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Figure 1: Predefined vs. Personalized Vision. Illustration of traditional vision tasks (top) and
the personalized tasks enabled by our proposed PICO (bottom). Given a contextual example pair
(A → A′) defining the desired visual transformation, and a query image B, our model infers the task
and generates the corresponding B′ at test time.

Abstract

Modern vision models, trained on large-scale annotated datasets, excel at prede-1

fined tasks such as segmentation but struggle to adapt flexibly to personalized2

vision tasks—tasks defined at test-time by users with customized objects or novel3

objectives. Existing personalization approaches typically rely on synthesizing4

additional training data or fine-tuning the entire model, limiting flexibility and5

incurring significant computational cost. Inspired by recent advances in natural6

language processing, we explore a new direction: leveraging visual generative7

models for personalized vision via in-context learning. We introduce a structured8

four-panel input format, where a single annotated example specifies the person-9

alized visual task, allowing the model to interpret and generalize the task to new10

inputs without further fine-tuning. To enable this one-shot capability, we construct11

a Visual-Relation tuning dataset tailored to personalized vision in-context learning.12

Extensive experiments demonstrate that our approach (i) surpasses fine-tuning and13

synthetic-data baselines on personalized segmentation, (ii) enables test-time defini-14

tion of novel personalized tasks, and (iii) generalizes across both visual recognition15

and generation settings. Our work establishes a new paradigm for personalized16

vision, combining the adaptability of in-context learning with the visual reasoning17

capabilities of generative models.18

1 Introduction19

Modern vision models [1, 2, 3, 4, 5], trained on large-scale annotated datasets, have achieved20

impressive performance in both visual recognition and generation. However, these models typically21
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succeed on predefined object categories (e.g., cars, people) or standard task formats (e.g., object22

detection, semantic segmentation) where abundant labeled data exists. They often struggle to adapt23

flexibly to personalized vision—tasks defined by users at test-time, involving customized objects24

or novel task definitions. With growing demand for personalized vision systems that quickly adapt25

to individual needs, a critical question emerges: How can we achieve flexible and high-performing26

personalized vision?27

A traditional approach to personalized vision uses generative models to synthesize additional training28

data tailored to specific personalized objects. For example, Personalized Representation (PRPG) [6]29

employs DreamBooth [7] to generate synthetic data for target concepts, then adapting general-30

purpose feature representations into personalized ones. While these methods [6, 8] make strides31

toward personalized vision by adapting to personalized objects, they remain constrained to predefined32

task (e.g., segmentation or classification) and fail to generalize flexibly to arbitrary user-defined tasks.33

Besides, adapting to a new subject often requires computationally expensive fine-tuning of the entire34

model.35

Inspired by recent breakthroughs in natural language processing (NLP), where the paradigm has36

shifted from task-specific fine-tuning toward in-context learning [9, 10], models can now perform37

novel tasks defined only at test time. Motivated by this shift, we explore a new direction: leveraging38

visual generative models for personalized vision via in-context learning. Unlike NLP tasks, which are39

typically well-defined and easily described with text, vision tasks often involve ambiguous perceptual40

inputs that are hard to specify through language alone. Furthermore, current visual generative41

models [4, 5], primarily pretrained on image generation, are incapable of directly reasoning about42

novel visual tasks at test-time.43

To bridge this gap, we extend the idea of vision in-context learning (ICL) by introducing a four-panel44

input format. In this setting, a single annotated example (an input-output pair) is provided as a visual45

context, implicitly specifying the personalized task. The model, named Personalized In-context46

Operator (PICO), interprets this visual context to understand the personalized task, subsequently47

adapting it to new inputs to generate corresponding outputs. We construct the Visual-Relation Dataset48

(VisRel), a tuning dataset composed of diverse and structurally organized visual tasks, based on49

the proposed four-panel ICL setup to excite the model’s ability to understand and reason about50

personalized vision tasks.51

We conduct extensive experiments to validate the effectiveness of our proposed paradigm for per-52

sonalized vision. First, we demonstrate that our method achieves superior performance compared to53

fine-tuning-based methods for personal subjects within conventional vision tasks. Second, we show,54

for the first time, that our method provides unprecedented flexibility in dynamically accommodating55

novel, user-defined tasks at test-time. Finally, our method achieves strong performance across diverse56

personalized vision scenarios, spanning both visual recognition and generation.57

In summary, our key contributions are:58

• We explore visual in-context learning, introducing a novel paradigm that directly leverages59

generative models for personalized vision, instead of relying on synthetic data generation.60

• We propose an in-context fine-tuning strategy and construct a corresponding dataset, enabling61

pretrained image diffusion models to become effective visual in-context reasoners.62

• We demonstrate promising results across a wide range of personalized vision tasks, spanning63

both recognition and generation, and covering varied subjects and task definitions.64

2 Related Work65

Personalized Vision. Existing personalized vision methods [6, 8, 11, 12, 13, 14, 15] typically adapt66

vision or vision-language models (VLMs) to handle user-specific concepts within predefined tasks67

like retrieval and segmentation. For example, PerSAM [14] segments user-indicated regions using68

cosine similarity on pretrained segmentation features [3], while PDM [15] leverages intermediate69

features from text-to-image (T2I) models [4] to localize personalized instances. PRPG [6] generates70

synthetic training data to enhance personalized representations for downstream tasks. However, these71

methods are inherently restricted to fixed task formats, lacking flexibility to accommodate arbitrary72

user-defined tasks at test-time. Real-world personalization often demands versatile, dynamically73

defined tasks. For instance, users may want to insert specific objects into images or annotate them74
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using custom formats. Such scenarios motivate our approach to enable personalized vision systems75

to rapidly adapt beyond fixed frameworks.76

Visual In-Context Learning. Visual ICL, inspired by prompt-based task adaptation in NLP [9],77

aims to adapt vision models to downstream tasks through contextual examples. Bar et al. [16] first78

propose visual prompting by framing vision tasks as quad-grid masked image inpainting. Painter [17],79

a ViT-based model [18] trained through masked image modeling, shows strong ICL capabilities80

across various dense prediction tasks, and SegGPT [19] further enhances this ability specifically for81

segmentation. However, existing training-based visual ICL methods rely heavily on extensive, task-82

specific pretraining, limiting generalization to unseen tasks. In contrast, inference-based methods [20,83

21, 22, 23, 24] attempt to interpret visual demonstrations by translating them into textual instructions.84

These methods do not fully use the visual instructions, resulting in inaccuracies due to the ambiguity85

of the textual descriptions. Additionally, they remain largely confined to semantically-driven editing86

tasks. Our work advances visual ICL by explicitly formulating personalized vision as visual relations87

within a unified space, enabling robust, flexible one-shot personalization tailored to individual needs.88

Diffusion Priors. Diffusion models have emerged as the defacto paradigm for image synthesis [4,89

5], demonstrating powerful generative priors beneficial for diverse vision tasks, including dense90

prediction [25, 26, 27], image restoration [28, 29, 30, 31], style transfer [32, 33], etc. Within data-91

scarce personalized vision settings, diffusion models are commonly employed to synthesize additional92

training, augmenting limited examples for downstream finetuning [7, 34]. However, this two-stage93

process [6] is computationally intensive, limiting practicality for frequent adaptation to personalized94

concepts. Recent work such as In-Context LoRA [35] have highlighted the intrinsic ICL capability95

of diffusion transformers [36]. Building upon these insights, we directly utilize diffusion priors as96

in-context learners, enabling flexible, immediate adaptation to arbitrary user-defined personalized97

visual tasks without relying on synthetic data augmentation.98
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Figure 2: Structured Visual Relation Space. Tasks are organized by semantic complexity (low to
high) and spatial locality (local to global), covering diverse task types, color-coded as: ■: Restora-
tion/Enhancement; ■: Physical/Geometric Estimation; ■: Semantic Perception; ■: Generative
Manipulation.

3 Method99

Our objective is to achieve flexible visual personalization through a task-agnostic framework capable100

of adapting to user-defined tasks at inference without extra finetuning. We reformulate personalized101

vision as a visual ICL problem, where a single input-output exemplar defines the task objectives.102

The model infers user intent from contextual visual demonstration and applies it to new queries.103

Central to our approach is training on a broad visual relation space, repurposing pretrained diffusion104

transformers into in-context visual reasoners.105

3.1 Data: A Visual Relation Space106

ICL succeeds in NLP because every task (e.g., translation, summarization, question answering, etc.)107

shares a unified language generation interface. In vision, however, different tasks have heterogeneous108

output format (e.g., pixel arrays, masks, coordinates), limiting the potential for unified in-context109

generalization. We address this by unifying visual tasks as image-to-image transformations repre-110
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sented as RGB inputs and outputs [16, 17]. Our key insight is that a robust visual ICL model should111

similarly embed tasks within a unified visual relation space, enabling interpolation and composition112

of transformations at test time. To learn this space, we curate VisRel, a diverse collection of more113

than 25 visual tasks, aiming to span the space of common 2D transformations (see Figure 2). The114

dataset construction considers three design principles.115

Task Taxonomy. We structure the visual relation space along two intuitive axes: (1) Semantic116

Complexity measures the level of semantic understanding required, spanning low-level (pixel/color ad-117

justments), mid-level (structure/shape manipulation), and high-level (object/class reasoning) transfor-118

mations. (2) Spatial Locality defines the spatial context dependency, ranging from local (neighboring119

pixels), intermediate (objects patches), to global (full-image context) operations.120

Intra-task Diversity. To prevent overfitting to narrow task variants, we maximize diversity within121

each task. For example, inpainting includes masks of varying colors, shapes, and transparency; seg-122

mentation supports different colors, transparency mask; and restoration tasks (denoising, deblurring)123

incorporate different noise levels or blur kernels. By exposing the model to a rich space of trans-124

formations, we encourage learning fundamental transformation principles rather than memorizing125

task-specific patterns. This design is important for zero-shot generalization to novel personalized126

tasks defined through contextual visual demonstrations.127

Minimal Text Label. The model primarily trained to infer transformation intent from visual128

exemplars (nputs-output pairs), without relying on explicit task identifiers. However, to resolve129

ambiguities between potential conflicts of interest tasks (e.g., local vs. global edits; black and white130

depth estimation vs.colorful style transfer), we introduce minimal text prompts (e.g., “edit.. vs.131

estimate..”) as soft boundaries.132

3.2 Training: PICO133
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Figure 3: Overall pipeline of PICO.

Given an input-output demonstration pair134

{A,A′} illustrating a visual relation r : A → A′135

and a query image B, our training objective is136

to generate an image B′ that adheres to the un-137

derlying visual transformation provided by the138

examples. We represent tasks via a quad-grid in-139

put format: I = Grid({A,A′, B,X}), where X140

is a noisy placeholder. This format allows task141

specification without explicit labels, enabling142

personalized adaptation through visual exem-143

plars. The overall training pipeline is illustrated144

in Figure 3. We build upon a pretrained T2I dif-145

fusion transformer (DiT) [37], finetuned using146

LoRA [38]. Conditions are visual exemplars147

cvp = E({A,A′, B}) encoded by a VAE encoder E(·), and minimal textual prompts cT . Unlike148

In-Context LoRA [35], which injects noise into all latents, we maintain clean latent representations149

for cvp while only applying noise to x0 = E(X) to obtain xt. This clean conditioning ensure150

stable preservation of visual relation logic during the noisy denoising process, and prevent potential151

corruption of given conditions. The model learns to refine the noisy latent xt by predicting a velocity152

field v conditioned on cT and cvp. The conditional velocity predictor v = vΘ(xt, t|cT , cvp) is trained153

with conditional flow matching (CFM) loss:154

LCFM(Θ) = Et,xt

[
||vΘ(xt, t|cT , cvp)− v̂(xt, t)||2

]
, (1)

where Θ denotes the model parameters and v̂(xt, t) is the ground-truth velocity for the noisy compo-155

nent xt at time t. This objective trains the model to iteratively refine the noisy placeholder X into a156

valid output B′ that faithfully inherits the transformation demonstrated by (A,A′). This quad-grid157

arrangement allows the DiT’s attention mechanism [5] to naturally capture intra-relationships between158

the examples (A,A′) as well as their inter-correlations with the query image (A,B), guiding the159

iterative denoising of X into the desired output B′.160
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3.3 Inference: One-Shot Personalization161

At inference time, personalized adaptation is achieved through one-shot visual prompting, mirroring162

the training procedure. We replace the placeholder cell with pure noise xT ∼ N (0, 1), and iteratively163

denoise it over T steps, conditioned on the context latents cvp = E({A,A′, B}) and optional text cue164

cT . Formally, the clean latent x0 is obtained by integrating the learned conditional velocity field vΘ:165

x0 = xT +

∫ 0

T

vΘ(xt, t | cT , cvp) dt,B′ = D(x0), (2)

where xt follows the flow dxt

dt = vΘ(xt, t | cT , cvp), and D(·) is the VAE decoder. The model166

seamlessly transfers the visual transformation demonstrated by (A,A′) to the query B, supporting167

flexible, test-time personalization without fine-tuning.168

4 Experiments169

We validate our method through extensive experiments addressing three key questions: (1) Does visual170

ICL surpass traditional personalized fine-tuning on standard tasks like personalized segmentation?171

(2) Can the framework handle novel, user-defined tasks at inference? (3) Does it extend across172

recognition and generation tasks?173

4.1 Implementation Details174

We build PICO upon FLUX.1-dev [37], a latent rectified flow transformer model, finetuning with175

LoRA [38] (rank 256) on the VisRel dataset for 30, 000 steps using a single H100 GPU. Training is176

conducted at a resolution of 1024 × 1024, where each image in the quad-grid is structured at 512.177

We use the Prodigy optimizer [39] with safeguard warmup, bias correction enabled, and a weight178

decay of 0.01. The training dataset consists of 315 samples across 27 diverse tasks. Examples of179

task types are shown in Figure 2. The dataset is constructed from existing sources [40, 41, 42, 43,180

44, 45, 46, 47, 48, 49]. Due to space constraints, full details of data construction are provided in the181

supplementary. Code, model and dataset will be released.182

4.2 Personalized Image Segmentation183

Datasets. We evaluate across four personalized segmentation benchmarks: PerSeg [14], DOGS [6],184

PODS [6], and PerMIS [15]. While PerSeg and DOGS mainly contain either single instances or185

distinct instances easily segmented using semantic cues, PODS is more challenging due to variations186

in viewpoints, scales, and distractors. PerMIS, sourced from video frames, further increases the187

difficulty by emphasizing instance-level segmentation.188

Baselines. We compare PICO with three groups of state-of-the-art methods: (i) Large-scale pretrained189

segmentors: PerSAM [14] and SegGPT [19], both trained on extensive collections of annotation190

segmentation masks. (ii) Personalized representation learners: PDM [15] (diffusion features) and191

Table 1: Quantitative Comparison on personalized segmentation. We evaluate PICO against
large-scale pretrained, personalized, and generalist ICL methods. ★: best, ✩: second-best, and ◆:
third-best.

Method PerSeg [14] DOGS [6] PODS [6] PerMIS [15]

mIOU↑ bIOU↑ F1↑ mIOU↑ bIOU↑ F1↑ mIOU↑ bIOU↑ F1↑ mIOU↑ bIOU↑ F1↑
large-scale
PerSAM [14] 90.50◆ 72.79◆ 94.07✩ 86.87✩ 71.06★ 53.18 67.45✩ 56.63✩ 45.60★ 51.77✩ 37.95✩ 21.71✩

SegGPT [19] 95.77★ 81.58★ 99.16★ 91.16★ 65.93✩ 85.14★ 65.22◆ 50.75◆ 42.45 77.90★ 47.10★ 38.61★

personalized
PDM [15] 29.99 10.97 2.79 21.03 8.95 0.11 26.39 10.98 1.12 23.62 9.10 1.27
PDM+PerSAM 50.09 60.08 33.37 64.36 53.82 41.85 35.56 45.34 22.33 28.93 25.25 11.72
PRPG [6] - - - 81.52◆ 37.34 68.74✩ 60.68 34.56 40.41◆ - - -

generalist
VP [16] 24.83 18.11 0.03 38.50 14.34 4.86 17.48 12.10 0.14 8.87 4.16 0.10
Painter [17] 56.56 51.58 29.76 72.07 49.75 56.88◆ 26.93 25.44 6.87 19.53 15.59 4.20
PICO (ours) 90.97✩ 76.13✩ 62.82◆ 71.02 54.71◆ 49.84 68.72★ 60.26★ 44.88✩ 49.52◆ 33.63◆ 14.90◆
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PRPG (personalized features via synthetic-data finetuning), followed by using attention maps for192

instance localization. (iii) Generalist ICL models: Visual Prompting (VP) [16] and Painter [17].193

Evaluation Metrics. Following [15, 6], we report mIOU, bIOU and F1@0.50 scores over all194

benchmarks. All the baseline methods we use its official code base and default settings.195

Results. Table 1 shows that PICO outperforms generalist ICL models (VP, Painter) and personalized196

representation methods (PDM, PRPG), particularly on the more challenging PODS and PerMIS197

datasets. While PRPG achieves competitive results on DOGS, its reliance on per-instance synthetic198

data generation makes it computationally costly and difficult to scale (see Table 2). Thus, we omit199

its results on PerSeg and PerMIS, where over 500 unique instances are each accompanied by a200

single reference image. In contrast, PICO’s generative in-context learning paradigm enables instant201

adaptation to new instances at inference without retraining, offering strong practical advantages.202

Notably, compared to large-scale pretrained segmentors, PICO achieves comparable performance203

while using up to four orders of magnitude fewer labeled data (see Table 3), highlighting its superior204

data efficiency enabled by generative priors. Interestingly, whereas traditional segmentation methods205

rely heavily on deterministic visual features, our results reveal that generative priors can act as strong206

inductive biases, warranting further exploration for structured vision tasks. Qualitative results are207

shown in Figure 4(a).208

Free-Form Inputs and Task Flexibility. Beyond dense masks, PICO supports sparse annotations209

(e.g., bounding boxes, circles), enabling intuitive, coarse-grained personalization tasks such as detec-210

tion, shown in Figure 4(b). The method also extends seamlessly from single-instance segmentation211

to part-level parsing, respecting arbitrary color coding and transparency levels specified by users212

at test time. As shown in Figure 4(c), our model successfully follows contextual appearance cues213

and consistently segments out specific semantically identical components. semantic components214

consistently. Although never trained on facial data, it performs well on out-of-domain tasks (e.g.,215

face parsing), demonstrating its robustness and flexibility.216

Table 2: Comparison of personalized segmentation.
Method Use of Generative Prior Features Seg. Method Test-time New Instance?

PDM [15] Feature extractor SDXL-turbo [50] Attention map !

PRPG [6] Synthetic data generator Personalized DINOv2 [2] Attention map %(retraining required)
PICO (ours) In-context learner – Direct output !

Table 3: Comparison of large-scale pretrained methods. PICO uses minimal supervision and
adopts a generative diffusion backbone.
Method Seg. Data / Total Data Training Loss

PerSAM [14] 11M / 11M Finetuned from MAE-pretrained ViT-H [51] (encoder) Cross-entropy
SegGPT [19] 254K / 254K Finetuned from Painter [17] Smooth L1
Painter [17] 138K / 192K Finetuned from MAE-pretrained ViT-Large [51] Smooth L1
PICO (ours) 40 / 315 Finetuned from FLUX (DiT-based) [37] Flow-matching
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(a) Personalized Segmentation

(b) Personalized Detection (c) Personalized Face Parsing

Figure 4: Results of free-form personalized segmentation adaptation. PICO supports a range of
personalized settings: (a) Personalized object segmentation; (b) Personalized detection using sparse
annotations; (c) Arbitrary part-level face parsing with in-context color and transparency cues.

6



A A’ B VP Analogist PromptDiffusion InstaManip GPT4o Ours
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Figure 5: Qualitative comparisons on test-time personalized tasks. We compare our method with
five representative baselines. Each task is defined by a visual example pair (A → A′), including
(a)(b) watermark removal + style transfer; (c) background-only stylization; (d) contour-only edge
detection; and (e) add the same stickers.

(b) Image Dehazing

(e) Affordance Detection (h) Image Doodling
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(a) Image Deblurring (c) Pose Estimation (d) Foreground Matting

(f) Object Relighting (g) Line Art Colorization

Figure 6: Results of supported tasks. PICO supports a diverse range of tasks, including restoration
(a–b), perception (c–e), and generation (f–h).

4.3 Personalized Test-time Task Generalization217

Task Definition. We evaluate test-time personalization on user-defined visual tasks that differ218

from conventional CV setups. Specifically, we focus on: (i) Composite tasks requiring multi-step219

operations (e.g., watermark removal followed by stylization). (ii) Spatially constrained tasks,220

traditionally performed globally but here applied locally or selectively (e.g., contour-only edge221

detection, background-only stylization). (iii) Semantic-conditional tasks demanding context-aware222

edits (e.g., adding stickers to semantically relevant image regions).223

Baselines. Given these novel tasks, we compare PICO with representative state-of-the-art methods224

supporting visual instructions, including: (i) Inference-based method: VP [16], Analogist [23]; (ii)225

Training-based method: PromptDiffusion [52], InstaManip [24]; (iii) Commercial multimodal models:226

GPT-4o [53]. Textual instructions for these methods follow Analogist’s GPT-4o-based reasoning227

procedure.228

Results. Qualitative comparisons in Figure 5 show that PICO effectively handles diverse test-time229

defined novel tasks, clearly surpassing baseline methods. Training-based methods (PromptDiffusion,230

InstaManip) primarily target semantic-driven editing and thus struggle to match demonstrated appear-231

ances, especially in non-RGB outputs (e.g., edge maps as shown in Figure 5(d)). They also fail at232

composite tasks, notably failing to remove watermarks before stylization (Figure 5(a,b)). Inference-233

based methods (VP, Analogist) can roughly mimic target transformations, but their outputs suffer234
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Method Pers. Seg↑ Normal↓ Z-depth↓

VTM (10-Shot) [54] - 11.4391 0.0316

Ours w/o Text 66.88 12.7105 0.0432
(± std) - (± 3.0854) (± 0.0228)
Ours w Text 68.72 10.5306 0.0377
(± std) - (± 2.2856) (± 0.0199)

Method 2DEdge↓ 2DKeypoint↓ Reshading↓

VTM (10-Shot) [54] 0.0791 0.0639 0.1089

Ours w/o Text 0.0538 0.0609 0.1518
(± std) (± 0.0170) (± 0.0128) (± 0.0553)
Ours w Text 0.0515 0.0497 0.1364
(± std) (± 0.0172) (± 0.0137) (± 0.0522)

Table 4: Quantitative ablation studies. For refer-
ence, we include 10-shot results from VTM [54].

Input (B) gt w/o Text w Text

Figure 7: Qualitative comparisons on with
and without text prompts.

from poor fidelity and noticeable visual artifacts or misalignment. GPT-4o [53] shows promising235

in-context understanding ability, capturing the high-level intent conveyed by examples. However, two236

major limitations are observed. (1) Spatial misalignment: While the semantic content is preserved,237

the pixel-wise layout is distorted. This poses challenges for tasks requiring spatial precision, such238

as contour detection (Figure 5(e)), and fails in scenarios involving local edits like adding the same239

hat (Figure 5(c)). (2) Over-reliance on abstract concepts: Rather than faithfully imitating the visual240

exemplars, GPT-4o appears to rely on high-level semantic embeddings. In stylization tasks (Fig-241

ure 5(a)(b)(c)), the output fails to match the reference style, but instead defaults to generic “sketch” or242

“orange-tone” effects. In contrast, PICO produces outputs consistently aligned in spatial and semantic243

detail with provided examples, highlighting its robust visual reasoning capability.244

Supported Tasks. In addition to personalized user-defined tasks, PICO also supports various standard245

visual tasks spanning restoration, perception, and generation, as illustrated in Figure 6. Although246

trained on these standard tasks, the model generalizes remarkably well to novel instances from as few247

as 10 examples per task. Notably, for the task of object relighting, i.e., transforming an object from248

one lighting condition to another, PICO is able to predict physically plausible shadows aligned with249

previously unseen query objects (Figure 6(f)). This indicates an implicit understanding of lighting and250

object interactions, highlighting its strong generalization capability to novel physical transformation251

tasks.252

4.4 Ablation Studies253

Effects of Text Prompts. We first quantify the importance of minimal textual prompts in resolving254

ambiguities among multiple visual tasks. Specifically, we evaluate our model on personalized255

segmentation (PODS) as well as five dense prediction tasks from Taskonomy [40] (surface normal,256

Z-buffer depth, texture edge, 2D keypoints, and reshading). We prepare 1, 000 quad-grid formatted257

test examples per task from the “Muleshoe” building [40]. Evaluation metrics follow [54]: mean error258

(mErr) for surface normal, and RMSE for other tasks. RGB predictions are converted to respective259

raw outputs for metric computation.260

The quantitative results in Table 4 show obvious performance improvements with text prompts, along-261

side lower variance, indicating that minimal text cues effectively reduce task ambiguity compared to262

visual prompts alone. Figure 7 illustrates typical failures without text cues, where the model confuses263

distinct output spaces (e.g., outputting RGB-like results instead of proper surface normal maps). With264

text prompts, the model clearly separates these tasks, highlighting the necessity of textual guidance265

as soft task boundaries. For reference, we include VTM [54], a state-of-the-art 10-shot fine-tuning266

method for dense prediction. Remarkably, our generative in-context learner surpasses this specialized267

approach on tasks such as surface normal estimation and texture edge detection despite substantially268

lower supervision, highlighting strong generalization and data efficiency enabled by generative priors.269

Additional ablation studies are provided in the supplementary material.270

Task vs. Data Scaling. We systematically investigate how task diversity and data quantity affect271

model generalization. Keeping LoRA rank (r=128) and training steps (10k) fixed, we evaluate272
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(a) Data-scale (fixed 10 tasks) (b) Task-scale (fixed 10 shots) (c) Balanced (fixed budget)

(A)

(B)

Figure 8: Quantitative comparisons across three scaling strategies on seen (A: surface normal
estimation) and unseen (B: personalized segmentation) tasks. We report mean error (mErr) for
surface normal and use (100−mIoU%) for segmentation to maintain consistent interpretation (lower
is better↓). Notably, in the fixed-budget setting (B-c), scaling task diversity improves generalization
in unseen tasks, supporting our visual relation space hypothesis.

three scenarios: (i) Data-scale sweep: Fixing 10 dense prediction tasks, vary shots per task: (K ∈273

1, 5, 10, 20, 50). (ii) Task-scale sweep: Fixing 10 shots per task, vary number of tasks (N ∈274

1, 5, 10, 15, 20). (iii) Balanced sweep: Fixing total training images constant (10, 50, 100, 200),275

compare many-tasks–few-shots (N > K) against few-tasks–many-shots (N < K) regimes. We276

evaluate on both in-domain tasks seen during training (e.g., surface normal estimation) and out-of-277

domain tasks not seen during training (e.g., personalized segmentation).278

Quantitative results are shown in Figure 8. For in-domain tasks, more data volume consistently279

improves performance (Figure.8A-a), while adding tasks hurt (Figure.8A-b), indicating limited280

capacity for memorizing multiple tasks. Under fixed budgets, concentrating data on fewer tasks is281

best. (Figure.8A-c). For out-of-domain generalization, performance improves with more data per282

task only up to 20 shots, after which it declines due to over-specialization (Figure.8B-a). Greater task283

diversity consistently boosts generalization (Figure.8B-b). Under fixed budgets, the many-tasks–few-284

shots strategy increasingly outperforms fewer-tasks–many-shots as task count grows (Figure.8B-c).285

These findings support our visual-relation–space hypothesis: increased data enhances memorization286

of seen tasks, while greater task diversity is crucial for robust generalization to unseen, user-defined287

visual tasks.288

5 Conclusion289

In this paper, we introduced a novel approach for personalized vision by reformulating it as a visual290

in-context learning (ICL) problem. Unlike existing methods that rely heavily on task-specific fine-291

tuning or synthetic data augmentation, we proposed learning a unified visual relation space, enabling292

pretrained diffusion transformers to reason about user-defined visual tasks given a single visual293

demonstration. Our method, termed PICO, demonstrates superior flexibility and effectiveness across294

diverse personalized vision scenarios, including complex compositional tasks. Extensive experiments295

validate its strong capacity to adapt robustly and efficiently to novel, test-time personalized tasks,296

highlighting its practical value for real-world applications and unlocking new potential for generative297

image models as versatile visual in-context reasoners.298

Limitation and Future Work. Although PICO shows strong generalization within the visual-relation299

space seen during training, it is less reliable on entirely novel task types outside that space. This300

aligns with human learning, i.e., people also extrapolate best within familiar domains, but broadening301

the method to truly novel tasks remains an open challenge. Additionally, the quad-grid input format,302

while effective, inherently limits the number of contextual examples and their complexity. Future303

research could explore richer context formats, or long-context vision sequential model [55] capable of304

supporting an arbitrary number of demonstration examples or task images, such as video sequences,305

enabling more comprehensive task specifications and sophisticated visual reasoning.306
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• The assumptions made should be given (e.g., Normally distributed errors).588
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error rates).596
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8. Experiments compute resources599

Question: For each experiment, does the paper provide sufficient information on the com-600

puter resources (type of compute workers, memory, time of execution) needed to reproduce601

the experiments?602

Answer: [Yes]603

Justification: Section 4 specifies the implementation details.604
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• The answer NA means that the paper does not include experiments.606

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,607
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• The paper should provide the amount of compute required for each of the individual609
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foreseeable ethical concerns.619
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-624

eration due to laws or regulations in their jurisdiction).625
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Answer: [Yes]629

Justification: The broader of impact is discussed in the supplementary material.630
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• The answer NA means that there is no societal impact of the work performed.632
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being used as intended and functioning correctly, harms that could arise when the647

technology is being used as intended but gives incorrect results, and harms following648

from (intentional or unintentional) misuse of the technology.649

• If there are negative societal impacts, the authors could also discuss possible mitigation650

strategies (e.g., gated release of models, providing defenses in addition to attacks,651

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from652

feedback over time, improving the efficiency and accessibility of ML).653

11. Safeguards654

Question: Does the paper describe safeguards that have been put in place for responsible655

release of data or models that have a high risk for misuse (e.g., pretrained language models,656

image generators, or scraped datasets)?657

Answer: [NA]658

Justification: [NA]659

Guidelines:660

• The answer NA means that the paper poses no such risks.661

• Released models that have a high risk for misuse or dual-use should be released with662

necessary safeguards to allow for controlled use of the model, for example by requiring663

that users adhere to usage guidelines or restrictions to access the model or implementing664

safety filters.665

• Datasets that have been scraped from the Internet could pose safety risks. The authors666

should describe how they avoided releasing unsafe images.667

• We recognize that providing effective safeguards is challenging, and many papers do668

not require this, but we encourage authors to take this into account and make a best669

faith effort.670

12. Licenses for existing assets671

Question: Are the creators or original owners of assets (e.g., code, data, models), used in672

the paper, properly credited and are the license and terms of use explicitly mentioned and673

properly respected?674

Answer: [Yes]675

Justification: We properly credited previous works and codes in Section 4.676

Guidelines:677

• The answer NA means that the paper does not use existing assets.678

• The authors should cite the original paper that produced the code package or dataset.679

• The authors should state which version of the asset is used and, if possible, include a680

URL.681

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.682

• For scraped data from a particular source (e.g., website), the copyright and terms of683

service of that source should be provided.684

• If assets are released, the license, copyright information, and terms of use in the685

package should be provided. For popular datasets, paperswithcode.com/datasets686

has curated licenses for some datasets. Their licensing guide can help determine the687

license of a dataset.688

• For existing datasets that are re-packaged, both the original license and the license of689

the derived asset (if it has changed) should be provided.690
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• If this information is not available online, the authors are encouraged to reach out to691

the asset’s creators.692

13. New assets693

Question: Are new assets introduced in the paper well documented and is the documentation694

provided alongside the assets?695

Answer: [Yes]696

Justification: Our training dataset constructed from existing publicly available data, so the697

data used is available. We plan to open-source them along with the official code.698

Guidelines:699

• The answer NA means that the paper does not release new assets.700

• Researchers should communicate the details of the dataset/code/model as part of their701

submissions via structured templates. This includes details about training, license,702

limitations, etc.703

• The paper should discuss whether and how consent was obtained from people whose704

asset is used.705

• At submission time, remember to anonymize your assets (if applicable). You can either706

create an anonymized URL or include an anonymized zip file.707

14. Crowdsourcing and research with human subjects708

Question: For crowdsourcing experiments and research with human subjects, does the paper709

include the full text of instructions given to participants and screenshots, if applicable, as710

well as details about compensation (if any)?711

Answer: [NA]712

Justification: The paper does not involve crowdsourcing nor research with human subjects.713

Guidelines:714

• The answer NA means that the paper does not involve crowdsourcing nor research with715

human subjects.716

• Including this information in the supplemental material is fine, but if the main contribu-717

tion of the paper involves human subjects, then as much detail as possible should be718

included in the main paper.719

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,720

or other labor should be paid at least the minimum wage in the country of the data721

collector.722

15. Institutional review board (IRB) approvals or equivalent for research with human723

subjects724

Question: Does the paper describe potential risks incurred by study participants, whether725

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)726

approvals (or an equivalent approval/review based on the requirements of your country or727

institution) were obtained?728

Answer: [NA]729

Justification: We do not include research with crowdsourcing and human subjects.730

Guidelines:731

• The answer NA means that the paper does not involve crowdsourcing nor research with732

human subjects.733

• Depending on the country in which research is conducted, IRB approval (or equivalent)734

may be required for any human subjects research. If you obtained IRB approval, you735

should clearly state this in the paper.736

• We recognize that the procedures for this may vary significantly between institutions737

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the738

guidelines for their institution.739

• For initial submissions, do not include any information that would break anonymity (if740

applicable), such as the institution conducting the review.741
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16. Declaration of LLM usage742

Question: Does the paper describe the usage of LLMs if it is an important, original, or743

non-standard component of the core methods in this research? Note that if the LLM is used744

only for writing, editing, or formatting purposes and does not impact the core methodology,745

scientific rigorousness, or originality of the research, declaration is not required.746

Answer: [NA]747

Justification: We only use LLM for proof-reading.748

Guidelines:749

• The answer NA means that the core method development in this research does not750

involve LLMs as any important, original, or non-standard components.751

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)752

for what should or should not be described.753
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