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Personalized Vision via Visual In-Context Learning
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Figure 1: Predefined vs. Personalized Vision. Illustration of traditional vision tasks (top) and
the personalized tasks enabled by our proposed PICO (bottom). Given a contextual example pair
(A — A’) defining the desired visual transformation, and a query image B, our model infers the task
and generates the corresponding B’ at test time.

Abstract

Modern vision models, trained on large-scale annotated datasets, excel at prede-
fined tasks such as segmentation but struggle to adapt flexibly to personalized
vision tasks—tasks defined at test-time by users with customized objects or novel
objectives. Existing personalization approaches typically rely on synthesizing
additional training data or fine-tuning the entire model, limiting flexibility and
incurring significant computational cost. Inspired by recent advances in natural
language processing, we explore a new direction: leveraging visual generative
models for personalized vision via in-context learning. We introduce a structured
four-panel input format, where a single annotated example specifies the person-
alized visual task, allowing the model to interpret and generalize the task to new
inputs without further fine-tuning. To enable this one-shot capability, we construct
a Visual-Relation tuning dataset tailored to personalized vision in-context learning.
Extensive experiments demonstrate that our approach (i) surpasses fine-tuning and
synthetic-data baselines on personalized segmentation, (ii) enables test-time defini-
tion of novel personalized tasks, and (iii) generalizes across both visual recognition
and generation settings. Our work establishes a new paradigm for personalized
vision, combining the adaptability of in-context learning with the visual reasoning
capabilities of generative models.

1 Introduction

Modern vision models [1} [2, 3 14} 5], trained on large-scale annotated datasets, have achieved
impressive performance in both visual recognition and generation. However, these models typically
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succeed on predefined object categories (e.g., cars, people) or standard task formats (e.g., object
detection, semantic segmentation) where abundant labeled data exists. They often struggle to adapt
flexibly to personalized vision—tasks defined by users at test-time, involving customized objects
or novel task definitions. With growing demand for personalized vision systems that quickly adapt
to individual needs, a critical question emerges: How can we achieve flexible and high-performing
personalized vision?

A traditional approach to personalized vision uses generative models to synthesize additional training
data tailored to specific personalized objects. For example, Personalized Representation (PRPG) [6]
employs DreamBooth [7]] to generate synthetic data for target concepts, then adapting general-
purpose feature representations into personalized ones. While these methods [6} [§]] make strides
toward personalized vision by adapting to personalized objects, they remain constrained to predefined
task (e.g., segmentation or classification) and fail to generalize flexibly to arbitrary user-defined tasks.
Besides, adapting to a new subject often requires computationally expensive fine-tuning of the entire
model.

Inspired by recent breakthroughs in natural language processing (NLP), where the paradigm has
shifted from task-specific fine-tuning toward in-context learning [9,[10], models can now perform
novel tasks defined only at test time. Motivated by this shift, we explore a new direction: leveraging
visual generative models for personalized vision via in-context learning. Unlike NLP tasks, which are
typically well-defined and easily described with text, vision tasks often involve ambiguous perceptual
inputs that are hard to specify through language alone. Furthermore, current visual generative
models [4, 5], primarily pretrained on image generation, are incapable of directly reasoning about
novel visual tasks at test-time.

To bridge this gap, we extend the idea of vision in-context learning (ICL) by introducing a four-panel
input format. In this setting, a single annotated example (an input-output pair) is provided as a visual
context, implicitly specifying the personalized task. The model, named Personalized In-context
Operator (PICO), interprets this visual context to understand the personalized task, subsequently
adapting it to new inputs to generate corresponding outputs. We construct the Visual-Relation Dataset
(VisRel), a tuning dataset composed of diverse and structurally organized visual tasks, based on
the proposed four-panel ICL setup to excite the model’s ability to understand and reason about
personalized vision tasks.

We conduct extensive experiments to validate the effectiveness of our proposed paradigm for per-
sonalized vision. First, we demonstrate that our method achieves superior performance compared to
fine-tuning-based methods for personal subjects within conventional vision tasks. Second, we show,
for the first time, that our method provides unprecedented flexibility in dynamically accommodating
novel, user-defined tasks at test-time. Finally, our method achieves strong performance across diverse
personalized vision scenarios, spanning both visual recognition and generation.

In summary, our key contributions are:

* We explore visual in-context learning, introducing a novel paradigm that directly leverages
generative models for personalized vision, instead of relying on synthetic data generation.

* We propose an in-context fine-tuning strategy and construct a corresponding dataset, enabling
pretrained image diffusion models to become effective visual in-context reasoners.

* We demonstrate promising results across a wide range of personalized vision tasks, spanning
both recognition and generation, and covering varied subjects and task definitions.

2 Related Work

Personalized Vision. Existing personalized vision methods [16, 8, [11} [12} [13} |14} [15] typically adapt
vision or vision-language models (VLMs) to handle user-specific concepts within predefined tasks
like retrieval and segmentation. For example, PerSAM [14] segments user-indicated regions using
cosine similarity on pretrained segmentation features [3|], while PDM [15] leverages intermediate
features from text-to-image (T2I) models [4]] to localize personalized instances. PRPG [6] generates
synthetic training data to enhance personalized representations for downstream tasks. However, these
methods are inherently restricted to fixed task formats, lacking flexibility to accommodate arbitrary
user-defined tasks at test-time. Real-world personalization often demands versatile, dynamically
defined tasks. For instance, users may want to insert specific objects into images or annotate them
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using custom formats. Such scenarios motivate our approach to enable personalized vision systems
to rapidly adapt beyond fixed frameworks.

Visual In-Context Learning. Visual ICL, inspired by prompt-based task adaptation in NLP [9]],
aims to adapt vision models to downstream tasks through contextual examples. Bar ef al. [16] first
propose visual prompting by framing vision tasks as quad-grid masked image inpainting. Painter [17],
a ViT-based model trained through masked image modeling, shows strong ICL capabilities
across various dense prediction tasks, and SegGPT further enhances this ability specifically for
segmentation. However, existing training-based visual ICL methods rely heavily on extensive, task-
specific pretraining, limiting generalization to unseen tasks. In contrast, inference-based methods (20,
211,22} 231 24]] attempt to interpret visual demonstrations by translating them into textual instructions.
These methods do not fully use the visual instructions, resulting in inaccuracies due to the ambiguity
of the textual descriptions. Additionally, they remain largely confined to semantically-driven editing
tasks. Our work advances visual ICL by explicitly formulating personalized vision as visual relations
within a unified space, enabling robust, flexible one-shot personalization tailored to individual needs.

Diffusion Priors. Diffusion models have emerged as the defacto paradigm for image synthesis [4}
[5, demonstrating powerful generative priors beneficial for diverse vision tasks, including dense
prediction [25] 26), 27]], image restoration [28], 29, [30} 311, style transfer [32}[33], etc. Within data-
scarce personalized vision settings, diffusion models are commonly employed to synthesize additional
training, augmenting limited examples for downstream finetuning [7, 34]. However, this two-stage
process [6] is computationally intensive, limiting practicality for frequent adaptation to personalized
concepts. Recent work such as In-Context LoRA [35] have highlighted the intrinsic ICL capability
of diffusion transformers [36]]. Building upon these insights, we directly utilize diffusion priors as
in-context learners, enabling flexible, immediate adaptation to arbitrary user-defined personalized
visual tasks without relying on synthetic data augmentation.

——Semantic Complexity ——p 2
=

low

Local Spatial Locality

Figure 2: Structured Visual Relation Space. Tasks are organized by semantic complexity (low to
high) and spatial locality (local to global), covering diverse task types, color-coded as: M: Restora-
tion/Enhancement; M: Physical/Geometric Estimation; : Semantic Perception; M: Generative
Manipulation.

3 Method

Our objective is to achieve flexible visual personalization through a task-agnostic framework capable
of adapting to user-defined tasks at inference without extra finetuning. We reformulate personalized
vision as a visual ICL problem, where a single input-output exemplar defines the task objectives.
The model infers user intent from contextual visual demonstration and applies it to new queries.
Central to our approach is training on a broad visual relation space, repurposing pretrained diffusion
transformers into in-context visual reasoners.

3.1 Data: A Visual Relation Space

ICL succeeds in NLP because every task (e.g., translation, summarization, question answering, etc.)
shares a unified language generation interface. In vision, however, different tasks have heterogeneous
output format (e.g., pixel arrays, masks, coordinates), limiting the potential for unified in-context
generalization. We address this by unifying visual tasks as image-to-image transformations repre-
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sented as RGB inputs and outputs [[16}[17]. Our key insight is that a robust visual ICL model should
similarly embed tasks within a unified visual relation space, enabling interpolation and composition
of transformations at test time. To learn this space, we curate VisRel, a diverse collection of more
than 25 visual tasks, aiming to span the space of common 2D transformations (see Figure[2). The
dataset construction considers three design principles.

Task Taxonomy. We structure the visual relation space along two intuitive axes: (1) Semantic
Complexity measures the level of semantic understanding required, spanning low-level (pixel/color ad-
justments), mid-level (structure/shape manipulation), and high-level (object/class reasoning) transfor-
mations. (2) Spatial Locality defines the spatial context dependency, ranging from local (neighboring
pixels), intermediate (objects patches), to global (full-image context) operations.

Intra-task Diversity. To prevent overfitting to narrow task variants, we maximize diversity within
each task. For example, inpainting includes masks of varying colors, shapes, and transparency; seg-
mentation supports different colors, transparency mask; and restoration tasks (denoising, deblurring)
incorporate different noise levels or blur kernels. By exposing the model to a rich space of trans-
formations, we encourage learning fundamental transformation principles rather than memorizing
task-specific patterns. This design is important for zero-shot generalization to novel personalized
tasks defined through contextual visual demonstrations.

Minimal Text Label. The model primarily trained to infer transformation intent from visual
exemplars (nputs-output pairs), without relying on explicit task identifiers. However, to resolve
ambiguities between potential conflicts of interest tasks (e.g., local vs. global edits; black and white
depth estimation vs.colorful style transfer), we introduce minimal text prompts (e.g., “edit.. vs.
estimate..””) as soft boundaries.

3.2 Training: PICO

Given an input-output demonstration pair .. Attention Map = s
{A, A’} illustrating a visual relationr : A — A’ VAE softmaxCop)
and a query image B, our training objective is ﬂ Enc.| [ DiTBlock Bbck | a :

to generate an image B’ that adheres to the un- *l_l:ﬁ R
derlying visual transformation provided by the o < 1-
examples. We represent tasks via a quad-grid in- Projection | | 3 I

put format: I = Grid({A, A’, B, X }), where X M = ‘

is a noisy placeholder. This format allows task ey I L
specification without explicit labels, enabling .. VAE | _ DiTBlock | Self At

plars. The overall training pipeline is illustrated Inter-Pair Attn.
in Figure[3] We build upon a pretrained T2I dif-

fusion transformer (DiT) [37]], finetuned using Figure 3: Overall pipeline of PICO.
LoRA [38]]. Conditions are visual exemplars

cop = E({A, A’, B}) encoded by a VAE encoder £(-), and minimal textual prompts ¢7. Unlike
In-Context LoRA [335]], which injects noise into all latents, we maintain clean latent representations
for ¢,, while only applying noise to zp = £(X) to obtain x;. This clean conditioning ensure
stable preservation of visual relation logic during the noisy denoising process, and prevent potential
corruption of given conditions. The model learns to refine the noisy latent x; by predicting a velocity
field v conditioned on ¢y and ¢,,;,. The conditional velocity predictor v = veg (24, t|cr, ¢yp) is trained
with conditional flow matching (CFM) loss:

personalized adaptation through visual exem- ﬁ. Dec. Intra-Pair Attn.

Leem(©) = Ee g, [|[ve (@4, tler, cop) — d(xe, 1)]%] 4))

where © denotes the model parameters and ©(x, t) is the ground-truth velocity for the noisy compo-
nent x; at time t. This objective trains the model to iteratively refine the noisy placeholder X into a
valid output B’ that faithfully inherits the transformation demonstrated by (A, A’). This quad-grid
arrangement allows the DiT’s attention mechanism [5] to naturally capture intra-relationships between
the examples (A, A’) as well as their inter-correlations with the query image (A, B), guiding the
iterative denoising of X into the desired output B’.
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3.3 Inference: One-Shot Personalization

At inference time, personalized adaptation is achieved through one-shot visual prompting, mirroring
the training procedure. We replace the placeholder cell with pure noise z7 ~ A(0, 1), and iteratively
denoise it over T steps, conditioned on the context latents c,, = £({A, A’, B}) and optional text cue
cr. Formally, the clean latent z( is obtained by integrating the learned conditional velocity field vg:

0
20 = o1 +/ vo(@i,t | er,cop) dt, B = D(xy), ®)
T

where z; follows the flow %2 = vg(x4,t | cr,cyp), and D(-) is the VAE decoder. The model
seamlessly transfers the visual transformation demonstrated by (A, A’) to the query B, supporting

flexible, test-time personalization without fine-tuning.

4 Experiments

We validate our method through extensive experiments addressing three key questions: (1) Does visual
ICL surpass traditional personalized fine-tuning on standard tasks like personalized segmentation?
(2) Can the framework handle novel, user-defined tasks at inference? (3) Does it extend across
recognition and generation tasks?

4.1 Implementation Details

We build PICO upon FLUX.1-dev [37], a latent rectified flow transformer model, finetuning with
LoRA [38]] (rank 256) on the VisRel dataset for 30, 000 steps using a single H100 GPU. Training is
conducted at a resolution of 1024 x 1024, where each image in the quad-grid is structured at 512.
We use the Prodigy optimizer [39] with safeguard warmup, bias correction enabled, and a weight
decay of 0.01. The training dataset consists of 315 samples across 27 diverse tasks. Examples of
task types are shown in Figure@ The dataset is constructed from existing sources [40, 41}, 142, 43|
44] 1451 146), 147, 1481, 149]]. Due to space constraints, full details of data construction are provided in the
supplementary. Code, model and dataset will be released.

4.2 Personalized Image Segmentation

Datasets. We evaluate across four personalized segmentation benchmarks: PerSeg [14], DOGS [6],
PODS [6], and PerMIS [15]. While PerSeg and DOGS mainly contain either single instances or
distinct instances easily segmented using semantic cues, PODS is more challenging due to variations
in viewpoints, scales, and distractors. PerMIS, sourced from video frames, further increases the
difficulty by emphasizing instance-level segmentation.

Baselines. We compare PICO with three groups of state-of-the-art methods: (i) Large-scale pretrained
segmentors: PerSAM [14]] and SegGPT [[19]], both trained on extensive collections of annotation
segmentation masks. (ii) Personalized representation learners: PDM [[15] (diffusion features) and

Table 1: Quantitative Comparison on personalized segmentation. We evaluate PICO against
large-scale pretrained, personalized, and generalist ICL methods. %: best, v: second-best, and :
third-best.

Method

PerSeg [14] DOGS [6] PODS [6] PerMIS [15]
mIOUt bIOUt  FI+ mIOUt bIOU? FIf mIOU} bIOUt FI+ mIOUt blOUtT  Flt

large-scale
PerSAM [14] 90.50% 72.79% 94.07* 86.87° 71.06% 53.18 6745 56.63" 45.60* 51777 37.95% 21.71"
SegGPT [19] 95.77*  81.58* 99.16* 91.16% 65.93% 85.14% 6522% 50.75% 4245 77.90* 47.10* 38.61*

personalized
PDM [15] 29.99 10.97 2.79 21.03 8.95 0.11 26.39 10.98 1.12 23.62 9.10 1.27
PDM+PerSAM  50.09 60.08 33.37 64.36 5382  41.85 35.56 4534 2233 28.93 25.25 11.72

PRPG [6] 81.52% 37.34 68.74"  60.68 3456 40.41* -

generalist

VP [16] 24.83 18.11 0.03 38.50 14.34 4.86 17.48 12.10 0.14 8.87 4.16 0.10
Painter [17] 56.56 51.58 29.76 72.07 49.75 56.88%  26.93 25.44 6.87 19.53 15.59 4.20

PICO (ours) 90.97% 76.13% 62.82% 71.02 5471% 4984 68.72% 60.26* 44.88% 49.52% 33.63% 14.90*
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PRPG (personalized features via synthetic-data finetuning), followed by using attention maps for
instance localization. (iii) Generalist ICL models: Visual Prompting (VP) [16] and Painter [17]].

Evaluation Metrics. Following [15! 6], we report mIOU, bIOU and F1@0.50 scores over all
benchmarks. All the baseline methods we use its official code base and default settings.

Results. Table[T|shows that PICO outperforms generalist ICL models (VP, Painter) and personalized
representation methods (PDM, PRPG), particularly on the more challenging PODS and PerMIS
datasets. While PRPG achieves competitive results on DOGS, its reliance on per-instance synthetic
data generation makes it computationally costly and difficult to scale (see Table[2). Thus, we omit
its results on PerSeg and PerMIS, where over 500 unique instances are each accompanied by a
single reference image. In contrast, PICO’s generative in-context learning paradigm enables instant
adaptation to new instances at inference without retraining, offering strong practical advantages.
Notably, compared to large-scale pretrained segmentors, PICO achieves comparable performance
while using up to four orders of magnitude fewer labeled data (see Table 3)), highlighting its superior
data efficiency enabled by generative priors. Interestingly, whereas traditional segmentation methods
rely heavily on deterministic visual features, our results reveal that generative priors can act as strong
inductive biases, warranting further exploration for structured vision tasks. Qualitative results are
shown in Figure fa).

Free-Form Inputs and Task Flexibility. Beyond dense masks, PICO supports sparse annotations
(e.g., bounding boxes, circles), enabling intuitive, coarse-grained personalization tasks such as detec-
tion, shown in Figure f{b). The method also extends seamlessly from single-instance segmentation
to part-level parsing, respecting arbitrary color coding and transparency levels specified by users
at test time. As shown in Figure[d]c), our model successfully follows contextual appearance cues
and consistently segments out specific semantically identical components. semantic components
consistently. Although never trained on facial data, it performs well on out-of-domain tasks (e.g.,
face parsing), demonstrating its robustness and flexibility.

Table 2: Comparison of personalized segmentation.

Method Use of Generative Prior ~ Features Seg. Method  Test-time New Instance?
PDM [15] Feature extractor SDXL-turbo [50] Attention map v

PRPG [6] Synthetic data generator  Personalized DINOv2 [2]  Attention map X (retraining required)
PICO (ours) In-context learner - Direct output v

Table 3: Comparison of large-scale pretrained methods. PICO uses minimal supervision and
adopts a generative diffusion backbone.

Method Seg. Data / Total Data Training Loss

PerSAM [14] 11IM/11M Finetuned from MAE-pretrained ViT-H [51] (encoder)  Cross-entropy
SegGPT [19] 254K / 254K Finetuned from Painter [17] Smooth L1
Painter [[17] 138K / 192K Finetuned from MAE-pretrained ViT-Large [51] Smooth L1
PICO (ours) 40 /315 Finetuned from FLUX (DiT-based) [37] Flow-matching

(a) Personalized Segmentation

(b) Personallzed Detectlon

R f‘

%!z

Figure 4: Results of free-form personalized segmentation adaptation. PICO supports a range of
personalized settings: (a) Personalized object segmentation; (b) Personalized detection using sparse
annotations; (c) Arbitrary part-level face parsing with in-context color and transparency cues.
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Figure 5: Qualitative comparisons on test-time personalized tasks. We compare our method with
five representative baselines. Each task is defined by a visual example pair (4 — A’), including
(a)(b) watermark removal + style transfer; (c) background-only stylization; (d) contour-only edge
detection; and (e) add the same stickers.

(a) Image Deblurring (b) Image Dehazing (c) Pose Estimation
i | B ! A 8] B’ N

- B

(g) Line Art Colorization
a Byl e |

v B

¥ aF B ‘S

Figure 6: Results of supported tasks. PICO supports a diverse range of tasks, including restoration
(a-b), perception (c—e), and generation (f-h).

4.3 Personalized Test-time Task Generalization

Task Definition. We evaluate test-time personalization on user-defined visual tasks that differ
from conventional CV setups. Specifically, we focus on: (i) Composite tasks requiring multi-step
operations (e.g., watermark removal followed by stylization). (ii) Spatially constrained tasks,
traditionally performed globally but here applied locally or selectively (e.g., contour-only edge
detection, background-only stylization). (iii) Semantic-conditional tasks demanding context-aware
edits (e.g., adding stickers to semantically relevant image regions).

Baselines. Given these novel tasks, we compare PICO with representative state-of-the-art methods
supporting visual instructions, including: (i) Inference-based method: VP [[16]], Analogist [23]); (ii)
Training-based method: PromptDiffusion [52]], InstaManip [24]; (iii) Commercial multimodal models:
GPT-4o [53]. Textual instructions for these methods follow Analogist’s GPT-40-based reasoning
procedure.

Results. Qualitative comparisons in Figure 5] show that PICO effectively handles diverse test-time
defined novel tasks, clearly surpassing baseline methods. Training-based methods (PromptDiffusion,
InstaManip) primarily target semantic-driven editing and thus struggle to match demonstrated appear-
ances, especially in non-RGB outputs (e.g., edge maps as shown in Figure [5[d)). They also fail at
composite tasks, notably failing to remove watermarks before stylization (Figure[5a,b)). Inference-
based methods (VP, Analogist) can roughly mimic target transformations, but their outputs suffer
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Method | Pers.Segt  Normall Z-depth]. Input (B) gt w/o Text w Text

VTM (10-Shot) [54] ‘ - 11.4391 0.0316 "i“ &
Ours w/o Text 66.88 12.7105 0.0432

(+ std) - (+£3.0854)  (£0.0228)
Ours w Text 68.72 10.5306 0.0377

(% std) . (+£2.2856)  (+0.0199)
Method ‘ 2DEdge. 2DKeypoint]  Reshading]
VTM (10-Shot) [54] |  0.0791 0.0639 0.1089
Ours w/o Text 0.0538 0.0609 0.1518
(£ std) (£ 0.0170) (£0.0128) (+0.0553)
Ours w Text 0.0515 0.0497 0.1364
(# std) (+0.0172) (*0.0137) (0.0522)

Table 4: Quantitative ablation studies. For refer-  Fjgure 7: Qualitative comparisons on with
ence, we include 10-shot results from VIM [54].  and without text prompts.

from poor fidelity and noticeable visual artifacts or misalignment. GPT-4o [53]] shows promising
in-context understanding ability, capturing the high-level intent conveyed by examples. However, two
major limitations are observed. (1) Spatial misalignment: While the semantic content is preserved,
the pixel-wise layout is distorted. This poses challenges for tasks requiring spatial precision, such
as contour detection (Figure ﬂe)), and fails in scenarios involving local edits like adding the same
hat (Figure Ekc)). (2) Over-reliance on abstract concepts: Rather than faithfully imitating the visual
exemplars, GPT-40 appears to rely on high-level semantic embeddings. In stylization tasks (Fig-
ure[5[a)(b)(c)), the output fails to match the reference style, but instead defaults to generic “sketch” or
“orange-tone” effects. In contrast, PICO produces outputs consistently aligned in spatial and semantic
detail with provided examples, highlighting its robust visual reasoning capability.

Supported Tasks. In addition to personalized user-defined tasks, PICO also supports various standard
visual tasks spanning restoration, perception, and generation, as illustrated in Figure[6] Although
trained on these standard tasks, the model generalizes remarkably well to novel instances from as few
as 10 examples per task. Notably, for the task of object relighting, i.e., transforming an object from
one lighting condition to another, PICO is able to predict physically plausible shadows aligned with
previously unseen query objects (Figure[6[f)). This indicates an implicit understanding of lighting and
object interactions, highlighting its strong generalization capability to novel physical transformation
tasks.

4.4 Ablation Studies

Effects of Text Prompts. We first quantify the importance of minimal textual prompts in resolving
ambiguities among multiple visual tasks. Specifically, we evaluate our model on personalized
segmentation (PODS) as well as five dense prediction tasks from Taskonomy [4Q] (surface normal,
Z-buffer depth, texture edge, 2D keypoints, and reshading). We prepare 1, 000 quad-grid formatted
test examples per task from the “Muleshoe” building [40]. Evaluation metrics follow [34]: mean error
(mErr) for surface normal, and RMSE for other tasks. RGB predictions are converted to respective
raw outputs for metric computation.

The quantitative results in Table ] show obvious performance improvements with text prompts, along-
side lower variance, indicating that minimal text cues effectively reduce task ambiguity compared to
visual prompts alone. Figure [7)illustrates typical failures without text cues, where the model confuses
distinct output spaces (e.g., outputting RGB-like results instead of proper surface normal maps). With
text prompts, the model clearly separates these tasks, highlighting the necessity of textual guidance
as soft task boundaries. For reference, we include VTM [54], a state-of-the-art 10-shot fine-tuning
method for dense prediction. Remarkably, our generative in-context learner surpasses this specialized
approach on tasks such as surface normal estimation and texture edge detection despite substantially
lower supervision, highlighting strong generalization and data efficiency enabled by generative priors.
Additional ablation studies are provided in the supplementary material.

Task vs. Data Scaling. We systematically investigate how task diversity and data quantity affect
model generalization. Keeping LoRA rank (r=128) and training steps (10k) fixed, we evaluate
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(a) Data-scale (fixed 10 tasks) (b) Task-scale (fixed 10 shots) (c) Balanced (fixed budget)
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Figure 8: Quantitative comparisons across three scaling strategies on seen (A: surface normal
estimation) and unseen (B: personalized segmentation) tasks. We report mean error (mErr) for
surface normal and use (100 — mIoU%) for segmentation to maintain consistent interpretation (lower
is better|). Notably, in the fixed-budget setting (B-c), scaling task diversity improves generalization
in unseen tasks, supporting our visual relation space hypothesis.

three scenarios: (i) Data-scale sweep: Fixing 10 dense prediction tasks, vary shots per task: (K €
1,5,10,20,50). (ii) Task-scale sweep: Fixing 10 shots per task, vary number of tasks (N €
1,5,10,15,20). (iii) Balanced sweep: Fixing total training images constant (10, 50, 100, 200),
compare many-tasks—few-shots (N > K) against few-tasks—many-shots (N < K) regimes. We
evaluate on both in-domain tasks seen during training (e.g., surface normal estimation) and out-of-
domain tasks not seen during training (e.g., personalized segmentation).

Quantitative results are shown in Figure [§] For in-domain tasks, more data volume consistently
improves performance (Figure[8JA-a), while adding tasks hurt (Figure[§A-b), indicating limited
capacity for memorizing multiple tasks. Under fixed budgets, concentrating data on fewer tasks is
best. (Figure[8JA-c). For out-of-domain generalization, performance improves with more data per
task only up to 20 shots, after which it declines due to over-specialization (Figure[8B-a). Greater task
diversity consistently boosts generalization (Figure[§B-b). Under fixed budgets, the many-tasks—few-
shots strategy increasingly outperforms fewer-tasks—many-shots as task count grows (Figure[8B-c).
These findings support our visual-relation—space hypothesis: increased data enhances memorization
of seen tasks, while greater task diversity is crucial for robust generalization to unseen, user-defined
visual tasks.

5 Conclusion

In this paper, we introduced a novel approach for personalized vision by reformulating it as a visual
in-context learning (ICL) problem. Unlike existing methods that rely heavily on task-specific fine-
tuning or synthetic data augmentation, we proposed learning a unified visual relation space, enabling
pretrained diffusion transformers to reason about user-defined visual tasks given a single visual
demonstration. Our method, termed PICQO, demonstrates superior flexibility and effectiveness across
diverse personalized vision scenarios, including complex compositional tasks. Extensive experiments
validate its strong capacity to adapt robustly and efficiently to novel, test-time personalized tasks,
highlighting its practical value for real-world applications and unlocking new potential for generative
image models as versatile visual in-context reasoners.

Limitation and Future Work. Although PICO shows strong generalization within the visual-relation
space seen during training, it is less reliable on entirely novel task types outside that space. This
aligns with human learning, i.e., people also extrapolate best within familiar domains, but broadening
the method to truly novel tasks remains an open challenge. Additionally, the quad-grid input format,
while effective, inherently limits the number of contextual examples and their complexity. Future
research could explore richer context formats, or long-context vision sequential model [55] capable of
supporting an arbitrary number of demonstration examples or task images, such as video sequences,
enabling more comprehensive task specifications and sophisticated visual reasoning.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: These claims are supported by the method and experiments (see Section [3]and
Section ).

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Section[3]ldiscusses limitations of the work.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper is empirical and does not include theoretical results or formal proofs.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Section [d]describes the necessary implementation details to ensure the repro-
ducibility of our experiments. Code will be released upon acceptance.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:

Justification: Not currently. We use public datasets, so data used is available. We are
working on a formal approval to publicly release the code, upon acceptance.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The implementation details are described in Section[d} Additional configura-
tions are in the supplementary material.

Guidelines:

* The answer NA means that the paper does not include experiments.
» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report mean and standard deviation in Table[d Discussion of initial random
seed can be found in the supplementary material.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Section {4|specifies the implementation details.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our work involves training vision models on public datasets and does not raise
foreseeable ethical concerns.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: The broader of impact is discussed in the supplementary material.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: [NA]
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We properly credited previous works and codes in Section 4]
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

17


paperswithcode.com/datasets

691
692

693

694
695

696

697
698

699

700

701
702

704
705

706
707

708

709
710
71

712

713

714

715

716

77
718
719
720
721
722

723
724

725
726
727
728

729

730

731

732

733
734
735
736
737
738

740
741

13.

14.

15.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our training dataset constructed from existing publicly available data, so the
data used is available. We plan to open-source them along with the official code.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We do not include research with crowdsourcing and human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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742 16. Declaration of LLLM usage

743 Question: Does the paper describe the usage of LLMs if it is an important, original, or
744 non-standard component of the core methods in this research? Note that if the LLM is used
745 only for writing, editing, or formatting purposes and does not impact the core methodology,
746 scientific rigorousness, or originality of the research, declaration is not required.

747 Answer: [NA]

748 Justification: We only use LLM for proof-reading.

749 Guidelines:

750 * The answer NA means that the core method development in this research does not
751 involve LLMs as any important, original, or non-standard components.

752 * Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
753 for what should or should not be described.
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