
SVFT: Parameter-Efficient Fine-Tuning with Singular Vectors

Vijay Lingam * 1 2 Atula Tejaswi * 1 Aditya Vavre * 1 Aneesh Shetty * 1 Gautham Krishna Gudur * 1

Joydeep Ghosh 1 Alex Dimakis 1 Eunsol Choi 1 Aleksandar Bojchevski 3 Sujay Sanghavi 1

Abstract
Popular parameter-efficient fine-tuning (PEFT)
methods, such as LoRA and its variants, freeze
pre-trained model weights W and inject learn-
able matrices ∆W. These ∆W matrices are
structured for efficient parameterization, often
using techniques like low-rank approximations
or scaling vectors. However, these methods
typically show a performance gap compared to
full fine-tuning. Although recent PEFT methods
have narrowed this gap, they do so at the cost
of additional learnable parameters. We propose
SVFT, a simple approach that fundamentally dif-
fers from existing methods: the structure imposed
on ∆W depends on the specific weight matrix
W. Specifically, SVFT updates W as a sparse
combination of outer products of its singular
vectors, training only the coefficients (scales) of
these sparse combinations. This approach allows
fine-grained control over expressivity through the
number of coefficients. Extensive experiments
on language and vision benchmarks show that
SVFT recovers up to 96% of full fine-tuning
performance while training only 0.006 to 0.25%
of parameters, outperforming existing methods
that only recover up to 85% performance using
0.03 to 0.8% of the trainable parameter budget.

1. Introduction
Large-scale foundation models are often adapted for specific
downstream tasks after pre-training. Parameter-efficient
fine-tuning (PEFT) facilitates this adaptation efficiently by
learning a minimal set of new parameters, thus creating
an "expert" model. For instance, Large Language Models
(LLMs) pre-trained on vast training corpora are fine-tuned

*Equal contribution 1University of Texas at Austin
2CISPA Helmholtz Center for Information Security 3University
of Cologne. Correspondence to: Vijay Lingam <vi-
jaylingam0810@gmail.com>.

Accepted at the 2nd Workshop on Efficient Systems for Foundation
Models (ES-FoMo) at the International Conference on Machine
Learning, Vienna, Austria. 2024. Copyright 2024 by the author(s).

for specialized tasks such as text summarization (Hermann
et al., 2015; Zhang et al., 2020), sentiment analysis (Raffel
et al., 2020; Liu et al., 2019), and code completion (Rozière
et al., 2024) using instruction fine-tuning datasets. Although
full fine-tuning (Full-FT) is a viable method to achieve this,
it requires re-training and storing all model weights, making
it impractical for deployment with large foundation models.

To address these challenges, PEFT techniques (Houlsby
et al., 2019) (e.g., LoRA (Hu et al., 2022)) were intro-
duced to significantly reduce the number of learnable
parameters compared to Full-FT, though often at the cost
of performance. DoRA (Liu et al., 2024a) bridges this
performance gap by adding more learnable parameters
and being more expressive than LoRA. Almost all these
methods apply a low-rank update additively to the frozen
pre-trained weights, potentially limiting their expressivity.
Furthermore, these adapters are agnostic to the structure
and geometry of the weight matrices they modify. Finally,
more expressive PEFT methods (e.g., LoRA, DoRA,
BOFT (Liu et al., 2024b)) still accumulate a considerable
portion of learnable parameters even in their most efficient
configuration (e.g., setting rank=1 in LoRA and DoRA).
The storage requirements for the learnable adapters can
grow very quickly when adapting to a large number of
downstream tasks (Kopiczko et al., 2024).

In this work we address the following research question:
Is it possible to narrow the performance gap between PEFT
and Full-FT, while being highly parameter-efficient? To-
wards this end, we propose SVFT: Singular Vectors guided
Fine-Tuning — a simple approach that involves updating
an existing weight matrix by adding to it a sparse weighted
combination of its own singular vectors. The structure of
the induced perturbation in SVFT depends on the specific
matrix being perturbed, setting it apart from all previous ap-
proaches. Our contributions can be summarized as follows:

• We introduce SVFT, a new PEFT method. Given a
weight matrix W , SVFT involves adapting it with a
matrix ∆W :=

∑
(i,j)∈Ω mijuiv

T
j , where {ui} and

{vj} are the left and right singular vectors of W , Ω is
an a-priori fixed sparsity pattern, and mij for (i, j) ∈ Ω
are learnable parameters. By controlling |Ω| we can
efficiently explore the accuracy vs parameters trade-off.

1

SVFT: Parameter-Efficient Fine-Tuning with Singular Vectors

• SVFT achieves higher downstream accuracy, as a func-
tion of the number of trainable parameters, as compared
to several popular PEFT methods (see Figure 1) and
over several downstream tasks across both vision and
language tasks. Our method recovers up to 96% of full
fine-tuning performance while training only 0.006 to
0.25% of parameters, outperforming existing methods
that only recover up to 85% performance using 0.03 to
0.8% of the trainable parameter budget.

We introduce four variants for parameterizing weight up-
dates, namely: Plain, Random, Banded, and Top-k in SVFT
(which differ in their choices of the fixed sparsity pattern Ω)
and validate these design choices empirically. Additionally,
we theoretically show that for any fixed parameters budget,
SVFT can induce a higher rank perturbation compared to
previous PEFT techniques.

2. Related Work
Recent advancements in large language models (LLMs)
have emphasized the development of PEFT techniques to
enhance the adaptability and efficiency of large pre-trained
language models.

LoRA. A notable contribution in this field is Low-Rank
Adaptation (LoRA) (Hu et al., 2022), which freezes the
weights of pre-trained models and integrates trainable low-
rank matrices into each transformer layer. For a pre-trained
weight matrix W0 ∈ Rd×n, LoRA constraints the weight
update ∆W to a low-rank decomposition: h = W0x +
∆Wx = W0x + BAx, where B ∈ Rd×r, A ∈ Rr×n

and rank r ≪ min(d, n). We underline the (trainable)
parameters that are updated via gradient descent.

LoRA variants. We highlight some recent approaches that
further improve the vanilla LoRA architecture. Vector-based
Random Matrix Adaptation (VeRA) (Kopiczko et al., 2024)
minimizes the number of trainable parameters by utilizing
a pair of low-rank random matrices shared between layers
and learning compact scaling vectors while maintaining
performance comparable to LoRA. Formally, VeRA can be
expressed as: h = W0x+∆Wx = W0x+ΛbBΛdAx,
where A and B are initialized randomly, frozen, and shared
across layers, while Λb and Λd are trainable diagonal
matrices.

An alternative approach, Weight-Decomposed Low-Rank
Adaptation (DoRA) (Liu et al., 2024a), decomposes
pre-trained weight matrices into magnitude and direction
components, and applies low-rank updates for directional
updates, reducing trainable parameters and enhancing
learning capacity and training stability. DoRA can be
expressed as: h = m W0+∆W

∥W0+∆W ∥c
x = m W0+BA

∥W0+BA∥c
x,

where ∥ · ∥c denotes the vector-wise norm of a matrix

across each column. Similar to LoRA, W0 remains frozen,
whereas the magnitude vector m (initialized to ∥W0∥c)
and low-rank matrices A,B contain trainable parameters.

AdaLoRA (Zhang et al., 2023) adaptively distributes the
parameter budget across weight matrices based on their
importance scores and modulates the rank of incremental
matrices to manage this allocation effectively. PiSSA
(Principal Singular Values and Singular Vectors Adapta-
tion) (Meng et al., 2024) is another variant of LoRA, where
matrices A,B are initialized with principal components
of SVD and the remaining components are used to initialize
W0. FLoRA (Wen & Chaudhuri, 2024) enhances LoRA
by enabling each example in a mini-batch to utilize
distinct low-rank weights, preserving expressive power and
facilitating efficient batching, thereby extending the domain
adaptation benefits of LoRA without batching limitations.

Other PEFT variants. Orthogonal Fine-tuning (OFT) (Qiu
et al., 2023) modifies pre-trained weight matrices through
orthogonal reparameterization to preserve essential infor-
mation. However, it still requires a considerable number of
trainable parameters due to the high dimensionality of these
matrices. Butterfly Orthogonal Fine-tuning (BOFT) (Liu
et al., 2024b) extends OFT’s methodology by incorporat-
ing Butterfly factorization thereby positioning OFT as a
special case of BOFT. Unlike the additive low-rank weight
updates utilized in LoRA, BOFT applies multiplicative or-
thogonal weight updates, marking a significant divergence
in the approach but claims to improve parameter efficiency
and fine-tuning flexibility. BOFT can be formally expressed
as: h = (R(m, b) · W0)x, where the orthogonal matrix
R(m, b) ∈ Rd×d is composed of a product of multiple
orthogonal butterfly components. When m = 1, BOFT
reduces to block-diagonal OFT with block size b. When
m = 1 and b = d, BOFT reduces to the original OFT with
an unconstrained full orthogonal matrix.

3. Method
In this section, we introduce Singular Vectors guided Fine-
Tuning (SVFT). The main innovation in SVFT lies in ap-
plying structure/geometry-aware weight updates.

3.1. SVFT Formulation

We now formally describe our method, SVFT for parameter-
efficient fine-tuning of a pre-trained model. Let W0 ∈
Rd1×d2 denote a weight matrix in the pre-trained model.
For instance, in a transformer block, this could be the key
matrix, the query matrix, a matrix in the MLP, etc. We add
a structured, learned ∆W to this matrix as follows.

As a first step, we compute the Singular Value Decompo-
sition (SVD) of the given matrix: W0 = UΣV T . That
is, U is the d1 × d1 matrix of left singular vectors (i.e., its

2

SVFT: Parameter-Efficient Fine-Tuning with Singular Vectors

0.3 0.5 0.85 1.5 2.5 4 7 12 20.5 35
Number of Trainable Params (M)

32.5

35.0

37.5

40.0

42.5

45.0

47.5

50.0

52.5

55.0

SVFTP

SVFTB
d = 2

SVFTB
d = 4 SVFTB

d = 8

SVFTB
d = 16

SVFTR
d = 16

LoRAr = 1

DoRAr = 1

LoRAr = 32

VeRAr = 1024

VeRAr = 2048

BOFTm = 2
b = 8

DoRAr = 16

DoRAr = 4

LoRAr = 4

Full Fine-Tuning (2500M params)

0.3 0.5 0.85 1.5 2.5 4 7 12 20.5 35
Number of Trainable Params (M)

50.0

52.5

55.0

57.5

60.0

62.5

65.0

67.5

70.0

SVFTP

SVFTB
d = 2

SVFTB
d = 4

SVFTB
d = 8

SVFTB
d = 16

DoRAr = 16

DoRAr = 4
LoRAr = 32

LoRAr = 1 DoRAr = 1

VeRAr = 2048
BOFTm = 2

b = 8

Full Fine-Tuning (2500M params)

A
cc

ur
ac

y
(%

)

Figure 1. Performance vs total trainable parameters for GSM-8K (left) and Commonsense Reasoning (right) on Gemma-2B. SVFTB/R
d=16

outperforms DoRAr=8/16 with 75% less trainable parameters.

Figure 2. Schematic comparison of LoRA, VeRA, DoRA, and SVFT (left to right).

columns are orthonormal), V T is the d2×d2 matrix of right
singular vectors (i.e., its rows are orthonormal), and Σ is a
d1 × d2 diagonal matrix. Then, we parameterize our weight
update as ∆W = UMV T , where U ,V are fixed and
frozen, while M is a d1×d2 sparse trainable matrix with
pre-determined and fixed sparsity pattern1. That is, we
first pre-determine a small fixed set of elements in M that
will be allowed to be non-zero and train only those elements.
The forward pass for SVFT can be written as,

h = W0x+∆Wx = U(Σ+M)V Tx (1)

We explore four choices for Ω, the a-priori fixed sparsity
pattern of M .
Plain

(
SVFTP

)
. In this variant, we constrain M to be a

diagonal matrix, which can be interpreted as adapting sin-
gular values and reweighting the frozen singular vectors.
Since only the diagonal elements are learned, this is the

1Learnable parameters are underlined.

most parameter-efficient SVFT variant.
Banded

(
SVFTB

d

)
. In this approach, we populate M using

a banded matrix, progressively making off-diagonals learn-
able. Specifically, for constants z1 and z2, Mij = 0 if j <
i− z1 or j > i+ z2, where z1, z2 ≥ 0. In our experiments,
we set z1 = z2 = d to induce off-diagonal elements that cap-
ture additional interactions beyond those represented by sin-
gular values. This banded perturbation induces local interac-
tions, allowing specific singular values to interact with their
immediate neighbors, ensuring smoother transitions. This
method, although deviating from the canonical form of SVD,
provides a mechanism to capture localized interactions.
Random

(
SVFTR

d

)
. A straightforward heuristic for popu-

lating M involves randomly selecting k random elements
to be learnable.
Top-k

(
SVFTT

d

)
. The final design choice we explore in-

volves computing the alignment between the left and right
singular vectors as uT

i vj . We then select the top-k ele-
ments and make them learnable. However, note that this

3

SVFT: Parameter-Efficient Fine-Tuning with Singular Vectors

Figure 3. An Overview of SVFT. The original weights W are decomposed into U ,Σ,V . We introduce the following parameterizations
for M : Plain, Banded, Random, and Top-k. We highlight trainable parameters in orange.

only works when left/right singular vectors have the same
size. A possible interpretation of this is we make only the
top-k strong interactions between singular vector directions
learnable.

We illustrate these SVFT design choices in Figure 3. Our
empirical results demonstrate that these simple design
choices significantly enhance performance compared to
state-of-the-art PEFT methods. Note that SVFTP has a
fixed number of learnable parameters, while the remaining
variants are configurable. We hypothesize that further inno-
vation is likely achievable through optimizing the sparsity
pattern of M , including efficient learned-sparsity methods.
In this paper, we explore these four choices to validate the
overall idea: determining a perturbation using the singular
vectors of the matrix that is being perturbed.

3.2. Properties of SVFT

We highlight some properties of SVFT in the following
lemma and provide insights into how its specific algebraic
structure compares and contrasts with baseline methods.

Lemma: Let W0 be a matrix of size d1 × d2 with SVD
given by UΣV T . Consider an updated final matrix W0 +
UMV T , where M is a matrix of the same size as Σ, which
may or may not be diagonal. Then, the following holds:

(a) Structure: If M is also diagonal (i.e., the plain SVFT),
then the final matrix W0 + UMV T has U as its
left singular vectors and sign(Σ+M)V T as its right
singular vectors. That is, its singular vectors are un-
changed, except for possible sign flips. Conversely, if
M is not diagonal (i.e., variants of SVFT other than
plain), then U and V may no longer be the singular
directions of the final matrix W0 +UMV T .

(b) Expressivity: Given any target matrix P of size d1×d2,
there exists an M such that P = W0 + UMV T .
That is, if M is fully trainable, any target matrix can
be realized using this method.

(c) Rank: If M has k non-zero elements, then the rank of
the update UMV T is at most min{k,min{d1, d2}}.
For the same number of trainable parameters, SVFT
can produce a much higher rank perturbation than
LoRA (eventually becoming full rank), but in a
constrained structured subspace.

We provide our proofs in Appendix A. Building on this
lemma, we now compare the form of the SVFT update with
LoRA and VeRA. SVFT’s ∆W can be written as a sum of
rank-one matrices:

∆W =
∑

(i,j)∈Ω

mijuiv
T
j (2)

where ui is the ith left singular vector, vj is the jth right
singular vector, and Ω is the set of non-zero elements in M .
Thus, our method involves adding a weighted combination
of specific rank-one perturbations of the form uiv

T
j .

LoRA and VeRA updates can also be expressed as sums of
rank-one matrices.

∆WLoRA =

r∑
i=1

ai bi
T , ∆WVeRA =

r∑
i=1

αi(âi⊙β)b̂Ti

(3)

where ai and bj are the trainable columns of A and B

matrices in LoRA. In VeRA, âi and b̂i are random and fixed
vectors, while α and β represent the diagonal elements of
Λd and Λb respectively.

Note that LoRA requires d1 + d2 trainable parameters per
rank-one matrix, while SVFT and VeRA require only one.

4

SVFT: Parameter-Efficient Fine-Tuning with Singular Vectors

Although LoRA can potentially capture directions different
from those achievable by the fixed {ui,v

T
j } pairs, each of

these directions incurs a significantly higher parameter cost.

VeRA captures new directions at a parameter cost similar to
SVFT; however, there is a key distinction: in VeRA, each
vector âi or b̂i appears in only one of the rank-one matrices.
In contrast, in SVFT, the same vector ui can appear in
multiple terms in the summation, depending on the sparsity
pattern of M . This results in an important difference: un-
like SVFT, VeRA is not universally expressive – it cannot
represent any target matrix P . Moreover, âi, b̂i are random,
while ui,vj depend on W0.

Note. SVFT requires storing both left and right singular
vectors due to its computation of the SVD on pre-trained
weights. While this increases memory usage compared to
LoRA (which is roughly double), it remains lower than
BOFT. We partially address this through system-level opti-
mizations like mixed-precision weights (e.g., bfloat16). Fur-
ther exploration of memory-reduction techniques, such as
quantization, is planned as future work. Importantly, infer-
ence time and memory consumption remain the same across
all methods, including SVFT, as the weights can be fused.

4. Experiments
4.1. Base Models

We adapt widely-used language models, encoder-only
model (DeBERTaV3base (He et al., 2023)) and two decoder-
only models (Gemma-2B/7B (Team et al., 2024), LLaMA-3-
8B (AI, 2024)). We also experiment with vision transformer
models (ViT-B/16 and ViT-L/16) (Dosovitskiy et al., 2021)
pre-trained on ImageNet-21k (Deng et al., 2009), following
prior work (Kopiczko et al., 2024). The complete details of
our experimental setup and hyper-params configurations are
provided in Appendix C.

The baselines we compare against are described below.
Full Fine-Tuning (FT) is the conventional method for adapt-
ing a pre-trained model to a downstream task. Here, the
model is initialized with pre-trained weights, and the opti-
mizer updates learnable parameters in all layers.
LoRA (Hu et al., 2022) adds trainable pairs of rank decom-
position matrices in parallel to existing weight matrices. To
ensure a fair comparison against LoRA, we introduce an-
other instance of LoRA in our experiments where we adjust
the rank to match the scale of trainable parameters in SVFT.
DoRA (Liu et al., 2024a) decomposes the original weights
into magnitude and direction components for fine-tuning
with LoRA. While DoRA offers competitive performance,
the number of learnable parameters is more than LoRA for
a given rank.
BOFT (Liu et al., 2024b) applies orthogonal parameter-
ization using butterfly structures, as a generalization of

OFT (Qiu et al., 2023) where neurons are transformed with
orthogonal matrices. One drawback of BOFT is that it is
approximately three times slower than LoRA.
VeRA (Kopiczko et al., 2024) learns scaling vectors to adapt
a pair of frozen random matrices shared between layers.
However, these shareable matrices can become a limiting
factor for models with non-uniform internal dimensions.
For instance, on LLaMA-3 models, VeRA can only be ap-
plied to either {Q, O} or {Gate (G), Up (U) projection}
matrices.

4.2. Datasets

Language. For natural language generation (NLG)
tasks, we evaluate on GSM-8K (Cobbe et al., 2021)
and MATH (Hendrycks et al., 2021) by fine-tuning on
MetaMathQA-40K (Yu et al., 2023), following (Liu et al.,
2024b). We also evaluate on 8 commonsense reason-
ing benchmarks (BoolQ (Clark et al., 2019), PIQA (Bisk
et al., 2020), SIQA (Sap et al., 2019), HellaSwag (Zellers
et al., 2019), Winogrande (Sakaguchi et al., 2019), ARC-
easy/challenge (Clark et al., 2018), and OpenBookQA (Mi-
haylov et al., 2018)). We follow the setting outlined in
prior work (Liu et al., 2024a; Hu et al., 2023), where the
training sets of all benchmarks are amalgamated for fine-
tuning. We fine-tune on 15K examples from this training set.
For natural language understanding (NLU), we evaluate on
the General Language Understanding Evaluation (GLUE)
benchmark consisting of classification and regression tasks,
in line with (Kopiczko et al., 2024; Hu et al., 2022).
Vision. Our experiments on vision tasks consist of
4 benchmarks: CIFAR-100 (Krizhevsky et al., 2009),
Food101 (Bossard et al., 2014), RESISC45 (Ullah et al.,
2022), and Flowers102 (Nilsback & Zisserman, 2008). We
follow the setup from (Kopiczko et al., 2024), and fine-tune
on a subset comprising 10 samples from each class.

5. Results
5.1. Performance on Language Tasks

Natural Language Generation. We present results on
mathematical question answering against baseline PEFT
techniques across three base models – varying from 2B
to 8B parameters in Table 1. To ensure a comprehensive
comparison, we test baseline techniques (LoRA, DoRA)
with different configurations, and varying hyper-parameters
like rank to cover a range of learnable parameters from
low to high. Note that even when the rank is as low as 1,
both methods yield more trainable parameters than SVFTP .
SVFTP (∼0.2M) shows as much as 18% relative improve-
ment over techniques that use 6× more trainable parame-
ters (BOFTb=8

m=2, LoRAr=1). Against techniques of compa-
rable sizes (VeRA), SVFTP achieves 15.5% relative im-
provement on average. Even in the default regime, SVFTR

d

5

SVFT: Parameter-Efficient Fine-Tuning with Singular Vectors

Table 1. Performance (Accuracy) on Mathematical Reasoning (GSM-8K and MATH). #Params denote the number of trainable parameters.
bold and underline represent best and second best performing PEFT method, respectively. SVFT offers superior/competitive performance
at much lower #Params. For SVFTR

d , we set d = 16 for Gemma and d = 12 for LLaMA-3 models.

Method Gemma-2B Gemma-7B LLaMA-3-8B

#Params GSM-8K MATH #Params GSM-8K MATH #Params GSM-8K MATH

Full-FT 2.5B 52.69 17.94 8.5B 74.67 25.70 8.0B 64.13 16.24

LoRAr=32 26.2M 43.06 15.50 68.8M 76.57 29.34 56.6M 75.89 24.74
DoRAr=16 13.5M 44.27 16.18 35.5M 74.52 29.84 29.1M 75.66 24.72

BOFTb=8
m=2 1.22M 36.01 12.13 2.90M 71.79 28.98 4.35M 67.09 21.64

DoRAr=1 1.19M 35.25 13.04 3.26M 74.37 26.28 2.55M 68.30 21.96
LoRAr=1 0.82M 32.97 13.04 0.82M 72.4 26.28 1.77M 68.84 20.94
VeRAr=1024 0.63M 36.77 14.12 0.43M 71.11 27.04 0.98M 63.76 20.28
SVFTP 0.19M 40.34 14.38 0.43M 73.50 27.30 0.48M 69.22 20.44
SVFTR

d 6.35M 50.03 15.56 19.8M 76.81 29.98 13.1M 75.90 24.22

Table 2. Evaluation results on eight commonsense reasoning benchmarks with Gemma-7B. We follow (Liu et al., 2024a) for hyperparame-
ter configurations, and report accuracy for all tasks. HS and WG denote HellaSwag (Zellers et al., 2019) and WinoGrande (Sakaguchi
et al., 2019), respectively. SVFTP offers competitive performance at a fraction of #Params. SVFTB

d=8 can match LoRAr=32 with ∼7x
fewer parameters.

Method #Params BoolQ PIQA SIQA HS WG ARC-e ARC-c OBQA Average

Full-FT 8.5B 72.32 87.32 76.86 91.07 81.76 92.46 82.76 89.00 84.19

LoRAr=32 68.8M 71.55 87.95 77.27 91.80 79.71 92.67 82.16 86.40 83.69
DoRAr=16 35.5M 71.46 87.59 76.35 92.11 78.29 92.00 80.63 85.60 83.00

DoRAr=1 3.31M 68.22 86.72 75.23 91.14 78.13 91.87 83.19 86.20 82.59
VeRAr=2048 1.49M 64.25 86.28 74.04 86.96 69.00 92.76 82.33 82.00 79.70
LoRAr=1 0.82M 65.44 86.28 75.02 89.91 75.92 91.79 81.91 85.40 81.46
SVFTP 0.51M 67.92 86.45 75.47 86.92 74.03 91.80 81.23 83.00 80.85
SVFTB

d=8 9.80M 71.90 86.98 76.28 91.55 78.76 92.80 83.11 85.40 83.35

matches techniques with at least 3× more trainable parame-
ters. Notably, on GSM-8K, SVFTR

d again achieves 96% of
the full fine-tuning performance, while DoRAr=16 recovers
86% with 2× more parameters than SVFTR

d .

Commonsense Reasoning. In Table 2, we compare per-
formance on commonsense reasoning benchmarks with
Gemma-7B, and observe similar trends. In the lower
and moderately parameterized regime (∼0.43M), SVFTP

shows competitive performance in comparison to LORAr=1

and DoRAr=1, which have 1.9× and 7.7× more param-
eters, respectively. Against VeRA, which trains 3.5×
more parameters, SVFTP shows a relative improvement
of ∼1.16%. Similarly, SVFTB

d=8 also matches or exceeds
methods that use up to 7× more trainable parameters. For in-
stance, SVFTB

d=8 attains an average performance of 83.35%
with only 9.8M parameters, closely matching LoRAr=16

(83.69%, 68.8M parameters). We observe similar trends
with Gemma-2B (refer Table 8).

Natural Language Understanding. Results on the
GLUE benchmark are summarized in Table 3. SVFT

matches LoRAr=8 and DoRAr=4 which use 12-22× more
trainable parameters. Similarly, when compared to OFT
and BOFT, SVFTP maintains a comparable average perfor-
mance despite being 12× smaller. These results highlight
SVFT’s ability to strike a balance between parameter ef-
ficiency and performance, making it an attractive PEFT
choice for simple classification tasks.

Parameter efficiency. In Figure 1, we plot the performance
of SVFT on mathematical reasoning and commonsense
reasoning against other PEFT techniques across a range of
configurations. Across trainable parameter budgets ranging
from lowest to highest, SVFT obtains the best overall
performance, matching methods that require significantly
more trainable parameters. These results establish SVFT
as a Pareto-dominant approach for parameter-efficient
fine-tuning.

5.2. Performance on Vision Tasks

Table 4 contrasts SVFT against other PEFT techniques
on image classification benchmarks using ViT-B and ViT-L
models. For ViT-B, SVFTB

d=8 surpasses full fine-tuning per-

6

SVFT: Parameter-Efficient Fine-Tuning with Singular Vectors

Table 3. DeBERTaV3base with different adaptation methods on the GLUE benchmark. We report matched accuracy for MNLI, Matthew’s
correlation for CoLA, Pearson correlation for STS-B, and accuracy for other tasks. Higher is better for all tasks. * indicates numbers
published in prior work.

Method #Params MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.

Full-FT* 184M 89.90 95.63 89.46 69.19 94.03 92.40 83.75 91.60 88.25

LoRA*r=8 1.33M 90.65 94.95 89.95 69.82 93.87 91.99 85.20 91.60 88.50
DoRAr=4 0.75M 89.92 95.41 89.10 69.37 94.14 91.53 87.00 91.80 88.53
BOFT*b=8

m=2 0.75M 90.25 96.44 92.40 72.95 94.23 92.10 88.81 91.92 89.89

LoRAr=1 0.17M 90.12 95.64 86.43 69.13 94.18 91.43 87.36 91.52 88.23
VeRAr=1024 0.09M 89.93 95.53 87.94 69.06 93.24 90.4 87.00 88.71 87.73
SVFTP 0.06M 89.69 95.41 88.77 70.95 94.27 90.16 87.24 91.80 88.54
SVFTR

d=2 0.28M 89.97 95.99 88.99 72.61 93.90 91.50 88.09 91.73 89.10

Table 4. Performance on image classification benchmarks. For LoRA, DoRA and SVFTB , we adapt {Q, K, V, U, D} modules of the
transformer. For SVFTP , we adapt only {Q, V} to keep it comparable with VeRA. We report accuracy for all tasks.

Method ViT-B ViT-L

#Params CIFAR100 Flowers102 #Params Food101 Resisc45

Head - 78.25 98.42 - 75.57 64.10
Full-FT 85.8M 85.35 98.37 303.3M 77.83 76.83

LoRAr=8 1.32M 84.10 99.23 3.54M 77.13 79.62
DoRAr=8 1.41M 85.03 99.30 3.76M 76.41 78.32

BOFTb=4
m=4 0.11M 85.54 98.59 2.95M 78.42 74.70

LoRAr=1 0.16M 84.86 96.88 0.44M 75.97 78.02
DoRAr=1 0.25M 84.46 99.15 0.66M 75.90 78.02
VeRAr=256 24.6K 83.38 98.59 0.06M 75.97 72.44

SVFTP 18.5K 83.85 98.93 0.05M 75.95 71.97
SVFTB

d=2 0.27M 84.72 99.28 0.74M 77.94 79.70
SVFTB

d=8 0.93M 85.69 98.88 2.5M 78.36 73.83

formance along with LoRAr=8 and DoRAr=8 on CIFAR-
100. SVFTB

d=2 matches LoRAr=8 and DoRAr=8 on Flow-
ers102 with up to 5× fewer parameters. For ViT-L, SVFTB

d

also demonstrates superior or competitive performance on
both Food101 and Resisc45, with significantly lower train-
able parameters compared to both fully fine-tuned models
and other state-of-the-art PEFT approaches.

5.3. Contribution of Each Weight Type

In Figure 4, we investigate the contribution of each weight
type. Starting with the base configuration, we apply SVFTB

d

to the Q and V weights in each transformer block and report
the performance. We then incrementally add the remaining
weight modules (K,U ,D,O,G) and observe the changes
in performance. For each configuration, we also vary the
trainable parameters by incrementing the total learnable
off-diagonals.

Note that applying SVFTB
d to U ,D,O, and G does

not increase trainable parameters as much as applying
LoRA/DoRA to these modules (Table 7). For example, for a

large matrix of shape d1 × d2, LoRAr=1 learns d1 + d2 pa-
rameters, while SVFTP learns min(d1, d2) parameters. We
observe that adapting only U and D with SVFT yields up
to a 10% relative improvement over adapting Q and V for
the same parameter budget (∼ 0.8M). Our findings indicate
that adapting more weight types enhances performance.

5.4. Impact of M ’s Structure on Performance

We analyze the impact of different parameterizations
of M (Plain, Banded, Random, Top-k) on downstream
performance. To ensure a fair comparison, we maintain an
equal number of trainable coefficients across all variants.
As shown in Table 5, on Gemma-2B, both the Random
and Top-k variants outperform the Banded variant on the
GSM-8K dataset. However, this improvement comes at the
expense of performance on the MATH dataset. For larger
models (Gemma-7B, LLaMA-3-8B), the Banded variant
performs best on both tasks. These observations suggest
that for smaller models, the choice of parameterization
can significantly impact performance and may depend
on the specific downstream task. In contrast, for larger

7

SVFT: Parameter-Efficient Fine-Tuning with Singular Vectors

Table 5. Results on fine-tuning with SVFT using different M parameterizations.

Structure Gemma-2B Gemma-7B LLaMA-3-8B

#Params GSM-8K MATH #Params GSM-8K MATH #Params GSM-8K MATH

Plain 0.2M 40.34 14.38 0.43M 73.50 27.30 0.48M 69.22 20.44
Banded 6.4M 47.84 15.68 19.8M 76.81 29.98 17.2M 75.43 24.44
Random 6.4M 50.03 15.56 19.8M 76.35 29.86 17.2M 74.07 23.78
Top-k 6.4M 49.65 15.32 19.8M 76.34 29.72 17.2M 73.69 23.96

0.05 0.1 0.2 0.4 0.8 1.6 3 5.5
Number of Trainable Params (M)

30

32

34

36

38

40

42

44

46

48

Ac
cu

ra
cy

 (
%

)

Weight Types
Q,V
Q,K,V
U,D
Q,K,V,U,D
Q,K,V,U,D,G,O

Configuration
P
d = 2
d = 4
d = 8

Figure 4. Performance variation with SVFTB
d based on the

adapted weight matrices – GSM-8K with Gemma-2B. Adapting
more target weight types results in greater gains in performance.
Interestingly, for a fixed parameter budget, adapting U and D
weight types gives greater lifts than adapting Q and V .

models, Banded appears to be the better parameterization.
Additionally, SVFTP offers stronger performance as the
model size increases.

Table 6. Impact of pre-trained weight quality. Results on GSM-8K
after fine-tuning on Pythia-2.8B checkpoints at different stages
of pre-training (PT). SVFT shows higher gains with better pre-
trained weights. SVFT outperforms LoRA in both cases.

Method #Params PT Steps
∆Perf

39K 143K

Full-FT 2.5B 21.00 30.09 9.09
LoRA 5.24M 11.22 18.95 7.73
SVFT 5.56M 15.08 23.19 8.11

5.5. Impact of Pre-trained Weight Quality

A key feature of SVFT is that the weight update depends on
the pre-trained weights W . We therefore ask the following
question: Does the quality of pre-trained weights have a

disproportionate impact on SVFT? To answer this, we
consider two checkpoints from the Pythia suite (Biderman
et al., 2023) at different stages of training, i.e., 39K steps
and 143K steps, respectively. We fine-tune each of these
checkpoints independently with Full-FT, LoRA, and SVFT.
We then compare the increase in performance (∆Perf). As
shown in Table 6, compared to LoRA, SVFT benefits more
from better pre-trained weights. We also note that SVFT
outperforms LoRA in both settings, suggesting that the
benefits of inducing a ∆W that explicitly depends on W
are beneficial even when W is sub-optimal.

6. Discussion
Limitations. Despite significantly reducing learnable pa-
rameters and boosting performance, SVFT incurs some
additional GPU memory usage. Unlike LoRA and its vari-
ants, SVFT necessitates computing the SVD and storing
both left and right singular vectors. While memory con-
sumption remains lower than BOFT, it’s roughly double
that of LoRA. We mitigate this in our work by employing
system-level optimizations like mixed-precision weights
(e.g., bfloat16). However, similar to the scaling explored
in (Wen & Chaudhuri, 2024), memory usage should amor-
tize with the increasing scale of adaptation tasks. In future
work we will explore quantization and other techniques to
address memory concerns.

7. Conclusion
This work introduces SVFT, a novel and efficient PEFT
approach that leverages the structure of pre-trained weights
to determine weight update perturbations. We propose four
simple yet effective sparse parameterization patterns, offer-
ing flexibility in controlling the model’s expressivity and
the number of learnable parameters. Extensive experiments
on language and vision tasks demonstrate SVFT’s effective-
ness as a PEFT method across diverse parameter budgets.
Furthermore, we theoretically show that SVFT can induce
higher-rank perturbation updates compared to existing meth-
ods, for a fixed parameter budget. In future work, we aim
to develop principled methods to generate sparsity patterns,
potentially leading to further performance improvements.

8

SVFT: Parameter-Efficient Fine-Tuning with Singular Vectors

References
AI, M. Introducing meta llama 3: The most capable openly

available llm to date. April 2024. URL https://ai.
meta.com/blog/meta-llama-3/.

Biderman, S., Schoelkopf, H., Anthony, Q., Bradley, H.,
O’Brien, K., Hallahan, E., Khan, M. A., Purohit, S.,
Prashanth, U. S., Raff, E., Skowron, A., Sutawika, L.,
and van der Wal, O. Pythia: A suite for analyzing large
language models across training and scaling, 2023.

Bisk, Y., Zellers, R., Bras, R. L., Gao, J., and Choi, Y.
Piqa: Reasoning about physical commonsense in natural
language. In Thirty-Fourth AAAI Conference on Artificial
Intelligence, 2020.

Bossard, L., Guillaumin, M., and Van Gool, L. Food-101 –
mining discriminative components with random forests.
In European Conference on Computer Vision, 2014.

Clark, C., Lee, K., Chang, M.-W., Kwiatkowski, T., Collins,
M., and Toutanova, K. Boolq: Exploring the surprising
difficulty of natural yes/no questions, 2019.

Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal, A.,
Schoenick, C., and Tafjord, O. Think you have solved
question answering? try arc, the ai2 reasoning challenge,
2018.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., Hesse, C., and Schulman, J. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168,
2021.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pp. 248–255. Ieee, 2009.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby,
N. An image is worth 16x16 words: Transformers for
image recognition at scale. In International Conference
on Learning Representations, 2021. URL https://
openreview.net/forum?id=YicbFdNTTy.

He, P., Gao, J., and Chen, W. Debertav3: Improving
deberta using electra-style pre-training with gradient-
disentangled embedding sharing, 2023.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart,
S., Tang, E., Song, D., and Steinhardt, J. Measuring math-
ematical problem solving with the math dataset, 2021.

Hermann, K. M., Kočiský, T., Grefenstette, E., Espeholt,
L., Kay, W., Suleyman, M., and Blunsom, P. Teaching
machines to read and comprehend. In Proceedings of
the 28th International Conference on Neural Information
Processing Systems, NIPS’15, pp. 1693–1701. MIT Press,
2015.

Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B.,
De Laroussilhe, Q., Gesmundo, A., Attariyan, M., and
Gelly, S. Parameter-efficient transfer learning for NLP.
In Proceedings of the 36th International Conference on
Machine Learning, Proceedings of Machine Learning
Research. PMLR, 2019.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. LoRA: Low-rank adaptation
of large language models. In International Conference
on Learning Representations, 2022. URL https://
openreview.net/forum?id=nZeVKeeFYf9.

Hu, Z., Wang, L., Lan, Y., Xu, W., Lim, E.-P., Bing, L.,
Xu, X., Poria, S., and Lee, R. K.-W. Llm-adapters: An
adapter family for parameter-efficient fine-tuning of large
language models, 2023.

Kopiczko, D. J., Blankevoort, T., and Asano, Y. M. ELoRA:
Efficient low-rank adaptation with random matrices. In
The Twelfth International Conference on Learning Rep-
resentations, 2024. URL https://openreview.
net/forum?id=NjNfLdxr3A.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Liu, S.-Y., Wang, C.-Y., Yin, H., Molchanov, P., Wang,
Y.-C. F., Cheng, K.-T., and Chen, M.-H. Dora: Weight-
decomposed low-rank adaptation, 2024a.

Liu, W., Qiu, Z., Feng, Y., Xiu, Y., Xue, Y., Yu, L., Feng,
H., Liu, Z., Heo, J., Peng, S., Wen, Y., Black, M. J.,
Weller, A., and Schölkopf, B. Parameter-efficient orthog-
onal finetuning via butterfly factorization. In The Twelfth
International Conference on Learning Representations,
2024b.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V.
Roberta: A robustly optimized bert pretraining approach,
2019.

Meng, F., Wang, Z., and Zhang, M. Pissa: Principal singular
values and singular vectors adaptation of large language
models. arXiv preprint arXiv:2404.02948, 2024.

Mihaylov, T., Clark, P., Khot, T., and Sabharwal, A. Can a
suit of armor conduct electricity? a new dataset for open
book question answering, 2018.

9

https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=NjNfLdxr3A
https://openreview.net/forum?id=NjNfLdxr3A

SVFT: Parameter-Efficient Fine-Tuning with Singular Vectors

Nilsback, M.-E. and Zisserman, A. Automated flower clas-
sification over a large number of classes. In Indian Con-
ference on Computer Vision, Graphics and Image Pro-
cessing, Dec 2008.

Qiu, Z., Liu, W., Feng, H., Xue, Y., Feng, Y., Liu, Z.,
Zhang, D., Weller, A., and Schölkopf, B. Controlling text-
to-image diffusion by orthogonal finetuning. In Thirty-
seventh Conference on Neural Information Processing
Systems, volume 36, pp. 79320–79362, 2023.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang,
S., Matena, M., Zhou, Y., Li, W., and Liu, P. J. Ex-
ploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learning
Research, 21(140):1–67, 2020. URL http://jmlr.
org/papers/v21/20-074.html.

Rozière, B., Gehring, J., Gloeckle, F., Sootla, S., Gat, I.,
Tan, X. E., Adi, Y., Liu, J., Sauvestre, R., Remez, T.,
Rapin, J., Kozhevnikov, A., Evtimov, I., Bitton, J., Bhatt,
M., Ferrer, C. C., Grattafiori, A., Xiong, W., Défossez,
A., Copet, J., Azhar, F., Touvron, H., Martin, L., Usunier,
N., Scialom, T., and Synnaeve, G. Code llama: Open
foundation models for code, 2024.

Sakaguchi, K., Bras, R. L., Bhagavatula, C., and Choi, Y.
Winogrande: An adversarial winograd schema challenge
at scale, 2019.

Sap, M., Rashkin, H., Chen, D., LeBras, R., and Choi, Y.
Socialiqa: Commonsense reasoning about social interac-
tions, 2019.

Team, G., Mesnard, T., Hardin, C., Dadashi, R., Bhupatiraju,
S., Pathak, S., Sifre, L., Rivière, M., Kale, M. S., Love,
J., et al. Gemma: Open models based on gemini research
and technology. arXiv preprint arXiv:2403.08295, 2024.

Ullah, I., Carrion, D., Escalera, S., Guyon, I. M., Huisman,
M., Mohr, F., van Rijn, J. N., Sun, H., Vanschoren, J., and
Vu, P. A. Meta-album: Multi-domain meta-dataset for
few-shot image classification. In Thirty-sixth Conference
on Neural Information Processing Systems Datasets and
Benchmarks Track, 2022.

Wen, Y. and Chaudhuri, S. Batched low-rank adaptation of
foundation models. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https:
//openreview.net/forum?id=w4abltTZ2f.

Yu, L., Jiang, W., Shi, H., Yu, J., Liu, Z., Zhang, Y., Kwok,
J. T., Li, Z., Weller, A., and Liu, W. Metamath: Boot-
strap your own mathematical questions for large language
models, 2023.

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi,
Y. Hellaswag: Can a machine really finish your sen-
tence? In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, 2019.

Zhang, J., Zhao, Y., Saleh, M., and Liu, P. PEGASUS: Pre-
training with extracted gap-sentences for abstractive sum-
marization. In Proceedings of the 37th International Con-
ference on Machine Learning, volume 119 of Proceedings
of Machine Learning Research, pp. 11328–11339. PMLR,
13–18 Jul 2020. URL https://proceedings.mlr.
press/v119/zhang20ae.html.

Zhang, Q., Chen, M., Bukharin, A., He, P., Cheng, Y.,
Chen, W., and Zhao, T. Adaptive budget allocation for
parameter-efficient fine-tuning. In The Eleventh Interna-
tional Conference on Learning Representations, 2023.

10

http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://openreview.net/forum?id=w4abltTZ2f
https://openreview.net/forum?id=w4abltTZ2f
https://proceedings.mlr.press/v119/zhang20ae.html
https://proceedings.mlr.press/v119/zhang20ae.html

SVFT: Parameter-Efficient Fine-Tuning with Singular Vectors

Appendix
The appendix is organized as follows.

• In Appendix A, we give proofs for the lemmas outlined in 3.2.

• In Appendix B, we compare the trainable parameter count for all baselines versus SVFT.

• In Appendix C, we describe results for additional experiments and provide implementation details for all the
experiments.

A. Proofs
We provide brief proofs for the Structure, Expressivity and the Rank lemmas for SVFT:

(a) Structure: If M is diagonal, then the final matrix W0 + UMV T can be written as
U(Σ +M)V T since W0 = UΣV T , where (Σ +M) is also a diagonal matrix. Thus, U(Σ +M)V T is a valid and
unique SVD of W0 + UMV T up to sign flips in the singular vectors.

(b) Expressivity: Finding M for any target matrix P of size d1 × d2 such that P = W0 + UMV T is the same as finding
M for a new target matrix P ′ = P −W0 such that P ′ = UMV T . For a full SVD, the dimension of M is d1 × d2
and since the dimension of P ′ is also d1 × d2, P ′ = UMV T is a bijection and M = UT (P −W0)V (since U and V
are orthogonal).

(c) Rank: If M has k non-zero elements, then the rank of the update UMV T will be upper bounded by k (since by
Gaussian elimination, k or less elements will remain, the best case being all k elements in the diagonal). We also know
that the rank is upper bounded by min{d1, d2}, giving an achievable upper bound on the rank as min{k,min{d1, d2}}.

B. Parameter Count Analysis

Table 7. Parameter count analysis. Ltuned, Dmodel, r, k denote total layers being adapted, hidden dimension, rank, and additional off-
diagonals respectively.

Method Trainable Parameter Count

LoRA 2× Ltuned ×Dmodel × r
DoRA Ltuned ×Dmodel × (2r + 1)
VeRA Ltuned × (Dmodel + r)
SVFTP Ltuned ×Dmodel

SVFTB
d=k Ltuned × (Dmodel × k + (Dmodel − k)(k + 1))

C. Additional Experiments and Implementation Details
All of our experiments are conducted on a Linux machine (Debian GNU) with the following specifications: 2xA100 80 GB,
Intel Xeon CPU @ 2.20GHz with 12 cores, and 192 GB RAM. For all our experiments (including baseline experiments), we
utilize hardware-level optimizations like mixed weight precision (e.g., bfloat16) whenever possible.

C.1. Commonsense Reasoning Gemma-2B

We evaluate and compare SVFT variants against baseline PEFT methods on commonsense reasoning tasks with Gemma-2B
model and tabulate results in Table 8.

C.2. Additional Vision Experiments

For vision tasks, we compare the SVFT banded variants and SVFT plain with baseline PEFT methods on classification
vision tasks using ViT-Base and ViT-Large models in Table 9.

11

SVFT: Parameter-Efficient Fine-Tuning with Singular Vectors

Table 8. Results with Gemma-2B on eight commonsense reasoning benchmarks. We follow (Liu et al., 2024a) for hyperparameter
configurations, and report accuracy for all tasks.

Method #Params BOOLQ PIQA SIQA HellaSwag Winogrande ARC-E ARC-C OBQA Average

Full-FT 2.5B 63.57 74.1 65.86 70.00 61.95 75.36 59.72 69 67.45
LoRAr=32 26.2M 63.11 73.44 63.20 47.79 52.95 74.78 57.16 67.00 62.43
LoRAr=16 13.5M 62.87 73.93 65.34 53.16 55.51 76.43 59.55 68.4 64.40
BOFTb=8

m=2 1.22M 59.23 63.65 47.90 29.93 50.35 59.04 42.66 41.00 49.22
VeRAr=2048 0.66M 62.11 64.31 49.18 32.00 50.74 58.08 42.83 42.6 50.23
LoRAr=1 0.82M 62.2 69.31 56.24 32.47 51.53 69.52 48.8 56.4 55.81
DoRAr=1 1.19M 62.17 68.77 55.93 32.95 51.22 68.81 48.72 55.6 55.52
SVFTP 0.19M 62.26 70.18 56.7 32.47 47.04 69.31 50.08 58.4 55.81
SVFTB

d=16 6.35M 63.42 73.72 63.86 71.21 59.58 73.69 54.77 66.6 65.86

Table 9. Performance on image classification benchmarks. For LoRA, DoRA and SVFTB
d , we adapt {Q, K, V, U, D} modules of the

transformer. For SVFTP , we adapt only {Q, V} to keep it comparable with VeRA. We report accuracy for all tasks.

Method ViT-B ViT-L

#Params CIFAR100 Flowers102 Food101 Resisc45 #Params CIFAR100 Flowers102 Food101 Resisc45

Head - 78.25 98.42 74.93 59.95 - 82.95 98.75 75.57 64.10
Full-FT 85.8M 85.35 98.37 76.32 68.03 303.3M 86.56 97.87 77.83 76.83
LoRAr=8 1.32M 84.41 99.23 76.02 76.86 0.35M 86.00 97.93 77.13 79.62
DoRAr=8 1.41M 85.03 99.30 75.88 76.95 3.76M 83.55 98.00 76.41 78.32
BOFTb=2

m=2 0.07M 85.55 98.54 76.06 67.70 0.20M 87.84 97.95 77.90 73.97
BOFTb=4

m=4 0.11M 85.54 98.59 76.51 69.44 0.30M 87.72 97.95 78.42 74.70

LoRAr=1 0.16M 84.86 96.88 73.35 76.33 0.44M 85.97 98.28 75.97 78.02
DoRAr=1 0.25M 84.46 99.15 74.80 77.06 0.66M 84.06 98.11 75.90 78.02
VeRA 24.6K 83.38 98.59 75.99 70.43 61.4K 86.77 98.94 75.97 72.44

SVFTP 18.5K 83.85 98.93 75.68 67.19 49.2K 86.74 97.56 75.95 71.97
SVFTB

d=2 0.28M 84.72 99.28 75.64 72.49 0.74M 86.59 98.24 77.94 79.70
SVFTB

d=4 0.50M 83.17 98.52 76.54 66.65 1.32M 87.10 97.71 76.67 71.10
SVFTB

d=8 0.94M 85.69 98.88 76.70 70.41 2.50M 87.26 97.89 78.36 73.83

C.3. Are All Singular Vectors Important?

To determine the importance of considering all singular vectors and singular values during fine-tuning, we reduce the rank of
U and V , and truncate Σ and M to an effective rank of r. If the original weight matrix W ∈ Rm×n, then after truncation,
U ∈ Rm×r,V ∈ Rn×r. This truncation significantly reduces the number of trainable parameters, so we compensate by
increasing the number of off-diagonal coefficients (d) in M .

Our results, with four different configurations of r and d, are presented in Table 10. The findings show that a very low rank
(r = 128) leads to poor performance, even when parameters are matched. A reasonably high rank of r = 1536, which is
75% of the full rank, still fails to match the performance of the full-rank variant that has 0.25× the trainable parameters.
This indicates that all singular vectors significantly contribute to the end task performance when fine-tuning with SVFT,
and that important information is lost even when truncating sparingly.

Table 10. Performance with varying rank (r) and the off-diagonal elements (d) of M . When r = 2048, the update is full-rank.
Rank (r) Diags (d) #Params GSM-8K MATH

128 64 1.55M 0.98 0.21
1536 - 0.15M 16.37 3.64
1536 2 0.74M 25.01 6.04
2048 - 0.19M 40.34 14.38

12

SVFT: Parameter-Efficient Fine-Tuning with Singular Vectors

C.4. Performance vs Total Trainable Parameters

In addition to the experiments performed in Figure 1 for Gemma-2B on challenging natural language generation (NLG) tasks
like GSM-8K and Commonsense Reasoning, we also plot the performance vs total trainable parameters for larger state-of-
the-art models like Gemma-7B and LLaMA-3-8B on GSM-8K. Figure 5 further demonstrates SVFT’s Pereto-dominance. On
larger models, we observe that full-finetuning overfits, leading to sub-optimal performance in comparison to PEFT methods.

0.5 0.75 1.2 2 3 5 8 12.5 20 32 50 84
Number of Trainable Params (M)

70

71

72

73

74

75

76

77

78

SVFTP
SVFTB

d = 2

SVFTR
d = 16

DoRAr = 16
DoRAr = 4

LoRAr = 32

LoRAr = 1

DoRAr = 1

VeRAr = 1024

BOFTm = 2
b = 8

LoRAr = 4

Full Fine-Tuning (8500M params)

0.5 0.75 1.2 2 3 5 8 12.5 20 32 50 81
Number of Trainable Params (M)

62

64

66

68

70

72

74

76

78

80

SVFTP

SVFTB
d = 2

SVFTB
d = 8

SVFTB
d = 12

DoRAr = 16

LoRAr = 32

LoRAr = 1
DoRAr = 1

VeRAr = 1024

BOFTm = 2
b = 8

LoRAr = 4

Full Fine-Tuning (2500M params)

A
cc

ur
ac

y
(%

)

Figure 5. Performance versus total trainable parameters for GSM-8K on Gemma-7B (left) and LLaMA-3-8B (right).

C.5. Settings for Language Tasks

Natural Language Understanding. We fine-tune the DeBERTaV3base (He et al., 2023) model and apply SVFT to all
linear layers in every transformer block of the model. We only moderately tune the batch size, learning rate, and number of
training epochs. We use the same model sequence lengths used by (Liu et al., 2024b) to keep our comparisons fair. The
hyperparameters used in our experiments can be found in Table 11.

Table 11. Hyperparameter setup used for DeBERTaV3base on the GLUE benchmark.

Method Dataset MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

Optimizer AdamW
Warmup Ratio 0.1
LR Schedule Linear
Learning Rate (Head) 6E-03
Max Seq. Len. 256 128 320 64 512 320 320 128
Epochs 10 10 30 20 10 6 15 15

SVFTP Batch Size 32 32 16 16 32 16 4 32
Learning Rate 5E-02 5E-02 5E-02 8E-02 8E-02 5E-02 5E-02 5E-02

SVFTR
d=2

Batch Size 32 32 16 16 32 32 16 32
Learning Rate 1E-02 1E-02 1E-02 1E-02 3E-02 1E-02 3E-02 1E-02

Natural Language Generation. See the hyperparameters used in our experiments in Table 12. For LoRA, DoRA, we
adapt Q,K, V, U,D matrices. We apply BOFT on Q,V matrices since applying on multiple modules is computationally
expensive. For VeRA, which enforces a constraint of uniform internal dimensions for shared matrices, we apply on G,U
projection matrices as it yields the highest number of learnable parameters. We apply SVFT on Q,K, V, U,D,O,G for the
Gemma family of models, and U,D,O,G for LLaMA-3-8B. Note that applying SVFT on these modules does not increase

13

SVFT: Parameter-Efficient Fine-Tuning with Singular Vectors

trainable parameters at the same rate as applying LoRA or DoRA on them would. We adopt the code base from MetaMath2

for training scripts and evaluation setups, and use the fine-tuning data available at MetaMathQA3.

Table 12. Hyperparameter setup used for fine-tuning on MetaMathQA-40K.

Hyperparameter Gemma-2B Gemma-7B LLaMA-3-8B

SVFTP SVFTR
d=16 SVFTP SVFTR

d=16 SVFTP SVFTR
d=12

Optimizer AdamW
Warmup Ratio 0.1
LR Schedule Cosine
Learning Rate 5E-02 1E-03 5E-02 1E-03 5E-02 1E-03
Max Seq. Len. 512
Epochs 2
Batch Size 64

Commonsense Reasoning. See the hyperparameters used in our experiments in Table 13. We adopt the same
set of matrices as that of natural language generation tasks. We use the code base from https://github.com/
AGI-Edgerunners/LLM-Adapters, which also contains the training and evaluation data.

Table 13. Hyperparameter setup used for fine-tuning on commonsense-15K.

Hyperparameter Gemma-2B Gemma-7B

SVFTP SVFTB
d=8 SVFTP SVFTB

d=8

Optimizer AdamW
Warmup Steps 100
LR Schedule Linear
Max Seq. Len. 512
Epochs 3
Batch Size 64
Learning Rate 5E-02 5E-03 5E-02 1E-03

Table 14. Hyperparameter setup used for fine-tuning on all vision tasks.

Hyperparameter ViT-B ViT-L

Optimizer AdamW
Warmup Ratio 0.1
Weight Decay 0.01
LR Schedule Linear
Epochs 10
Batch Size 64
SVFTP Learning Rate (Head) 4E-03
SVFTP Learning Rate 5E-02
SVFTB

d=2 Learning Rate (Head) 4E-03
SVFTB

d=2 Learning Rate 5E-02
SVFTB

d=8 Learning Rate (Head) 4E-03
SVFTB

d=8 Learning Rate 5E-03

2https://github.com/meta-math/MetaMath.git
3https://huggingface.co/datasets/meta-math/MetaMathQA-40K

14

https://github.com/AGI-Edgerunners/LLM-Adapters
https://github.com/AGI-Edgerunners/LLM-Adapters
https://github.com/meta-math/MetaMath.git
https://huggingface.co/datasets/meta-math/MetaMathQA-40K

SVFT: Parameter-Efficient Fine-Tuning with Singular Vectors

C.6. Settings for Vision Tasks

For each dataset in the vision tasks, we train on 10 samples per class, using 2 examples per class for validation, and test on the
full test set. Similar to previous literature, we always train the classifier head for these methods since the number of classes
is large. The parameter counts do not include the number of parameters in the classification head. The hyperparameters
are mentioned in Table 14. We tune the learning rates for SVFT and BOFT select learning rates for other methods from
(Kopiczko et al., 2024), run training for 10 epochs, and report test accuracy for the best validation model. For all methods,
since classification head has to be fully trained, we report the parameter count other than the classification head.

15

