mod 5.

Recall that we have fixed a Turing machine M with associated code [M ]. Then Sstage
µ,0

encodes the following function:

W code × Σ×QUTM −→ Σ

([M ], σ, φ) 7−→

{
[M ]µ̂, φ = copySymbol,

σ, φ ̸= copySymbol

where µ̂ is the entry of the description tape corresponding to the tuple in turn corre-
sponding to µ. This is a proof

Sstage
µ,0 : dscr⊗ !n+1bool⊗ !13bool ⊢ !n+1bool. (147)

Existence follows from Lemmas C.1, C.2.
If µ = 5N + 1 mod P then Sstage

µ,0 encodes the constant function mapping everything

to X. For 5N + 2 ≤ µ ≤ 10N + 6 we define Sstage
µ,0 to consist of an Axiom-rule. We define

the proof associated to the staging tape as the tensor of all of these:

Sstg
µ = Sstg

µ,0 ⊗ Sstg
µ,1 ⊗ Sstg

µ,2. (148)

This is a proof of the following sequents depending on µ:
stg ⊢ stg, µ ≤ 5N,µ = 0, 1 mod 5,

dscr⊗ stg⊗ !13bool ⊢ stg, µ ≤ 5N,µ = 2, 3, 4 mod 5,

stg ⊢ stg, µ ≥ 5N

(149)
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C.3 The state tape

We consider
Pstate = {JjK}j=0,...,m−1 ⊆ JmboolK . (150)

We define a proof Sstate
µ . If µ ̸= 5N + 2 then Sstate

µ consists of a single Axiom-rule. If
µ = 5N + 2 then we encode the function

(Q ∪ {X})×Q −→ Q

(q, q′) 7−→

{
q, q ̸= X,

q′, q = X.

This is a proof of the following sequents depending on µ:{
!mbool ⊢ !mbool, µ ̸= 5N + 2,

!m+1bool⊗ !mbool ⊢ !mbool, µ = 5N + 2.
(151)

C.4 The working tape

Each square on the working tape is occupied by a symbol in Σ and so for all i = −h −
1, . . . , h+ 1 we take

Pwork
h,i = {JjK}j=0,...,n−1 ⊆ JnboolK. (152)

For µ ≤ 5N + 2 and i = −h, . . . , h we define a proof Swork
µ,i . For µ > 5N + 2 and

i = −h − 1, . . . , h + 1 we define a proof Swork
µ,i . Say 0 ≤ µ ≤ 5N + 1 and i is any value,

then Swork
µ,i consists of just an Axiom-rule. Similarly for 5N + 1 < µ < 10N + 6 and i any

value. Similarly also if µ ∈ {5N + 2, 5N + 3} and i ̸= 0. Now say µ = 5N + 2 and i = 0.
Then we encode the function

(Σ ∪ {X})× Σ −→ Σ

(σ, σ′) 7−→

{
σ, σ ̸= X,

σ′ σ = X.

Now say µ = 5N + 3 and i ∈ {−h+ 1, . . . , h− 1}. Then we need to encode the function

(D ∪ {X})× Σ× Σ× Σ −→ Σ

(d, σ, σ′, σ′′) 7−→


σ, d = Left,

σ′, d ∈ {Stay, X},
σ′′, d = Right.

If i = −h then we need to encode the function:

(D ∪ {X})× Σ× Σ −→ Σ

(d, σ, σ′) 7−→


0, d = Left,

σ, d ∈ {Stay, X},
σ′, d = Right.
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and similarly for i = h. Finally, if i = −h− 1 then we need to encode the function:

(D ∪ {X})× Σ −→ Σ

(d, σ) 7−→


0, d = Left,

0, d ∈ {Stay, X},
σ, d = Right.

The proof associated to the working tape is the tensor of all these (with promotions and
contractions) 

Swork
µ =

⊗h
i=−h S

work
µ,i , µ ≤ 5N + 2,

Swork
µ =

⊗h+1
i=−h−1 S

work
µ,i , µ = 5N + 3,

Swork
µ =

⊗h+1
i=−h−1 S

work
µ,i , µ ≥ 5N + 4.

(153)

which is of the following type:
!nbool

⊗2h+1 ⊢ !nbool
⊗2h+1, µ < 5N + 2,

!n+1bool⊗ !nbool
⊗2h+1 ⊢ nbool

⊗2h+1, µ = 5N + 2,

!nbool
⊗2h+1 ⊢ !nbool

⊗2h+1, µ = 5N + 3,

!n+1bool⊗ !nbool
⊗2h+3 ⊢ !nbool

⊗2h+3, µ ≥ 5N + 4.

(154)

C.5 The state of U
There are 13 states of U , so we consider

Pstate
i = {JjK}j=0,...,12 ⊆ J13boolK. (155)

We define a proof SUstate
µ .

Say µ ≤ 5N . Say µ = 1 mod 5. Then SUstate
µ encodes the function

Σ −→ QUTM

σ 7−→

{
compState, σ = σµ̂,

¬compState, σ ̸= σµ̂.

where µ̂ is the entry of [M ] associated to the timestep µ.
Say µ = 2 mod 5. Then SUstate

µ encodes the function

Q −→ QUTM

q 7−→

{
copySymbol, q = qµ̂,

¬copySymbol, q ̸= qµ̂.
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Now say µ > 5N . Then each SUstate
µ encodes a constant function as the state of U

is determined completely by the timestep µ. For example, if µ = 5N + 1 then φ =
updateSymbol, etc. This is a proof

!nbool ⊢ !13bool, µ ≤ 5N,µ = 1 mod 5,

!mbool ⊢ !13bool, µ ≤ 5N,µ = 2 mod 5,

!13bool ⊢ !13bool, µ ≤ 5N,µ = 3, 4, 0 mod 5,

⊢ !13bool, µ > 5N.

(156)

C.6 The type µ
hUtur

First we define the type such that proofs of that type include encodings of the configuration
of the staged pseudo-UTM at various steps within its cycle.

Definition C.3. Define for h ≥ 0 and 0 ≤ µ ≤ 10N + 6

µ
hUtur = dscr⊗ stg⊗ !mbool⊗ !nbool

⊗h′ ⊗ !13bool (157)

where

h′ =

{
2h+ 1, µ ̸= 5N + 4,

2h+ 3, µ = 5N + 4.
(158)

Next we define the proof which encodes the mapping of configurations of the staged
pseudo-UTM at position µ to µ+ 1 within the cycle.

Definition C.4. Define for h ≥ 0 and 0 ≤ µ < 10N + 6

µ
hUrelstep : µhUtur ⊢

µ+1
h Utur. (159)

as follows. We first take the promotion of each of the proofs associated to the tapes and
also the proof associated to the state of U :

Prom(Sdscr
µ ), Prom(Sstg

µ ), Prom(Sstate
µ ), Prom(Swork

µ ), Prom(SUstate
µ ) (160)

Then we tensor all of these together, and append appropriate Exchange- and Contraction-
rules to arrive at

µ
hUrelstep =Ctr

(
Ex
(
Prom(Sdscr

µ )⊗ Prom(Sstg
µ )

⊗ Prom(Sstate
µ )⊗ Prom(Swork

µ )⊗ Prom(SUstate
µ )

))
.

Finally, we cut these proofs together for µ = 0, µ = 1, . . . , µ = 10N + 5 to get a proof
computing a single cycle of the UTM.
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Definition C.5. We define

hUrelstep = 10N+5
h Urelstep | . . . | 1

hUrelstep | 0
hUrelstep (161)

and for any integer t ≥ 1

hUrelstept = h+tUrelstep | . . . | h+1Urelstep | hUrelstep︸ ︷︷ ︸
t proofs and t−1 cuts

(162)

where α | β denotes the cut of two proofs α, β.

Remark C.6. We recall that the cut of component-wise plain proofs is component-wise
plain. Hence hUrelstept is component-wise plain. If we perform cut-elimination on this
proof we obtain a component-wise plain proof which is the tensor product of a family
of proofs indexed by the active squares of U . If we consider the plain proof associated
to the only active square of the state tape, then we obtain a plain proof ψ whose naive
probabilistic extension is

∆ψ = ∆stept (163)

of the body of the paper.

D Computation Paths for the UTM

We continue the treatment of computation paths for U from Section 6.1. The DGM for
one simulated step of T is shown in Figure 5. We perform the following simplification: in
general, given a DGM, any vertex B for which there exists a unique pair of edges e1, e2
such that v is the target of e1 and the source of e2:

A B C
e1 e2 (164)

has conditional dependence relation given by:

Pr(A,B,C) = Pr(A|B) Pr(B|C) Pr(C). (165)

If Pr(B|C) = δB=C then (165) simplifies:

Pr(A|B) Pr(B|C) Pr(C) = Pr(A|B)δB=C Pr(C)

= Pr(A|C) Pr(C).

In other words, in any DGM, a subgraph of the form (164) with Pr(B|C) = δB=C can be
replaced by the following:

A C.

In this case we say that we have collapsed the DGM.
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D.1 Symbol write error

First we consider a symbol write error. Applying the above technique of collapsing the
DGM we obtain the equivalent model shown in Figure 11, where in this and subsequent
diagrams a dashed arrow means a collection of N arrows and a squiggly arrow means a
collection of 2N arrows.

σ−h−2 . . . σ−2 σ−1 σ0 σ1 σ2 . . . σh+2 q 2P

θ σ−1 σ0 σ1 P

θ 0

Figure 11: A collapsed version of two stacked diagrams as in Figure 5 (that is, two
simulated timesteps of a TM, considering a possible error in the symbol to write square
of the description tape) showing only paths that begin at θ.

If we consider the simulated steps from P = 1 to P = 3 we obtain Figure 12.
The step from P = 2 to P = 3 gives the general pattern. The key point is that at

step P = 2, there is now uncertainty in all of the squares on the working tape, and the
square on the state tape. Except for the growth of the working tape, there is no further
introduction of uncertainty, so we now have the general picture. If we only consider the
paths which end at q in the fourth simulated step, we obtain the equivalent model shown
in Figure 13.

D.2 State write error

Now we consider a state write error. This situation is similar to the above, but at time
step P = 1 only the state square has uncertainty on it, not the σ0 square on the working
tape. However, at step P = 2, there is the same set of squares with uncertainty as in the
symbol write error case. We obtain the DGM for P = 1 to P = 3 as shown in Figure 14.
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σ−h−3 σ−h−2 . . . σ−2 σ−1 σ0 σ1 σ2 . . . σh+2 σh+3 q 3P

θ σ−h−2 . . . σ−2 σ−1 σ0 σ1 σ2 . . . σh+2 q 2P

θ σ−1 σ0 σ1 P

θ 0

Figure 12: A collapsed version of three stacked diagrams as in Figure 5 (that is, three
simulated timesteps of a TM, considering a possible error in the symbol to write square
of the description tape) showing only paths that begin at θ.
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q 5P

σ0 q 4P

θ σ−1 σ0 σ1 q 3P

θ σ−2 σ−1 σ0 σ1 σ2 q 2P

θ σ−1 σ0 σ1 P

θ 0

Figure 13: A collapsed version of five stacked diagrams as in Figure 5 (that is, five
simulated timesteps of a TM, considering a possible error in the symbol to write square
of the description tape) showing only paths that begin at θ and end at q.
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σ−h−3 σ−h−2 . . . σ−2 σ−1 σ0 σ1 σ2 . . . σh+2 σh+3 q 3P

θ σ−h−2 . . . σ−2 σ−1 σ0 σ1 σ2 . . . σh+2 q 2P

θ q P

θ 0

Figure 14: A collapsed version of three stacked diagrams as in Figure 5 (that is, three
simulated timesteps of a TM, considering a possible error in the state to transition to on
the description tape) showing only paths that begin at θ.
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If we consider 5 simulated steps and only paths which end at q, we obtain Figure 15.

q 5P

θ σ0 q 4P

θ σ−1 σ0 σ1 q 3P

θ σ−2 σ−1 σ0 σ1 σ2 q 2P

θ q P

θ 0

Figure 15: A collapsed version of five stacked diagrams as in Figure 5 (that is, five
simulated timesteps of a TM, considering a possible error in the state to transition to on
the description tape) showing only paths that begin at θ and end at q.

D.3 Direction write error

Finally, we consider a direction write error. The simplified DGM for two simulated steps
of T is given in Figure 16.

If we consider 5 simulated steps and only paths which end at q, we obtain Figure 17.

Remark D.1. In all three cases, the trees from time step 2P and above are identical
except for the arrows with source θ.
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σ−h−3 σ−h−2 σh−1 . . . σ−2 σ−1 σ0 σ1 σ2 . . . σh+1 σh+2 σh+3 q 3P

θ σ−h−2 σh−1 . . . σ−2 σ−1 σ0 σ1 σ2 . . . σh+1 σh+2 q 2P

θ σh−1 . . . σ−2 σ−1 σ0 σ1 σ2 . . . σh+1 P

θ 0

Figure 16: A collapsed version of three stacked diagrams as in Figure 5 (that is, three
simulated timesteps of a TM, considering a possible error in the direction to move) showing
only paths that begin at θ.
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q 5P

σ0 q 4P

θ σ1 σ0 σ1 q 3P

θ σ−2 σ−1 σ0 σ1 σ2 q 2P

θ σ−3 σ−2 σ−1 σ0 σ1 σ2 σ3 P

θ 0

Figure 17: A collapsed version of five stacked diagrams as in Figure 5 (that is, five
simulated timesteps of a TM, considering a possible error in the direction to move) showing
only paths that begin at θ and end at q.
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