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ABSTRACT

This work investigates the safe exploration problem, where an agent must max-
imize performance while satisfying safety constraints. To address this problem,
we propose a method that includes a learnable world model and two policies, a
high-level policy and a low-level policy, that ensure safety at both levels. The
high-level policy generates safe subgoals for the low-level policy, which progres-
sively guide the agent towards the final goal. Through trajectory imagination,
the low-level policy learns to safely reach these subgoals. The proposed method
was evaluated on the standard benchmark, SafetyGym, and demonstrated superior
performance quality while maintaining comparable safety violations compared to
state-of-the-art approaches. In addition, we investigated an alternative implemen-
tation of safety in hierarchical reinforcement learning (HRL) algorithms using
Lagrange multipliers, and demonstrated in the custom long-horizon environments
SafeAntMaze that our approach achieves comparable performance while more ef-
fectively satisfying safety constraints, while the flat safe policy fails to accomplish
this task.

1 INTRODUCTION

Exploration is one of the most critical capabilities for Reinforcement Learning (RL) agents, enabling
them to discover optimal behaviors for achieving predefined goals. One of the main challenges in
applying RL algorithms to the real world is the lack of safety guarantees during the exploration
process, which can lead to damage to expensive hardware or dangerous situations (Ray et al., 2019).
Therefore, there is an urgent need for safe reinforcement learning approaches that address the safe
exploration problem, which we investigate in this work.

Most current safe reinforcement learning methods employ a Lagrangian-based approach (Huang
et al., 2024; Jayant & Bhatnagar, 2022; Hogewind et al., 2023; Ha et al., 2021), where the RL
controller maximizes performance while minimizing safety constraint violations through the use
of a Lagrangian multiplier. A primary problem with Lagrangian-based methods, as noted in (Yu
et al., 2022), is that it is a complex challenge for the RL controller to simultaneously maximize
performance and ensure safety. One possible solution to this problem is to use safety layers (Roza
et al., 2022), where a separate safety layer module is responsible for maintaining safety. Otherwise,
we can simplify the performance maximization task for the RL controller by using a high-level
policy that generates intermediate subgoals and guides the agent toward the final goal. Thus, the
RL controller’s task remains to maximize performance and safety over a short horizon up to each
subgoal.

Model-based reinforcement learning approaches allow efficient training of a transition function that
can be used both for action planning by the agent (Jayant & Bhatnagar, 2022; Liu et al., 2020) and
for training the RL controller in the imagination (Janner et al., 2019; Hafner et al., 2023). The use of
such a model allows the agent to reduce the execution of potentially dangerous actions during real
world exploration. Risks about learning a policy are embedded in the model, while the agent needs
to safely explore an environment to learn this world model.

In this work, we propose a method ITES (Imagine To Ensure Safety in Hierarchical Reinforcement
Learning)1 that uses a high-level policy to simplify the complex optimization task for the RL con-

1The code repository: https://anonymous.4open.science/r/ITES-677D.
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troller by generating safe intermediate subgoals. We also use the world model to verify the safety of
actions taken by the RL controller in the imagination before executing them directly, analogous to a
Lagrangian-based approach (the scheme of our approach is presented in Figure 1).

Figure 1: For a flat controller, simultaneously optimizing reward and ensuring safety during goal
achievement poses a significant challenge. The ITES generates intermediate subgoals, orange cir-
cles, to achieve the main goal, green circle, which enables the controller to optimize safety over
a short horizon for each of these subgoals. To ensure that the entire trajectory remains safe, the
proposed method first predicts a safe subgoal for the controller, and second, the controller in imagi-
nation (via world model) optimizes safety towards that subgoal.

Our main contribution is:

• We propose using Hierarchical Reinforcement Learning for enhancing performance in Safe
Reinforcement Learning.

• We propose a safe hierarchical method — using a world model to ensure the safety of the
controller in an imagination, as well as a cost model for generating safe subgoals.

• A similar method for integrating safety into HRL policy based on Lagrangian multipliers
has been investigated, demonstrating that our proposed method provides better safety while
maintaining comparable performance.

• We demonstrate on the SafetyGym benchmark with short-horizon tasks that our method
outperforms state-of-the-art methods in performance while only slightly compromising on
safety. In contrast, on the long-horizon SafeAntMaze, our method surpasses both safety
and performance, whereas the baselines fails to accomplish this task.

2 PRELIMINARIES

2.1 CONSTRAINED GOAL-CONDITIONED MDP

We investigate the mathematical formulation of the Safe Exploration problem introduced in Ray
et al. (2019) through the framework of a Constrained Markov Decision Process (CMDP, Altman
(1999)), represented as ⟨S,A, p, R, c, d, µ, γ⟩. Both the state space S and the action space A are
assumed to be continuous. The environment transition function p(s′|s, a) specifies the probability
density of reaching s′ ∈ S after taking action a ∈ A in state s ∈ S. The initial state distribution
µ(s0) defines the probability density of beginning an episode at state s0. It is generally assumed
that the agent does not know the transition dynamics p(s′|s, a). For each transition ⟨s, a, s′⟩, the
environment produces a scalar external reward r(s, a, s′) and another scalar c(s, a) as the cost.
The parameter d ∈ R represents the cost limit, indicating the maximum allowable sum of costs
over an episode. The optimization problem is to maximize cumulative external rewards from an
environment: J(π) = Eπ

∑
t γ

tr(s, a, s′), while satisfying cost constraint: Jc(π) ≤ d.

Following Zhang et al. (2020a), we consider hierarchy framework to solve the problem. We adopt
a hierarchical agent policy π with two levels: a high-level controller with policy πh

θh
(sg|s) and a

low-level controller with policy πl
θl
(a|s, sg). These controllers are parameterized by separate neural

2
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network approximators, with parameters θh and θl, respectively. The high-level controller seeks to
maximize the external reward:

max
θh

Jex(π
h
θh
), where Jex = Eπh

θh

∑
τ

Rh
τ = Eπh

θh
,πl

θl

∑
τ

t=kτ+τ∑
t=kτ

r(st, at, st+1). (1)

This policy generates high-level actions in the form of subgoals sg ∼ πh
θ (sg|s), where sg ∈ G, at

intervals of k time steps (k > 1 is a predefined hyperparameter). The goal space G is a sub-space
of S, with a known mapping function ϕ : S → G. The low-level policy performs a primary action
a ∼ πl

θl
(a|s, sg), a ∈ A at every time step. This policy is modulated by intrinsic rewards rin for

reaching subgoals generated by high-level controller. The intrinsic reward rin(s, sg) is a negative
euclidean distance between mappings of current state s and subgoal sg . The low-level objective is
to maximize the cumulative intrinsic rewards Jin:

max
θl

Jin(π
l
θl
), where Jin = Esg∼πh

θh
,πl

θl

i=t+k∑
i=t

rin(si, sg) and rin(si, sg) = −||ϕ(si)− sg||. (2)

The overall objective for the agent policy is to find such parameters θl, θh that the Jex, Jin are
maximized and the cumulative cost Jc(π) = Eπh

θh
,πl

θl

∑
τ

∑t=kτ+τ
t=kτ c(st, at) is limited:

π∗
θh

= argmax Jexπ
h
θh
) π∗

θl
= argmax Jin(π

l
θl
) s.t. Jc(π) ≤ d. (3)

2.2 MODEL LEARNING

To model the transition function p(s′|s, a), we selected the world model from Janner et al. (2019).
The main idea is to represent the World Model Mθm as an ensemble of n models, each of which
takes the form s′ =Mi(s, a) and is a neural network. The weights ensemble is denoted as θm. The
final prediction is obtained by averaging the predictions from each of the n models, which helps to
reduce both epistemic and aleatoric uncertainties:

Mθm(s, a) =
1

n

n∑
i=1

Mi(s, a). (4)

3 METHOD

The proposed approach consists of two components: safety of generated subgoals and safety of the
RL controller. To generate subgoals within a safe region, we utilize a classifier for dangerous/safe
states in the environment. In order to ensure that the agent adheres to safety constraints while
achieving subgoals, we maximize imagined safety using a world model.

3.1 HIERARCHY STRUCTURE

As a base algorithm for our approach, we adopted HRAC (Zhang et al. (2020a), (Hierarchical Re-
inforcement learning with k-step Adjacency Constraint), which consists of two policies: high-level
controller πh

θh
(sg|s) and low-level controller πl

θl
(a|s, sg). The main idea is to generate subgoals

that are at a specified distance k from the agent’s current position. For this purpose, an Adjacency
Network ψ is employed, which maps each state s to its emedding ψ(s). This network is trained
using the following loss function:

L̂adj = Esi,sj∈S l ·max(||ψ(si), ψ(sj)|| − ϵ, 0) + (1− l) ·max(ϵ+ δ − ||ψ(si), ψ(sj)||, 0) (5)

where δ > 0 is a margin between embeddings, ϵ is a scaling factor, and l ∈ {0, 1} represents
the label indicating k-step adjacency. This loss function enables the Adjacency Network to predict
embeddings for states si and sj that are k steps apart, such that the condition ||ψ(si)− ψ(sj)|| < ϵ
is satisfied.

3
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Subsequently, this network is utilized to update the high-level controller based on the TD3 algorithm
(Fujimoto et al., 2018), incorporating a component into its loss function:

Lh = −Qh(s, sg) + βh
adjLadj(s, sg), (6)

here βh
adj is adjacency loss coefficient—the scaling hyperparameter. For the low-level controller,

the TD3 algorithm is employed without modifications with the loss function:

Ll = −Ql(s, a, sg), (7)

where Qh and Ql are action value functions (approximated by neural networks) which estimate
discounted external and internal returns respectively.

3.2 SUBGOAL SAFETY: HIGH-LEVEL SAFETY

The scheme for updating the high-level policy is illustrated in Figure 2. The update is carried out
through transitions ⟨s, sg, Rh⟩ and modules such as the cost model CM and the Qh function, which
calculate the safety and utility of the generated subgoal.

Figure 2: The scheme illustrates the training process for the low-level policy and the high-level
policy. Left: the cost model CM and the world model M are responsible for ensuring safety during
the updates of the low-level policy, while the Ql-function is utilized to optimize the reward. Right:
the cost model CM is employed for safety considerations in updating the high-level policy, with the
Qh-function used for reward optimization.

Cost model. The objective of the cost model CM is to predict the probability of the safety for an
arbitrary subgoal sg using local information about obstacles surrounding the agent (e.g., lidar data
or images) denoted as oobst, as well as the position of the agent denoted as opos which we extract
from the agent state s:

safetyh(sg) = CMθc
(sg, oobst, opos) ∈ [0, 1]. (8)

Since in our experiments the cost function c is binary and is a function of the state c : S → {0, 1},
the cost model can be used to predict the cost values of states. However, we propose to consider the
safety of subgoals as the probability of their safety. Optimizing such safety helps generate goals that
are further away from the boundary of safe and unsafe states. For the implementation of the cost
model, we utilize a neural network (MLP approximator) parameterized by θc. We use Binary Cross
Entropy Loss as the loss function for learning this MLP. So, the output value of Cost Model can be
considered as the probability that the state is safe. We train the model in online manner using the
same buffer that is employed for the World Model.

The cost model does not have access to the complete state of the environment (i.e., the locations
of all obstacles). Therefore, it cannot accurately predict the safety of states that are located at long

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

distances. Since HRAC predicts subgoals sg at short distances from the agent’s current position, our
experiments demonstrate that the agent’s observations (i.e., local information about obstacles) are
sufficient to accurately assess the safety of the subgoal sg during training.

High-level policy objective. To ensure that high level policy generates a safe subgoal, a component
Lsafetyh(s, sg) = CMθc

(sg, oobst, opos) was incorporated into HRAC loss function (6) with scaling
factor βh

safe (safety hyperparameter):

Lh = −Qh(s, sg) + βh
adjLadj(s, sg)− βh

safeLsafetyh(s, sg), (9)

where β factors are predefined hyperparameters that are chosen empirically.

3.3 IMAGINATION SAFETY WITH WORLD MODEL: LOW-LEVEL SAFETY

The cost model is used to evaluate subgoals generated by the high-level policy and to optimize
them to be safe subgoals. However, while the agent attempts to achieve these safe subgoals, it may
violate safety constraints (for example, a mobile robot accelerating excessively while trying to reach
a subgoal). To address this issue, we employ a combination of the cost model and the world model
(the left learning scheme in Figure 2).

Given a current subgoal for the agent, sg , we check for safety in imagination by sequentially gen-
erating actions using the low-level policy a ∼ πl

θl
(a|s, sg) and then employing the world model

to obtain the next state s′ = Mθm(s, a), repeating this procedure n times. Here, n is the number
of imagination steps that is chosen from discrete uniform distribution n ∼ U({1..k − 1}) (the left
part of Figure 2). The total safety for low-level controller is calculated using the cost and the world
models as follows:

safetyl(s, sg) = CMθc
(ϕ(sn), oobsti , oposi) (10)

The resulting value of safetyl(s, sg) ∈ [0, 1] is then utilized in the total actor loss:

Ll = −Ql(s, a, sg)− βl
safeLsafetyl(s, sg); Lsafetyl(s, sg) = safetyl(s, sg), (11)

here βl
safe is a hyperparameter similar to βh

safe from (9). Exact values for used hyperparameters
are presented in Table 4. Imaginary safety can be added to the high-level strategy as an additional
loss rather than to the low-level one. However, since predicting subgoals is a more complex task,
and based on our experiments, the low-level policy learns to achieve subgoals more quickly than the
high-level policy, we incorporate imaginary safety into the low-level policy. To train the cost model
and the world model, we utilize a warm start by executing 30, 000 random steps in the environment
and pretrain both models over 100 epochs.

4 EXPERIMENTS

4.1 ENVIRONMENTS DESCRIPTION

Long-Horizon environments. SafeAntMaze depicted in Figure 3 was created with the safety wrap-
per for the MujocoAntMaze environment used in the work Zhang et al. (2020a). In SafeAntMaze,
the agent is an Ant with action and observation spaces: A ⊂ R8,S ⊂ R30. The agent can only
observe its current coordinates, joint angles, and angular velocities, lacking information about ob-
stacles. Additionally, we have implemented a safety buffer for the agent’s position: if it is within a
specified distance, dist, from a wall, that position is considered unsafe, resulting in a cost of +1 for
the agent. Since, on average, the optimal policy in this environment requires ≥ 500 steps to reach
the goal, the environment is classified as one that presents a long-horizon task. We developed two
types of maps in this environment: SafeAntMazeCshape and SafeAntMazeWshape.

Short-Horizon environments. In the tasks from the Safety Gym benchmark (Ray et al., 2019), the
optimal policy achieves the goal within 100 to 200 steps on average (see Figure 8). Therefore, we
characterize this environment as short horizon. By default, the environment utilizes the Euclidean
distance as the reward function. Additionally, we consider the PointGoal1 environment from Safe-
tyGym, with sparse reward structure, granting a reward of +1 for reaching the goal. We refer to

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 3: Up The figure illustrates the SafeAntMazeCshape environment, where a robot Ant is
assigned, and the agent faces a long-horizon task with a specified goal. Down: The scheme of
the environments for C shape(left) and W shape(right), where the green point represents Ant start
pose, yellow point is Ant final goal, the light field represents a safe zone, the pink field denotes a
dangerous area that incurs a cost of +1 for each step taken inside it, and the orange zone indicates a
static obstacle. The red trajectory is generated by the HRAC algorithm, which does not take safety
into account, while the blue trajectory is produced by the ITES algorithm.

this environment as PointGoal sparse. Training in an environment with sparse rewards is generally
considered to be a more challenging task.

4.2 METRICS

Following Ray et al. (2019), one method dominates another if it strictly improves on either perfor-
mance or cost rate and does at least as well on the other.

• Performance — average success rate(reward) of the final policy over E = 40 episodes

• Average undiscounted cost return over E episodes: Ĵc = 1
E

∑E
i=1

∑Tep

t=0 ct

• Average cost rate: ρ = 1
T

∑t=T
t=0 ct, where T - total interaction time steps

4.3 BASELINES COMPARTION

We consider two types of baselines: hierarchical (HRAC, HRAC-LAG) and those consisting of a
single policy: CUP (Yang et al., 2022), FOCOPS (Zhang et al., 2020b), MBPPOL (Jayant & Bhatna-
gar, 2022) TD3LAG Ray et al. (2019). In our approach, we utilize the environment model solely for
calculating the safety for the low-level policy; we do not use it for generating additional experience
or planning. The training is conducted using a model-free approach; therefore, we compare ITES
with model-free baselines.

• HRAC - LAG. To obtain a fair comparison of our safety component to HRAC algorithm
against the Lagrangian-based approach, we added a Lagrange multiplier to the high-level
policy of the HRAC algorithm and named this as HRAC - LAG. This way, similar perfor-
mance is expected from both HRAC-LAG and ITES.

• HRAC -SafeSubgoals. To investigate the impact of safety incorporated solely within high-
level policy, we remove the safety component from the low-level policy, resulting in HRAC
- SafeSubgoals

• HRAC - SafeController. To assess how safety verification in imagination affects cost
return, we remove the generation of safe subgoals from ITES, resulting in HRAC - Safe-
Controller.

• MBPPOL. To compare with model-based approaches, we propose the MBPPOL algo-
rithm, an algorithm consisting of a single policy that utilizes a world model to train a
Lagrangian PPO in a simulated environment.

• TD3LAG. To provide a comparison with off-policy approaches, we propose the TD3LAG
algorithm, which consists of the TD3 policy and a Lagrangian multiplier.

6
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Table 1: Final performance on SafeAntMaze.
Env Method Final Success Rate Final Cost

ITES 0.88 ± 0.01 15.2± 17.3
SafeAntMaze CUP 0 6.8 ± 22.4
Cshape FOCOPS 0 19.4± 50.9

TD3LAG 0.38± 0.04 83.6± 37.2
SafeAntMaze ITES 0.35 ± 0.05 183± 16.5
Wshape TD3LAG 0.05± 0.02 154 ± 13.5

In Figure 4, we present a comparison on SafeAntMaze environments of our proposed approach,
ITES, with the HRAC-LAG algorithm, which implements safety through a Lagrangian multiplier,
as well as with the HRAC algorithm that does not account for safety. The success rate plot indicate
that each approach achieves a similar performance of the final policy, ranging from 0.89 to 0.93,
suggesting comparable performance. However, in terms of cost and cost rate metrics, our algorithm
significantly outperforms the Lagrangian-based HRAC. This discrepancy arises because optimizing
the safety component within the high-level policy of HRAC-LAG is considerably more complex than
in our proposed method. In HRAC-LAG, the safety critic attempts to approximate the cumulative
safe cost that the agent accumulates while reaching a subgoal, which is contingent upon the current
behavior of the low-level policy. In contrast, in our approach, the safety of the high-level module is
independent of the behavior of the low-level policy.

Figure 4: Baselines comparison on SafeAntMaze. Comparison of our proposed ITES method
with the safe HRAC-LAG method and the unsafe HRAC method on SafetyAntMaze. First row —
SafeAntMazeCshape environment, second row — the SafeAntMazeWshape environment. Each run
was conducted with 3 seeds. The shaded area represents the standard deviation. The Success Rate
was calculated based on the weights at the end of the training.

In the experiments on the SafetyGym benchmark, Figure 5 presents a comparison with hierarchical
policies. It is observed that in the CarGoal1 environment, our method outperforms HRAC-LAG in

7
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Figure 5: Baselines comparison on SafetyGym. First row - PointGoal1, second row - CarGoal1

Table 2: Final performance on SafetyGym benchmark.
Env Method Final Reward Final Cost

ITES 21.42 ± 1.14 40.46± 0.12
PointGoal1 CUP 14.42± 6.74 19.02± 20.08

FOCOPS 14.97± 9.01 33.72± 42.24
TD3LAG 15.75± 0.39 56.22± 0.85
ITES 19.43 ± 3.45 39.87± 1.04

CarGoal1 CUP 6.14± 6.97 36.12± 89.56
FOCOPS 15.23± 10.76 31.66 ± 93.51
TD3LAG 8.21± 6.88 53.7± 9.45
ITES 8.64 ± 0.38 33.46 ± 1.47

PointGoal MBPPOL 6.15± 0.15 34.1 ± 3.6
sparse SACLAG 0.68± 0.08 64.8± 3.8

TD3LAG 0.07± 0.01 64.7± 1.91

both safety and performance. In contrast, in the PointGoal1 environment, all three approaches are
nearly identical.

Table 2 provides a comparison of CUP and FOCOPS final weights on SafetyGym. For the Point-
Goal1 task, our approach lags behind CUP in terms of safety, as it makes a trade-off in favor of
performance and solves significantly more tasks, achieving a reward of 21.42. Moreover, it is a less
dispersion method, indicating its reliability. In the CarGoal1 task, our method has a comparable
final cost while significantly outperforming the CUP algorithm in terms of performance. The TD3-
Lag algorithm demonstrates superior performance compared to CUP and FOCOPS; however, this
results in a significant increase in the final cost metric, whereas ITES remains safer while improving
performance.

The results on the GoalPoint sparse environment (see Table 2 ) indicate that simple model-free single
policy algorithms are unable to learn to solve the task, with performance scores of SAC-L at 0.675

8
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and TD3-L at 0.07. For the results presented in the table, MBPPOL used weights that achieved the
highest performance during training, while ITES utilized weights with a similar cost metric during
training. These results demonstrate that, under similar safety conditions, ITES exhibits superior
performance compared to MBPPOL, achieving a score of 8.64.

4.4 INFLUENCE OF EACH SAFETY LEVEL ON OVERALL SAFETY

To address the question - ”Can safety be managed solely at one level, such as the low-level con-
troller?” - we conducted a comparative study of the ITES algorithm against HRAC-SafeSubgoals
(which enforces safety only at the high-level controller) and HRAC-SafeController (which enforces
safety solely at the low-level controller) within the SafeAntMazeCshape environment. As depicted
in Figure 6, the cost and cost rate metrics indicate that in the SafeAntMazeCshape environment,
the high-level controller significantly enhances safety. Nonetheless, we observe that incorporating
low-level safety alongside high-level safety yields an overall increase in safety. Additionally, it is
noteworthy that HRAC-SafeSubgoals exhibits greater variance in the cost plot compared to ITES,
which results from the fact that when the HRAC-SafeSubgoals policy reaches a safe subgoal, it may
violate safety along the way.

Figure 6: Low/High safety level analysis. Different versions of ITES are depicted in the figure,
with HRAC-SafeSubgoals implementing safety solely at the high level and HRAC-SafeController
implementing safety solely at the low level.

5 RELATED WORKS

Safe reinforcement learning aims to develop algorithms that ensure safety both during the learning
process (exploration phase) and the exploitation phase within an environment. A widely adopted
approach to guarantee safety in RL tasks involves solving a Constrained Markov Decision Process
using the Lagrange Multiplier method (Ray et al., 2019). This approach addresses two key ob-
jectives: maximizing cumulative reward while minimizing cumulative cost, effectively balancing
performance and safety.

While traditional reinforcement learning algorithms such as SAC (Haarnoja et al., 2018), DDPG
(Lillicrap et al., 2016), and Dreamer (Hafner et al., 2023) are primarily engineered to optimize cu-
mulative reward, the integration of the Lagrange Multiplier method transforms this paradigm. By
converting the dual CMDP objective into a single one, the method introduces a trade-off into the
value function space, thus enables balancing between performance and safety constraints. Algo-
rithms like SAC-Lagrangian (Ha et al., 2021), SafeSLAC (Hogewind et al., 2023), SafeDreamer
(Huang et al., 2024), NeuralConditionedSAC (Huang et al., 2021) embodied the Lagrange approach
within their architectures. During updates, the policy takes into account the sum of the values from
the reward and cost critics, there the Lagrange multiplier scales the cost component.

Despite of the widespread use of the method and its strong sides, it suffers from instabilities and
oscillations during learning due to the non-stationary nature of the dual objectives during policy
optimization. The effective solution to this challenge was proposed by Stooke et al. (2020). The
idea was taken from control theory: it was proposed to use well-known PID (Proportional-Integral-
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Derivative) controller to update a Lagrange multiplier, whereas the classical approach uses only the
Integral part.

Another way to mitigate problems of the Lagrangian method, an alternative approach, is to intro-
duce additional layers into the policy architecture, dedicated solely to ensuring safety by correcting
actions as necessary. Such algorithms are presented by Safe HIRO (Roza et al., 2022), SafetyLayer
(Dalal et al., 2018), SafeEditor (Yu et al., 2022). This decoupling of the safety mechanism from
the reward-cost value function aggregation offers a promising direction to reduce stochasticity while
maintaining the robustness and reliability of the agent’s behavior.

Serious challenge in safe exploration is the unknown dynamics of the environment. Without any
prior information the agent is forced to violate some constraints just to know about them. If an agent
has been equipped with a world model it can learn safe policy with much less safety violations as
using the world model “imagination” is safe in contrast to interaction with real world. With image
observations this approach is presented by (Huang et al., 2024), the SOTA model-based algorithm
adopted PIDLagrangian (Stooke et al., 2020). Also there exist several works (Hogewind et al.,
2023; Liu et al., 2020; Jayant & Bhatnagar, 2022). (Huang et al., 2024) used not only images as
observations and also vector states.

To improve exploration in RL it is typically used hierarchy approaches, that allows to reduce com-
plexity of the task by decomposing it into subtasks. These approaches involve generating high-level
actions, subgoals, that the policy must achieve within a limited number of low-level actions: HAC
(Levy et al., 2019), HiRO (Nachum et al., 2018), HRAC (Zhang et al., 2020a).

In Safe RL, very few works consider hierarchical approaches. Among them the most closed to us
is SafetyLayer+HiRO (Roza et al., 2022). In contrast to us it solves additional optimization task for
each action to replace it with a safe one, whereas our algorithm is optimized only during training
phase.

To the best of our knowledge, our algorithm ITES is the only one that combines model-based and
hierarchy approach with safety constrained optimization.

6 CONCLUSIONS

In summary, we investigated the Safe Exploration Problem, where the agent must maximize perfor-
mance while minimizing safety violations. We proposed the ITES approach based on the HRAC
algorithm, which provides safety at two levels of the hierarchy. Additionally, we explored an al-
ternative implementation of safety in HRAC using a Lagrangian multiplier, referred to as HRAC-
LAG. Experimental results demonstrated that ITES achieves comparable performance to HRAC-
LAG while significantly enhancing safety during training (safe exploration). In the SafetyGym
environment, we demonstrated that our algorithm achieves significantly higher performance while
maintaining comparative safety and exhibiting lower dispersion.

However, ITES has limitations, including the need to manually design the mapping function ϕ from
state space to goal space for each task, which restricts its adaptability, particularly to visual input.
Additionally, the simple discretization technique used by HRAC’s Adjacency Network limits its
scalability to high-dimensional spaces. Furthermore, ITES does not account for task-specific cost
budgets d, as it minimizes cost violations independently at each time step.

Future work will focus on addressing these limitations, such as learning goal spaces, improving
scalability, and incorporating cost budgets, to enable the application of ITES in real-world robotics
tasks.
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A COMPARISON OF MODEL-BASED SAFETY AND HIERARCHICAL +
MODEL-BASED SAFETY

The results of training ITES and TD3 with safety, which we calculate in ITES using the environment
model (TD3-imagine safety), are presented in Figure 7 and Table 3. Although both algorithms show
similar values in the Reward metric, given that the experiment is conducted in the PointGoal1 envi-
ronment, which is not a long - horizon task, the cost metric indicates that ITES is significantly safer
than TD3-imagine safety. This difference arises because TD3-imagine safety can only minimize
safety in imagination for 10 steps ahead (not until the end of the episode); we cannot increase this
number, as doing so would cause the world model to diverge. In contrast, ITES generates subgoals
for 10 steps ahead, enabling the TD3 policy to safely reach these goals.

Table 3: Final performance on PointGoal1 comparing Model-based and Hierarchical Model-based
safety.

Env Method Final Reward Final Cost
ITES 21.42± 1.14 40.46± 0.12

PointGoal1 TD3-imagine safety 20.1± 0.1 75± 10.4

Figure 7: Comparison of Model-Based Safety and Hierarchical + Model-Based Safety. Plots
were obtained in the PointGoal1 environment across three seeds.

B SAFETYGYM ENVIRONMENT

C TRAINING DETAILS

The training procedure for our ITES algorithm is based on HRAC (Zhang et al., 2020a), with the
addition of two key components: the world model M and the cost model CM , which are integrated
into the process (see Algorithm 1). Initially, M and CM are pretrained using data generated by a
random policy. During the main interaction loop, transitions are stored in buffers B,Bh,Bl. Af-
ter each episode of agent-environment interaction, all trainable components of ITES are updated.
These components include the cost model CM , world model M , high-level policy πh, and low-level
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Figure 8: The image presents two tasks: PointGoal1 (left) and CarGoal1 (right) from the SafetyGym
environment. The blue circles represent hazardous zones, where the agent incurs a cost of +1 while
within them. The green circle indicates the agent’s goal, and the blue box represents a movable vase,
which the agent can interact with without incurring a penalty.

policy πl. The adjacency network ψ is updated every L episodes, where L corresponds to 50,000
environment steps.

The world model is utilized as described in Jayant & Bhatnagar (2022), and details of its training
can be found in that work. The learning procedure for the adjacency network is outlined in Zhang
et al. (2020a).

Loss functions for policy training, along with details on the cost model training, are presented in the
main text of the article (Section 3).

A complete list of hyperparameters is provided in Table 4. Most of these were adopted from the cor-
responding algorithms HRAC (Zhang et al., 2020a) and MBPPOL (Jayant & Bhatnagar, 2022). For
the Car and Point environments, the same hyperparameters were used (SafetyGym column). Simi-
larly, the hyperparameters for the SafeAntMaze(C shape) and SafeAntMaze(W shape) environments
are identical (SafeAntMaze column).

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Algorithm 1 ITES
Input: High-level policy πh, low-level policy πl, world model M , cost model CM , adjacency
network ψ, goal transition function h, high-level action frequency k, number of training episodes
N , adjacency learning frequency L, empty adjacency matrix M, empty trajectory buffer BA, cost
and world model buffer B, empty high-level and low-level policy buffers Bh,Bl.

Sample and store trajectories in the model buffer B using a random policy.
Pretrain M and CM using B.
for n = 1 to N do

Reset the environment and sample the initial state s0.
t = 0.
repeat

if t ≡ 0 (mod k) then
if t ̸= 0 then

Save subgoal transition ⟨st−k, sg,t−k, st,
∑t−1

i=t−k ri, donet⟩ to buffer Bh

end if
Sample subgoal sg,t ∼ πh

( sg,t|st).
else

Perform subgoal transition sg,t = h(sg,t−1, st−1, st).
end if
Sample low-level action at ∼ πl

θl
(at|st, sg,t).

Make action in environment:
Sample next state st+1 ∼ p(st+1|st, at),
Get reward rt = r(st, at, st+1),
Get cost ct = c(st, at),
Get episode end signal donet+1.

Calculate reward rin,t = rin(st+1, sg,t),
Save transition ⟨st, at, rin,t, ct, st+1, donet+1⟩ to buffers B,Bl

t = t+ 1.
until donet+1 is true.
Store the sampled trajectory in BA.
Train cost model CM .
Train world model M .
Train high-level policy πh.
Train low-level policy πl.
if n ≡ 0 (mod L) then

Update the adjacency matrix M using the trajectory buffer BA.
Fine-tune ψ using M.
Clear BA.

end if
end for
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Table 4: ITES hyperparameters.
Hyperparameter SafeAntMaze SafetyGym
Adjacency Network Parameters
Learning rate 0.0002 0.0002
Batch size 64 64
Online training frequency (steps) 50, 000 50, 000
Online training epochs 25 25
Embedding dim 32 32
Hidden dim 128 128
ϵk 1.0 1.0
δ 0.2 0.2

Manager Parameters (High-level TD3)
Actor learning rate 0.0001 0.0001
Critic learning rate 0.001 0.001
Replay buffer size 200, 000 200, 000
Batch size 128 128
Soft update rate 0.005 0.005
Policy update frequency (steps between updates) 10 5
γ 0.99 0.99
High-level action frequency k 20 10
Reward scaling 0.1 100
Adjacency loss coefficient βh

adj 20 20

Controller Parameters (Low-level TD3)
Actor learning rate 0.0001 0.0001
Critic learning rate 0.001 0.001
Replay buffer size 200, 000 200, 000
Batch size 128 128
Soft update rate 0.005 0.005
Policy update frequency 1 1
γ 0.95 0.95

Cost Model Parameters
Initial exploration steps 10,000 30,000
Pretrain epochs 20 100
Batch size 128 512
Buffer size 1, 000, 000 1, 000, 000
Learning rate 0.001 0.001

WorldModel Parameters
Initial exploration steps 10,000 30,000
Pretrain epochs 20 100
Batch size 256 256
Buffer size 1, 000, 000 1, 000, 000
Learning rate 0.001 0.001
Train freq 20 20
Num networks 8 8
Num elites 6 6
Hidden size 200 200

Safety Parameters
Subgoal safety coefficient βh

safe 800 10

Controller safety coefficient βl
safe 6 0.001
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