
Published as a conference paper at ICLR 2023

TRANSFORMER-BASED WORLD MODELS ARE HAPPY
WITH 100K INTERACTIONS

Jan Robine, Marc Höftmann, Tobias Uelwer, Stefan Harmeling
Department of Computer Science, Technical University of Dortmund, Germany

ABSTRACT

Deep neural networks have been successful in many reinforcement learning set-
tings. However, compared to human learners they are overly data hungry. To build
a sample-efficient world model, we apply a transformer to real-world episodes in
an autoregressive manner: not only the compact latent states and the taken actions
but also the experienced or predicted rewards are fed into the transformer, so that
it can attend flexibly to all three modalities at different time steps. The transformer
allows our world model to access previous states directly, instead of viewing them
through a compressed recurrent state. By utilizing the Transformer-XL archi-
tecture, it is able to learn long-term dependencies while staying computationally
efficient. Our transformer-based world model (TWM) generates meaningful, new
experience, which is used to train a policy that outperforms previous model-free
and model-based reinforcement learning algorithms on the Atari 100k benchmark.
Our code is available at https://github.com/jrobine/twm.

1 INTRODUCTION

Deep reinforcement learning methods have shown great success on many challenging decision mak-
ing problems. Notable methods include DQN (Mnih et al., 2015), PPO (Schulman et al., 2017),
and MuZero (Schrittwieser et al., 2019). However, most algorithms require hundreds of millions
of interactions with the environment, whereas humans often can achieve similar results with less
than 1% of these interactions, i.e., they are more sample-efficient. The large amount of data that is
necessary renders a lot of potential real world applications of reinforcement learning impossible.

Recent works have made a lot of progress in advancing the sample efficiency of RL algorithms:
model-free methods have been improved with auxiliary objectives (Laskin et al., 2020b), data aug-
mentation (Yarats et al., 2021, Laskin et al., 2020a), or both (Schwarzer et al., 2021). Model-based
methods have been successfully applied to complex image-based environments and have either been
used for planning, such as EfficientZero (Ye et al., 2021), or for learning behaviors in imagination,
such as SimPLe (Kaiser et al., 2020).

ot−`

zt−`

ôt−`

at−`

ht−`

rt−` · · ·

· · ·

ot−1

zt−1

ôt−1

at−1

ht−1

rt−1

ot

zt

ôt

at

ht

r̂t γ̂t ẑt+1

Transformer

Figure 1: Our world model architecture. Observations ot−`:t are encoded using a CNN. Linear
embeddings of stochastic, discrete latent states zt−`:t, actions at−`:t, and rewards rt−`:t are fed into
a transformer, which computes a deterministic hidden state ht at each time step. Predictions of the
reward rt, discount factor γt, and next latent state zt+1 are computed based on ht using MLPs.

1

https://github.com/jrobine/twm

Published as a conference paper at ICLR 2023

A promising model-based concept is learning in imagination (Ha & Schmidhuber, 2018; Kaiser
et al., 2020; Hafner et al., 2020; Hafner et al., 2021): instead of learning behaviors from the collected
experience directly, a generative model of the environment dynamics is learned in a (self-)supervised
manner. Such a so-called world model can create new trajectories by iteratively predicting the next
state and reward. This allows for potentially indefinite training data for the reinforcement learning
algorithm without further interaction with the real environment. A world model might be able to
generalize to new, unseen situations, because of the nature of deep neural networks, which has the
potential to drastically increase the sample efficiency. This can be illustrated by a simple example:
in the game of Pong, the paddles and the ball move independently. In the best case, a successfully
trained world model would imagine trajectories with paddle and ball configurations that have never
been observed before, which enables learning of improved behaviors.

In this paper, we propose to model the world with transformers (Vaswani et al., 2017), which have
significantly advanced the field of natural language processing and have been successfully applied
to computer vision tasks (Dosovitskiy et al., 2021). A transformer is a sequence model consisting
of multiple self-attention layers with residual connections. In each self-attention layer the inputs are
mapped to keys, queries, and values. The outputs are computed by weighting the values by the sim-
ilarity of keys and queries. Combined with causal masking, which prevents the self-attention layers
from accessing future time steps in the training sequence, transformers can be used as autoregressive
generative models. The Transformer-XL architecture (Dai et al., 2019) is much more computation-
ally efficient than vanilla transformers at inference time and introduces relative positional encodings,
which remove the dependence on absolute time steps.

Our contributions: The contributions of this work can be summarized as follows:

1. We present a new autoregressive world model based on the Transformer-XL (Dai et al.,
2019) architecture and a model-free agent trained in latent imagination. Running our policy
is computationally efficient, as the transformer is not needed at inference time. This is in
contrast to related works (Hafner et al., 2020; 2021; Chen et al., 2022) that require the full
world model during inference.

2. Our world model is provided with information on how much reward has already been emit-
ted by feeding back predicted rewards into the world model. As shown in our ablation
study, this improves performance.

3. We rewrite the balanced KL divergence loss of Hafner et al. (2021) to allow us to fine-tune
the relative weight of the involved entropy and cross-entropy terms.

4. We introduce a new thresholded entropy loss that stabilizes the policy’s entropy during
training and hereby simplifies the selection of hyperparameters that behave well across
different games.

5. We propose a new effective sampling procedure for the growing dataset of experience,
which balances the training distribution to shift the focus towards the latest experience. We
demonstrate the efficacy of this procedure with an ablation study.

6. We compare our transformer-based world model (TWM) on the Atari 100k benchmark with
recent sample-efficient methods and obtain excellent results. Moreover, we report empirical
confidence intervals of the aggregate metrics as suggested by Agarwal et al. (2021).

2 METHOD

We consider a partially observable Markov decision process (POMDP) with discrete time steps
t ∈ N, scalar rewards rt ∈ R, high-dimensional image observations ot ∈ Rh×w×c, and discrete
actions at ∈ {1, . . . ,m}, which are generated by some policy at ∼ π(at | o1:t, a1:t−1), where
o1:t and a1:t−1 denote the sequences of observations and actions up to time steps t and
t− 1, respectively. Episode ends are indicated by a boolean variable dt ∈ {0, 1}. Observa-
tions, rewards, and episode ends are jointly generated by the unknown environment dynamics
ot, rt, dt ∼ p(ot, rt, dt | o1:t−1, a1:t−1). The goal is to find a policy π that maximizes the expected
sum of discounted rewards Eπ

[∑∞
t=1 γ

t−1rt
]
, where γ ∈ [0, 1) is the discount factor. Learning in

imagination consists of three steps that are repeated iteratively: learning the dynamics, learning a
policy, and interacting in the real environment. In this section, we describe our world model and
policy, concluding with the training procedure.

2

Published as a conference paper at ICLR 2023

2.1 WORLD MODEL

Our world model consists of an observation model and a dynamics model, which do not share
parameters. Figure 1 illustrates our combined world model architecture.

Observation Model: The observation model is a variational autoencoder (Kingma & Welling,
2014), which encodes observations ot into compact, stochastic latent states zt and reconstructs the
observations with a decoder, which in our case is only required to obtain a learning signal for zt:

Observation encoder: zt ∼ pφ(zt | ot)
Observation decoder: ôt ∼ pφ(ôt | zt).

(1)

We adopt the neural network architecture of DreamerV2 (Hafner et al., 2021) with slight modifi-
cations for our observation model. Thus, a latent state zt is discrete and consists of a vector of 32
categorical variables with 32 categories. The observation decoder reconstructs the observation and
predicts the means of independent standard normal distributions for all pixels. The role of the ob-
servation model is to capture only non-temporal information about the current time step, which is
different from Hafner et al. (2021). However, we include short-time temporal information, since a
single observation ot consists of four frames (aka frame stacking, see also Section 2.2).

Autoregressive Dynamics Model: The dynamics model predicts the next time step conditioned
on the history of its past predictions. The backbone is a deterministic aggregation model fψ which
computes a deterministic hidden state ht based on the history of the ` previously generated latent
states, actions, and rewards. Predictors for the reward, discount, and next latent state are conditioned
on the hidden state. The dynamics model consists of these components:

Aggregation model: ht = fψ(zt−`:t, at−`:t, rt−`:t−1)

Reward predictor: r̂t ∼ pψ(r̂t | ht)
Discount predictor: γ̂t ∼ pψ(γ̂t | ht)
Latent state predictor: ẑt+1 ∼ pψ(ẑt+1 | ht).

(2)

The aggregation model is implemented as a causally masked Transformer-XL (Dai et al., 2019),
which enhances vanilla transformers (Vaswani et al., 2017) with a recurrence mechanism and relative
positional encodings. With these encodings, our world model learns the dynamics independent of
absolute time steps. Following Chen et al. (2021), the latent states, actions, and rewards are sent into
modality-specific linear embeddings before being passed to the transformer. The number of input
tokens is 3`− 1, because of the three modalities (latent states, actions, rewards) and the last reward
not being part of the input. We consider the outputs of the action modality as the hidden states and
disregard the outputs of the other two modalities (see Figure 1; orange boxes vs. gray boxes).

The latent state, reward, and discount predictors are implemented as multilayer perceptrons (MLPs)
and compute the parameters of a vector of independent categorical distributions, a normal distribu-
tion, and a Bernoulli distribution, respectively, conditioned on the deterministic hidden state. The
next state is determined by sampling from pψ(ẑt+1 | ht). The reward and discount are determined
by the mean of pψ(r̂t | ht) and pψ(γ̂t | ht), respectively.

As a consequence of these design choices, our world model has the following beneficial properties:

1. The dynamics model is autoregressive and has direct access to its previous outputs.
2. Training is efficient since sequences are processed in parallel (compared with RNNs).
3. Inference is efficient because outputs are cached (compared with vanilla Transformers).
4. Long-term dependencies can be captured by the recurrence mechanism.

We want to provide an intuition on why a fully autoregressive dynamics model is favorable: First, the
direct access to previous latent states enables to model more complex dependencies between them,
compared with RNNs, which only see them indirectly through a compressed recurrent state. This
also has the potential to make inference more robust, since degenerate predictions can be ignored
more easily. Second, because the model sees which rewards it has produced previously, it can react
to its own predictions. This is even more significant when the rewards are sampled from a probability
distribution, since the introduced noise cannot be observed without autoregression.

3

Published as a conference paper at ICLR 2023

Loss Functions: The observation model can be interpreted as a variational autoencoder with a
temporal prior, which is provided by the latent state predictor. The goal is to keep the distribu-
tions of the encoder and the latent state predictor close to each other, while slowly adapting to new
observations and dynamics. Hafner et al. (2021) apply a balanced KL divergence loss, which lets
them control which of the two distributions should be penalized more. To control the influences
of its subterms more precisely, we disentangle this loss and obtain a balanced cross-entropy loss
that computes the cross-entropy H(pφ(zt+1 | ot+1), pψ(ẑt+1 | ht)) and the entropy H(pφ(zt | ot))
explicitly. Our derivation can be found in Appendix A.2. We call the cross-entropy term for the
observation model the consistency loss, as its purpose is to prevent the encoder from diverging from
the dynamics model. The entropy regularizes the latent states and prevents them from collapsing
to one-hot distributions. The observation decoder is optimized via negative log-likelihood, which
provides a rich learning signal for the latent states. In summary, we optimize a self-supervised
loss function for the observation model that is the expected sum over the decoder loss, the entropy
regularizer and the consistency loss

LObs.
φ = E

[
T∑
t=1

− ln pφ(ot | zt)︸ ︷︷ ︸
decoder

−α1H(pφ(zt | ot))︸ ︷︷ ︸
entropy regularizer

+α2H(pφ(zt | ot), pψ(ẑt | ht−1))︸ ︷︷ ︸
consistency

]
, (3)

where the hyperparameters α1, α2 ≥ 0 control the relative weights of the terms.

For the balanced cross-entropy loss, we also minimize the cross-entropy in the loss of the dynamics
model, which is how we train the latent state predictor. The reward and discount predictors are
optimized via negative log-likelihood. This leads to a self-supervised loss for the dynamics model

LDyn.
ψ = E

[
T∑
t=1

H(pφ(zt+1 | ot+1), pψ(ẑt+1 | ht))︸ ︷︷ ︸
latent state predictor

−β1 ln pψ(rt | ht)︸ ︷︷ ︸
reward predictor

−β2 ln pψ(γt | ht)︸ ︷︷ ︸
discount predictor

]
, (4)

with coefficients β1, β2 ≥ 0 and where γt = 0 for episode ends (dt = 1) and γt = γ otherwise.

2.2 POLICY

Our policy πθ(at | ẑt) is trained on imagined trajectories using a mainly standard advantage actor-
critic (Mnih et al., 2016) approach. We train two separate networks: an actor at ∼ πθ(at | ẑt) with
parameters θ and a critic vξ(ẑt) with parameters ξ. We compute the advantages via Generalized
Advantage Estimation (Schulman et al., 2016) while using the discount factors predicted by the
world model γ̂t instead of a fixed discount factor for all time steps. As in DreamerV2 (Hafner et al.,
2021), we weight the losses of the actor and the critic by the cumulative product of the discount
factors, in order to softly account for episode ends.

Thresholded Entropy Loss: We penalize the objective of the actor with a slightly modified ver-
sion of the usual entropy regularization term (Mnih et al., 2016). Our penalty normalizes the entropy
and only takes effect when the entropy falls below a certain threshold

LEnt.
θ = max

(
0,Γ− H(πθ)

ln(m)

)
, (5)

where 0 ≤ Γ ≤ 1 is the threshold hyperparameter, H(πθ) is the entropy of the policy, m is the
number of discrete actions, and ln(m) is the maximum possible entropy of the categorical action
distribution. By doing this, we explicitly control the percentage of entropy that should be preserved
across all games independent of the number of actions. This ensures exploration in the real environ-
ment and in imagination without the need for ε-greedy action selection or changing the temperature
of the action distribution. We also use the same stochastic policy when evaluating our agent in the
experiments. The idea of applying a hinge loss to the entropy was first introduced by Pereyra et al.
(2017) in the context of supervised learning. In Appendix A.1 we show the effect of this loss.

Choice of Policy Input: The policy computes an action distribution πθ(at | xt) given some view
xt of the state. For instance, xt could be ot, zt, or [zt, ht] at inference time, i.e., when applied to
the real environment, or the respective predictions of the world model ôt, ẑt, or [ẑt, ht] at training
time. This view has to be chosen carefully, since it can have a significant impact on the performance

4

Published as a conference paper at ICLR 2023

0K 20K 40K 60K 80K 100K
Dataset

0

2000

4000

6000

8000

Sa

m
pl

ed

= 20
= 1000

Uniform (=)

0K 20K 40K 60K 80K 100K
Dataset

0.0

0.2

0.4

0.6

0.8

1.0

%
 Tr

ai
ni

ng
 T

im
e

= 20
= 1000

Uniform (=)

Figure 2: Comparing our balanced dataset sampling procedure (see Equation (6)) for different values
of τ with uniform sampling (τ = ∞). The x-axes correspond to the entries in dataset D in the order
they are experienced. The left plot shows the number of times an entry has been selected for training
the world model. The right plot shows the relative amount of training time that has been spent on
the data up to that entry. E.g., with uniform sampling, 50% of the training time is used for the first
19K entries, whereas for τ = 20 approximately the same time is spend on both halves of the dataset.

of the policy and it affects the design choices for the world model. Using xt = ot (or ôt) is rela-
tively stable even with imperfect reconstructions ôt, as the underlying distribution of observations
p(o) does not change during training. However, it is also less computationally efficient, since it
requires reconstructing the observations during imagination and additional convolutional layers for
the policy. Using xt = zt (or ẑt) is slightly less stable, as the policy has to adopt to the changes
of the distributions pφ(zt | ot) and pψ(ẑt+1 | ht) during training. Nevertheless, the entropy reg-
ularizer and consistency loss in Equation (3) stabilize these distributions. Using xt = [zt, ht] (or
[ẑt, ht]) provides the agent with a summary of the history of experience, but it also adds the bur-
den of running the transformer at inference time. Model-free agents already perform well on most
Atari games when using a stack of the most recent frames (e.g., Mnih et al. 2015; Schulman et al.
2017). Therefore, we choose xt = zt and apply frame stacking at inference time in order to incor-
porate short-time information directly into the latent states. At training time we use xt = ẑt, i.e.,
the predicted latent states, meaning no frame stacking is applied. As a consequence, our policy is
computationally efficient at training time (no reconstructions during imagination) and at inference
time (no transformer when running in the real environment).

2.3 TRAINING

As is usual for learning with world models, we repeatedly (i) collect experience in the real environ-
ment with the current policy, (ii) improve the world model using the past experience, (iii) improve
the policy using new experience generated by the world model.

During training we build a dataset D = [(o1, a1, r1, d1), . . . , (oT , aT , rT , dT)] of the collected ex-
perience. After collecting new experience with the current policy, we improve the world model by
sampling N sequences of length ` from D and optimizing the loss functions in Equations (3) and (4)
using stochastic gradient descent. After performing a world model update, we select M of the N×`
observations and encode them into latent states to serve as initial states for new trajectories. The
dynamics model iteratively generates these M trajectories of length H based on actions provided by
the policy. Subsequently, the policy is improved with standard model-free objectives, as described
in Section 2.2. In Algorithm 1 we present pseudocode for training the world model and the policy.

Balanced Dataset Sampling: Since the dataset grows slowly during training, uniform sampling
of trajectories focuses too heavily on early experience, which can lead to overfitting especially in
the low data regime. Therefore, we keep visitation counts v1, . . . , vT , which are incremented every
time an entry is sampled as start of a sequence. These counts are converted to probabilities using the
softmax function

(p1, . . . , pT) = softmax
(
−v1

τ , . . . ,−
vT
τ

)
, (6)

where τ > 0 is a temperature hyperparameter. With our sampling procedure, new entries in the
dataset are oversampled and are selected more often than old ones. Setting τ = ∞ restores uniform
sampling as a special case, whereas reducing τ increases the amount of oversampling. See Figure 2
for a comparison. We empirically show the effectiveness in Section 3.3.

5

Published as a conference paper at ICLR 2023

0.15 0.30 0.45 0.60
SimPLe

DER
CURL

DrQ()
SPR

TWM (ours)
Median

0.15 0.30 0.45

IQM

0.50 0.75 1.00

Mean

0.56 0.64 0.72

Optimality Gap

Human Normalized Score

Figure 3: Aggregate metrics on the Atari 100k benchmark with 95% stratified bootstrap confidence
intervals (Agarwal et al., 2021). Higher median, interquartile mean (IQM), and mean, but lower
optimality gap indicate better performance. Scores for previous methods are from Agarwal et al.
(2021) with 100 runs per game (except SimPLe with 5 runs). We evaluate 5 runs per game, leading
to wider confidence intervals.

3 EXPERIMENTS

To compare data-efficient reinforcement learning algorithms, Kaiser et al. (2020) proposed the Atari
100k benchmark, which uses a subset of 26 Atari games from the Arcade Learning Environment
(Bellemare et al., 2013) and limits the number of interactions per game to 100K. This corresponds
to 400K frames (because of frame skipping) or roughly 2 hours of gameplay, which is 500 times less
than the usual 200 million frames (e.g., Mnih et al. 2015; Schulman et al. 2017; Hafner et al. 2021).

We compare our method with five strong competitors on the Atari 100k benchmark: (i) SimPLe
(Kaiser et al., 2020) implements a world model as an action-conditional video prediction model and
trains a policy with PPO (Schulman et al., 2017), (ii) DER (van Hasselt et al., 2019) is a variant
of Rainbow (Hessel et al., 2018) fine-tuned for sample efficiency, (iii) CURL (Laskin et al., 2020b)
improves representations using contrastive learning as an auxiliary task and is combined with DER,
(iv) DrQ (Yarats et al., 2021) improves DQN by averaging Q-value estimates over multiple data
augmentations of observations, and (v) SPR (Schwarzer et al., 2021) forces representations to be
consistent across multiple time steps and data augmentations by extending Rainbow with a self-
supervised consistency loss.

3.1 RESULTS

0 1 2 3 4 5 6 7 8
Human Normalized Score ()

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ru

ns
 w

ith
 sc

or
e

> TWM (ours)
SPR
DrQ()
CURL
DER
SimPLe

Figure 4: Performance profiles on the Atari
100k benchmark based on score distributions
(Agarwal et al., 2021). It shows the fraction
of runs across all games (y-axis) above a hu-
man normalized score (x-axis). Shaded re-
gions show pointwise 95% confidence bands.

We follow the advice of Agarwal et al. (2021) who
found significant discrepancies between reported
point estimates of mean (and median) scores and
a thorough statistical analysis that includes statis-
tical uncertainty. Thus, we report confidence in-
terval estimates of the aggregate metrics median,
interquartile mean (IQM), mean, and optimality
gap in Figure 3 and performance profiles in Fig-
ure 4, which we created using the toolbox provided
by Agarwal et al. (2021). The metrics are com-
puted on human normalized scores, which are cal-
culated as (score_agent-score_random)/
(score_human-score_random). We report
the unnormalized scores per game in Table 1. We
compare with new scores for DER, CURL, DrQ, and
SPR that were evaluated on 100 runs and provided
by Agarwal et al. (2021). They report scores for the
improved DrQ(ε), which is DrQ evaluated with stan-
dard ε-greedy parameters. We perform 5 runs per game and compute the average score over 100
episodes at the end of training for each run. TWM shows a significant improvement over previous
approaches in all four aggregate metrics and brings the optimality gap closer to zero.

6

Published as a conference paper at ICLR 2023

Table 1: Mean scores on the Atari 100k benchmark per game as well as the aggregated human
normalized mean and median. We perform 5 runs per game and compute the average over 100
episodes at the end of training for each run. Bold numbers indicate the best scores.

Model-free Imagination

Game Random Human DER CURL DrQ(ε) SPR SimPLe TWM (ours)

Alien 227.8 7127.7 802.3 711.0 865.2 841.9 616.9 674.6
Amidar 5.8 1719.5 125.9 113.7 137.8 179.7 74.3 121.8
Assault 222.4 742.0 561.5 500.9 579.6 565.6 527.2 682.6
Asterix 210.0 8503.3 535.4 567.2 763.6 962.5 1128.3 1116.6
BankHeist 14.2 753.1 185.5 65.3 232.9 345.4 34.2 466.7
BattleZone 2360.0 37187.5 8977.0 8997.8 10165.3 14834.1 4031.2 5068.0
Boxing 0.1 12.1 -0.3 0.9 9.0 35.7 7.8 77.5
Breakout 1.7 30.5 9.2 2.6 19.8 19.6 16.4 20.0
ChopperCommand 811.0 7387.8 925.9 783.5 844.6 946.3 979.4 1697.4
CrazyClimber 10780.5 35829.4 34508.6 9154.4 21539.0 36700.5 62583.6 71820.4
DemonAttack 152.1 1971.0 627.6 646.5 1321.5 517.6 208.1 350.2
Freeway 0.0 29.6 20.9 28.3 20.3 19.3 16.7 24.3
Frostbite 65.2 4334.7 871.0 1226.5 1014.2 1170.7 236.9 1475.6
Gopher 257.6 2412.5 467.0 400.9 621.6 660.6 596.8 1674.8
Hero 1027.0 30826.4 6226.0 4987.7 4167.9 5858.6 2656.6 7254.0
Jamesbond 29.0 302.8 275.7 331.0 349.1 366.5 100.5 362.4
Kangaroo 52.0 3035.0 581.7 740.2 1088.4 3617.4 51.2 1240.0
Krull 1598.0 2665.5 3256.9 3049.2 4402.1 3681.6 2204.8 6349.2
KungFuMaster 258.5 22736.3 6580.1 8155.6 11467.4 14783.2 14862.5 24554.6
MsPacman 307.3 6951.6 1187.4 1064.0 1218.1 1318.4 1480.0 1588.4
Pong -20.7 14.6 -9.7 -18.5 -9.1 -5.4 12.8 18.8
PrivateEye 24.9 69571.3 72.8 81.9 3.5 86.0 35.0 86.6
Qbert 163.9 13455.0 1773.5 727.0 1810.7 866.3 1288.8 3330.8
RoadRunner 11.5 7845.0 11843.4 5006.1 11211.4 12213.1 5640.6 9109.0
Seaquest 68.4 42054.7 304.6 315.2 352.3 558.1 683.3 774.4
UpNDown 533.4 11693.2 3075.0 2646.4 4324.5 10859.2 3350.3 15981.7

Normalized Mean 0.000 1.000 0.350 0.261 0.465 0.616 0.332 0.956
Normalized Median 0.000 1.000 0.189 0.092 0.313 0.396 0.134 0.505

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

(a) Boxing. The player (white) presses fire, hits the opponent, and gets a reward.
0.0 0.0

(b) Freeway. The player moves up and bumps into a car. The world model correctly pushes the player down,
although up is still pressed. The movement of the cars is modeled correctly.

Figure 5: Trajectories imagined by our world model. Above each frame we show the performed
action and the produced reward.

3.2 ANALYSIS

In Figure 5 we show imagined trajectories of our world model. In Figure 6 we visualize an attention
map of the transformer for an imagined sequence. In this example a lot of weight is put on the
current action and the last three states. However, the transformer also attends to states and rewards
in the past, with only past actions being mostly ignored. The two high positive rewards also get high
attention, which confirms that the rewards in the input sequence are used by the world model. We
hypothesize that these rewards correspond to some events that happened in the environment and this
information can be useful for prediction.

An extended analysis can be found in Appendix A.1, including more imagined trajectories and
attention maps (and a description of the generation of the plots), sample efficiency, stochasticity of
the world model, long sequence imagination, and frame stacking.

7

Published as a conference paper at ICLR 2023

s a r s a r s a r s a r s a r s a r s a r s a r s a r s a r s a r s a r s a r s a r s a r s a r s a

10

9

8

7

6

5

4

3

2

1

1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0

Assault h

0.2

0.4

0.6

0.8

1.0

Figure 6: Attention map of the learned transformer for the current hidden state h, computed on an
imagined trajectory for the game Assault. The x-axis corresponds to the input sequence with the
three modalities (states, actions, rewards), where the two rightmost columns are the current state
and action. The y-axis corresponds to the layer of the transformer.

0.2 0.4 0.6 0.8 1.0
1e5

0.000

0.200

0.400

0.600

0.800

Breakout

0.2 0.4 0.6 0.8 1.0
1e5

0.000

0.250

0.500

0.750

1.000

1.250

1.500
KungFuMaster

0.2 0.4 0.6 0.8 1.0
1e5

0.000

0.050

0.100

0.150

0.200

0.250
MsPacman

0.2 0.4 0.6 0.8 1.0
1e5

0.000

0.200

0.400

0.600

0.800

1.000

1.200
Pong

Steps

Hu
m

an
 N

or
m

al
ize

d
Sc

or
e Balanced (= 20)

Uniform (=)

Figure 7: Comparison of the proposed balanced sampling procedure with uniform sampling on a
random subset of games. We show the development of the human normalized score in the course of
training. The score is higher with balanced sampling, demonstrating its importance.

3.3 ABLATION STUDIES

Uniform Sampling: To show the effectiveness of the sampling procedure described in Section 2.3,
we evaluate three games with uniform dataset sampling, which is equivalent to setting τ = ∞
in Equation (6). In Figure 7 we show that balanced dataset sampling significantly improves the
performance in these games. At the end of training, the dynamics loss from Equation (4) is lower
when applying balanced sampling. One reason might be that the world model overfits on early
training data and performs bad in later stages of training.

No Rewards: As described in Section 2.1, the predicted rewards are fed back into the transformer.
In Figure 8 we show on three games that this can significantly increase the performance. In some
games the performance is equivalent, probably because the world model can make correct predic-
tions solely based on the latent states and actions.

In Appendix A.1 we perform additional ablation studies, including the thresholded entropy loss, a
shorter history length, conditioning the policy on [z, h], and increasing the sample efficiency.

0.2 0.4 0.6 0.8 1.0
1e5

0.000

0.250

0.500

0.750

1.000

1.250
BankHeist

0.2 0.4 0.6 0.8 1.0
1e5

0.000

2.000

4.000

6.000

Boxing

0.2 0.4 0.6 0.8 1.0
1e5

0.000

0.200

0.400

0.600

0.800

Breakout

0.2 0.4 0.6 0.8 1.0
1e5

0.000

1.000

2.000

3.000

4.000
CrazyClimber

Steps

Hu
m

an
 N

or
m

al
ize

d
Sc

or
e Rewards

No Rewards

0.2 0.4 0.6 0.8 1.0
1e5

0.000

0.500

1.000

1.500

Gopher

0.2 0.4 0.6 0.8 1.0
1e5

0.000

0.050

0.100

0.150

0.200

0.250
MsPacman

0.2 0.4 0.6 0.8 1.0
1e5

0.000

0.200

0.400

0.600

0.800

1.000

1.200
Pong

0.2 0.4 0.6 0.8 1.0
1e5

0.000

0.100

0.200

0.300

Qbert

Steps

Hu
m

an
 N

or
m

al
ize

d
Sc

or
e Rewards

No Rewards

Figure 8: Effect of removing rewards from the input. We show the human normalized score dur-
ing training of a random subset of games. Conditioning on rewards can significantly increase the
performance. Some games do not benefit from the rewards and the score stays roughly the same.

8

Published as a conference paper at ICLR 2023

4 RELATED WORK

The Dyna architecture (Sutton, 1991) introduced the idea of training a model of the environment
and using it to further improve the value function or the policy. Ha & Schmidhuber (2018) intro-
duced the notion of a world model, which tries to completely imitate the environment and is used to
generate experience to train a model-free agent. They implement a world model as a VAE (Kingma
& Welling, 2014) and an RNN and learn a policy in latent space with an evolution strategy. With
SimPLe, Kaiser et al. (2020) propose an iterative training procedure that alternates between train-
ing the world model and the policy. Their policy operates on pixel-level and is trained using PPO
(Schulman et al., 2017). Hafner et al. (2020) present Dreamer and implement a world model as a
stochastic RNN that splits the latent state in a stochastic part and a deterministic part; this idea was
first introduced by Hafner et al., 2019. This allows their world model to capture the stochasticity of
the environment and simultaneously facilitates remembering information over multiple time steps.
Robine et al. (2020) use a VQ-VAE to construct a world model with drastically lower number of pa-
rameters. DreamerV2 (Hafner et al., 2021) achieves great performance on the Atari 50M benchmark
after making some changes to Dreamer, the most important ones being categorical latent variables
and an improved objective.

Another direction of model-based reinforcement learning is planning, where the model is used at
inference time to improve the action selection by looking ahead several time steps into the future.
The most prominent work is MuZero (Schrittwieser et al., 2019), where a learned sequence model
of rewards and values is combined with Monte-Carlo Tree Search (Coulom, 2006) without learning
explicit representations of the observations. MuZero achieves impressive performance on the Atari
50M benchmark, but it is also computationally expensive and requires significant engineering effort.
EfficientZero (Ye et al., 2021) improves MuZero and achieves great performance on the Atari 100k
benchmark.

Transformers (Vaswani et al., 2017) advanced the effectiveness of sequence models in multiple do-
mains, such as natural language processing and computer vision (Dosovitskiy et al., 2021). Recently,
they have also been applied to reinforcement learning tasks. The Decision Transformer (Chen et al.,
2021) and the Trajectory Transformer (Janner et al., 2021) are trained on an offline dataset of trajec-
tories. The Decision Transformer is conditioned on states, actions, and returns, and outputs optimal
actions. The Trajectory Transformer trains a sequence model of states, actions, and rewards, and
is used for planning. Chen et al. (2022) replace the RNN of Dreamer with a transformer and out-
perform Dreamer on Hidden Order Discovery tasks. However, their transformer has no access to
previous rewards and they do not evaluate their method on the Atari 100k benchmark. Moreover,
their policy depends on the outputs of the transformer, leading to higher computational costs during
inference time. Concurrent to and independent from our work, Micheli et al. (2022) apply a trans-
former to sequences of frame tokens and actions and achieve state-of-the-art results on the Atari
100k benchmark.

5 CONCLUSION

In this work, we discuss a reinforcement learning approach using transformer-based world models.
Our method (TWM) outperforms previous model-free and model-based methods in terms of human
normalized score on the 26 games of the Atari 100k benchmark. By using the transformer only dur-
ing training, we were able to keep the computational costs low during inference, i.e., when running
the learned policy in a real environment. We show how feeding back the predicted rewards into
the transformer is beneficial for learning the world model. Furthermore, we introduce the balanced
cross-entropy loss for finer control over the trade-off between the entropy and cross-entropy terms in
the loss functions of the world model. A new thresholded entropy loss effectively stabilizes the en-
tropy of the policy. Finally, our novel balanced sampling procedure corrects issues of naive uniform
sampling of past experience.

REFERENCES

Samira Abnar and Willem H. Zuidema. Quantifying attention flow in transformers. In Dan Jurafsky,
Joyce Chai, Natalie Schluter, and Joel R. Tetreault (eds.), Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020, pp.

9

Published as a conference paper at ICLR 2023

4190–4197. Association for Computational Linguistics, 2020. doi: 10.18653/v1/2020.acl-main.
385. URL https://doi.org/10.18653/v1/2020.acl-main.385.

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C. Courville, and Marc G. Belle-
mare. Deep reinforcement learning at the edge of the statistical precipice. In Marc’Au-
relio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman
Vaughan (eds.), Advances in Neural Information Processing Systems 34: Annual Conference
on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual,
pp. 29304–29320, 2021. URL https://proceedings.neurips.cc/paper/2021/
hash/f514cec81cb148559cf475e7426eed5e-Abstract.html.

Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning envi-
ronment: An evaluation platform for general agents. J. Artif. Intell. Res., 47:253–279, 2013. doi:
10.1613/jair.3912. URL https://doi.org/10.1613/jair.3912.

Chang Chen, Yi-Fu Wu, Jaesik Yoon, and Sungjin Ahn. Transdreamer: Reinforcement learning
with transformer world models. CoRR, abs/2202.09481, 2022. URL https://arxiv.org/
abs/2202.09481.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin,
Pieter Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Rein-
forcement learning via sequence modeling. In Marc’Aurelio Ranzato, Alina Beygelz-
imer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), Advances
in Neural Information Processing Systems 34: Annual Conference on Neural Infor-
mation Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp.
15084–15097, 2021. URL https://proceedings.neurips.cc/paper/2021/
hash/7f489f642a0ddb10272b5c31057f0663-Abstract.html.

Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In H. Jaap
van den Herik, Paolo Ciancarini, and H. H. L. M. Donkers (eds.), Computers and Games, 5th In-
ternational Conference, CG 2006, Turin, Italy, May 29-31, 2006. Revised Papers, volume 4630 of
Lecture Notes in Computer Science, pp. 72–83. Springer, 2006. doi: 10.1007/978-3-540-75538-8\
_7. URL https://doi.org/10.1007/978-3-540-75538-8_7.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Carbonell, Quoc Viet Le, and Ruslan Salakhut-
dinov. Transformer-xl: Attentive language models beyond a fixed-length context. In Anna Ko-
rhonen, David R. Traum, and Lluís Màrquez (eds.), Proceedings of the 57th Conference of the
Association for Computational Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019,
Volume 1: Long Papers, pp. 2978–2988. Association for Computational Linguistics, 2019. doi:
10.18653/v1/p19-1285. URL https://doi.org/10.18653/v1/p19-1285.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/forum?
id=YicbFdNTTy.

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning. Neural Networks, 107:3–11, 2018. doi: 10.
1016/j.neunet.2017.12.012. URL https://doi.org/10.1016/j.neunet.2017.12.
012.

David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution. In Samy
Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Ro-
man Garnett (eds.), Advances in Neural Information Processing Systems 31: Annual Confer-
ence on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018,
Montréal, Canada, pp. 2455–2467, 2018. URL https://proceedings.neurips.cc/
paper/2018/hash/2de5d16682c3c35007e4e92982f1a2ba-Abstract.html.

Danijar Hafner, Timothy P. Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and
James Davidson. Learning latent dynamics for planning from pixels. In Kamalika Chaudhuri

10

https://doi.org/10.18653/v1/2020.acl-main.385
https://proceedings.neurips.cc/paper/2021/hash/f514cec81cb148559cf475e7426eed5e-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/f514cec81cb148559cf475e7426eed5e-Abstract.html
https://doi.org/10.1613/jair.3912
https://arxiv.org/abs/2202.09481
https://arxiv.org/abs/2202.09481
https://proceedings.neurips.cc/paper/2021/hash/7f489f642a0ddb10272b5c31057f0663-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/7f489f642a0ddb10272b5c31057f0663-Abstract.html
https://doi.org/10.1007/978-3-540-75538-8_7
https://doi.org/10.18653/v1/p19-1285
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://doi.org/10.1016/j.neunet.2017.12.012
https://doi.org/10.1016/j.neunet.2017.12.012
https://proceedings.neurips.cc/paper/2018/hash/2de5d16682c3c35007e4e92982f1a2ba-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/2de5d16682c3c35007e4e92982f1a2ba-Abstract.html

Published as a conference paper at ICLR 2023

and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings
of Machine Learning Research, pp. 2555–2565. PMLR, 2019. URL http://proceedings.
mlr.press/v97/hafner19a.html.

Danijar Hafner, Timothy P. Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control:
Learning behaviors by latent imagination. In 8th International Conference on Learning Repre-
sentations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL
https://openreview.net/forum?id=S1lOTC4tDS.

Danijar Hafner, Timothy P. Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with
discrete world models. In 9th International Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.
net/forum?id=0oabwyZbOu.

Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney,
Dan Horgan, Bilal Piot, Mohammad Gheshlaghi Azar, and David Silver. Rainbow: Combining
improvements in deep reinforcement learning. In Sheila A. McIlraith and Kilian Q. Weinberger
(eds.), Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18),
the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium
on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA,
February 2-7, 2018, pp. 3215–3222. AAAI Press, 2018. URL https://www.aaai.org/
ocs/index.php/AAAI/AAAI18/paper/view/17204.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang,
and Jennifer Wortman Vaughan (eds.), Advances in Neural Information Processing Systems 34:
Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December
6-14, 2021, virtual, pp. 1273–1286, 2021. URL https://proceedings.neurips.cc/
paper/2021/hash/099fe6b0b444c23836c4a5d07346082b-Abstract.html.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H. Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, Afroz Mohiuddin,
Ryan Sepassi, George Tucker, and Henryk Michalewski. Model based reinforcement learning for
atari. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.net/
forum?id=S1xCPJHtDB.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In Yoshua Bengio and Yann
LeCun (eds.), 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB,
Canada, April 14-16, 2014, Conference Track Proceedings, 2014. URL http://arxiv.org/
abs/1312.6114.

Michael Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas. Rein-
forcement learning with augmented data. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Had-
sell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Process-
ing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual, 2020a. URL https://proceedings.neurips.cc/
paper/2020/hash/e615c82aba461681ade82da2da38004a-Abstract.html.

Michael Laskin, Aravind Srinivas, and Pieter Abbeel. CURL: contrastive unsupervised representa-
tions for reinforcement learning. In Proceedings of the 37th International Conference on Ma-
chine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of
Machine Learning Research, pp. 5639–5650. PMLR, 2020b. URL http://proceedings.
mlr.press/v119/laskin20a.html.

Vincent Micheli, Eloi Alonso, and François Fleuret. Transformers are sample efficient world models.
CoRR, abs/2209.00588, 2022. doi: 10.48550/arXiv.2209.00588. URL https://doi.org/
10.48550/arXiv.2209.00588.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg Ostrovski, Stig Petersen,

11

http://proceedings.mlr.press/v97/hafner19a.html
http://proceedings.mlr.press/v97/hafner19a.html
https://openreview.net/forum?id=S1lOTC4tDS
https://openreview.net/forum?id=0oabwyZbOu
https://openreview.net/forum?id=0oabwyZbOu
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17204
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17204
https://proceedings.neurips.cc/paper/2021/hash/099fe6b0b444c23836c4a5d07346082b-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/099fe6b0b444c23836c4a5d07346082b-Abstract.html
https://openreview.net/forum?id=S1xCPJHtDB
https://openreview.net/forum?id=S1xCPJHtDB
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
https://proceedings.neurips.cc/paper/2020/hash/e615c82aba461681ade82da2da38004a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e615c82aba461681ade82da2da38004a-Abstract.html
http://proceedings.mlr.press/v119/laskin20a.html
http://proceedings.mlr.press/v119/laskin20a.html
https://doi.org/10.48550/arXiv.2209.00588
https://doi.org/10.48550/arXiv.2209.00588

Published as a conference paper at ICLR 2023

Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nat., 518(7540):529–533, 2015. doi: 10.1038/nature14236. URL https://doi.org/10.
1038/nature14236.

Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In Maria-Florina Balcan and Kilian Q. Weinberger (eds.), Proceedings of the 33nd
International Conference on Machine Learning, ICML 2016, New York City, NY, USA, June 19-
24, 2016, volume 48 of JMLR Workshop and Conference Proceedings, pp. 1928–1937. JMLR.org,
2016. URL http://proceedings.mlr.press/v48/mniha16.html.

Gabriel Pereyra, George Tucker, Jan Chorowski, Lukasz Kaiser, and Geoffrey E. Hinton. Regu-
larizing neural networks by penalizing confident output distributions. In 5th International Con-
ference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Workshop
Track Proceedings. OpenReview.net, 2017. URL https://openreview.net/forum?id=
HyhbYrGYe.

Jan Robine, Tobias Uelwer, and Stefan Harmeling. Smaller world models for reinforcement learning.
CoRR, abs/2010.05767, 2020. URL https://arxiv.org/abs/2010.05767.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy P. Lillicrap,
and David Silver. Mastering atari, go, chess and shogi by planning with a learned model. CoRR,
abs/1911.08265, 2019. URL http://arxiv.org/abs/1911.08265.

John Schulman, Philipp Moritz, Sergey Levine, Michael I. Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. In Yoshua Bengio and
Yann LeCun (eds.), 4th International Conference on Learning Representations, ICLR 2016,
San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016. URL http:
//arxiv.org/abs/1506.02438.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/abs/
1707.06347.

Max Schwarzer, Ankesh Anand, Rishab Goel, R. Devon Hjelm, Aaron C. Courville, and Philip
Bachman. Data-efficient reinforcement learning with self-predictive representations. In 9th
International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/forum?id=
uCQfPZwRaUu.

Richard S. Sutton. Dyna, an integrated architecture for learning, planning, and reacting. SIGART
Bull., 2(4):160–163, 1991. doi: 10.1145/122344.122377. URL https://doi.org/10.
1145/122344.122377.

Hado van Hasselt, Matteo Hessel, and John Aslanides. When to use parametric models
in reinforcement learning? In Hanna M. Wallach, Hugo Larochelle, Alina Beygelz-
imer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in Neu-
ral Information Processing Systems 32: Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada,
pp. 14322–14333, 2019. URL https://proceedings.neurips.cc/paper/2019/
hash/1b742ae215adf18b75449c6e272fd92d-Abstract.html.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
5998–6008, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

12

https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
http://proceedings.mlr.press/v48/mniha16.html
https://openreview.net/forum?id=HyhbYrGYe
https://openreview.net/forum?id=HyhbYrGYe
https://arxiv.org/abs/2010.05767
http://arxiv.org/abs/1911.08265
http://arxiv.org/abs/1506.02438
http://arxiv.org/abs/1506.02438
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://openreview.net/forum?id=uCQfPZwRaUu
https://openreview.net/forum?id=uCQfPZwRaUu
https://doi.org/10.1145/122344.122377
https://doi.org/10.1145/122344.122377
https://proceedings.neurips.cc/paper/2019/hash/1b742ae215adf18b75449c6e272fd92d-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/1b742ae215adf18b75449c6e272fd92d-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

Published as a conference paper at ICLR 2023

Denis Yarats, Ilya Kostrikov, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. In 9th International Conference on Learning Repre-
sentations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL
https://openreview.net/forum?id=GY6-6sTvGaf.

Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. Mastering atari games
with limited data. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang,
and Jennifer Wortman Vaughan (eds.), Advances in Neural Information Processing Systems 34:
Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December
6-14, 2021, virtual, pp. 25476–25488, 2021. URL https://proceedings.neurips.cc/
paper/2021/hash/d5eca8dc3820cad9fe56a3bafda65ca1-Abstract.html.

13

https://openreview.net/forum?id=GY6-6sTvGaf
https://proceedings.neurips.cc/paper/2021/hash/d5eca8dc3820cad9fe56a3bafda65ca1-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/d5eca8dc3820cad9fe56a3bafda65ca1-Abstract.html

Published as a conference paper at ICLR 2023

A APPENDIX

A.1 EXTENDED EXPERIMENTS

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0

(a) Boxing. The player (white) presses fire, misses the opponent, gets no reward, and retreats.
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0

(b) Freeway. The player moves up, steps back because of an approaching car, and continues to move up.
0.0 1.0 0.0

(c) Jamesbond. The player presses fire to fire a missile, and gets a reward when it hits.
0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0

(d) Gopher. The player (farmer) closes a hole created by the opponent (gopher). The gopher keeps moving
independent from the selected actions, indicating that the world model has correctly learned the correlations
between the player and the actions. Note that the gopher briefly disappears and reappears on the other side.

Figure 9: Additional example trajectories generated by our world model.

Additional Analysis:

1. We provide more example trajectories in Figure 9.

2. We present more attention plots in Figures 10 and 11. All attention maps are generated
using the attention rollout method by Abnar & Zuidema (2020). Note that we had to modify
the method slightly, in order to take the causal masks into account.

3. Sample Efficiency: We provide the scores of our main experiments after different amounts
of interactions with the environment in Table 2. After 50K interactions, our method already
has a higher mean normalized score than previous sample-efficient methods. Our mean
normalized score is higher than DER, CURL, and SimPLe after 25K interactions. This
demonstrates the high sample efficiency of our approach.

4. Stochasticity: The stochastic prediction of the next state allows the world model to sample
a variety of trajectories, even from the same starting state, as can be seen in Figure 12.

5. Long Sequence Imagination: The world model is trained using sequences of length ` = 16,
however, it generalizes well to very long trajectories, as shown in Figure 13.

6. Frame Stacking: In Figure 14 we visualize the learned stacks of frames. This shows that
the world model encodes and predicts the motion of objects.

Additional Ablation Studies:

1. Thresholded Entropy Loss: In Figure 15 we compare (i) our thresholded entropy loss for
the policy (see Section 2.2) with (ii) the usual entropy penalty. For (i) we use the same
hyperparameters as in our main experiments, i.e., η = 0.01 and Γ = 0.1. For (ii) we set
η = 0.001 and Γ = 1.0, which effectively disables the threshold. Without a threshold, the
entropy is more likely to either collapse or diverge. When the threshold is used, the score is

14

Published as a conference paper at ICLR 2023

higher as well, probably because the entropy is in a more sensible range for the exploration-
exploitation trade-off. This cannot be solved by adjusting the penalty coefficient η alone,
since it would increase or decrease the entropy in all games.

2. History Length: We trained our world model with a shorter history and set ` = 4 instead of
` = 16. This has a negative impact on the score, as can be seen in Figure 16, demonstrating
that more time steps into the past are important.

3. Choice of Policy Input: In Section 2.2 we explained why the input to the policy is only the
latent state, i.e., x = z. In Figure 17 we show that using x = [z, h] can result in lower
final scores. We hypothesize that the policy network has a hard time keeping up with the
changes of the space of h during training and cannot ignore this additional information.

4. Increasing the Sample Efficiency: To find out whether we can further increase the sample
efficiency shown in Table 2, we train a random subset of games again on 10K, 25K, and
50K interactions with the full training budget that we used for the 100K interactions. In
Figure 18 we see that this can lead to significant improvements in some cases, which could
mean that the policy benefits from more training on imagined trajectories, but can even lead
to worse performance in other cases, which could possibly be caused by overfitting of the
world model. When the performance stays the same even with longer training, this could
mean that better exploration in the real environment is required to get further improvements.

Table 2: Performance of our method at different stages of training compared with final scores of
previous methods. We show individual game scores and mean human normalized scores. The
normalized mean of our method is higher than SimPLe after only 25K interactions, and higher than
previous methods after 50K interactions.

TWM (ours)

Game Random Human SimPLe SPR 5K 10K 25K 50K 75K 100K

Alien 227.8 7127.7 616.9 841.9 202.8 383.2 463.6 532.0 776.6 674.6
Amidar 5.8 1719.5 74.3 179.7 3.8 35.4 54.9 101.3 103.0 121.8
Assault 222.4 742.0 527.2 565.6 241.5 315.4 418.7 466.8 627.8 682.6
Asterix 210.0 8503.3 1128.3 962.5 277.0 297.0 536.0 912.0 886.0 1116.6
BankHeist 14.2 753.1 34.2 345.4 17.6 4.4 17.4 125.2 288.4 466.7
BattleZone 2360.0 37187.5 4031.2 14834.1 2640.0 3120.0 2700.0 3740.0 5260.0 5068.0
Boxing 0.1 12.1 7.8 35.7 0.8 3.4 28.5 60.1 67.1 77.5
Breakout 1.7 30.5 16.4 19.6 1.0 5.9 6.9 12.5 15.0 20.0
ChopperCommand 811.0 7387.8 979.4 946.3 928.0 1044.0 1358.0 1306.0 1438.0 1697.4
CrazyClimber 10780.5 35829.4 62583.6 36700.5 7425.0 14773.2 39456.8 45916.0 67766.2 71820.4
DemonAttack 152.1 1971.0 208.1 517.6 174.7 184.4 216.8 335.2 391.4 350.2
Freeway 0.0 29.6 16.7 19.3 0.0 4.6 20.8 23.7 23.9 24.3
Frostbite 65.2 4334.7 236.9 1170.7 66.2 204.6 297.8 247.6 1165.4 1475.6
Gopher 257.6 2412.5 596.8 660.6 345.2 414.0 593.2 1213.2 1549.2 1674.8
Hero 1027.0 30826.4 2656.6 5858.6 448.9 1552.6 4790.9 6302.7 9403.8 7254.0
Jamesbond 29.0 302.8 100.5 366.5 35.0 117.0 172.0 215.0 322.0 362.4
Kangaroo 52.0 3035.0 51.2 3617.4 28.0 92.0 476.0 724.0 876.0 1240.0
Krull 1598.0 2665.5 2204.8 3681.6 1763.6 2552.8 4234.0 4699.2 5848.0 6349.2
KungFuMaster 258.5 22736.3 14862.5 14783.2 574.0 16828.0 16368.0 17946.0 22936.0 24554.6
MsPacman 307.3 6951.6 1480.0 1318.4 245.9 535.1 1077.5 1224.3 1287.6 1588.4
Pong -20.7 14.6 12.8 -5.4 -20.4 -19.8 -7.7 8.0 19.9 18.8
PrivateEye 24.9 69571.3 35.0 86.0 61.0 80.0 80.0 3.2 88.8 86.6
Qbert 163.9 13455.0 1288.8 866.3 151.0 298.5 703.5 1046.5 1788.5 3330.8
RoadRunner 11.5 7845.0 5640.6 12213.1 24.0 1120.0 5178.0 7436.0 8034.0 9109.0
Seaquest 68.4 42054.7 683.3 558.1 76.8 221.2 428.4 572.0 704.0 774.4
UpNDown 533.4 11693.2 3350.3 10859.2 385.8 1963.0 2905.6 4922.8 10478.6 15981.7

Normalized Mean 0.000 1.000 0.332 0.616 0.007 0.133 0.408 0.624 0.832 0.956

Wall-Clock Times: For each run, we give the agent a total training and evaluation budget of
roughly 10 hours on a single NVIDIA A100 GPU. The time can vary slightly, since the budget is
based on the number of updates. An NVIDIA GeForce RTX 3090 requires 12-13 hours for the
same amount of training and evaluation. When using a vanilla transformer, which does not use the
memory mechanism of the Transformer-XL architecture (Dai et al., 2019), the runtime is roughly
15.5 hours on an NVIDIA A100 GPU, i.e., 1.5 times higher.

We compare the runtime of our method with previous methods in Table 3. Our method is more than
20 times faster than SimPLe, but slower than model-free methods. However, our method should be
as fast as other model-free methods during inference. In Table 2 we have shown that our method

15

Published as a conference paper at ICLR 2023

Table 3: Approximate runtime (i.e., training and evaluation time for a single run) of our method
compared with previous methods that also evaluate on the Atari 100k benchmark. Runtimes of
previous methods are taken from Schwarzer et al. (2021). They used an improved version of DER
(van Hasselt et al., 2019), which is roughly equivalent to DrQ (Yarats et al., 2021), so the specified
runtime might differ from the original DER implementation. There are data augmented versions for
SPR and DER. All runtimes are measured on a single NVIDIA P100 GPU.

Method Model-based Runtime in hours

SimPLe 3 500
TWM (ours) 3 23.3
SPR (with aug.) 7 4.6
SPR (w/o aug.) 7 3.0
DER/DrQ (with aug.) 7 2.1
DER/DrQ (w/o aug.) 7 1.4

achieves a higher human normalized score than previous sample-efficient methods after 50K inter-
actions. This suggests that our method could potentially outperform previous methods with shorter
training, which would take less than 23.3 hours.

To determine how time-consuming the individual parts of our method are, we investigate the
throughput of the models, with the batch sizes of our main experiments. The Transformer-XL ver-
sion is almost twice as fast, which again shows the importance of this design choice. The throughputs
were measured on an NVIDIA A100 GPU and are given in (approximate) samples per second:

• World model training: 16,800 samples/s
• World model imagination (Transformer-XL): 39,000 samples/s
• World model imagination (vanilla): 19,900 samples/s
• Policy training: 700,000 samples/s

We also examine how fast the policy can run in an Atari game. We measured the (approximate)
frames per second on a CPU (since the batch size is 1). Conditioning the policy on [z, h] is about 3
times slower than z, since the transformer is required:

• Policy conditioned on z: 653 frames/s
• Policy conditioned on [z, h]: 213 frames/s

A.2 DERIVATION OF BALANCED CROSS-ENTROPY LOSS

Hafner et al. (2021) propose to use a balanced KL divergence loss to jointly optimize the observation
encoder qθ and state predictor pθ with shared parameters θ, i.e.,

λDKL(sg(qθ) ‖ pθ) + (1− λ)DKL(qθ ‖ sg(pθ)), (7)
where sg(·) denotes the stop-gradient operation and λ ∈ [0, 1] controls how much the state predictor
adapts to the observation encoder and vice versa. We use the identity DKL(q ‖ p) = H(q, p)−H(q),
where H(q, p) is the cross-entropy of distribution p relative to distribution q, and show that our loss
functions lead to the same gradients as the balanced KL objective, but with finer control over the
individual components:

∇θ [λDKL(sg(qθ) ‖ pθ) + (1− λ)DKL(qθ ‖ sg(pθ))] (8)
= ∇θ [λ (H(sg(qθ), pθ)−H(sg(qθ))) + (1− λ) (H(qθ, sg(pθ))−H(qθ))] (9)
= ∇θ [λ1 H(sg(qθ), pθ) + λ2 H(qθ, sg(pθ))− λ3 H(qθ)], (10)

since ∇θH(sg(qθ)) = 0 and by defining λ1 = λ and λ2 = 1 − λ and λ3 = 1 − λ. In this form,
we have control over the cross-entropy of the state predictor relative to the observation encoder and
vice versa. Moreover, we explicitly penalize the entropy of the observation encoder, instead of being
entangled inside of the KL divergence.

As common in the literature, we define the loss function by omitting the gradient in Equation (10),
so that automatic differentiation computes this gradient. For our world model, we split the objective
into two loss functions, as the observation encoder and state predictor have separate parameters,
yielding Equations (3) and (4).

16

Published as a conference paper at ICLR 2023

s a r s a r s a r s a r s a r s a r s a r s a r s a r s a r s a r s a r s a r s a r s a r s a r s a

10

9

8

7

6

5

4

3

2

1

Krull h

0.2

0.4

0.6

0.8

1.0

(a) This world model focuses on previous states.

s a r s a r s a r s a r s a r s a r s a r s a r s a r s a r s a r s a r s a r s a r s a r s a r s a

10

9

8

7

6

5

4

3

2

1

Hero h

0.2

0.4

0.6

0.8

1.0

(b) This world model focuses on previous actions, indicating that the effect of ac-
tions can last longer than a single time step.

s a r s a r s a r s a r s a r s a r s a r s a r s a r s a r s a r s a r s a r s a r s a r s a r s a

10

9

8

7

6

5

4

3

2

1

BankHeist h

0.2

0.4

0.6

0.8

1.0

(c) This world model attends to all three modalities in the recent past.

s a r s a r s a r s a r s a r s a r s a r s a r s a r s a r s a r s a r s a r s a r s a r s a r s a

10

9

8

7

6

5

4

3

2

1

BattleZone h

0.2

0.4

0.6

0.8

1.0

(d) This world model attends to states at all time steps, probably because of the
complexity of this 3D game.

s a r s a r s a r s a r s a r s a r s a r s a r s a r s a r s a r s a r s a r s a r s a r s a r s a

10

9

8

7

6

5

4

3

2

1

Freeway h

0.2

0.4

0.6

0.8

1.0

(e) This world model mainly focuses on four states at specific time steps.

Figure 10: Average attention maps of the transformer, computed over many time steps. They show
how different games require a different focus on modalities and time steps.

s a r s a r s a r s a r s a r s a r s a r s a r s a r s a r s a r s a r s a r s a r s a r s a r s a

10

9

8

7

6

5

4

3

2

1

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Freeway h

0.2

0.4

0.6

0.8

1.0

Figure 11: Attention map for Freeway for a single time step. At this point the player hits a car and
gets pushed back (see also Figure 5b) and the world model puts more attention to past states and
rewards, compared with the average attention at other time steps, as shown in Figure 10e. The world
model has learned to handle this situation separately.

17

Published as a conference paper at ICLR 2023

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Figure 12: Three trajectories for the game KungFuMaster generated by our world model, using
the same starting state. Because of its stochastic nature, the world model is able to generate three
different situations (one opponent, two opponents, one other type of opponent). Note that we only
show every third frame to cover more time steps.

0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 2.0

5.0 5.0 5.0 5.0 5.0 5.0 5.0 2.0 2.0 1.0

1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

Figure 13: A long trajectory imagined by our world model for the game Hero. The player traverses
five different rooms and the world model is able to correctly predict the state and reward dynamics.
Note that we only show every fifth frame to cover more time steps (the rewards lying in-between are
summed up). The total number of time steps is 230.

(a) Assault (b) Hero (c) KungFuMaster (d) Pong (e) Pong

Figure 14: Visualization of frame stacks reconstructed from predicted states ẑt. Each frame in the
stack is visualized by a different color. The world model is able to encode and predict movements.

18

Published as a conference paper at ICLR 2023

0.2 0.4 0.6 0.8 1.0
1e5

0.000

0.200

0.400

0.600

0.800

Breakout

0.2 0.4 0.6 0.8 1.0
1e5

0.000

0.200

0.400

0.600

0.800

Frostbite

0.2 0.4 0.6 0.8 1.0
1e5

0.000

0.050

0.100

0.150

0.200

0.250
MsPacman

0.2 0.4 0.6 0.8 1.0
1e5

0.000

0.200

0.400

0.600

0.800

1.000

1.200
Pong

Steps

Hu
m

an
 N

or
m

al
ize

d
Sc

or
e With threshold (= 0.1)

Without threshold (= 1)

0.2 0.4 0.6 0.8 1.0
1e5

0.00

0.10

0.20

0.30

0.40

0.50
With Entropy Threshold

0.2 0.4 0.6 0.8 1.0
1e5

0.00

0.10

0.20

0.30

0.40

0.50
Without Entropy Threshold

Steps

No
rm

al
ize

d
En

tro
py

Breakout
Frostbite
MsPacman
Pong

Figure 15: Effect of disabling the proposed thresholded entropy loss (by setting Γ = 1) on the
performance and the entropy in a random subset of games. The thresholded version stabilizes the
entropy and leads to a better score in Breakout and Pong, while the entropy behaves unfavorably
without a threshold.

0.2 0.4 0.6 0.8 1.0
1e5

0.000

0.200

0.400

0.600

0.800

1.000

Assault

0.2 0.4 0.6 0.8 1.0
1e5

0.000

2.000

4.000

6.000

8.000
Krull

0.2 0.4 0.6 0.8 1.0
1e5

0.000

0.050

0.100

0.150

0.200

0.250
MsPacman

0.2 0.4 0.6 0.8 1.0
1e5

0.000

0.100

0.200

0.300

0.400
Hero

Steps

Hu
m

an
 N

or
m

al
ize

d
Sc

or
e = 16

= 4

Figure 16: Comparison of the history length ` = 16 used in our main experiments with ` = 4 on a
random subset of games. We observe a lower human normalized score for ` = 4.

0.2 0.4 0.6 0.8 1.0
1e5

0.000

0.250

0.500

0.750

1.000

1.250
BankHeist

0.2 0.4 0.6 0.8 1.0
1e5

0.000

0.200

0.400

0.600

0.800

Breakout

0.2 0.4 0.6 0.8 1.0
1e5

0.000

0.250

0.500

0.750

1.000

1.250

1.500
KungFuMaster

0.2 0.4 0.6 0.8 1.0
1e5

0.000

1.000

2.000

3.000

4.000

5.000
UpNDown

Steps

Hu
m

an
 N

or
m

al
ize

d
Sc

or
e x = z

x = [z, h]

Figure 17: Conditioning the policy on [z, h] compared with the usual z. In some cases the perfor-
mance can be better during training, but the final score is lower or equal.

0.0 0.2 0.4 0.6 0.8 1.0
1e5

0.000

2.000

4.000

6.000

Boxing

0.0 0.2 0.4 0.6 0.8 1.0
1e5

0.000

1.000

2.000

3.000

CrazyClimber

0.0 0.2 0.4 0.6 0.8 1.0
1e5

0.000

0.005

0.010

0.015

0.020
Seaquest

0.0 0.2 0.4 0.6 0.8 1.0
1e5

0.000

1.000

2.000

3.000

4.000

5.000
UpNDown

Steps

Hu
m

an
 N

or
m

al
ize

d
Sc

or
e

100K
50K
25K
10K

Figure 18: Scores on a random subset of games when we train with a lower number of interactions
but the same training budget. This only leads to a significant improvement for UpNDown, where
the final score is higher with only 50K interactions.

19

Published as a conference paper at ICLR 2023

0.2 0.4 0.6 0.8 1.0
1e5

0.325

0.350

0.375

0.400

0.425

0.450
Breakout

0.2 0.4 0.6 0.8 1.0
1e5

0.300

0.325

0.350

0.375

0.400

KungFuMaster

0.2 0.4 0.6 0.8 1.0
1e5

0.300

0.350

0.400

0.450
MsPacman

0.2 0.4 0.6 0.8 1.0
1e5

0.250

0.300

0.350

0.400

Pong

Steps

Dy
na

m
ics

 L
os

s

Balanced (= 20)
Uniform (=)

Figure 19: Comparison of the proposed balanced sampling procedure with uniform sampling. It
shows the development of the dynamics loss from Equation (4), which is lower at the end of training
in all cases.

A.3 ADDITIONAL TRAINING DETAILS

In Algorithm 1 we present pseudocode for training the world model and the actor-critic agent. We
use the SiLU activation function (Elfwing et al., 2018) for all models. In Table 4 we summarize all
hyperparameters that we used in our experiments. In Table 5 we provide the number of parameters
of our models.

Pretraining for Better Initialization: During training we need to correctly balance the amount
of world model training and policy training, since the policy has to keep up with the distributional
shift of the latent space. However, we can spend some extra training time on the world model with
pre-collected data (included in the 100K interactions) at the beginning of training in order to obtain
a reasonable initialization for the latent states.

Algorithm 1 Training the world model and the actor-critic agent.

function train_world_model()
// sample sequences of observations,
// rewards, actions and discounts
o,a,r,d = sample_from_dataset()
z = encode(o)
o_hat = decode(z)
h = transformer(z,a,r)
r_hat,d_hat,z_hat = predict(h)

// optimize world model via
// self-supervised learning
optim_observation(o,z,o_hat,z_hat)
optim_dynamics(r,d,z,r_hat,d_hat,z_hat)

// z will be used for imagination
return z

function train_actor_critic(z)
// imagine trajectories of states,
// rewards, actions and discounts;
// use z as starting point
imag = [z]
for t = 0 until H do

a = actor(z)
imag.append(a)
h = transformer(imag)
r,d,z = predict(h)
imag.extend([r,d,z])

// optimize actor-critic via
// reinforcement learning
optim_actor_critic(imag)

20

Published as a conference paper at ICLR 2023

Table 4: Hyperparameters used in our experiments.

Description Symbol Value

Dataset sampling temperature τ 20
Discount factor γ 0.99
GAE parameter λ 0.95
World model batch size N 100
History length ` 16
Imagination batch size M 400
Imagination horizon H 15
Encoder entropy coefficient α1 5.0
Consistency loss coefficient α2 0.01
Reward coefficient β1 10.0
Discount coefficient β2 50.0
Actor entropy coefficient η 0.01
Actor entropy threshold Γ 0.1

Environment steps — 100K
Frame skip — 4
Frame down-sampling — 64× 64
Frame gray-scaling — Yes
Frame stack — 4
Terminate on live loss — Yes
Max frames per episode — 108K
Max no-ops — 30

Observation learning rate — 0.0001
Dynamics learning rate — 0.0001
Actor learning rate — 0.0001
Critic learning rate — 0.00001

Transformer embedding size — 256
Transformer layers — 10
Transformer heads — 4× 64
Transformer feedforward size — 1024
Latent state predictor units — 4× 512
Reward predictor units — 4× 256
Discount predictor units — 4× 256
Actor units — 4× 512
Critic units — 4× 512
Activation function — SiLU

Table 5: Number of parameters of our models.

Model Symbol # Parameters

Observation model φ 8.2M
Dynamics model ψ 10.8M
Actor θ 1.3M
Critic ξ 1.3M

World model — 19M
Actor-critic — 2.6M

Total — 21.6M

Encoder + actor
(at inference time) — 4.4M

21

	Introduction
	Method
	World Model
	Policy
	Training

	Experiments
	Results
	Analysis
	Ablation Studies

	Related Work
	Conclusion
	Appendix
	Extended Experiments
	Derivation of Balanced Cross-Entropy Loss
	Additional Training Details

