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ABSTRACT
Protecting the intellectual property of machine learning models

is a hot topic and many watermarking schemes for deep neural

networks have been proposed in the literature. Unfortunately, prior

work largely neglected the investigation of watermarking tech-

niques for other types of models, including decision tree ensembles,

which are a state-of-the-art model for classification tasks on non-

perceptual data. In this paper, we present the first watermarking

scheme designed for decision tree ensembles, focusing in particular

on random forest models. We discuss watermark creation and ver-

ification, presenting a thorough security analysis with respect to

possible attacks. We finally perform an experimental evaluation of

the proposed scheme, showing excellent results in terms of accuracy

and security against the most relevant threats.

CCS CONCEPTS
• Computing methodologies→ Ensemble methods; • Security
and privacy→ Digital rights management.
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1 INTRODUCTION
Machine learning models are pervasively used and are often consid-

ered intellectual property of the legitimate parties who have trained

them. This is often a consequence of the incredible number of com-

putational resources required for model training. For example, it

has been estimated that even a relatively small model like GPT-3

might cost around 5M dollars for training on the cloud [9]. This

motivated a significant amount of research on model watermarking,
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in particular for deep neural networks [2, 10, 17]. A watermark

is a piece of identifying information which is embedded into the

model to claim copyright, without affecting model accuracy too

much. Different watermarking schemes have been proposed with

different properties, e.g., the literature distinguishes between zero-

bit watermarking [1, 8, 11–13, 15, 18] and multi-bit watermark-

ing [4, 6, 7, 12, 14, 16, 17], based on the amount of information

embedded in the watermark.

Although watermarking received a great deal of attention in

the field of deep neural networks, it was not carefully investigated

for other types of machine learning models for different reasons.

First, some models are shallow in the sense that they are not over-

parameterized and redundant, lacking room to effectively embed

watermarks. Moreover, traditional machine learning models require

way less computational resources for training than deep neural

networks. Yet, the process of collecting high-quality training data,

cleaning them and in some cases even manual labeling them should

be performed for any type of supervised learning algorithm. This

process is generally time-consuming and expensive, thus making

copyright protection of highly effective models trained over high-

quality datasets an urgent practical need.

Contributions. In this paper, we present the first watermarking

scheme designed for decision tree ensembles, which are a state-of-

the-art model for classification tasks on non-perceptual data. We

discuss watermark creation and verification, presenting a thorough

security analysis with respect to possible attacks, including water-

mark detection, watermark suppression and watermark forgery.

In particular, we prove that the watermark forgery problem is NP-

hard, thus providing a theoretical guarantee about the effectiveness

of the proposed method. We finally perform an experimental evalu-

ation of the proposed scheme, showing excellent results in terms

of accuracy and security against the most relevant threats.

2 BACKGROUND
Let X ⊆ R𝑑 be a 𝑑-dimensional vector space of real-valued features.
An instance ®𝑥 ∈ X is a 𝑑-dimensional feature vector ⟨𝑥1, 𝑥2, . . . , 𝑥𝑑 ⟩
representing an object in the vector space X. Each instance is as-

signed a class label 𝑦 ∈ Y by an unknown function 𝑓 : X → Y.
Supervised learning algorithms learn a classifier 𝑔 : X → Y from a

training set of correctly labeled instances D𝑡𝑟𝑎𝑖𝑛 = {( ®𝑥𝑖 , 𝑓 ( ®𝑥𝑖 ))}𝑖 ,
with the goal of approximating the target function 𝑓 as accurately

as possible. The performance of classifiers is assessed on a test set
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𝑥1 ≤ 5

𝑥2 ≤ 3

+1 -1

𝑥3 ≤ 7

-1 +1

𝑥1 ≤ 2

𝑥2 ≤ 4

+1 -1

𝑥3 ≤ 6

-1 +1

Figure 1: Example of a decision tree ensemble with two trees.

of correctly labeled instances D𝑡𝑒𝑠𝑡 = {(®𝑧𝑖 , 𝑓 (®𝑧𝑖 ))}𝑖 , disjoint from
the training set, yet drawn from the same data distribution.

In this paper, we focus on a specific class of supervised learning

algorithms training traditional binary decision trees for classifica-
tion [3]. Decision trees can be inductively defined as follows: a

decision tree 𝑡 is either a leaf 𝐿(𝑦) for some label 𝑦 ∈ Y or an inter-

nal node 𝑁 (𝑓 ≤ 𝑣, 𝑡𝑙 , 𝑡𝑟 ), where 𝑓 ∈ {1, . . . , 𝑑} identifies a feature,
𝑣 ∈ R is a threshold for the feature, and 𝑡𝑙 , 𝑡𝑟 are decision trees (left

and right child). Decision trees are learned by initially putting all

the training set into the root of the tree and by recursively split-

ting leaves (initially: the root) by identifying the threshold therein

leading to the best split of the training data, e.g., the one with the

highest information gain, thus transforming the split leaf into a new

internal node. At test time, the instance ®𝑥 traverses the tree 𝑡 until

it reaches a leaf 𝐿(𝑦), which returns the prediction 𝑦, denoted by

𝑡 ( ®𝑥) = 𝑦. Specifically, for each traversed tree node 𝑁 (𝑓 ≤ 𝑣, 𝑡𝑙 , 𝑡𝑟 ),
®𝑥 falls into the left sub-tree 𝑡𝑙 if 𝑥 𝑓 ≤ 𝑣 , and into the right sub-tree

𝑡𝑟 otherwise. To improve their performance, decision trees are often

combined into an ensemble 𝑇 = ⟨𝑡1, . . . , 𝑡𝑚⟩, which aggregates indi-

vidual tree predictions, e.g., by performing majority voting. Figure 1

shows an example ensemble including𝑚 = 2 decision trees.

3 ENSEMBLE WATERMARKING
Wefirst motivate our key design choices andwe introduce the threat

model considered in this work. We then present our watermarking

scheme and security analysis.

3.1 Design Choices and Threat Model
We explain the key design choices and the threat model using the

terminology of a recent survey [2]. Our watermark is embedded dur-

ing the training phase bymeans of a trigger set, i.e., a set of instances
evoking unusual prediction behavior in the watermarked model.

The watermark is multi-bit, i.e., it embeds a binary signature of the

model owner into the model behavior, and provides authentication,
i.e., the legitimate model owner may claim copyright in front of a le-

gal entity. Verification is black-box, i.e., the legitimate model owner

may access the potentially stolen model solely through queries and

has no visibility of the model parameters.

We assume that the attacker has illegitimate white-box access to

the watermarked model. We also assume that the attacker does not

modify the model in any way, e.g., due to some form of integrity

protection or because they do not want to risk reducing model

accuracy at test time. For example, the model might be integrated as

part of a production software that allows the attacker to inspect and

query the model, but not modify it. This is in line with prior work

which observed that it is extremely difficult to draw a line between

adapting an existing model and creating an entirely different model

on its own [7]. Our watermarking scheme is designed to mitigate

the following threats:

(1) Watermark detection: the attacker should be unable to detect

the presence of the watermark. This is important to limit

the attacker’s knowledge, making it easier to catch them

red-handed when they use the model and preventing room

for additional attacks against the watermark.

(2) Watermark suppression: the attacker should be unable to

identify the queries involving the trigger set, otherwise they

might change the model predictions over the trigger set to

make black-box verification fail, thus rendering the water-

mark useless in practice.

(3) Watermark forgery: the attacker should be unable to con-

struct a valid watermark, otherwise they may unduly claim

ownership of the stolen model.

3.2 Watermarking Scheme
Our method is reminiscent of the watermarking scheme proposed

for deep neural networks by Guo and Potkonjak [7]. Their scheme

generates a binary signature of the model owner and embeds it

into the training data in order to generate the trigger set. Instances

from the trigger set obtain different labels than the original data

points that they were based on, hence the model exhibits abnormal

behavior on them. Watermark verification is performed by confirm-

ing the abnormal behavior of the model on the trigger set, in their

case a significant accuracy drop with respect to a traditional model

trained over the same training data. In our case, we instead use the

signature to encode a specific model behavior that the trees in the

ensembles are required to show on the trigger set.

We focus on random forest models without bootstrap, leaving the

generalization to more sophisticated ensemble methods to future

work. In these models, each tree is a classifier trained on a subset

of the features of the entire training set and the final prediction

is computed by aggregating individual tree predictions, e.g., using

majority voting. We assume that the output of the ensemble is

the sequence of the class predictions performed by each tree. For

example, in R the predict.all field is exactly used for this purpose
and a similar behavior may be easily encoded in sklearn by creating

a wrapper of the RandomForestClassifier class. For simplicity,

we focus on binary classification tasks, i.e., the set of labels Y
contains just a positive class +1 and a negative class -1. Multi-class
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Algorithm 1Watermark creation algorithm

1: function TrainWithTrigger(D𝑡𝑟𝑎𝑖𝑛,D𝑡𝑟𝑖𝑔𝑔𝑒𝑟 ,𝑚,H )

2: H ← Adjust(H) ⊲ AdjustH to hide the watermark

3: 𝑊 ← {(®𝑥,𝑦) ↦→ 1 | ( ®𝑥,𝑦) ∈ D𝑡𝑟𝑎𝑖𝑛} ⊲ Sample weights for

training

4: 𝑇 ← TrainRandomForest(D𝑡𝑟𝑎𝑖𝑛,𝑚,H ,𝑊 )
5: while ∃𝑡𝑖 ∈ 𝑇 : ∃(®𝑥,𝑦) ∈ D𝑡𝑟𝑖𝑔𝑔𝑒𝑟 : 𝑡𝑖 ( ®𝑥) ≠ 𝑦 do
6: for ( ®𝑥,𝑦) ∈ D𝑡𝑟𝑖𝑔𝑔𝑒𝑟 do
7: 𝑊 [( ®𝑥,𝑦)] ←𝑊 [( ®𝑥,𝑦)] + 1 ⊲ Increase sample

weights

8: 𝑇 ← TrainRandomForest(D𝑡𝑟𝑎𝑖𝑛,𝑚,H ,𝑊 )
9: return 𝑇

10:

11: functionWatermark(D𝑡𝑟𝑎𝑖𝑛,𝑚, 𝜎, 𝑘)

12: H ← GridSearch(D𝑡𝑟𝑎𝑖𝑛,𝑚) ⊲ Find hyper-parameters

13: D𝑡𝑟𝑖𝑔𝑔𝑒𝑟 ← Sample(D𝑡𝑟𝑎𝑖𝑛, 𝑘) ⊲ Random sampling

14: 𝑚′ ← |{1 ≤ 𝑖 ≤ 𝑚 | 𝜎𝑖 = 0}|
15: 𝑇0 ← TrainWithTrigger(D𝑡𝑟𝑎𝑖𝑛,D𝑡𝑟𝑖𝑔𝑔𝑒𝑟 ,𝑚

′,H)
16: D′

𝑡𝑟𝑖𝑔𝑔𝑒𝑟
← {(®𝑥,−𝑦) | ( ®𝑥,𝑦) ∈ D𝑡𝑟𝑖𝑔𝑔𝑒𝑟 } ⊲ Flip labels

17: D𝑡𝑟𝑎𝑖𝑛 ← (D𝑡𝑟𝑎𝑖𝑛 \ D𝑡𝑟𝑖𝑔𝑔𝑒𝑟 ) ∪ D′𝑡𝑟𝑖𝑔𝑔𝑒𝑟
18: 𝑇1 ← TrainWithTrigger(D𝑡𝑟𝑎𝑖𝑛,D′𝑡𝑟𝑖𝑔𝑔𝑒𝑟 ,𝑚 −𝑚

′,H)
19: 𝑇 ← {}
20: for 𝑖 ∈ {1, . . . ,𝑚} do
21: if 𝜎𝑖 = 0 then 𝑇 [𝑖] ← GetNextTree(𝑇0)
22: else 𝑇 [𝑖] ← GetNextTree(𝑇1)
23: return ⟨𝑇,D𝑡𝑟𝑖𝑔𝑔𝑒𝑟 ⟩

classification can be supported by encoding it in terms of multiple

binary classification tasks.

Our watermarking scheme is shown in theWatermark function

of Algorithm 1 (lines 11-23). It takes as input a training set D𝑡𝑟𝑎𝑖𝑛 ,

the number of trees in the ensemble𝑚, the signature of the model

owner 𝜎 (of length𝑚) and the size of the trigger set 𝑘 ≪ |D𝑡𝑟𝑎𝑖𝑛 |.
We denote by𝑚′ the number of bits of 𝜎 set to 0, hence𝑚 −𝑚′ is
the number of bits of 𝜎 set to 1. Associated with 𝜎 , we have a subset

of samples of the training set, denoted by D𝑡𝑟𝑖𝑔𝑔𝑒𝑟 , where each

tree of the ensemble must either classify correctly or misclassify

based on the setting of the bits of 𝜎 . Specifically, the 𝑖-th tree in the

ensemble is forced to classify correctly if the 𝑖-th bit of 𝜎 is set to 0,

and to misclassify otherwise. This specific output pattern is used for

watermark verification and, as we argue, it is difficult to reproduce

out of the trigger set, thus mitigating the risk of watermark forgery.

The algorithm first uses grid search to find the best model hyper-

parametersH for an ensemble of𝑚 trees. After sampling a trigger

setD𝑡𝑟𝑖𝑔𝑔𝑒𝑟 ⊆ D𝑡𝑟𝑎𝑖𝑛 of size 𝑘 , the algorithm trains two ensembles

𝑇0 and𝑇1 with hyper-parametersH using the TrainWithTrigger

function (lines 1-9). The function uses sample weighting to force a

specific model behavior on D𝑡𝑟𝑖𝑔𝑔𝑒𝑟 . Specifically, all the𝑚
′
trees

of 𝑇0 perform correct predictions for all samples of D𝑡𝑟𝑖𝑔𝑔𝑒𝑟 , while

all the 𝑚 −𝑚′ trees of 𝑇1 misclassify by predicting the opposite

label. Before training 𝑇0 and 𝑇1, the function adjusts H to make

the two ensembles look structurally more similar to each other to

prevent watermark detection. In particular, we observe that trees

in 𝑇1 may have a stronger tendency at overfitting than trees in 𝑇0.

The reason is that 𝑇1 operates abnormally on the trigger set, i.e.,

we force prediction errors there, which often pushes trees in 𝑇1
to grow larger than trees in 𝑇0. To mitigate this effect, we train

a standard tree ensemble with the hyper-parameters H and we

adjust them as follows. First, we identify the average and standard

deviation of the different hyper-parameters (depth and number of

leaves) observed in the trained model. We then update H to the

difference between the average and the standard deviation, i.e., we

force both depth and number of leaves to be lower than the average.

This simple heuristic prevents 𝑇1’s trees from growing much more

that the ones in𝑇0, while still overfitting the expected wrong output

on the trigger set. Moreover, 𝑇0 does not deviate too much with

respect to a standard ensemble trained with the goal of minimizing

prediction errors over the training data. The effect is that the trees

in 𝑇0 and 𝑇1 look similar to each other, while largely preserving

model accuracy.

At the end of the algorithm, the watermarked ensemble 𝑇 is

constructed by picking its 𝑖-th tree from 𝑇0 if the 𝑖-th bit of 𝜎 is 0

and from 𝑇1 otherwise. The algorithm returns a pair ⟨𝑇,D𝑡𝑟𝑖𝑔𝑔𝑒𝑟 ⟩
including the watermarked ensemble and the trigger set. As for

watermark verification, assume Alice has watermarked her model

using our algorithm and wants to sue Bob as an illegitimate user of

the model. Alice gives to the legal authority Charlie the following

information: her signature 𝜎 , the trigger set D𝑡𝑟𝑖𝑔𝑔𝑒𝑟 and a set of

test data D𝑡𝑒𝑠𝑡 such that D𝑡𝑟𝑖𝑔𝑔𝑒𝑟 ⊆ D𝑡𝑒𝑠𝑡 . Charlie feeds D𝑡𝑒𝑠𝑡 to

Bob’s model and retrieves the predictions associated with D𝑡𝑟𝑖𝑔𝑔𝑒𝑟 .

Charlie then verifies that all the instances in D𝑡𝑟𝑖𝑔𝑔𝑒𝑟 are classified

correctly by some 𝑡𝑖 ∈ 𝑇 iff 𝜎𝑖 = 0. The use of D𝑡𝑒𝑠𝑡 is useful

to prevent watermark suppression by disguising D𝑡𝑟𝑖𝑔𝑔𝑒𝑟 among

other instances fed in the verification phase.

3.3 Security Analysis
We argue about the security of our watermarking scheme and we

present an empirical validation of our claims in Section 4. Our

scheme is robust against watermark detection because the trees of

𝑇 are trained using hyper-parameters tuned by training traditional

tree ensembles, i.e., the watermarked ensemble has a similar struc-

ture to a standard model. Although hyper-parameters are adjusted

as explained before, the attacker does not know the optimal value

of the hyper-parameters and cannot infer the adoption of water-

marking from the ensemble structure alone. Most importantly, trees

in 𝑇0 and 𝑇1 are trained using adjusted hyper-parameters forcing

them to look similar in terms of depth and number of leaves, hence

the correct signature 𝜎 cannot be reconstructed by inspecting the

structure of the trees in the ensemble.

Moreover, our scheme is robust against watermark suppression

because D𝑡𝑟𝑖𝑔𝑔𝑒𝑟 is a subset of D𝑡𝑟𝑎𝑖𝑛 . This means that D𝑡𝑟𝑖𝑔𝑔𝑒𝑟

is sampled from the same distribution of the training data, which

are themselves assumed to be representative of the distribution of

the test data (otherwise, learning would be ineffective). In other

words, data in the trigger set are indistinguishable from standard

test data and cannot be easily detected by the attacker during the

watermark verification phase, whichmeans that the attacker cannot

maliciously adapt the model output on D𝑡𝑟𝑖𝑔𝑔𝑒𝑟 .

Finally, our scheme is robust against watermark forgery. Assume

that the attacker does not know the signature 𝜎 and the trigger set
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𝑥1 ≤ 0

𝑥2 ≤ 0

-1 +1

+1

𝑥2 ≤ 0

𝑥3 ≤ 0

𝑥4 ≤ 0

+1 - 1

+1

+1

Figure 2: Conversion of the example formula (𝑥1 ∨ 𝑥2) ∧ (𝑥2 ∨ 𝑥3 ∨ ¬𝑥4) into a tree ensemble.

D𝑡𝑟𝑖𝑔𝑔𝑒𝑟 , but generates a fake signature 𝜎
′
and tries to forge a trig-

ger set D′
𝑡𝑟𝑖𝑔𝑔𝑒𝑟

where the watermarked model exhibits the output

pattern required by 𝜎′. This is equivalent to solving a satisfiability

problem for a logical formula encoding the expected model output.

To exemplify, consider the tiny ensemble with two trees in Figure 1

and let 𝜎′ = 01 be the fake signature. Forging a positive instance

⟨®𝑥, +1⟩ matching the fake signature 𝜎′ is equivalent to finding a

satisfying assignment for the following logical formula:

𝜙 ≜ ((𝑥1 ≤ 5 ∧ 𝑥2 ≤ 3) ∨ (𝑥1 > 5 ∧ 𝑥3 > 7))
∧ ((𝑥1 ≤ 2 ∧ 𝑥2 > 4) ∨ (𝑥1 > 2 ∧ 𝑥3 ≤ 6)) .

A similar reasoning may be applied to forge a negative instance

⟨®𝑥,−1⟩. In this toy example, it is easy to see that ®𝑥 = ⟨𝑥1, 𝑥2, 𝑥3⟩ =
⟨4, 3, 5⟩ is a possible satisfying assignment for 𝜙 . However, as the

size of the ensemble grows larger, such formulas become increas-

ingly more difficult to solve andmight not even admit any satisfying

assignment. Note that formulas like 𝜙 do not define a system of

linear inequalities, because they involve the disjunction operator

and require solving an instance of the Boolean satisfiability problem
(SAT), which is NP-hard in general. Indeed, we can provide a formal

NP-hardness proof for the watermark forgery problem.

Definition 1. The watermark forgery problem is defined as follows:

given a tree ensemble𝑇 , a label 𝑦 ∈ {−1, +1} and a signature 𝜎 , find
an instance ®𝑥 such that ∀𝑡𝑖 ∈ 𝑇 : 𝑡𝑖 ( ®𝑥) = 𝑦 ⇔ 𝜎𝑖 = 0.

Theorem 1. The watermark forgery problem is NP-hard.

Proof. We show a reduction from 3SAT to watermark forgery,

i.e., we show that if there exists a polynomial time algorithm to solve

the watermark forgery problem, then there exists a polynomial

time algorithm to solve 3SAT, which is known to be NP-complete.

This proves that there is no polynomial time algorithm to solve the

watermark forgery problem. First of all, we recap the 3SAT problem.

A boolean variable 𝑥 is a variable that can only take value true or

false, while a literal 𝑙 is a boolean variable or its negation. A 3CNF

formula 𝜙 is a formula of the form𝜓1 ∧ . . . ∧𝜓𝑘 with 𝑘 ≥ 1, where

each𝜓𝑖 is a disjunction of three or less literals. More formally, 3CNF

formulas 𝜙 are generated by the following context-free grammar:

𝑙 ::= 𝑥 | ¬𝑥 𝜓 ::= 𝑙 | 𝑙 ∨ 𝑙 | 𝑙 ∨ 𝑙 ∨ 𝑙 𝜙 ::= 𝜓 | 𝜙 ∧ 𝜙 .
An example of a 3CNF formula is (𝑥1 ∨ 𝑥2) ∧ (𝑥2 ∨ 𝑥3 ∨ ¬𝑥4).

The 3SAT problem requires, given a 3CNF formula 𝜙 , to find

the values of the boolean variables that make the formula true (or

return a message that no such values exist). The reduction operates

by first constructing an ensemble 𝑇 including a decision tree 𝑡𝑖 of

depth three or less for each sub-formula𝜓𝑖 in 𝜙 , using prediction

paths to encode the truth value of the literals therein. In particular,

each internal node of the tree branches over the value of a variable

𝑥 𝑗 occurring in𝜓𝑖 with threshold 0, using the left child to represent

the value false and the right child to represent the value true. We set

just one of the children to have label +1, based on whether setting 𝑥 𝑗
to false or to true is a sufficient condition for the satisfiability of the

sub-formula𝜓𝑖 . The conversion from 3CNF formulas to ensembles

is intuitive and exemplified in Figure 2 for the example formula

given above.

Generalization to arbitrary 3CNF formulas is conceptually sim-

ple, but technical to define. In particular, we define a conversion

function J·K by induction on the structure of the formulas as follows:

J𝑙K =

{
𝑁 (𝑥 ≤ 0, 𝐿(−1), 𝐿(+1)) if 𝑙 = 𝑥

𝑁 (𝑥 ≤ 0, 𝐿(+1), 𝐿(−1)) if 𝑙 = ¬𝑥

J𝜓K =


J𝑙K if𝜓 = 𝑙

𝑁 (𝑥 ≤ 0, J𝜓 ′K, 𝐿(+1)) if𝜓 = 𝑥 ∨𝜓 ′

𝑁 (𝑥 ≤ 0, 𝐿(+1), J𝜓 ′K) if𝜓 = ¬𝑥 ∨𝜓 ′

J𝜙K =

{
J𝜓K if 𝜙 = 𝜓

⟨J𝜙1K, J𝜙2K⟩ if 𝜙 = 𝜙1 ∧ 𝜙2 .

By construction, we have that 𝜙 is satisfiable if and only if the

watermark forgery problem has a solution for the ensemble J𝜙K
using label 𝑦 = +1 and signature 𝜎 = ⟨0, . . . 0⟩. Indeed, the leaves of
a tree 𝑡𝑖 with label +1 identify prediction paths encoding sufficient

conditions for the satisfiability of the sub-formula𝜓𝑖 , hence finding

a positive instance ®𝑥 such that 𝑡𝑖 ( ®𝑥) = +1 is equivalent to finding a

satisfying assignment for𝜓𝑖 . The bits of 𝜎 are all set to 0 because𝜙 is

satisfiable if and only if all the sub-formulas𝜓𝑖 are satisfiable, being

𝜙 a conjunction. If a solution ®𝑥 is found for the watermark forgery

problem, we can translate into a value assignment for 3SAT by

having each variable 𝑥 𝑗 set to true if and only if the 𝑗-th component

of the solution is positive. □
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Table 1: Dataset statistics.

Dataset Instances Features Distribution

MNIST2-6 13,866 784 51%/49%
breast-cancer 569 30 63%/37%

ijcnn1 20,000 22 10%/90%

4 EXPERIMENTAL EVALUATION
We implemented the proposed watermarking scheme on top of

the sklearn library and we make our code publicly available to

support reproducibility.
1
We here evaluate the accuracy of water-

marked models and the security of our watermarking scheme on

public datasets (MNIST2-6, breast-cancer and ijcnn1) normalized

in the interval [0, 1]. Note that MNIST2-6 includes digits represent-

ing numbers 2 and 6 from the traditional MNIST dataset, while

ijcnn1 has been reduced to 10,000 instances using stratified random

sampling to speed up the experimental evaluation. Table 1 reports

the most relevant dataset statistics, showing that the considered

datasets are diverse in terms of number of instances, number of

features and class distribution.

4.1 Accuracy Evaluation
Since watermarked models force a specific prediction pattern over

the trigger set, their predictive power on the test data might be

penalized. In our first set of experiments, we evaluate the accuracy

loss introduced by our watermarking scheme. Figure 3a plots how

accuracy downgrades for increasing sizes of the trigger set, given a

fixed randomly generated signature including 50% of the bits set to

1. The figure shows that the accuracy loss is limited in general and

even negligible when the size of the trigger set does not exceed 2%.

Of course, the number of bits set to 1 in the signature might

also impact the accuracy of the watermarked model, because such

bits denote forced prediction errors. Figure 3b shows how accuracy

changes when we increase the number of bits set to 1 in the signa-

ture, given a fixed trigger set (including 2% of the training data).

Again, the accuracy loss is small in practice, with the largest drop

in accuracy amounting to around two points.

4.2 Security Evaluation
We focus in particular on watermark detection and watermark

forgery, because protection against watermark suppression is im-

mediately achieved by construction. We assume that 𝜎 includes

50% of the bits set to 1 and D𝑡𝑟𝑖𝑔𝑔𝑒𝑟 includes 2% of the training set.

4.2.1 Watermark Detection. We compare the depth and the num-

ber of leaves of the trees corresponding to bits set to 0 and to 1 in the

signature 𝜎 to understand whether there are relevant differences

leaking information about 𝜎 . This is a significant threat, because

trees associated with a bit set to 1 are forced to make prediction

errors in the trigger set, hence they might grow larger than the

other trees when trying to achieve overfitting. We simulate two

watermark detection strategies by means of the following exper-

iment: given a hyper-parameter like depth or number of leaves,

the attacker computes its mean and standard deviation over the

1
https://zenodo.org/doi/10.5281/zenodo.13269530
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Figure 3: Accuracy of watermarked models on the test set
when varying the percentage of training instances included
in D𝑡𝑟𝑖𝑔𝑔𝑒𝑟 (top figure) and the percentage of bits set to 1 in
the signature 𝜎 (bottom figure).

ensemble. Intuitively, “small” trees are more likely to be associated

with bit 0 and “large” trees are more likely to be associated with

bit 1. To formalize this intuition, in our first strategy the attacker

associates bit 0 with all trees falling below the difference of the

mean and standard deviation, and bit 1 to all trees falling above

the sum of mean and standard deviation; all the other trees around

the mean correspond to uncertain cases, where the attacker might

try random guessing. Note that this strategy may produce a large

number of uncertain cases, thus making random guessing of them

infeasible for the attacker. However, the technique is interesting

because we can check whether it can correctly identify at least the

rest of the trees. The second strategy does not produce uncertain

trees, as it uses the mean as a sharp threshold to determine whether

a tree is associated with bit 0 or 1. Table 2 reports the results, show-

ing that both the attack strategies are ineffective. The first strategy

(in red) yields a huge number of uncertain cases, but surprisingly

it also produces wrong predictions for the rest of the trees. The

second strategy (in blue) has no uncertainty, but produces many

prediction errors and is unable to reconstruct the signature. Finally,

we can observe that standard deviation values are relatively small

https://zenodo.org/doi/10.5281/zenodo.13269530
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Table 2: Number of trees correctly/wrongly associated with their bits, using two watermark detection strategies. For each
dataset, mean and standard deviation of “Depth” and “#leaves” are reported in round brackets.

Dataset Hyper-Parameters #correct #wrong #uncertain

MNIST2-6

Depth (19.82 - 2.69) 31 / 57 11 / 33 48 / 0

#leaves (229.99 - 0.10) 1 / 46 0 / 44 89 / 0

breast-cancer

Depth (7.03 - 0.81) 34 / 46 9 / 24 27 / 0

#leaves (18.90 - 0.45) 4 / 39 0 / 31 66 / 0

ijcnn1

Depth (18.00 - 0.00) 0 / 40 0 / 40 80 / 0

#leaves (498.88 - 5.86) 0 / 37 3 / 43 77 / 0

compared to the values of the associated means. Therefore, the

trees trained by our techniques are all similar to each other, thus

making it very difficult for an attacker to identify 𝜎 .

4.2.2 Watermark Forgery. To show security against watermark

forgery, we simulate a scenario where the attacker generates a fake

signature 𝜎′ and tries to forge a trigger set D′
𝑡𝑟𝑖𝑔𝑔𝑒𝑟

where the

watermarked model exhibits the output required by 𝜎′. We showed

that this requires solving an NP-hard problem, however recent

advances in automated verification enable dealing with large inputs

even for computationally intensive problems, hencewe complement

our theoretical analysis with empirical evidence. We implement our

forgery attempts by generating 10 random signatures and solving

a satisfiability problem for a logical formula encoding the expected

model output using Z3, a state-of-the-art SMT solver [5]. For each

fake signature, we iterate over all the instances in the test set and

we look for a satisfying assignment for our logical formula, while

requiring that the 𝐿∞-distance between the solution and the original
test instance is bounded by some 0 < 𝜀 < 1. The distance constraint

is useful to ensure that the forged trigger setD′
𝑡𝑟𝑖𝑔𝑔𝑒𝑟

is reminiscent

of real test instances. We are in fact assuming that, as usual, the

test set has the same distribution of the training set.

Our experiment shows different results on the different datasets.

In the case of breast-cancer, the forged trigger set reaches at most

14% of the size of the original trigger set, even when setting a high

𝜀 = 0.9. This is explained by the fact that Z3 does not find satisfying

assignments for most of the logical formulas, hence the legitimate

model owner is the only one who is able to present a trigger set of

significant size. In the case of ijcnn1, instead, the forged trigger set

is just 1% of the size of the original trigger set on average for 𝜀 = 0.1.

Forging a trigger set of the same size as the original trigger set for

𝜀 > 0.1 does not scale, already requiring more than four hours for

a single bitmask for 𝜀 = 0.3. The reason is that the ensemble for

ijcnn1 contains more than twice the leaves of the ensembles for the

other two datasets, making the satisfiability problem more difficult.

The results are more interesting for the MNIST2-6 dataset and we

visualize them in Figure 4. The figure shows that, when 𝜀 increases,

it becomes easier to forge trigger sets of comparable size to the

original trigger set. However, the amount of distortion required

by the forgery makes it easy to detect such malicious attempts,

because the size of the forged trigger set become comparable to the

original only when 𝜀 ≥ 0.7. Figure 5 shows three forged images of

D′
𝑡𝑟𝑖𝑔𝑔𝑒𝑟

for increasing values of 𝜀 ∈ {0.3, 0.5, 0.7}. As we can see,
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Figure 4: Size of the forged trigger set D′
𝑡𝑟𝑖𝑔𝑔𝑒𝑟

when varying
the amount of distortion 𝜀 on the MNIST2-6 dataset.

Figure 5: Instances generated by Z3 for 𝜀 ∈ {0.3, 0.5, 0.7}.

the image with the highest amount of distortion is rather blurry

and quite far from the original image. Indeed, a standard decision

tree ensemble achieves 0.99 accuracy on the original trigger set,

while its accuracy drops to 0.62 on the forged trigger set.

5 CONCLUSION
We proposed the first watermarking scheme designed for decision

tree ensembles and we motivated the security of our construction.

Our experimental evaluation on public datasets shows promising

results, because watermarked models largely preserve their accu-

racy and are robust against relevant attacks. As future work, we

plan to extend our security analysis to more powerful attackers,

e.g., who are able to modify the watermarked model and forge

trigger sets using more sophisticated strategies. We would also like

to generalize our watermarking scheme to more advanced decision

tree ensembles, such as those trained using gradient boosting.
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