
Published as a conference paper at ICLR 2023

UNSUPERVISED META-LEARNING VIA FEW-SHOT
PSEUDO-SUPERVISED CONTRASTIVE LEARNING

Huiwon JangA∗ Hankook LeeB∗† Jinwoo ShinA

AKorea Advanced Institute of Science and Technology (KAIST) BLG AI Research
{huiwoen0516, jinwoos}@kaist.ac.kr hankook.lee@lgresearch.ai

ABSTRACT

Unsupervised meta-learning aims to learn generalizable knowledge across a dis-
tribution of tasks constructed from unlabeled data. Here, the main challenge is
how to construct diverse tasks for meta-learning without label information; recent
works have proposed to create, e.g., pseudo-labeling via pretrained representations
or creating synthetic samples via generative models. However, such a task con-
struction strategy is fundamentally limited due to heavy reliance on the immutable
pseudo-labels during meta-learning and the quality of the representations or the
generated samples. To overcome the limitations, we propose a simple yet effec-
tive unsupervised meta-learning framework, coined Pseudo-supervised Contrast
(PsCo), for few-shot classification. We are inspired by the recent self-supervised
learning literature; PsCo utilizes a momentum network and a queue of previous
batches to improve pseudo-labeling and construct diverse tasks in a progressive
manner. Our extensive experiments demonstrate that PsCo outperforms existing
unsupervised meta-learning methods under various in-domain and cross-domain
few-shot classification benchmarks. We also validate that PsCo is easily scalable
to a large-scale benchmark, while recent prior-art meta-schemes are not.

1 INTRODUCTION

Learning to learn (Thrun & Pratt, 1998), also known as meta-learning, aims to learn general knowl-
edge about how to solve unseen, yet relevant tasks from prior experiences solving diverse tasks. In
recent years, the concept of meta-learning has found various applications, e.g., few-shot classifica-
tion (Snell et al., 2017; Finn et al., 2017), reinforcement learning (Duan et al., 2017; Houthooft et al.,
2018; Alet et al., 2020), hyperparameter optimization (Franceschi et al., 2018), and so on. Among
them, few-shot classification is arguably the most popular one, whose goal is to learn some knowl-
edge to classify test samples of unseen classes during (meta-)training with few labeled samples. The
common approach is to construct a distribution of few-shot classification (i.e., N -way K-shot) tasks
and optimize a model to generalize across tasks (sampled from the distribution) so that it can rapidly
adapt to new tasks. This approach has shown remarkable performance in various few-shot classi-
fication tasks but suffers from limited scalability as the task construction phase typically requires a
large number of human-annotated labels.

To mitigate the issue, there have been several recent attempts to apply meta-learning to unlabeled
data, i.e., unsupervised meta-learning (UML) (Hsu et al., 2019; Khodadadeh et al., 2019; 2021; Lee
et al., 2021; Kong et al., 2021). To perform meta-learning without labels, the authors have sug-
gested various ways to construct synthetic tasks. For example, pioneering works (Hsu et al., 2019;
Khodadadeh et al., 2019) assigned pseudo-labels via data augmentations or clustering based on pre-
trained representations. In contrast, recent approaches (Khodadadeh et al., 2021; Lee et al., 2021;
Kong et al., 2021) utilized generative models to generate synthetic (in-class) samples or learn un-
known labels via categorical latent variables. They have achieved moderate performance in few-shot
learning benchmarks, but are fundamentally limited as: (a) the pseudo-labeling strategies are fixed
during meta-learning and impossible to correct mislabeled samples; (b) the generative approaches
heavily rely on the quality of generated samples and are cumbersome to scale into large-scale setups.
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Figure 1: An overview of the proposed Pseudo-supervised Contrast (PsCo). PsCo constructs an N -
way K-shot few-shot classification task using the current mini-batch {xi} and the queue of previous
mini-batches; and then, it learns the task via contrastive learning. Here, A is a label assignment ma-
trix found by the Sinkhorn-Knopp algorithm (Cuturi, 2013), A is a pre-defined augmentation distri-
bution, f is a backbone feature extractor, g and h are projection and prediction MLPs, respectively,
and ϕ is an exponential moving average (EMA) of the model parameter θ.

To overcome the limitations of the existing UML approaches, in this paper, we ask whether one
can (a) progressively improve a pseudo-labeling strategy during meta-learning, and (b) construct
more diverse tasks without generative models. We draw inspiration from recent advances in self-
supervised learning literature (He et al., 2020; Khosla et al., 2020), which has shown remarkable
success in representation learning without labeled data. In particular, we utilize (a) a momentum
network to improve pseudo-labeling progressively via temporal ensemble; and (b) a momentum
queue to construct diverse tasks using previous mini-batches in an online manner.

Formally, we propose Pseudo-supervised Contrast (PsCo), a novel and effective unsupervised meta-
learning framework, for few-shot classification. Our key idea is to construct few-shot classification
tasks using the current and previous mini-batches based on the momentum network and the mo-
mentum queue. Specifically, given a random mini-batch of N unlabeled samples, we treat them
as N queries (i.e., test samples) of different N labels, and then select K shots (i.e., training sam-
ples) for each label from the queue of previous mini-batches based on representations extracted by
the momentum network. To further improve the selection procedure, we utilize top-K sampling
after applying a matching algorithm, Sinkhorn-Knopp (Cuturi, 2013). Finally, we optimize our
model via supervised contrastive learning (Khosla et al., 2020) for solving the N -way K-shot task.
Remark that our few-shot task construction relies on not only the current mini-batch but also the
momentum network and the queue of previous mini-batches. Therefore, our task construction (i.e.,
pseudo-labeling) strategy (a) is progressively improved during meta-learning with the momentum
network, and (b) constructs diverse tasks since the shots can be selected from the entire dataset. Our
framework is illustrated in Figure 1.

Throughout extensive experiments, we demonstrate the effectiveness of the proposed framework,
PsCo, under various few-shot classification benchmarks. First, PsCo achieves state-of-the-art per-
formance under both Omniglot (Lake et al., 2011) and miniImageNet (Ravi & Larochelle, 2017)
few-shot benchmarks; its performance is even competitive with supervised meta-learning methods.
Next, PsCo also shows superiority under cross-domain few-shot learning scenarios. Finally, we
demonstrate that PsCo is scalable to a large-scale benchmark, ImageNet (Deng et al., 2009).

We summarize our contributions as follows:

• We propose PsCo, an effective unsupervised meta-learning (UML) framework for few-shot clas-
sification, which constructs diverse few-shot pseudo-tasks without labels utilizing the momen-
tum network and the queue of previous batches in a progressive manner.

• We achieve state-of-the-art performance on few-shot classification benchmarks, Omniglot (Lake
et al., 2011) and miniImageNet (Ravi & Larochelle, 2017). For example, PsCo outperforms the
prior art of UML, Meta-SVEBM (Kong et al., 2021), by 5% accuracy gain (58.03→63.26), for
5-way 5-shot tasks of miniImageNet (see Table 1).
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• We show that PsCo achieves comparable performance with supervised meta-learning methods
in various few-shot classification benchmarks. For example, PsCo achieves 44.01% accuracy for
5-way 5-shot tasks of an unseen domain, Cars (Krause et al., 2013), while supervised MAML
(Finn et al., 2017) does 41.17% (see Table 2).

• We validate PsCo is also applicable to a large-scale dataset: e.g., we improve PsCo by 5.78%
accuracy gain (47.67→53.45) for 5-way 5-shot tasks of Cars using large-scale unlabeled data,
ImageNet (Deng et al., 2009) (see Table 3).

2 PRELIMINARIES

2.1 PROBLEM STATEMENT: UNSUPERVISED FEW-SHOT LEARNING

The problem of interest in this paper is unsupervised few-shot learning, one of the popular unsu-
pervised meta-learning applications. This aims to learn generalizable knowledge without human
annotations for quickly adapting to unseen but relevant few-shot tasks. Following the meta-learning
literature, we refer to the learning phase as meta-training and the adaptation phase as meta-test.

Formally, we are only able to utilize an unlabeled dataset Dmeta train := {xi} during meta-training
our model. At the meta-test phase, we transfer the model to new few-shot tasks {Ti} ∼ Dmeta test

where each task Ti aims to classify query samples {xq} among N labels using support (i.e., training)
samples S = {(xs,ys)}NKs=1 . We here assume the task Ti consists of K support samples for each
label y ∈ {1, . . . , N}, which is referred to as N -way K-shot classification. Note that Dmeta train

and Dmeta test can come from the same domain (i.e., the standard in-domain setting) or different
domains (i.e., cross-domain) as suggested by Chen et al. (2019).

2.2 CONTRASTIVE LEARNING

Contrastive learning (Oord et al., 2018; Chen et al., 2020a; He et al., 2020; Khosla et al., 2020) aims
to learn meaningful representations by maximizing the similarity between similar (i.e., positive)
samples, and minimizing the similarity between dissimilar (i.e., negative) samples on the repre-
sentation space. We first describe a general form of contrastive learning objectives based on the
temperature-normalized cross entropy (Chen et al., 2020a; He et al., 2020) and its variant for multi-
ple positives (Khosla et al., 2020) as follows:

LContrast({qi}Ni=1, {kj}Mj=1,A; τ) := − 1

N

N∑
i=1

1∑
j Ai,j

M∑
j=1

Ai,j log
exp(q⊤

i kj/τ)∑M
k=1 exp(q

⊤
i kk/τ)

, (1)

where {qi} and {kj} are ℓ2-normalized query and key representations, respectively, A ∈ {0, 1}NM
represents whether qi and kj are positive (Ai,j = 1) or negative (Ai,j = 0), and τ is a hyperparam-
eter for temperature scaling.

Based on the recent observations in the self-supervised learning literature, we also describe a general
scheme to construct the query and key representations using data augmentations and a momentum
network. Formally, given a random mini-batch {xi}, the representations can be obtained as follows:

qi = Normalize(hθ ◦ gθ ◦ fθ(ti,1(xi))), ki = Normalize(gϕ ◦ fϕ(ti,2(xi))), (2)
where Normalize(·) is ℓ2 normalization, ti,1 ∼ A1 and ti,2 ∼ A2 are random data augmentations,
f is a backbone feature extractor like ResNet (He et al., 2016), g and h are projection and predic-
tion MLPs,1 respectively, and ϕ is an exponential moving average (i.e., momentum) of the model
parameter θ.2 Since a large number of negative samples plays a crucial role in contrastive learning,
one can re-use the key representations of previous mini-batches by maintaining a queue (He et al.,
2020).

Note that the above forms (1) and (2) can be formulated as various contrastive learning frameworks.
For example, SimCLR (Chen et al., 2020a) is a special case of no momentum ϕ and no predictor h.
In addition, self-supervised contrastive learning methods (Chen et al., 2020a; He et al., 2020) often
assume that ki is only the positive key of qi, i.e., Ai,j = 1 if and only if i = j, while supervised
contrastive learning (Khosla et al., 2020) directly uses labels for A.

1The prediction MLPs have been utilized in the recent SSL literature (Grill et al., 2020; Chen et al., 2021).
2ϕ is updated by ϕ← mϕ+(1−m)θ for each training iteration where m is a momentum hyperparameter.
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Algorithm 1 Pseudo-supervised Contrast (PsCo): PyTorch-like Pseudocode

# f, g, h: backbone, projector, and predictor
# {f,g}_ema: momentum backbone, and projector
# queue: momentum queue (Mxd)
# mm: matrix multiplication, mul: element-wise multiplication

def PsCo(x): # x: a mini-batch of N samples
x1, x2 = aug1(x), aug2(x) # two augmented views of x
q = h(g(f(x1))) # (Nxd) N query representations
z = g_ema(f_ema(x2)) # (Nxd) N query momentum representations
sim = mm(z, queue.T) # (NxM) similarity matrix
A_tilde = sinkhorn(sim) # (NxM) soft pseudo-label assignment matrix
s, A = select_topK(queue, A_tilde) # (NKxd) s: support momentum representations

# (NxNK) A: pseudo-label assignment matrix
logits = mm(q, s.T) / temperature
loss = logits.logsumexp(dim=1) - mul(logits, A).sum(dim=1) / K
return loss.mean()

3 METHOD: PSEUDO-SUPERVISED CONTRASTIVE META-LEARNING

In this section, we introduce Pseudo-supervised Contrast (PsCo), a novel and effective framework
for unsupervised few-shot learning. Our key idea is to construct few-shot classification pseudo-
tasks using the current and previous mini-batches with the momentum network and the momentum
queue. We then employ supervised contrastive learning (Khosla et al., 2020) for learning the pseudo-
tasks. The detailed implementations of our task construction, meta-training objective, and meta-test
scheme for unsupervised few-shot learning are described in Section 3.1, 3.2, and 3.3, respectively.
Our framework is illustrated in Figure 1 and its pseudo-code is provided in Algorithm 1. Note that
we use the same notations described in Section 2 for consistency.

3.1 ONLINE PSEUDO-TASK CONSTRUCTION

We here describe how to construct a few-shot pseudo-task using unlabeled data Dmeta train = {xi}.
To this end, we maintain a queue of previous mini-batches. Then, we treat the previous and current
mini-batch samples as training (i.e., shots) and test (i.e., queries) samples for our few-shot pseudo-
task. Formally, let B := {xi}Ni=1 be the current mini-batch randomly sampled from Dmeta train, and
Q := {x̃j}Mj=1 be the queue of previous mini-batch samples. Now, we treat B = {xi}Ni=1 as queries
of N different pseudo-labels and find K (appropriate) shots for each pseudo-label from the queue
Q. Remark that this approach to utilize the previous mini-batches encourages us to construct more
diverse tasks.

To find the shots efficiently, we utilize the momentum network and the momentum queue described
in Section 2.2. For the current mini-batch samples, we compute the momentum query represen-
tations with data augmentations ti,2 ∼ A2, i.e., zi := Normalize(gϕ ◦ fϕ(ti,2(xi))). Following
He et al. (2020), we store only the momentum representations of the previous mini-batch samples
instead of raw data in the queue Qz, i.e., Qz := {z̃j}Mj=1. Remark that the use of the momentum
network is not only for efficiency but also for improving our task construction strategy because the
momentum network is consistent and progressively improved during training. Following He et al.
(2020), we randomly initialize the queue Qz at the beginning of training.

Now, the remaining question is as follows: How to find K appropriate shots from the queue Q for
each pseudo-label using the momentum representations? Before introducing our algorithm, we first
discuss two requirements for constructing semantically meaningful few-shot tasks: (i) shots and
queries of the same label should be semantically similar, and (ii) all shots should be different. Based
on these requirements, we formulate our assignment problem as follows:

max
Ã∈{0,1}N×M

N∑
i=1

M∑
j=1

Ãij · z⊤i z̃j such that
∑
j

Ãij = K,
∑
i

Ãij ≤ 1. (3)

Obtaining the exact optimal solution to the above assignment problem for each training iteration
might be too expensive for our purpose (Ramshaw & Tarjan, 2012). Instead, we use an approximate
algorithm: we first apply a fast version (Cuturi, 2013) of the Sinkhorn-Knopp algorithm to solve the
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following problem:

max
Ã∈[0,1]N×M

N∑
i=1

M∑
j=1

Ãij · z⊤i z̃j + ϵH(Ã) such that
∑
j

Ãij = 1/N,
∑
i

Ãij = 1/M, (4)

which is an entropy-regularized optimal transport problem (Cuturi, 2013). Its optimal solution Ã∗

can be obtained efficiently and can be considered as a soft assignment matrix between the current
mini-batch {zi}Ni=1 and the queue Qz = {z̃j}Mj=1. Hence, we select top-K elements for each row
of the assignment matrix Ã∗ and finally construct an N -way K-shot pseudo-task consisting of (a)
query samples B = {xi}Ni=1, (b) the support representations Sz := {z̃s}NKs=1 , and (c) the pseudo-
label assignment matrix A ∈ {0, 1}N×NK . Note that Figure 1 shows an example of a 5-way 2-shot
task. We empirically observe that our task construction strategy satisfies the above requirements (i)
and (ii) (see Section 4.3).

3.2 META-TRAINING: SUPERVISED CONTRASTIVE LEARNING WITH PSEUDO TASKS

We now describe our meta-learning objective LPsCo for learning our few-shot pseudo-tasks. We here
use our model θ to obtain query representations: qi := Normalize(hθ ◦ gθ ◦ fθ(ti,1(xi))) where
ti,1 ∼ A1 is a random data augmentation for each i. Then, our objective LPsCo is defined as follows:

LPsCo := LContrast({qi}Ni=1,Sz,A; τPsCo), (5)

where Sz := {z̃s}NKs=1 is the support representations and A ∈ {0, 1}N×NK is the pseudo-label
assignment matrix, which are constructed by our task construction strategy described in Section 3.1.

Since our framework PsCo uses the same architectural components as a self-supervised learning
framework, MoCo (He et al., 2020), the MoCo objective LMoCo can be incorporated into our PsCo
without additional computation costs. Note that the MoCo objective can be written as follows:

LMoCo := LContrast({qi}Ni=1, {zi}Ni=1 ∪Qz,AMoCo; τMoCo), (6)
where (AMoCo)i,j = 1 if and only if i = j, and zi := Normalize(gϕ ◦ fϕ(ti,2(xi))) as described in
Section 3.1. We optimize our model θ via all the objectives, i.e., Ltotal := LPsCo + LMoCo. Remark
again that ϕ is updated by exponential moving average (EMA), i.e., ϕ← mϕ+ (1−m)θ.

Weak augmentation for momentum representations. To successfully find the pseudo-label as-
signment matrix A, we apply weak augmentations for the momentum representations (i.e., A2 is
weaker than A1) as Zheng et al. (2021) did. This reduces the noise in the representations and con-
sequently enhances the performance of our PsCo as A becomes more accurate (see Section 4.3).

3.3 META-TEST

At the meta-test stage, we have an N -way K-shot task T consisting of query samples {xq} and
support samples S = {(xs,ys)}NKs=1 .3 We here discard the momentum network ϕ and use only the
online network θ. To predict labels, we first compute the query representation qq := Normalize(hθ ◦
gθ◦fθ(xq)) and the support representations zs := Normalize (gθ ◦ fθ(xs))). Then we predict a label
by the following classification rule: ŷ := argmaxy q

⊤
q cy where cy := Normalize(

∑
s 1ys=y ·zs) is

the prototype vector. This is inspired by our LPsCo, which can be interpreted as minimizing distance
from the mean (i.e., prototype) of the shot representations.4

Further adaptation for cross-domain few-shot classification. Under cross-domain few-shot clas-
sification scenarios, the model θ should further adapt to the meta-test domain due to the dissimilarity
from meta-training. We here suggest an efficient adaptation scheme using only a few labeled sam-
ples. Our idea is to consider the support samples as queries. To be specific, we compute the query
representation qs := Normalize(hθ◦gθ◦fθ(xs)) for each support sample xs, and construct the label
assignment matrix A′ as A′

s,s′ = 1 if and only if ys = ys′ . Then we simply optimize only gθ and
hθ via contrastive learning, i.e., LContrast({qs}, {zs},A′; τPsCo), for few iterations. We empirically
observe that this adaptation scheme is effective under cross-domain settings (see Section 4.3).

3Note that N and K for meta-training and meta-test could be different. We use a large N (e.g., N = 256)
during meta-training to fully utilize computational resources like standard deep learning, and a small N (e.g.,
N = 5) during meta-test following the meta-learning literature.

4LPsCo = − 1
N

∑
i

1
τPsCo

q⊤
i

(
1
K

∑
j Ai,jzj

)
+ term not depending on A.
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Table 1: Few-shot classification accuracy (%) on Omniglot and miniImageNet benchmarks. We
report the average accuracy over 2000 few-shot tasks for PsCo and self-supervised learning methods.
Other reported numbers borrow from Khodadadeh et al. (2021); Kong et al. (2021). Bold entries
indicate the best for each task configuration, among unsupervised and self-supervised methods.

Omniglot (way, shot) miniImageNet (way, shot)
Method (5,1) (5,5) (20,1) (20,5) (5,1) (5,5) (5,20) (5,50)
Training from Scratch 52.50 74.78 24.91 47.62 27.59 38.48 51.53 59.63

Unsupervised meta-learning

CACTUs-MAML 68.84 87.78 48.09 73.36 39.90 53.97 63.84 69.64
CACTUs-ProtoNets 68.12 83.58 47.75 66.27 39.18 53.36 61.54 63.55
UMTRA 83.80 95.43 74.25 92.12 39.93 50.73 61.11 67.15
LASIUM-MAML 83.26 95.29 - - 40.19 54.56 65.17 69.13
LASIUM-ProtoNets 80.15 91.10 - - 40.05 52.53 61.09 64.89
Meta-GMVAE 94.92 97.09 82.21 90.61 42.82 55.73 63.14 68.26
Meta-SVEBM 91.85 97.21 79.66 92.21 43.38 58.03 67.07 72.28
PsCo (Ours) 96.37 99.13 89.64 97.07 46.70 63.26 72.22 73.50

Self-supervised learning

SimCLR 92.13 97.06 80.95 91.60 43.35 52.50 61.83 64.85
MoCo v2 92.66 97.38 82.13 92.35 41.92 50.94 60.23 63.45
SwAV 93.13 97.32 82.63 92.12 43.24 52.41 61.36 64.52

Supervised meta-learning

MAML 94.46 98.83 84.60 96.29 46.81 62.13 71.03 75.54
ProtoNets 98.35 99.58 95.31 98.81 46.56 62.29 70.05 72.04

4 EXPERIMENTS

In this section, we demonstrate the effectiveness of the proposed framework under standard few-
shot learning benchmarks (Section 4.1) and cross-domain few-shot learning benchmarks (Section
4.2). We provide ablation studies regarding PsCo in Section 4.3. Following Lee et al. (2021), we
mainly use Conv4 and Conv5 architectures for Omniglot (Lake et al., 2011) and miniImageNet (Ravi
& Larochelle, 2017), respectively, for the backbone feature extractor fθ. For the number of shots
during meta-learning, we use K = 1 for Omniglot and K = 4 for miniImageNet (see Table 6 for the
sensitivity of K). Other details are fully described in Appendix A. We omit the confidence intervals
in this section for clarity, and the full results with them are provided in Appendix F.

4.1 STANDARD FEW-SHOT BENCHMARKS

Setup. We here evaluate PsCo on the standard few-shot benchmarks of unsupervised meta-learning:
Omniglot (Lake et al., 2011) and miniImageNet (Ravi & Larochelle, 2017). We compare PsCo’s
performance with unsupervised meta-learning methods (Hsu et al., 2019; Khodadadeh et al., 2019;
2021; Lee et al., 2021; Kong et al., 2021), self-supervised learning methods (Chen et al., 2020a;b;
Caron et al., 2020), and supervised meta-learning methods (Finn et al., 2017; Snell et al., 2017) on
the benchmarks. The details of the benchmarks and the baselines are described in Appendix D.

Few-shot classification results. Table 1 shows the results of the few-shot classification with various
(way, shot) tasks of Omniglot and miniImageNet. PsCo achieves state-of-the-art performance on
both Omniglot and miniImageNet benchmarks under the unsupervised setting. For example, we
obtain 5% accuracy gain (67.07 → 72.22) on miniImageNet 5-way 20-shot tasks. Moreover, the
performance is even competitive with supervised meta-learning methods, ProtoNets (Snell et al.,
2017), and MAML (Finn et al., 2017) as well.

4.2 CROSS-DOMAIN FEW-SHOT BENCHMARKS

Setup. We evaluate PsCo on cross-domain few-shot classification benchmarks following Oh et al.
(2022). To be specific, we use (a) benchmark of large-similarity with ImageNet: CUB (Wah et al.,
2011), Cars (Krause et al., 2013), Places (Zhou et al., 2018), and Plantae (Horn et al., 2018); (b)
benchmarks of small-similarity with ImageNet: CropDiseases (Mohanty et al., 2016), EuroSAT
(Helber et al., 2019), ISIC (Codella et al., 2018), and ChestX (Wang et al., 2017). As baselines, we
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Table 2: Few-shot classification accuracy (%) on cross-domain few-shot classification benchmarks.
We transfer Conv5 trained on miniImageNet to each benchmark. We report the average accuracy
over 2000 few-shot tasks for all methods, except Meta-SVEBM as it is evaluated over 200 tasks
due to the long evaluation time. Bold entries indicate the best for each task configuration, among
unsupervised and self-supervised methods.

(a) Cross-domain few-shot benchmarks similar to miniImageNet.
CUB Cars Places Plantae

Method (5, 5) (5, 20) (5, 5) (5, 20) (5, 5) (5, 20) (5, 5) (5, 20)
Unsupervised meta-learning

Meta-GMVAE 47.48 54.08 31.39 38.36 57.70 65.08 38.27 45.02
Meta-SVEBM 45.50 54.61 34.27 46.23 51.27 61.09 38.12 46.22
PsCo (Ours) 57.38 68.58 44.01 57.50 63.60 73.95 52.72 64.53

Self-supervised learning

SimCLR 52.11 61.89 37.40 50.05 60.10 69.93 43.42 54.92
MoCo v2 53.23 62.81 38.65 51.77 59.09 69.08 43.97 55.45
SwAV 51.58 61.38 36.85 50.03 59.57 69.70 42.68 54.03

Supervised meta-learning

MAML 56.57 64.17 41.17 48.82 60.05 67.54 47.33 54.86
ProtoNets 56.74 65.03 38.98 47.98 59.39 67.77 45.89 54.29

(b) Cross-domain few-shot benchmarks dissimilar to miniImageNet.
CropDiseases EuroSAT ISIC ChestX

Method (5, 5) (5, 20) (5, 5) (5, 20) (5, 5) (5, 20) (5, 5) (5, 20)
Unsupervised meta-learning

Meta-GMVAE 73.56 81.22 73.83 80.11 33.48 39.48 23.23 26.26
Meta-SVEBM 71.82 83.13 70.83 80.21 38.85 48.43 26.26 28.91
PsCo (Ours) 88.24 94.95 81.08 87.65 44.00 54.59 24.78 27.69

Self-supervised learning

SimCLR 79.90 88.73 79.14 85.05 42.83 51.35 25.14 29.21
MoCo v2 80.96 89.85 79.94 86.16 43.43 52.14 25.24 29.19
SwAV 80.15 89.24 79.31 85.62 43.21 51.99 24.99 28.57

Supervised meta-learning

MAML 77.76 83.24 71.48 76.70 47.34 55.09 22.61 24.25
ProtoNets 76.01 83.64 64.91 70.88 40.62 48.38 23.15 25.72

test the previous state-of-the-art unsupervised meta-learning (Lee et al., 2021; Kong et al., 2021),
self-supervised learning (Chen et al., 2020a;b; Caron et al., 2020), and supervised meta-learning
(Finn et al., 2017; Snell et al., 2017). We here use our adaptation scheme (Section 3.3) with 50
iterations. The details of the benchmarks and implementations are described in Appendix E.

Small-scale cross-domain few-shot classification results. We here evaluate various Conv5 models
meta-trained on miniImageNet as used in Section 4.1. Table 2 shows that PsCo outperforms all the
baselines across all the benchmarks, except ChestX, which is too different from the distribution of
miniImageNet (Oh et al., 2022). Somewhat interestingly, PsCo competitive with supervised learning
under these benchmarks, e.g., PsCo achieves 88% accuracy on CropDiseases 5-way 5-shot tasks,
whereas MAML gets 77%. This implies that our unsupervised method, PsCo, generalizes on more
diverse tasks than supervised learning, which is specialized to in-domain tasks.

Large-scale cross-domain few-shot classification results. We also validate that our meta-learning
framework is applicable to the large-scale benchmark, ImageNet (Deng et al., 2009). Remark that
the recent unsupervised meta-learning methods (Lee et al., 2021; Kong et al., 2021; Khodadadeh
et al., 2021) rely on generative models, so they are not easily applicable to such a large-scale bench-
mark. For example, we observe that PsCo is 2.7 times faster than the best baseline, Meta-SVEBM
(Kong et al., 2021), even though Meta-SVEBM uses low-dimensional representations instead of full
images during training. Hence, we compare PsCo with (a) self-supervised methods, MoCo v2 (Chen
et al., 2020b) and BYOL (Grill et al., 2020), and (b) the publicly-available supervised learning base-
line. We here use the ResNet-50 (He et al., 2016) architecture. The training details are described in
Appendix E.4 and we also provide ResNet-18 results in Appendix F.
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Table 3: 5-way 5-shot classification accuracy (%) on cross-domain few-shot benchmarks. We trans-
fer ImageNet-trained ResNet-50 models to each benchmark. We report the average accuracy over
600 few-shot tasks.

Method CUB Cars Places Plantae CropDiseases EuroSAT ISIC ChestX
MoCo v2 64.16 47.67 81.39 61.36 82.89 76.96 38.26 24.28
+PsCo (Ours) 76.63 53.45 83.87 69.17 89.85 83.99 41.64 23.60

BYOL 67.45 45.74 75.43 56.86 80.82 77.70 37.27 24.15
+PsCo (Ours) 82.13 56.19 83.80 71.14 92.92 85.33 42.90 26.05
Supervised 89.13 75.15 84.41 72.91 90.96 85.64 43.34 25.35

Table 4: Component ablation studies on Omniglot.
Momentum Predictor Sinkhorn Top-K sampling LMoCo (5, 1) (5, 5) (20, 1) (20, 5)

✓ ✓ ✓ ✓ ✓ 96.37 99.13 89.64 97.07
✗ ✓ ✓ ✓ ✓ 90.32 96.78 76.17 90.41
✓ ✗ ✓ ✓ ✓ 90.21 96.86 76.15 90.53
✓ ✓ ✗ ✓ ✓ 95.81 98.94 88.25 96.57
✓ ✓ ✓ ✗ ✓ 94.95 98.81 86.32 96.05
✓ ✓ ✓ ✓ ✗ 93.16 97.40 81.03 91.33

Table 3 shows that (i) PsCo consistently improves both MoCo and BYOL under this setup (e.g.,
67%→ 82% in CUB), and (ii) PsCo benefits from the large-scale dataset as we obtain a huge amount
of performance gain on the benchmarks of large-similarity with ImageNet: CUB, Cars, Places, and
Plantae. Consequently, we achieve comparable performance with the supervised learning baseline,
except Cars, which shows that our PsCo is applicable to large-scale unlabeled datasets.

4.3 ABLATION STUDY

Component analysis. In Table 4, we demonstrate the necessity of each component in PsCo by
removing the components one by one: momentum encoder ϕ, prediction head h, Sinkhorn-Knopp
algorithm, top-K sampling for sampling support samples, and the MoCo objective, LMoCo (6). We
found that the momentum network ϕ and the prediction head h are critical architectural components
in our framework like recent self-supervised learning frameworks (Grill et al., 2020; Chen et al.,
2021). In addition, Table 4 shows that training with only our objective, LPsCo (5), achieves mean-
ingful performance, but incorporating it into MoCo is more beneficial. To further validate that our
task construction is progressively improved during meta-learning, we evaluate whether a query and
a corresponding support sample have the same true label. Figure 2a shows that our task construction
is progressively improved, i.e., the task requirement (i) described in Section 3.1 satisfies.

Table 4 also verifies the contribution of the Sinkhorn-Knopp algorithm and Top-K sampling for the
performance of PsCo. We further analyze the effect of the Sinkhorn-Knopp algorithm by measuring
the overlap ratio of selected supports between different pseudo-labels. As shown in Figure 2b, there
are almost zero overlaps when using the Sinkhorn-Knopp algorithm, which means the constructed
task is a valid few-shot task, satisfying the task requirement (ii) described in Section 3.1.

Adaptation effect on cross-domain. To validate the effect of our adaptation scheme (Section 3.3),
we evaluate the few-shot classification accuracy during the adaptation process on miniImageNet
(i.e., in-domain) and CropDiseases (i.e., cross-domain) benchmarks. As shown in Figure 2d, we
found that the adaptation scheme is more useful in cross-domain benchmarks than in-domain ones.
Based on these results, we apply the scheme to only the cross-domain scenarios. We also found
that our adaptation does not cause over-fitting since we only optimize the projection and prediction
heads gθ and hθ. The results for the adaptation effect on the whole benchmarks are represented in
Appendix C.

Augmentations. We here confirm that weak augmentation for the momentum network (i.e., A2) is
more effective than strong augmentation unlike other self-supervised learning literature (Chen et al.,
2020a; He et al., 2020). We denote the standard augmentation consisting of both geometric and color
transformations by Strong, and a weaker augmentation consisting of only geometric transformations
as Weak (see details in Appendix A). As shown in Table 5, utilizing the weak augmentation for A2

is much more beneficial since it helps to find an accurate pseudo-label assignment matrix A.
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Figure 2: (a) Pseudo-label quality, measuring the agreement between pseudo-labels and true la-
bels, (b) Shot overlap ratio, measuring whether the shots for each pseudo-label are disjoint, during
meta-training. (c,d) Performance while adaptation on in-domain (miniImageNet) and cross-domain
(CropDiseases) benchmarks, respectively. We obtain these results from 100 random batches.

Table 5: The ablation study with varying augmentation
choices for A1 and A2 on miniImageNet.

A1 A2 (5, 1) (5, 5) (5, 20) (5, 50)

Strong Strong 44.54 60.04 68.61 71.20
Strong Weak 46.70 63.26 72.22 73.50
Weak Strong 43.56 58.77 67.21 69.46
Weak Weak 40.68 55.05 63.32 65.82

Table 6: The ablation study with vary-
ing K on miniImageNet.

K (5, 1) (5, 5) (5, 20) (5, 50)

1 45.88 61.84 70.25 72.76
4 46.70 63.26 72.22 73.50
16 46.31 62.76 70.91 73.43
64 46.60 62.50 70.82 73.22

Training K. We also look at the effect of the training K, i.e. number of shots sampled online.
We conduct the experiment with K ∈ {1, 4, 16, 64}. We observe that PsCo performs consistently
well regardless of the choice of K as shown in Table 6. The proper K is suggested to obtain the
best-performing models, e.g., K = 4 for miniImageNet and K = 1 for Omniglot are the best.

5 RELATED WORKS

Unsupervised meta-learning. Unsupervised meta-learning (Hsu et al., 2019; Khodadadeh et al.,
2019; Lee et al., 2021; Kong et al., 2021; Khodadadeh et al., 2021) links meta-learning and unsu-
pervised learning by constructing synthetic tasks and extracting the meaningful information from
unlabeled data. For example, CACTUs (Hsu et al., 2019) cluster the data on the pretrained repre-
sentations at the beginning of meta-learning to assign pseudo-labels. Instead of pseudo-labeling,
UMTRA (Khodadadeh et al., 2019) and LASIUM (Khodadadeh et al., 2021) generate synthetic
samples using data augmentations or pretrained generative networks like BigBiGAN (Donahue &
Simonyan, 2019). Meta-GMVAE (Lee et al., 2021) and Meta-SVEBM (Kong et al., 2021) represent
unknown labels via categorical latent variables using variational autoencoders (Kingma & Welling,
2014) and energy-based models (Teh et al., 2003), respectively. In this paper, we suggest a novel
online pseudo-labeling strategy to construct diverse tasks without help from any pretrained network
or generative model. As a result, our method is easily applicable to large-scale datasets.

Self-supervised learning. Self-supervised learning (SSL) (Doersch et al., 2015) has shown remark-
able success for unsupervised representation learning across various domains, including vision (He
et al., 2020; Chen et al., 2020a), speech (Oord et al., 2018), and reinforcement learning (Laskin
et al., 2020). Among SSL objectives, contrastive learning (Oord et al., 2018; Chen et al., 2020a; He
et al., 2020) is arguably most popular for learning meaningful representations. In addition, recent
advances have been made with the development of various architectural components: e.g., Siamese
networks (Doersch et al., 2015), momentum networks (He et al., 2020), and asymmetric architec-
tures (Grill et al., 2020; Chen & He, 2021). In this paper, we utilize the SSL components to construct
diverse few-shot tasks in an unsupervised manner.

6 CONCLUSION

Although unsupervised meta-learning (UML) and self-supervised learning (SSL) share the same
purpose of learning generalizable knowledge to unseen tasks by utilizing unlabeled data, there still
exists a gap between UML and SSL literature. In this paper, we bridge the gap as we tailor various
SSL components to UML, especially for few-shot classification, and we achieve superior perfor-
mance under various few-shot classification scenarios. We believe our research could bring many
future research directions in both the UML and SSL communities.
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Unsupervised learning, especially self-supervised learning, often requires a large number of training
samples, a huge model, and a high computational cost for training the model on large-scale data to
obtain meaningful representations because of the absence of human annotations. Furthermore, fine-
tuning the model for solving a new task is also time-consuming and memory-inefficient. Hence, it
could raise environmental issues such as carbon generation, which could bring an abnormal climate
and accelerate global warming. In that sense, meta-learning should be considered as a solution since
its purpose is to learn generalizable knowledge that can be quickly adapted to unseen tasks. In
particular, unsupervised meta-learning, which benefits from both meta-learning and unsupervised
learning, would be an important research direction. We believe that our work could be a useful step
toward learning easily-generalizable knowledge from unlabeled data.

REPRODUCIBILITY STATEMENT

We provide all the details to reproduce our experimental results in Appendix A, D, and E. The code
is available at https://github.com/alinlab/PsCo. In our experiments, we mainly use
NVIDIA GTX3090 GPUs.
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Bolei Zhou, Àgata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba 0001. Places: A
10 million image database for scene recognition. IEEE Trans. Pattern Anal. Mach. Intell., 40(6):
1452–1464, 2018.

13



Published as a conference paper at ICLR 2023

A IMPLEMENTATION DETAILS

We train our models via stochastic gradient descent (SGD) with a batch size of N = 256 for 400
epochs. Following Chen et al. (2020b); Chen & He (2021), we use an initial learning rate of 0.03
with the cosine learning schedule, τMoCo = 0.2, and a weight decay of 5×10−4. We use a queue size
of M = 16384 since Omniglot (Lake et al., 2011) and miniImageNet (Ravi & Larochelle, 2017)
has roughly 100k meta-training samples. Following Lee et al. (2021), we use Conv4 and Conv5 for
Omniglot and miniImageNet, respectively, for the backbone feature extractor fθ. We describe the
detailed architectures in Table 7. For projection and prediction MLPs, gθ and hθ, we use 2-layer
MLPs with a hidden size of 2048 and an output dimension of 128. For the hyperparameters of PsCo,
we use τPsCo = 1 and a momentum parameter of m = 0.99 (see Appendix B for the hyperparameter
sensitivity). For the number of shots during meta-learning, we use K = 1 for Omniglot and K = 4
for miniImageNet (see Table 6 for the sensitivity of K). We use the last-epoch model for evaluation
without any guidance from the meta-validation dataset.

Table 7: Pytorch-like architecture descriptions for standard few-shot benchmarks
Backbone Layer descriptions Output shape

Conv4 [Conv2d(3×3, 64 filter), BatchNorm2d, ReLU, MaxPool2d(2×2)] ×4 64× 2× 2
Conv5 [Conv2d(3×3, 64 filter), BatchNorm2d, ReLU, MaxPool2d(2×2)] ×5 64× 2× 2

Augmentations. We describe the augmentations for Omniglot and miniImagenet in Table 8. For
Omniglot, because it is difficult to apply many augmentations to gray-scale images, we use the same
rule for weak and strong augmentations. For miniImageNet, we use only geometric transformations
for the weak augmentation following Zheng et al. (2021).

Table 8: Pytorch-like augmentation descriptions for Omniglot and miniImageNet
Dataset Augmentation Descriptions

Omniglot Strong, Weak RandomResizeCrop(28, scale=(0.2, 1))
RandomHorizontalFlip()

miniImagenet
Strong

RandomResizedCrop(84, scale=(0.2, 1))
RandomApply([ColorJitter(0.4, 0.4, 0.4, 0.1)], p=0.1)
RandomGrayScale(p=0.2)
RandomHorizontalFlip()

Weak RandomResizedCrop(84, scale=(0.2, 1))
RandomHorizontalFlip()

Training procedures. To ensure the performance of PsCo and self-supervised learning models, we
use three independently-trained models with random seeds and report the average performance of
them.

B ANALYSIS ON HYPERPARAMETER SENSITIVITY

For the small-scale experiments, we use a momentum of m = 0.99 and a temperature of τPsCo = 1.
We here provide more ablation experiments with varying the hyperparameters m and τPsCo. Table 9
and 10 show the sensitivity of hyperparameters on the miniImageNet dataset. We observe that PsCo
achieves good performance even for non-optimal hyperparameters.

Table 9: Sensitivity of momentum m on mini-
ImageNet (way, shot).

m (5, 1) (5, 5) (5, 20) (5, 50)
0.9 46.49 62.18 70.21 72.77

0.99 46.70 63.26 72.22 73.50
0.999 45.96 61.53 69.66 72.04

Table 10: Sensitivity of temperature τPsCo on
miniImageNet (way, shot).

τPsCo (5, 1) (5, 5) (5, 20) (5, 50)
0.2 46.43 62.29 70.04 72.22
0.5 46.32 62.63 70.50 73.15
1.0 46.70 63.26 72.22 73.50
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C EFFECT OF ADAPTATION

We measure the performance with and without our adaptation scheme on various domains using
miniImageNet-pretrained PsCo. Table 11 shows that our adaptation scheme enhances the way to
adapt to each domain. In particular, the adaptation scheme is highly suggested for cross-domain
few-shot classification scenarios.

Table 11: Before and after adaptation of PsCo in few-shot classification.
Adaptation miniImageNet CUB Cars Places Plantae CropDiseases EuroSAT ISIC ChestX

5-way 5-shot

✗ 63.26 55.15 42.27 62.98 48.31 79.75 74.73 41.18 24.54
✓ 63.30 57.38 44.01 63.60 52.72 88.24 81.08 44.00 24.78

5-way 20-shot

✗ 72.22 62.35 51.02 70.85 55.91 84.72 78.96 48.53 27.60
✓ 73.00 68.58 57.50 73.95 64.53 94.95 87.65 54.59 27.69

D SETUP FOR STANDARD FEW-SHOT BENCHMARKS

We here describe details of benchmarks and baselines in Section D.1 and D.2, respectively, for the
standard few-shot classification experiments (Section 4.1).

D.1 DATASETS

Omniglot (Lake et al., 2011) is a 28 × 28 gray-scale dataset of 1623 characters with 20 samples
each. We follow the setup of unsupervised meta-learning approaches (Hsu et al., 2019). We split the
dataset into 120, 100, and 323 classes for meta-training, meta-validation, and meta-test respectively.
In addition, the 0, 90, 180, and 270 degrees rotated views for each class become the different cate-
gories. Thus, we have a total of 6492, 400, and 1292 classes for meta-training, meta-validation, and
meta-test respectively.

MiniImageNet (Ravi & Larochelle, 2017) is an 84 × 84 resized subset of ILSVRC-2012 (Deng
et al., 2009) with 600 samples each. We split the dataset into 64, 16, and 20 classes for meta-
training, meta-validation, and meta-test respectively as introduced in Ravi & Larochelle (2017).

D.2 BASELINES

We compare our performance with unsupervised meta-learning, self-supervised learning, and su-
pervised meta-learning methods. To be specific, (a) for the unsupervised meta-learning, we use
CACTUs (Hsu et al., 2019) of the best options (ACAI clustering for Omniglot and DeepCluster for
miniImageNet), UMTRA (Khodadadeh et al., 2019), LASIUM (Laskin et al., 2020) of the best op-
tions (LASIUM-RO-GAN for Omniglot and LASIUM-N-GAN for miniImageNet), Meta-GMVAE
(Lee et al., 2021), Meta-SVEBM (Kong et al., 2021); (b) for the self-supervised learning methods,
we use SimCLR (Chen et al., 2020a), MoCo v2 (Chen et al., 2020b), and SwAV (Caron et al., 2020);
(c) for the supervised meta-learning, we use the results of MAML (Finn et al., 2017) and ProtoNets
(Snell et al., 2017) reported in (Hsu et al., 2019).

For training self-supervised learning methods in our experimental setups, we use the same architec-
ture and hyperparameters. For the hyperparameter of temperature scaling, we use the value provided
in each paper: τSimCLR = 0.5 for SimCLR, τMoCo = 0.2 for MoCo v2, and τSwAV = 0.1 for SwAV. For
evaluation, we use K-Nearest Neightobrs (K-NN) for self-supervised learning methods since their
classification rules are not specified.
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E SETUP FOR CROSS-DOMAIN FEW-SHOT BENCHMARKS

We now describe the setup for cross-domain few-shot benchmarks, including detailed information on
datasets, baseline experiments, implementational details, and the setup for large-scale experiments.

E.1 DATASETS

For the cross-domain few-shot benchmarks, we use eight different datasets. We describe the dataset
information in Table 12. We use the dataset split described in Tseng et al. (2020) for the benchmark
of high-similarity and we use the dataset split described in Guo et al. (2020) for the benchmark of
low-similarity. Because we do not perform the meta-training procedure using the datasets of cross-
domain benchmarks, we only utilize the meta-test splits on these datasets. We use the 84×84 resized
samples for evaluation on small-scale experiments.

Table 12: Information of datasets for cross-domain few-shot benchmarks.
ImageNet similarity Datset # of classes # of samples

High

CUB (Wah et al., 2011) 200 11,788
Cars (Krause et al., 2013) 196 16,185
Places (Zhou et al., 2018) 365 1,800,000
Plantae (Horn et al., 2018) 5089 675,170

Low

CropDiseases (Mohanty et al., 2016) 38 43,456
EuroSAT (Helber et al., 2019) 10 27,000
ISIC (Codella et al., 2018) 7 10,015
ChestX (Wang et al., 2017) 7 25,848

E.2 BASELINES

We compare our performance with (a) previous in-domain state-of-the-art methods of unsupervised
meta-learning, self-supervised learning models, and supervised meta-learning models.

Unsupervised meta-learning models. We use previous in-domain state-of-the-art methods of un-
supervised meta-learning models, Meta-GMVAE(Lee et al., 2021) and Meta-SVEBM (Kong et al.,
2021). We use the miniImageNet pretrained parameters that the paper provided, and follow the
meta-test procedure of each model to evaluate the performance.

Self-supervised learning models. We use SimCLR (Chen et al., 2020a), MoCo v2 (Chen et al.,
2020b), and SwAV (Caron et al., 2020) of miniImageNet pretrained parameters as our baselines.
Because self-supervised learning models are pretrained on miniImageNet, we additionally fine-tune
the models with a linear classifier to let the models adapt to each domain. Following the setting
provided in Guo et al. (2020); Oh et al. (2022), we detach the head of the models gθ and attach the
linear classifier cψ to the model. We freeze the base network fθ while fine-tuning and only cψ is
learned. We fine-tune the models via SGD with an initial learning rate of 0.01, a momentum of 0.9,
weight decay of 0.001, and a batch size of N = 4 for 100 epochs.

Supervised meta-learning models. We use MAML (Finn et al., 2017) and ProtoNets (Snell et al.,
2017) of Conv5 architectures of miniImageNet pretrained. Following the procedure of Snell et al.
(2017), we train the models via Adam (Kingma & Ba, 2015) with a learning rate of 0.001 and cut
the learning rate in half for every training of 2000 episodes. We train them for 60K episodes and use
the model of the best validation accuracy. We train them through a 5-way 5-shot, and the rest of the
hyperparameters are referenced in their respective papers. We observe that their performances are
similar to the performance described in Table 1.

E.3 EVALUATION DETAILS

To evaluate our method, we apply our adaptation scheme. Following Section 3.3, we freeze the base
network fθ. We train only projection head gθ and prediction head hθ via SGD with an initial learning
rate of 0.01, a momentum of 0.9, and weight decay of 0.001 as self-supervised learning models are
fine-tuned. We only apply 50 iterations of our adaptation scheme when reporting performance.
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E.4 LARGE-SCALE SETUP

Here, we describe the setup for large-scale experiments. For evaluating, we use the same protocol
with the small-scale experiments, except the scale of images is 224× 224.

Augmentations. For large-scale experiments, we use 224 × 224-scaled data. Thus, we use similar
yet slightly different augmentation schemes with small-scale experiments. Following the strong
augmentation used in Chen et al. (2020b;a), we additionally apply GaussianBlur as a random
augmentation. We use the same configuration for weak augmentation. For evaluation, we resize the
images into 256 × 256 and then apply the CenterCrop to make 224 × 224 images by following
Guo et al. (2020).

ImageNet pretraining. We pretrain MoCo v2 (Chen et al., 2020b), BYOL (Grill et al., 2020),
and our PsCo of ResNet-18/50 (He et al., 2016) via SGD with a batch size of N = 256 for 200
epochs. Following (Chen et al., 2020b; Chen & He, 2021), we use an initial learning rate of 0.03
with the cosine learning schedule, τMoCo = 0.2 and a weight decay of 0.0001. We use a queue size
of M = 65536 and momentum of m = 0.999. For the parameters of PsCo, we use τPsCo = 0.2 and
K = 16 as the queue is 4 times bigger. For supervised pretraining, we use the the model checkpoint
officially provided by torchvision (Paszke et al., 2019).
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F EXPERIMENTAL RESULTS WITH 95% CONFIDENCE INTERVAL

We here provide the experimental results of Table 1, 2, and 3 with 95% confidence intervals in Table
13, 14, and 15, respectively.

Table 13: Few-shot classification accuracy (%) on Omniglot and miniImageNet with a 95% confi-
dence interval over 2000 few-shot tasks.

Omniglot (way, shot) miniImageNet (way, shot)
Method (5, 1) (5, 5) (20, 1) (20, 5) (5, 1) (5, 5) (5, 20) (5, 50)
SimCLR 92.13±0.30 97.06±0.13 80.95±0.21 91.60±0.12 43.35±0.42 52.50±0.39 61.83±0.35 64.85±0.32
MoCo v2 92.66±0.28 97.38±0.12 82,13±0.21 92.34±0.11 41.92±0.41 50.94±0.38 60.23±0.35 63.45±0.33
SwAV 93.13±0.27 97.32±0.13 82.63±0.21 92.12±0.12 43.24±0.42 52.41±0.39 61.36±0.35 64.52±0.33

PsCo (ours) 96.37±0.20 99.13±0.07 89.60±0.17 97.07±0.07 46.70±0.42 63.26±0.37 72.22±0.32 73.50±0.29

Table 14: Few-shot classification accuracy (%) on cross-domain few-shot classification benchmarks
of Conv5 pretrained on miniImageNet with a 95% confidence interval over 2000 few-shot tasks.

(a) Cross-domain few-shot benchmarks similar to miniImageNet.
CUB Cars Places Plantae

Method (5, 5) (5, 20) (5, 5) (5, 20) (5, 5) (5, 20) (5, 5) (5, 20)
Meta-GMVAE 47.48±0.47 54.08±0.45 31.39±0.34 38.36±0.35 57.70±0.47 65.08±0.38 38.27±0.40 45.02±0.37
Meta-SVEBM 45.50±0.83 54.61±0.91 34.27±0.79 46.23±0.87 51.27±0.82 61.09±0.85 38.12±0.86 46.22±0.85

SimCLR 52.11±0.45 61.89±0.45 37.40±0.35 50.05±0.39 60.10±0.40 69.93±0.35 43.42±0.37 54.92±0.36
MoCo v2 53.23±0.45 62.81±0.45 38.65±0.35 51.77±0.39 59.09±0.40 69.08±0.36 43.97±0.37 55.45±0.36
SwAV 51.58±0.45 61.38±0.46 36.85±0.33 50.03±0.38 59.57±0.40 69.70±0.36 42.68±0.37 54.03±0.36

PsCo (ours) 57.38±0.44 68.58±0.41 44.01±0.39 57.50±0.40 63.60±0.41 73.95±0.36 52.72±0.39 64.53±0.36

MAML 56.57±0.43 64.17±0.40 41.17±0.40 48.82±0.40 60.05±0.42 67.54±0.37 47.33±0.41 54.86±0.38
ProtoNets 56.74±0.43 65.03±0.41 38.98±0.37 47.98±0.38 59.39±0.40 67.77±0.36 45.89±0.40 54.29±0.38

(b) Cross-domain few-shot benchmarks dissimilar to miniImageNet.
CropDiseases EuroSAT ISIC ChestX

Method (5, 5) (5, 20) (5, 5) (5, 20) (5, 5) (5, 20) (5, 5) (5, 20)
Meta-GMVAE 73.56±0.53 81.22±0.39 73.83±0.42 80.11±0.35 33.48±0.30 39.48±0.28 23.23±0.23 26.26±0.24
Meta-SVEBM 71.82±1.03 83.13±0.78 70.83±0.83 80.21±0.73 38.85±0.76 48.43±0.81 26.26±0.65 28.91±0.69

SimCLR 79.90±0.39 88.73±0.28 79.14±0.38 85.05±0.32 42.83±0.29 51.35±0.27 25.14±0.23 29.21±0.24
MoCo v2 80.96±0.37 89.85±0.27 79.94±0.37 86.16±0.31 43.43±0.30 52.14±0.27 25.24±0.23 29.19±0.24
SwAV 80.15±0.39 89.24±0.28 79.31±0.39 85.62±0.31 43.21±0.30 51.99±0.27 24.99±0.23 28.57±0.24

PsCo (ours) 88.24±0.31 94.95±0.18 81.08±0.35 87.65±0.28 44.00±0.30 54.59±0.29 24.78±0.23 27.69±0.23

MAML 77.76±0.39 83.24±0.34 71.48±0.38 76.70±0.33 47.34±0.37 55.09±0.34 22.61±0.22 24.25±0.22
ProtoNets 76.01±0.40 83.64±0.33 64.91±0.38 70.88±0.33 40.62±0.31 48.38±0.29 23.15±0.22 25.72±0.23

Table 15: Few-shot classification accuracy (%) on cross-domain few-shot classification benchmarks
of pretrained ResNet-18/50 on ImageNet with a 95% confidence interval (5-way 5-shot).

Methods CUB Cars Places Plantae CropDiseases EuroSAT ISIC ChestX
ResNet-18 pretrained
MoCo v2 61.88±0.96 46.42±0.73 79.11±0.68 56.24±0.72 81.48±0.74 75.98±0.73 38.21±0.53 24.34±0.36
+PsCo (Ours) 70.08±0.87 50.73±0.76 79.74±0.64 61.55±0.76 87.91±0.57 79.92±0.64 40.61±0.52 25.03±0.42

ResNet-50 pretrained
MoCo v2 64.16±0.91 47.67±0.75 81.39±0.64 61.36±0.79 82.89±0.77 76.96±0.68 38.26±0.56 24.28±0.39
+PsCo (Ours) 76.63±0.84 53.45±0.76 83.87±0.58 69.17±0.70 89.85±0.78 83.99±0.52 41.64±0.55 23.60±0.36

BYOL 67.45±0.88 45.74±0.76 75.43±0.79 56.86±0.84 80.82±0.86 77.70±0.71 37.27±0.56 24.15±0.36
+PsCo (Ours) 82.13±0.70 56.19±0.76 83.80±0.62 71.14±0.71 92.92±0.44 85.33±0.54 42.90±0.55 26.05±0.46

Supervised 89.13±0.55 75.15±0.75 84.41±0.61 72.91±0.73 90.96±0.48 85.64±0.52 43.34±0.57 25.35±0.41

18


	Introduction
	Preliminaries
	Problem statement: unsupervised few-shot learning
	Contrastive learning

	Method: pseudo-supervised contrastive meta-learning
	Online pseudo-task construction
	Meta-training: supervised contrastive learning with pseudo tasks
	Meta-test

	Experiments
	Standard few-shot benchmarks
	Cross-domain few-shot benchmarks
	Ablation study

	Related works
	Conclusion
	Implementation details
	Analysis on hyperparameter sensitivity
	Effect of adaptation
	Setup for standard few-shot benchmarks
	Datasets
	Baselines

	Setup for cross-domain few-shot benchmarks
	Datasets
	Baselines
	Evaluation details
	Large-scale setup

	Experimental results with 95% confidence interval

