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ABSTRACT

Large language models (LLMs) have demonstrated impressive in-context learning
(ICL) capability. However, it is still unclear how the underlying transformers
accomplish it, especially in more complex scenarios. Toward this goal, several
recent works studied how transformers learn fixed-order Markov chains (FOMC)
in context, yet natural languages are more suitably modeled by variable-order
Markov chains (VOMC), i.e., context trees (CTs). In this work, we study the
ICL of VOMC by viewing language modeling as a form of data compression and
focusing on small alphabets and low-order VOMCs. This perspective allows us to
leverage mature compression algorithms, such as context-tree weighting (CTW)
and prediction by partial matching (PPM) algorithms as baselines, the former of
which is Bayesian optimal for a class of priors that we refer to as the CTW priors.
We empirically observe a few phenomena: 1) Transformers can indeed learn to
compress VOMC in-context, while PPM suffers significantly; 2) The performance
of transformers is not very sensitive to the number of layers, and even a two-
layer transformer can learn in-context quite well; and 3) Transformers trained and
tested on non-CTW priors can significantly outperform the CTW algorithm. To
explain these phenomena, we analyze the attention map of the transformers and
extract two mechanisms, on which we provide two transformer constructions: 1) A
construction with D + 2 layers that can mimic the CTW algorithm accurately for
CTs of maximum order D, 2) A 2-layer transformer that utilizes the feed-forward
network for probability blending. These constructions can explain most of the
phenomena mentioned above. One distinction from the FOMC setting is that
a counting mechanism appears to play an important role. We implement these
synthetic transformer layers and show that such hybrid transformers can match
the ICL performance of transformers, and more interestingly, some of them can
perform even better despite the much-reduced parameter sets.

1 INTRODUCTION

Large language models (LLMs) are capable of completing various tasks (Kasneci et al., 2023; Wu
et al., 2023; Thirunavukarasu et al., 2023; Wei et al., 2022). The transformer model (Vaswani et al.,
2017), the key behind current prevailing LLMs, is known to have strong in-context learning (ICL)
capabilities, and concrete ICL results for transformers have been established for some simple tasks
(Garg et al., 2022; Von Oswald et al., 2023; Bai et al., 2024; Ahn et al., 2024). Despite these results,
the mechanism for transformers to learn in context is still not fully understood, especially when the
scenario is complex or the sequences have memories. Toward this goal, several recent works studied
how transformers can learn fixed-order Markov chains (FOMCs) either in training or in-context
(Makkuva et al., 2024; Edelman et al., 2024), where insightful observations and theoretical results
were obtained. The FOMC is however a poor match for natural languages, for which variable-order
Markov chains (VOMCs), also known as context tree (CT) models (Rissanen, 1983; Willems et al.,
1995), are often viewed as a more suitable model (Begleiter et al., 2004).

In another related line of research on LLMs, several recent works made explicit the close connection
between language models and data compression (Valmeekam et al., 2023; Delétang et al., 2023),
the latter of which was aptly titled “Language Modeling Is Compression”. Indeed, despite their
difference in the eventual applications, the key driver behind both is an accurate (auto-regressive)
probability distribution estimator. We adopt this perspective and use the compression rates in a fixed
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context window as our main evaluation metric. This allows us to use several well-known compression
algorithms, such as prediction by partial matching (PPM) (Cleary & Witten, 1984) and context
weighting algorithms (CTW) (Willems et al., 1995), as baselines. In particular, the CTW algorithm is
Bayesian optimal under certain priors, which gives us a fundamental lower bound in such settings.

In this work, we consider the ICL of VOMCs from the data compression perspective and refer to this
task as ICL-VOMC. The VOMC sources have finite memory, however, each new symbol may depend
on different numbers of previous symbols, i.e., the length of the memory may vary. We emphasize
that ICL-VOMC is considerably more complex than ICL of FOMCs. A naive strategy would be to
view a VOMC as an FOMC of the largest possible order, which however leads to highly inefficient
ICL, since the in-context samples are not utilized well. The PPM algorithms can be viewed as an
approximate surrogate with this naive approach in the small alphabet setting we consider.

We first train a set of shallow transformers of various numbers of layers for VOMCs of various
maximum orders, and empirically observe a few phenomena: 1) Transformers can indeed learn to
compress VOMC in context, while PPM suffers significantly; 2) The performance of transformers is
not very sensitive to the number of layers, and even a two-layer transformer can learn in-context quite
well, tracking the CTW performance closely; and 3) Transformers trained and tested on non-CTW-
priors can significantly outperform the CTW algorithm. To explain these phenomena, we carefully
analyze the attention maps of the transformers, and discover two attention mechanisms, which form
suffixes and perform suffix matching, respectively. Equipped with these mechanisms, we answer the
question of whether transformers have the modeling capability to mimic the CTW algorithm. One
difficulty is that the CTW algorithm has a recursive structure, which is not directly compatible with
the transformer architecture. We first propose an alternative algorithm representation, based on which
a transformer construction with D+ 2 layers is proposed, that can mimic CTW accurately for CTs of
maximum order D. This establishes a fundamental capability of transformers for ICL-VOMC. The
alternative representation enjoys an intuitive interpretation as blending probability estimates along a
path on the context tree.

The CTW algorithm relies heavily on counting the occurrences of suffixes of varying lengths to
determine the blending coefficients, and a significant component of our transformer construction is
for such counting in the second layer. Given its importance, we postulate that 2-layer transformers
perform well because such information already allows close-to-optimal blending. We propose such a
simple 2-layer transformer, by providing one feed-forward (FF) layer with the probability estimates
and the corresponding counts directly. The FF layer’s role then largely reduces to approximating
the proper blending coefficients. We implement several synthetic transformer layers and show that
the hybrid transformers can mostly match the ICL performance of transformers. This construction
provides an explanation for 2-layer transformers to perform well in ICL-VOMC, and also for the
superior performance on non-CTW-priors. More interestingly, some of these synthetic transformers
can perform even better despite the much-reduced parameter sets.

Among existing works, the mostly closely related is Edelman et al. (2024), which studied two-layer
transformers and investigated the training behavior from which the transformer obtains its ICL
capability of FOMC, leading to conclusive results on a simple binary Markov model. As mentioned
before, we focus on variable-order Markov chains (VOMC) and on the ICL behavior in the context
window, since we believe it is not only important to be able to learn in context eventually, it is equally
important to learn in context quickly. Appendix A gives a more detailed discussion of related works.

Main Contributions: We believe that ours is the first study of ICL for VOMC, and the contributions
are summarized as follows. (i) We demonstrate that transformers can indeed (numerically) learn to
compress VOMC in-context, close to optimal CTW algorithm for appropriate CTW-prior. (ii) We
show that transformers can outperform CTW when trained and tested on non-CTW-priors. (iii) We
give an explicit D + 2-layer transformer construction to imitate CTW establishing its capabilities,
based on a novel Bayesian optimal next token prediction representation, which can be of independent
interest. (iv) Our construction allows us to investigate the relative insensitivity to the number of
layers, of the transformer performance, i.e., even 2-layer transformers perform well. It also gives
partial explanations of the ICL capabilities of transformers on VOMC.

Notation: Scalars, symbols, and strings are denoted by italic letters like n,N , x, and s. Denote by
string xj

i := (xi, xi+1, . . . , xj) as a sequence of symbols. Define () or xj
i with i > j as an empty

string. Vectors and matrices are in bold like x, H, and sets in calligraphic like A with cardinally |A|.
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2 PRELIMINARIES

2.1 THE TRANSFORMER MODEL

Transformer interacts with sequential data, e.g., xN
1 = (x1, . . . , xN ), where token xi is a symbol

from an alphabet (a.k.a. vocabulary) A with A = |A|. Each token xi is embedded into h
(1)
i ∈ RE by

integrating the information of its value xi and position i, where E is the embedding dimension.

We introduce an L-layer decoder-only transformer model. Each layer of the transformer takes matrix
H(ℓ) = [h

(ℓ)
1 ,h

(ℓ)
2 , . . . ,h

(ℓ)
N ], where h

(ℓ)
i ∈ RE , as its input and applies the multi-head attention

(MHA) layer operation and the feed-forward layer operation, and the output of the layer is the input
to the next layer, denoted as H(ℓ+1). The decoder-only multi-head attention layer with M (ℓ) heads is

a
(ℓ)
i = MHA

(
hi,H; {W (ℓ)

O,m,W
(ℓ)
Q,m,W

(ℓ)
K,m,W

(ℓ)
V,m}M

(ℓ)

m=1

)
≜ W

(ℓ)
O

[
b
(ℓ)
1,i ;b

(ℓ)
2,i ; . . . ;b

(ℓ)

M(ℓ),i

]
, (1)

where {W (ℓ)
Q,m,W

(ℓ)
K,m,W

(ℓ)
V,m}M(ℓ)

m=1 are the E(ℓ)×E query matrices, key matrices, and value matrices1

at the ℓ-th layer and m is the index of the attention head, respectively, W (ℓ)
O is the E × (M (ℓ)E(ℓ))

output mapping matrix, and b(ℓ)
m is the output of the m-th attention head at this layer defined as

b
(ℓ)
m,i = (W

(ℓ)
V,m[h

(ℓ)
1 ,h

(ℓ)
2 , . . . ,h

(ℓ)
i ]) · softmax((W (ℓ)

K,m[h
(ℓ)
1 ,h

(ℓ)
2 , . . . ,h

(ℓ)
i ])⊤(W

(ℓ)
Q,mh

(ℓ)
i )), (2)

where we used “;” to indicate vertical matrix concatenation and “,” to indicate horizontal matrix
concatenation. The attention layer has a residual connection, and the attention output together with
the residual connection also goes through a feed-forward layer with a residual connection

h
(ℓ+1)
i = FF(a(ℓ)i ;W

(ℓ)
1 ,W

(ℓ)
2 ) = W

(ℓ)
1 σ(W

(ℓ)
2 (a

(ℓ)
i + h

(ℓ)
i )) + (a

(ℓ)
i + h

(ℓ)
i ), (3)

where σ is a non-linear activation function (e.g., ReLU or sigmoid). The output of the last (L-th)
transformer layer H(L+1) goes through a linear then softmax unit to predict the probability of
generating the next symbol in vocabulary A based on the past observations:

p̂i+1 = softmax(W (L+1)
O h

(L+1)
i ) ∈ ∆A, i = 1, . . . , N − 1, (4)

where ∆A is the probability simplex on A. The model is illustrated by figures in Appendix B.1.

Transformers are (pre)-trained to predict next token by minimizing the log-loss (cross-entropy loss)
ExN

1
[
∑N−1

i=1 x⊤i+1 log(1/p̂i+1)], where xi ∈ RA is the one-hot encoding of xi and sequence xN
1 is

sampled from some population of sources, e.g., sequences can be articles written by different authors
and thus following different statistical dynamics.

2.2 IN-CONTEXT LEARNING AS BAYESIAN UNIVERSAL CODING

Figure 1: ICL v.s. Bayesian Universal Coding

ICL has a natural connection to compression
in information theory (Delétang et al., 2023).
Information theory proves that a stationary data
source can be compressed losslessly at a rate
no less than its entropy rate (Cover & Thomas,
1991). A well-known compression algorithm is
arithmetic coding (Rissanen & Langdon, 1979;
Pasco, 1976; Rissannen, 1976), which requires
an estimated probability distribution P̂ for the

next source symbol to compress a data source that follows the true distribution P . The precise
compression mechanism is somewhat complicated, and theoretical guarantees vary depending on
the structure of the underlying data sources. Nevertheless, it suffices for us to view it as a black box
that compresses a symbol x with approximately ln(1/P̂ (x)) nats, resulting in an accumulated rate
roughly equal to the cross-entropy between P̂ and P ; when P̂ = P , this reduces to the entropy rate.
Note that the entropy rate is a lower bound for the asymptotic averaged log-loss of the transformers.

The learning aspect of ICL closely resembles universal compression (Rissanen, 1983). Naïvely
speaking, the latter aims to adaptively compress the source given its context, essentially approaching

1In practice, embedding dimension E is divisible by the number of heads M (ℓ) and E = M (ℓ)E(ℓ).
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its entropy rate without having direct access to the underlying dynamics, but learning it in an in-
context fashion. We illustrate the close analogy between ICL and Bayesian universal coding in Fig. 1,
where pretraining of learning is equivalent to learning the Bayesian prior of the sources, and the next
token prediction can be viewed as a part of arithmetic coding (AC), both measured by log-loss.

2.3 CONTEXT TREE MODELS (VARIABLE-ORDER MARKOV CHAINS)

Variable-order Markov chains (VOMCs), also known as context tree (CT) models, have been studied
extensively in the data compression literature (Rissanen, 1983; Willems et al., 1995; Begleiter et al.,
2004). String s = (x1−l, x2−l, . . . , x0) is a suffix of the string s′ = (x′1−l′ , x

′
2−l′ , . . . , x

′
0), if

0 ≤ l ≤ l′ and x−i = x′−i for i = 0, 1, . . . , l − 1; e.g., (a, b, c, b) is suffix of (a, c, a, a, b, c, b). Note
that the strings above have non-positive indices.

Figure 2: A CT in the alphabet A = {a, b, c}
with suffix set S = {(b), (c), (a, a), (b, a), (c, a)}
and the associated probability distributions. If
(. . . , xn−1, xn) = (. . . , c, a), then the probabil-
ity distribution for the next symbol xn+1 is pc,a.

The statistical behavior of a finite memory CT
source is specified by a suffix set S and the
associated next token probability distributions.
The suffix set is a collection of strings s(k),
k = 1, 2, . . . , |S|, which needs to be proper and
complete: The set is proper if no string in S
is a suffix of any other string; it is complete if
each semi-infinite sequence (. . . , xn−1, xn) has
a unique suffix that belongs to S, denoted as
βS(. . . , xn−1, xn). Associated with each suf-
fix s ∈ S, there is a probability mass function
ps ∈ ∆A. A CT has maximum order D if any
suffix in S has a length at most D. Given a
semi-infinite sequence (. . . , xn−1, xn), the next
symbol xn+1 is generated randomly according
to the distribution pβS(...,xn−1,xn). An example
CT is in Fig. 2. A tree structure appears since
for any valid suffix set S, there exists a unique
tree T with S being its leaves L(T ). A CT can thus be equivalently represented by (T, {ps}s∈L(T )).

2.4 BAYESIAN CONTEXT TREE WEIGHTING COMPRESSION ALGORITHM

Once the underlying CT is estimated accurately, AC can be used to compress the sequence efficiently.
The difficulty in estimating a context tree is in finding both of its components: the tree structure itself,
and the probability distribution associated with each leaf node. The likelihood of a sequence xi

1 given
x0
1−D for a CT with parameter (T, {ps}s∈L(T )) is

PT,{ps}(x
i
1|x0

1−D) =

i∏
j=1

pβL(T )(xj−D,...,xj−1)(xj) =
∏

s∈L(T )

∏
a∈A

ps(a)
ni,s(a),

where ni,s is the counting vector associated with suffix s that

ni,s(a) := number of times symbol a ∈ A follows suffix s in sequence (x1, . . . , xi). (5)

Leveraging the multiplicative nature of the likelihood function, Willems et al. (1995) proposed
the context tree weighting (CTW) algorithm for CT sources with maximum order D based on the
minimum description length principle. CTW estimates the probability of the sequence xn

1 by the
auxiliary parameters pen,s, p

w
n,s’s as follows.

1. For each s ∈ A∗ with |s| ≤ D, compute pen,s =
Γ(

∑
a∈A α(a))

Γ(
∑

a∈A(ns(a)+α(a))

∏
q∈A

Γ(ns(a)+α(a))
Γ(α(a)) ,

where ns is the counting vector ni,s with i = n, Γ(·) is the Gamma function, and α is a
prior-related vector that will be specified later.

2. From nodes in the D-th level to the 0-th level (i.e., root), iteratively compute

pwn,s :=

{
pen,s, if |s| = D,
λpen,s + (1− λ)

∏
q∈A pwn,qs, otherwise, (6)

where qs is the string by appending symbol q ∈ A before the suffix s.
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Kontoyiannis et al. (2022) took the Bayesian view towards this procedure, and showed that the
probability pwn,() at the root has a clear Bayesian interpretation under a CTW prior. CTW prior
πCTW is a Bayesian CT prior over the trees in T (D) := {full A-ary tree with depth at most D} and
the transition distributions ps ∈ ∆A. Specifically, πCTW(T, (ps)s∈L(T )) = πD(T )

∏
s∈L(T ) πp(ps),

where πD(·) represents a bounded branching process that each node at a level lower than D stops
branching with probability λ or branches to |A| children with probability (1−λ); and πp(ps) satisfies
a Dirichlet distribution. Mathematically,

πD(T ) = (1− λ)(|L(T )|−1)/(A−1)λ|L(T )|−|LD(T )|, πp(ps) = Dir(ps; {α(a)}a∈A),
where LD(T ) is the leaves of T with depth D and {α(a)}a∈A are the Dirichlet parameters. A typical
choice is α(a) = 0.5 for each a ∈ A corresponding to the Jeffreys prior.
Theorem 1. (Kontoyiannis et al., 2022, Theorem 3.1) The pwn,() value at root computed by the CTW
procedure equals to the Bayesian predicted probability under prior πCTW specified by (D,λ,α):

pwn,() = PπCTW(x
n
1 |x0

1−D) =
∑

T∈T (D)

∫
PT,{ps}(x

n
1 |x0

1−D)π(T, {ps})
( ∏

s∈L(T )

dps

)
.

This theorem implies that the CTW procedure exactly matches the Bayesian CTs with prior π
parameterized by (D,λ,α) and the probability of sequence xn

1 is pwn,(), i.e., the pw at the root. AC can
be applied via sequentially calculating the predictive next token probability as PπCTW(xi+1|xi

1−D) =
PπCTW (xi+1

1 |x0
1−D)

PπCTW (xi
1|x0

1−D)
and achieves code length at most ⌈log2(1/pwn,())⌉ (Willems et al., 1995; 1997).

Besides CTW, the prediction by partial matching algorithm (PPM) (Cleary & Witten, 1984) is also
well known for its good performance in practice (Begleiter et al., 2004). PPM takes the maximal
order Dppm as a parameter and blends CTs by utilizing an escape symbol. The key idea is when a
suffix is less observed, the escape symbol is encoded, indicating a shorter suffix needs to be used to
predict the next token probability. More details of PPM are given in Appendix B.2.

3 TRANSFORMERS LEARN IN-CONTEXT OF VOMCS

3.1 THE ICL-VOMC TASK, TRANSFORMER TRAINING, AND TESTING

Figure 3: Training data collection

We choose ternary alphabet |A| = 3, and pretrain
a transformer of context window size N on data se-
quences of length-N generated using CTs randomly
sampled from a CTW prior πCTW parameterized by
α = 0.5, λ = 0.15 and a fixed maximum tree depth
D, illustrated in Fig. 3. The training loss is the canon-
ical next-token prediction cross-entropy loss. During
the inference, given a source sequence of length-N
generated from an unknown VOMC with an order at
most D, can the transformer compress this sequence
efficiently, i.e., at a compression rate close to the
optimal rate?

3.2 TRANSFORMERS CAN LEARN VOMC IN-CONTEXT

In Fig. 4, we show the performance comparisons between trained transformers with various numbers
of layers, and the reference PPM and CTW algorithms for N = 1536 and CT maximum order D = 5.
The transformers have 8 attention heads with embedding dimension E = 128; in our settings, we
found the performance of the transformers is not constrained by these parameters. In Table 1, we
further provide the average compression rates over the whole context window for CTs of different
orders; we refer to the transformers as TF, and TF-L refers to having L layers. For CTs with lower
order, the transformer embedding dimension E is set at 64 instead of 128.

A few observations are immediate.
1) The CTW algorithm is Bayesian optimal in this setting, and it provides a lower bound for other
methods as expected.
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TF-1 TF-2 TF-3 TF-4 TF-5 TF-6 CTW
CTs D = 3 0.9368 0.7297 0.7265 0.7220 0.7245 0.7258 0.7165
CTs D = 4 0.9667 0.7831 0.7818 0.7759 0.7791 0.7774 0.7603
CTs D = 5 0.9661 0.7569 0.7490 0.7440 0.7437 0.7438 0.7400

Table 1: Average compression rates in the context window by transformers and CTW, where the CTs
are sampled from the CTW-prior. The context window and embedding dimension for CTs of D = 5
are N = 1536 and E = 128, while for others it are N = 512 and E = 64.

2 4 6 8 10 12 14 16
segment index

0.8

1.0

1.2

1.4

1.6

ra
te

s

Compression rates: = 0.50 and D = 5
Transformer-1 layers
Transformer-2 layers
Transformer-3 layers
Transformer-4 layers
Transformer-5 layers
Transformer-6 layers
PPM order 1
PPM order 2
PPM order 3
PPM order 4
PPM order 5
CTW

Figure 4: Transformer, PPM, CTW

2) The PPM algorithms perform poorly in
this setting, which is expected since they
essentially reduce to FOMC estimators at
the assumed maximum order Dppm, for the
small alphabet setting we consider. Small
Dppm leads to oversimplification bias to the
model and thus performs poorly. However,
even when Dppm in PPM is sufficiently
large, i.e., Dppm ≥ D, it is a highly ineffi-
cient estimator for those contexts at lower
orders in the CT. Therefore we can view
PPM as a reference method that does not
adapt to the variable orders efficiently. The
particular poor performance of the PPM al-
gorithm at the start of the sequence is due
to the escape symbol encoding, however,
toward the end of the sequence, PPM starts

to improve if Dppm ≥ D.
3) Most interestingly, almost all trained transformers, except that with a single layer, track the
performance of the CTW algorithm fairly closely. The overall performance does improve as the
number of layers increases in general; see Table 1 for numerical comparisons. Nevertheless, the
improvements with increased numbers of layers are relatively small and appear to saturate at four
layers. Particularly, even transformers with two layers appear to learn in context quite well.

In the next section, we provide theoretical and empirical explanations for these observations.

3.3 TRANSFORMERS VS. CTW UNDER NON-CTW-PRIORS

2 4 6 8 10 12 14 16
segment index

0.45

0.50

0.55
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0.65

ra
te

s

Compression rates: non-CTW-priors
Transformer-2 layers
Transformer-3 layers
Transformer-4 layers
Transformer-5 layers
Transformer-6 layers
CTW

Figure 5: Transformers vs. CTW

The CTW algorithm is known to be
Bayesian optimal when the CTs are gener-
ated from a CTW-prior. When the CTs do
not follow those priors, can learning-based
transformers perform better than CTWs?
We empirically observe that in such set-
tings, transformers indeed have advantages.
The training data are generated by using
CTs of different maximum orders, where
the orders are chosen uniformly at random
between 1 and 3. Moreover, the probability
vector is not generated from the Dirichet
prior, but from a distribution that for each
CT leaf, randomly assigns one of the ele-
ments in the alphabet to have zero probabil-
ity. We test on sequences generated from
CTs produced from the same distribution
as in the training setting. We assume the

CTW takes the default (non-informative prior) parameters of α(a) = 0.5, and the same tree branch
stopping parameter λ = 0.15 as taken in the testing sequence CTs.

As can be observed in Fig. 5, the CTW algorithm is no longer optimal, and trained transformers
can perform considerably better. In fact, even transformers with 2 layers can outperform the CTW
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Figure 6: Partial attention heatmaps for different attention heads.
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Figure 7: Suffix locations and attention weights in the second type of pattern at two query positions.

algorithm in this setting, and more layers usually lead to further improved performance, albeit the
improvement is less significant.

4 THEORETICAL INTERPRETATIONS AND EMPIRICAL EVIDENCES

To understand why and how the trained transformers perform comparable to CTW, we first analyze
their attention maps, which reveal interesting patterns and behaviors. We then propose a transformer-
friendly representation of the Bayesian optimal next token prediction by CTW, and motivated by the
attention map observations, we provide transformer constructions to interpret its ICL capabilities
and capacities. We next implement these synthetic transformer layers, and show that the hybrid
transformers can match the ICL performance of the original version of transformers, which serves as
evidence for the proposed constructions.

4.1 ANALYSIS OF ATTENTION MAPS

We analyzed the attention maps of the trained transformers where a few distinguished patterns emerge.
One pattern is solely relative-position dependent. In the left two panels of Fig. 7, we observe
off-diagonal stripes for these two attention heads, which are a few positions below the main diagonal.
They can be a single off-diagonal or a collection of several off-diagonals. This indicates that the
query position is attending positions at a few fixed but close distances ahead of itself. This pattern
usually appears in the first or second layers of the transformers. Combining with the suffix structure
in compression algorithms such as CTW, such an attention pattern suggests the suffix is being copied
into the current query position for subsequent processing. The off-diagonal stripes may have a width
greater than 1, as shown in the second panel, which can be viewed as copying a mixture of the tokens
in the suffix, suggesting the flexibility of transformers in forming certain “soft" suffixes.

Another pattern, shown in the third panel has more sophisticated spotty patterns, and the attention
appears to depend more explicitly on the current token features instead of the position alone, and
they usually appear in the second layer or above in the transformers. Taking query positions 350 and
362 for the attention head shown in the third panel of Fig. 6, we plot in Fig. 7 the positions in the
data sequence that match their suffixes of length-3 using the stem plots with a black circle on top,
and the attention values as the red stems with the diamonds on top. It can be seen that the positions
match perfectly, though the attention weights have some variations among them. The left panel has
more matching locations, due to the inherent Markov chain structure. This attention pattern suggests
that it is collecting information for those positions with the matched suffix of a fixed length. Several
attention heads present similar patterns but with different suffix lengths.

4.2 CAPABILITY AND CAPACITY OF TRANSFORMER VIA CONSTRUCTION

Motivated by the observations of the attention map patterns, we connect the performance of trans-
formers to CTW via construction.
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4.2.1 A REPRESENTATION OF CTW OPTIMAL NEXT TOKEN PREDICTION

Given a sequence xn
1 generated according to a CT(T, {ps}) sampled from the CTW-prior πCTW pa-

rameterized by (D,λ,α), we propose a novel representation for computing the predictive probability
PπCTW(xn+1|xn

1−D) in the following theorem, which predicts xn+1 based on the weighted blending
of the next token prediction probability vectors corresponding to each potential suffix sn,l := xn

n−l+1
of length l = 0, 1, . . . , D. The proof of Theorem 2 is in Appendix D.1.
Theorem 2. The predicted probability can be computed as

PπCTW(xn+1|xn
1 ) =

∑
l=0,...,D

ωn,l · pn,sn,l
(xn+1), (7)

where pn,sn,l
(a) =

α(a)+nn,sn,l
(a)∑

q(α(q)+nn,sn,l
(q)) ; and ωn,· ∈ ∆D+1 with ln(ωn,l)−ln(ωn,l−1) = ln(1−λ)−

Il=D ln(λ)+ ℓen,sn,l
− ℓen,sn,l−1

+
∑

q∈A ℓwn,qsn,l−1
− ℓwn,sn,l

for l = 1, . . . , D, where ℓen,s = ln(pen,s),
ℓwn,s = ln(pwn,s) , and I(·) is the indicator function.

Figure 8: Illustration of Theorem 2

As illustrated in Fig. 8, each suffix sn,l, e.g.,
sn,0 = (), sn,2 = ba, can potentially be the
true suffix of the underlying CT dynamics,
i.e., sn,l ∈ L(T ); and pn,sn,l

is in fact the
Bayesian optimal next token prediction given
sn,l ∈ L(T ). The blending weights ωn,l assign
credibility that sn,l is the true suffix. As shown
in Theorem 2, the weights are based on stopping
probability λ, the information in the potential
suffix path such as pesn,sn,l

as well as the infor-
mation from their siblings pwn,qsn,l−1

(siblings
and their sub-trees are in triangles in Fig. 8).
The information of counting vector nn,s plays a
vital role since pn,s, pen,s, e.t.c. are all functions of nn,s.

4.2.2 TRANSFORMER CONSTRUCTION: APPROXIMATING CTW

We provide a construction of (2 +D)-layer transformer with sufficient representation power in the
FF layer that can essentially approximate CTW, which demonstrates the capacity of transformers.
The first two layers are motivated by the attention map patterns observed in Section 4.1, which we
show their capabilities of capturing the important counting vector statistics suggested by Theorem 2.
The last D layers are induction layers imitating the CTW procedure.

We consider the initial embedding is one-hot, with additional scratch pad elements initialized as zeros
and a positional embedding, i.e., h(1)

i = (xi;0;posi) where we used xi ∈ RA to denote the one-hot
(column vector) embedding of xi , posi = (1, cos(iπ/N), sin(iπ/N))⊤ is a sinusoidal positional
embedding, and the remaining (E −A− 3) elements being zero. The parameter E will be specified
later, and let us assume it is sufficiently large at this point.

We begin with the first layer, which is referred to as a finite-memory context-extension layer.
Theorem 3. There is an M -headed transformer layer that can perform finite-memory context-
extension, defined by the following output, with the initial one-hot embedded input H(1):

h
(2)
i = (si,M+1;0;posi), (8)

where si,M+1 = (xi; . . . ;xi−M ) is the vector version of the M -length suffix si,M+1 = xi
i−M .

This layer essentially copies M past embedded symbols to the current position i, and stacks them
below the current symbol xi. This operation utilizes the positional encoding posi via rotation and
matching the corresponding positions. The detailed construction and proof is in Appendix D.2.1.

The second layer is referred to as the statistics collection layer, which takes a sequence of vectors h(2)
i ,

i = 1, . . . , N , defined in (8) as its input. To rigorously specify the function of this layer, we define
the k-gram (forward) statistics vector gi,s with |s| = k − 1, which in plain words, is the empirical

8
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probability distribution of the next token associated with the suffix s for sequence xi
1. Similarly, we

define the k-gram backward statistics vector g←i−1,s, which is the empirical probability distribution of
the previous token associated with the suffix s for xi−1

1 . Mathematically, for a suffix s and position i,

gi,s(a) =
ni,s(a)∑
q∈A ni,s(q)

, g←i−1,s(a) =

∑
q∈A ni,as(q)∑
q∈A ni,s(q)

, ∀a ∈ A, (9)

where ni,s is the counting vector defined in (5), and
∑

q∈A ni,s(q) is the number of appears of the
string s in the sequence xi−1

1 . For both gi,s and g←i−1,s, if the suffix s has not appeared in data xi−1
1 ,

it can be initialized arbitrarily as a vector in the probability simplex.
Theorem 4. There is an M ′-head attention layer, where M ′ ≤ M + 1, that can perform statistics
collection, defined by the following output, with H(2) in (8) as its input:

a
(2)
i = (si,M+1;gi,M ′ ;g←i−1,M ′ ;0;posi), (10)

where gi,M ′ := (gi,si,0 ; . . . ;gi,si,M′−1
) and g←i−1,M ′ = (g←i−1,si,0 ; . . . ;g

←
i−1,si,M′−1

).

This functional layer essentially collects k-gram statistics for various lengths of k = 1, 2, . . . ,M ′.
For example, when k = 3, it collects the normalized frequency associated with the suffix (xn−1, xn).

For ICL of FOMCs, two-layer transformers collecting forward statistics gi,M ′ with M ′ =
D + 1 is sufficient (Edelman et al., 2024). However, for the ICL-VOMC task, the under-
lying CT structure is unknown, therefore, collecting such simple statistics is no longer suf-
ficient. As indicated in Theorem 2, the information of counting statistics ni,si,l is impor-
tant to the performance of prediction since the weights heavily depend on ni,s(a). Yet
due to the softmax function of attention layer, only (normalized) probabilistic vector can be
obtained instead of the exact count. With the backward statistics g←i,s, ni,si,l can be de-

rived as ni,si,l(a) =
ni,si,l

(a)∑
q∈Ani,si,l

(q)

∑
q∈Ani,si,l

(q)∑
q∈Ani,si,l−1

(q) · · ·
∑

q∈Ani,si,1
(q)∑

q∈Ani,si,0
(q)

(∑
q∈A ni,si,0(q)

)
=

gi,si,l
(a)
(∏l−1

j=0 g
←
i−1,si,j (xi−j)

)
i, by the information contained in vector a(2)i .

Taking M = M ′ − 1 = D, after the statistics collection multi-head attention layer, a sufficiently
wide FF layer with ReLU activation gives

h
(3)
i = (si,D;pi,D; lei,D; ℓwi,si,D ;0;posi), (11)

where pi,D = (pi,si,0 ;pi,si,1 ; . . . ;pi,si,D ) and lei,D = (ℓei,si,0 ; . . . ; ℓ
e
i,si,D

) in Theorem 2, due to the
universal approximation of wide two-layer neural networks (Cybenko, 1989; Hornik et al., 1989).

To fulfill the Bayesian optimal prediction, we introduce the following induction layer that iteratively
compute ℓwi,s for suffix on the valid suffix path and their siblings, and also the weight difference
denoted by δi,l := ln(ωi,l)− ln(ωi,l−1) for l = d,D− 1, . . . , 1. Specifically, the desired embedding

h
(ℓ)
i = (si,M(1)+1;pi,D; lei,D; δi,D; δi,D−1; . . . ; δi,D−ℓ+4; ℓ

w
i,si,D+3−ℓ

;0;posi), (12)

for ℓ = 3, 4, . . . , 3 +D.

Theorem 5. There exists a A-head transformer layer that can perform the induction: Takes H(ℓ) in
(12) as input and outputs H(ℓ+1). And the final output layer taking H(D+3) as input can output the A-
dimensional Bayesian optimal next token prediction vector PπCTW(·|xn

1−D) =
∑

l=0,...,D ωn,lpn,sn,l
.

Although transformers with sufficient FF layers can theoretically compute the optimal prediction as
CTW, empirically, transformers of 2 +D layers perform slightly worse in our experiments. This is
likely due to the less-than perfect pretraining optimization and the limited representation capability
of finite-width FF layers with ReLU activations. We also note that the proposed transformers
construction may not be the only way to mimic CTW, however, we believe the first two layers do
capture important universal features. We provide supporting evidences empirically in the sequel.

4.3 A REDUCED TWO-LAYER CONSTRUCTION

We conduct experiments on the hybrid versions of transformers. Let "TF 0-2" denote the canonical
2-layer transformer; "TF 1-1" denote the transformer consisted of a constructed layer with output

9
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Figure 9: Hybrid Transformers: Effects of accumulative suffix counts and synthetic layers

h
(1)
i (8), and a trainable transformer layer and a output layer taking H(1) as input; and denote by "TF

2-0" the transformer with 2 constructed layer with output a(2)i in (10), followed by a trainable FF
layer (the FF layer in the second layer of the transformer) and an output layer.

We first study the key statistics behind the strong performance of two-layer transformers, as shown
in the left panel in Fig. 9. Compared to "TF 2-0" which is the constructed layers given previously,
the version "TF 2-0 w/o counts" does not contain g←i−1,M ′ or posi in a

(2)
i ; the version "TF 2-0 total

counts only" does not contain g←i−1,M ′ in a
(2)
i and posi is replaced by the total count i; "TF 2-0 w/

all counts" replaces g←i−1,M ′ and posi with {nn,sn,l
}Dl=0 and i. Even though their performances are

rather clustered, we can make the following observations: 1) The performances degrade as more
counting information is removed from the representation, and the counting information is clearly
very important, 2) The performances of "TF 2-0" and "TF 2-0 w/ all counts" almost match exactly,
indicating the main purpose of the backward statistics g←i−1,M ′ is to extract the counts, and 3) The
performance of the original 2-layer transformer is similar to that of the constructed "TF 2-0" and "TF
2-0: w/ all counts" that those without less counting information.

We further study hybrid transformers with the first one or two being the constructed layers. As shown
in the right panel of Fig. 9, transformers with 2 total layers and 4 total layers form two clusters,
which provides strong evidence that the constructed layers are indeed replacing the first two layers
of the original transformers in a functional manner. Moreover, the performances of transformers
with a single constructed layer, such as "TF 1-1" and "TF 1-3", are slightly better than those with
two constructed layers, such as "TF 2-0" and "TF 2-2", likely due to the flexibility in the remaining
trainable transformer layers. Interestingly, for two-layer transformers, the hybrid versions can perform
even better than the original transformer "TF 0-2", which we believe is because the latter is having
difficulty extracting the exact statistics as those more readily available in the constructed layers.

5 CONCLUSION

We considered the in-context learning of transformers for VOMC sources. By drawing a close analogy
of ICL and Bayesian universal compression, we leverage the CTW and PPM as baselines. Experimen-
tally, we observe the performances of the trained transformers greatly surpass the performance PPM
and are close to that of CTW even with just two layers under CTW priors; moreover, transformers
are superior to CTW under non-CTW prior. To understand the mechanism of transformers’ ICL
ability, we analyzed the attention maps and extracted two likely mechanisms. We then constructed
the finite-memory context extension layer, and the statistics collection layer, corresponding to these
two mechanisms, respectively. The latter collects both the forward and backward statistics, which
are vital as theoretically demonstrated by a novel representation of the CTW optimal next-token
prediction. We also provide empirical evidence that the statistics collected by the constructed second
layer, in particular the counting statistics, are indeed necessary.

Although we empirically showed transformers can perform ICL-VOMC tasks, and constructed an
idealized transformer to mimic the CTW algorithm, it is not clear whether a trained transformer will
indeed utilize the upper layer mechanisms. Extending the existing approach (Edelman et al., 2024) to
answer this question appears quite difficult, given the complexity of the constructed transformer and
the underlying VOMCs; this is part of ongoing investigations.
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A RELATED WORK

There have been many efforts in studying the ICL capabilities of transformers. A significant recent
development is the elucidation of the connection to gradient descent, particularly for linear regression
tasks (Von Oswald et al., 2023; Akyürek et al., 2022; Dai et al., 2022; Ahn et al., 2024). Li et al.
(2023) formulated the ICL problem as a multi-task learning problem and considered ICL for several
simple problem settings for which the authors provide risk bounds for ICL of supervised learning
algorithms in these problem settings. Kirsch et al. (2022) viewed the ICL problem as a meta-learner
and studied the relation between tasks and model sizes. These line of approaches focused on the ICL
of supervised learning tasks, such as classification and regression, while this work belongs to another
directions of studying ICL for the next token prediction of some unknown underlying dynamics.

Olsson et al. (2022) studied the induction head, i.e., the forming of small k-gram attention in LLMs.
Reddy (2023) studied the balance between ICL and in-weights learning, and observed the abrupt
emergence of the induction head corresponds to the emergence of ICL. The induction head was
generalized to the statistical induction head in (Edelman et al., 2024) mainly to study bigrams. We
adopted it but further allowed more statistical induction heads for more suffixes to be included
together, in the first two layers of the idealized transformer.

There have also been efforts to study transformers and learning of Markov chains. Xie et al. (2021)
viewed ICL as a Bayesian inference problem, where a latent concept determines an HHM, and the
observations from the HHM can lead to the identification of the hidden concept. They studied the
eventual ICL capability, i.e., when the number of in-context examples goes to infinity. Hu et al.
(2024) studied the limitations of transformer on learning to perform belief inference for HMMs
sources compared to recurrent neural networks. The work in (Bietti et al., 2024) allowed a fixed-order
Markov chain to switch to a new deterministic mode, and the authors study the training behavior of
the corresponding ICL task with this mode transition. Akyürek et al. (2024) made a comprehensive
empirical comparison of various language models on random finite automata, and showed that the
transformer performs the best among these models. Makkuva et al. (2024) studied the loss landscape
during transformer training on sequences generated from a single fixed-order Markov chain, using a
single-layer transformer. Their study does not consider ICL. More recently Rajaraman et al. (2024)
considered ICL of FOMCs with single-head transformers, and provided a construction to show that it
is possible to use a single attention head to capture longer memory in the sequence. The work most
relevant to us is (Edelman et al., 2024), where ICL of a fixed-order Markov chain was considered,
and the training behavior was studied both empirically and theoretically, and the forming of induction
heads in a two-layer network was demonstrated. All these existing work assumed fixed-order Markov
models or fixed-order HHMs, usually with orders kept at 1 or 2; moreover, they almost all focus on
the emergence of the induction heads during training or the training landscape. Our study is different
firstly in the variable-order nature of the Markov models, and secondly the focus on the on-time ICL
performance instead of the training landscape and behavior.

Lossless data compression has a long history, with many different algorithms being developed over
the years. The most popular general-purpose compression algorithms are perhaps the Lempel-Ziv
compression algorithms (Ziv & Lempel, 1977; 1978) and their variants, which belong to dictionary-
based compression algorithms. These algorithms do not explicitly maintain any probabilistic models,
and their efficiency comes from maintaining an efficiency dictionary of sequences that have been seen
before, and to be matched with future sequences. More powerful compression algorithms usually
maintain probability models explicitly, which are then plugged into an AC module (Rissannen, 1976;
Pasco, 1976; Rissanen & Langdon, 1979) for efficient compression. The most well-known classes of
algorithms in this category is the context-tree weighting algorithm (Willems et al., 1995; Begleiter
et al., 2004; Kontoyiannis, 2023) and prediction by partial matching (Cleary & Witten, 1984). The
former enjoys a strong theoretical guarantee, particularly on binary sources (Willems et al., 1995), but
has some difficulty in its practical implementation (Willems, 1998; Willems et al., 1996; Sadakane
et al., 2000; Begleiter et al., 2004), particularly for large alphabet sizes and sequential data. The latter
is based more on heuristics, and has been improved and extended in various ways (Cleary & Teahan,
1997; Moffat, 1990; Shkarin, 2002). Methods based on probabilistic modeling are usually more
resource-extensive, though they have gained more popularity recently due to the increased availability
of computing resources. The evaluation given in (Begleiter et al., 2004) suggests that CTW and
PPM are the two most powerful compression algorithms in practice. There are other compression
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algorithms such as those based on the Burrows-Wheeler transformation (Burrows, 1994) which does
not explicitly maintain a probabilistic model, but are also not dictionary-based.

B OTHER PRELIMINARIES

B.1 TRANSFORMER ARCHITECTURE

The transformer architecture considered in this work is illustrated in Fig. 10.

Figure 10: Transformer model

B.2 THE PPM ALGORITHM

The PPM algorithm (with finite memory of parameter DPPM) blends several CTs by utilizing an
escape symbol (Esc), and adaptively refines the CT model using the observed samples. The key idea
is that the estimated probability distribution for an emitted symbol is only used when there were past
observations of this string. For other cases, the escape symbol is encoded, indicating a shorter suffix
needs to be used.

Table 2: PPM counts after observing string (a, b, c, a, b, b, c)

order k = 2 order k = 1 order k = 0 order k = −1

prediction c p prediction c p prediction c p prediction c p

(a, b) → b 1 1
3 a → b 2 2

3 → a 2 1
4

1
|A|

→ c 1 1
3 → Esc 1 1

3 → b 3 3
8

→ Esc 1 1
3 b → b 1 1

4 → c 2 1
4

(b, b) → c 1 1
2 → c 2 1

2 → Esc 1 1
8

→ Esc 1 1
2 → Esc 1 1

4

(b, c) → a 1 1
2 c → a 1 1

2

→ Esc 1 1
2 → Esc 1 1

2

(c, a) → c 1 1
2

→ Esc 1 1
2

We illustrate this context tree
blending approach by the exam-
ple shown in Table. 2, where
A = {a, b, c}, and the memory
length DPPM = 2. The escape
pattern is assigned a count one
(method-A in (Moffat, 1990)).
Suppose the next symbol to emit
is a, then the probability predic-
tion is 1

2 from the k = 2 col-
umn; if on the other hand, the
next symbol to emit is b, then the
escape symbol is first encoded
with probability 1

2 since there is
no string of (b, c, b) in the history,

and then we check the column k = 1, and see that another escape symbol will be encoded since there
is also no (c, b), and finally b will be encoded at k = 0, and the eventual effective probability for b is
1
2 · 1

2 · 3
8 . Various refinements of the probability estimation can be adopted to further improve the

performance, e.g., the exclusion rule, and other methods to initialize the probability for Esc; see e.g.
(Moffat, 1990; Cleary & Teahan, 1997; Begleiter et al., 2004). As the number of observed samples
accumulated, all patterns of (DPPM + 1)-grams will be observed at least once and the probability
prediction will solely based on the column of maximum order k = DPPM.
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C PRETRAINING DETAILS

We choose the alphabet size to be |A| = 3 in the experiments. For training, we randomly generate
K = 20000 CTs of various depths (maximum order D ≤ 5), and then for each CT leaf, we generate a
probability distribution. Two different ways of generating these probability distributions are taken: the
first approach is use the Dirichlet distribution to sample such distributions, and the second approach
is to randomly select some of the elements in the alphabet to have probability zero, and the others
with i.i.d. random values before normalization. Different values of the Dirichlet parameter are tested
but only the results do not appear to be sensitive to the choice. For each CT, a source sequence of
certain length (e.g., Nk = 5120) is produced. The context window N can vary, but in most cases, we
set it at 512 (except when D = 5, we set it to be 1536 to allow sufficient data collection in context).
Each source sequence is segmented into ⌊Nk/N⌋ training sequence.

During testing, we randomly generate multiple (2048 in our experiments) new CTs of varying depths
using the same procedure, and for each CT, a sequence of length Nk = 5120 are generated, and then
again segmented into a length of the context window for testing.

The transformer model is implemented using Pytorch, and trained using the AdamW optimizer with
the default parameters. A100/T100 GPUs are used for training. Training a model requires roughly
4 to 6 hours. Batch size is set at 512, and the maximum epoch is set at 100 with early termination
allowed after 15 epochs of no improvement. Testing was performed on a local workstation with a
GeForce GTX 1660 Ti GPU card.

D PROOFS OF THE THEOREMS FOR CT SOURCES

D.1 A NEW FORMULA FOR BAYESIAN NEXT TOKEN PREDICTION

We aim to predict the next token xn+1 based on the observations xn
1−D = (x1−D, . . . , xn) via

a transformer-friendly formula. Note that x0
1−D is a place holder or dummy initialization se-

quence, which does not contain any information of the CT (T, {ps}); or alternatively, we can
view P (T, {ps}|x0

1−D) = πCTW(T, {ps}) parameterized by λ,α.

Theorem 6 (Restate Theorem 2). The predicted probability can be computed as

PπCTW(xn+1|xn
1−D) =

∑
l=0,...,D

ωn,l · pn,sn,l
(xn+1), (13)

where pn,sn,l
(a) =

α(a)+nn,sn,l
(a)∑

q(α(q)+nn,sn,l
(q)) ; and ωn,· ∈ ∆D+1 with ln(ωn,l)−ln(ωn,l−1) = ln(1−λ)−

Il=D ln(λ)+ ℓen,sn,l
− ℓen,sn,l−1

+
∑

q∈A ℓwn,qsn,l−1
− ℓwn,sn,l

, where ℓen,s = ln(pen,s), ℓ
w
n,s = ln(pwn,s).

Discussion. Note that pen,s, p
w
n,s can be efficiently calculated by the CTW procedure, and compared

to calculate PπCTW (xn+1
1 |x0

1−D)

PπCTW (xn
1 |x0

1−D)
for each xn+1 the extra computation besides the CTW procedure is A

times larger than that by Eq (7). As illustrated in Fig. 8, the weighted average formula in Eq (7) gives
a natural interpretation for the Bayesian optimal next token predicted probability. Each suffix along
the root the leaf path sn,0 − sn,1 − · · · − sn,D can potentially be the true suffix, i.e., sn,l ∈ L(T ),
and pn,sn,l

is in fact the Bayesian optimal next token prediction given sn,l ∈ L(T ).

The blending weights ωn,l’s are based on stopping probability λ, the information in the potential
suffix path such as pesn,sn,l

as well as the information from their siblings pwn,qsn,l−1
. We can interpret

pen,s as the evidence (unnormalized likelihood) that s ∈ L(T ), and pwn,s as the evidence that s ∈ T ,
i.e., the underlying tree covers node s. Theorem 6 indicates that more weights are assigned to sn,l
than sn,l−1, i.e., ωn,l > ωn,l−1, if λ is smaller (i.e., node sn,l−1 is more likely to branch and thus
less likely to be a leaf node), pen,sn,l

− pen,sn,l−1
is larger (i.e., sn,l has more evidence than sn,l−1)

and
∑

q∈A ℓwn,qsn,l−1
− ℓwn,sn,l

is larger (i.e., sn,l’s siblings have more evidence to explain the data
and thus sn,l−1 is less likely to be a leaf node). The indicator function Il=D is due to the maximum
depth constraint on the branching process. Nodes at level l = D automatically stop the branching,
i.e., the branching-stopping probability is 1 for such nodes.
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Proof of Theorem 6. Recall si,l = (xi−l+1, . . . , xi) is the suffix at position i of length l. We omit
D by writing T = T (D) when D is clear from the context. Define partition {Tsn,l

}0≤l≤D, that
Ts = {T ∈ T : s ∈ L(T )} is the set of trees containing leaf s. The predicted probability can then be
computed as

PπCTW(xn+1|xn
1−D) =

∑
T∈T

∫
p(xn+1|T, {ps}, xn

1−D)πCTW(T, {ps}|xn
1−D)

( ∏
s∈L(T )

dps

)
=

∑
l=0,...,D

∑
T∈Tsn,l

∫
psn,l

(xn+1)πCTW(T, {ps}|xn
1−D)

( ∏
s∈L(T )

dps

)
=

∑
l=0,...,D

∑
T∈Tsn,l

∫
psn,l

(xn+1)πD(T |xn
1−D)πp(psl |T, xn

1−D)dpsl

=
∑

l=0,...,D

∑
T∈Tsn,l

πD(T |xn
1−D)

∫
psn,l

(xn+1)πp(psl |T, xn
1−D)dpsl

=
∑

l=0,...,D

( ∑
T∈Tsn,l

πD(T |xn
1−D)

)(∫
psn,l

(xn+1)πp(psl |T, xn
1−D)dpsl

)
=

∑
l=0,...,D

ωn,l · pn,sn,l
(xn+1), (14)

where the last equality is by the definition that

ωn,l =
∑

T∈Tsn,l

πD(T |xn
1−D), (15)

and the optimal prediction probability given suffix sn,l is

pn,sn,l
(a) =

α(a) + nn,sn,l
(a)∑

q∈A(α(q) + nn,sn,l
(q))

, (16)

since for any T ∈ Tsl , the posterior of ps follows Dirichlet distribution

πp(psl |T, xn
1−D) = Dir(psl ;α+ nn,sn,l

), (17)

with posterior mean E[psl |T, xn
1−D] ∈ ∆A and proportional to α+ nn,sn,l

.

Since the length of data n is fixed and clear from the context, let x = xn
1−D be the sequence, and we

omit n in the subscript of pen,s, pwn,s and sn,l for simplicity.

For any model T ∈ T (D), the posterior probability π(T |x) is given by:

πD(T |x) = πD(T )Pπ(x|T )
Pπ(x)

=
πD(T )

∏
s∈L(T ) p

e
s

pw()
, (18)

where the denominator P ∗π (x) = pw() is the prior predictive likelihood computed by CTW given in
Theorem 1, and the numerator is by Pπ(x|T ) =

∏
s∈L(T ) p

e
s in (Kontoyiannis et al., 2022, Lemma

2.2). Since ωl =
∑

T∈Tsl
π(T |x) by definition, we have for any l = 1, 2, . . . , d,

ωl

ωl−1
=

∑
T ′∈Tsl

πd(T
′|x)∑

T∈Tsl−1
πd(T |x)

=

∑
T ′∈Tsl

πd(T
′)
∏

s∈L(T ′) p
e
s∑

T∈Tsl−1
πd(T )

∏
s∈L(T ) p

e
s

. (19)

Note that tree in Tsl and trees in Tsl−1
share similarities. For any T ∈ Tsl−1

, let Tsl;T = {T ′ ∈
Tsl : L(T ) ⊂ L(T ′) ∪ {sl−1}} be the set of trees that differs from T only at subtree sub(T ′; sl) :=
{subtree of T ′ with root at s}.

Take any l = 1, 2, . . . , D − 1. For any T ∈ Tsl−1
and T ′ ∈ Tsl;T . Based on the definition of

πD = (1− λ)(|L(T )|−1)/(A−1)λ|L(T )|−|LD(T )|, it is not hard to verify that

πD(T ′)

πD(T )
=

πD−l+1(sub(T ′; sl−1))
πD−l+1(sub(T ; sl−1))
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=
(1− λ)πD−l(sub(T ′; sl))

∏
s′l∈sib(sl) πD−l(sub(T ′; s′l))

λ

= (1− λ)
∏

s′l∈sib(sl)

πD−l(sub(T ′; s′l)),

where sib(sl+1) = {qsl : q ∈ A and qsl ̸= sl+1} is set of siblings of sl+1. We can interpret the ratio
as follows. T ′ and T only differs at the sub(T ′; sl−1) and sub(T ; sl−1). Since T ′ branch at node
sl−1, we thus have the numerator in the second equation, where (1− λ) corresponds to the branching
and then compute for the subtrees. Note that T stops branching at sl−1 and T ′ stops branching at sl,
then πD−l+1(sub(T ; sl−1)) = πD−l(sub(T ′; sl)) = λ equals to the stopping probability.

Given any suffix s with |s| ≤ D, it has been shown in (Kontoyiannis et al., 2022, Proof of Theorem
3.1) that for any l ≤ D,

pws =
∑

U∈T (D−l)

πD−l(U)
∏

u∈L(U)

peus, (20)

where T (D − l) is the set of trees with maximum depth D − l and πD−l is the prior for bounded
branching process with maximum depth D − l. We thus have∑

T ′∈Tsl;T
πD(T ′)

∏
s∈L(T ′) p

e
s

πD(T )
∏

s∈L(T ) p
e
s

=

∑
T ′∈Tsl;T

πD(T ′)
∏

s∈L(T ′) p
e
s

πD(T )
∏

s∈L(T ) p
e
s

(21)

=
∑

T ′∈Tsl;T

πD(T ′)

πD(T )

∏
s∈L(T ′)\L(T ) p

e
s

pesl−1

(22)

=
∑

T ′∈Tsl;T

(1− λ)
∏

s′l∈sib(sl)

πD−l(sub(T ′; s′l))

(pesl
∏

s′l∈sib(T ;sl)

∏
s∈L(sub(T ′;s′l))

pes

pesl−1

)
(23)

= (1− λ)
pesl
pesl−1

∑
T ′∈Tsl;T

 ∏
s′l∈sib(sl)

πD−l(sub(T ′; s′l))

 ∏
s′l∈sib(T ;sl)

∏
s∈L(sub(T ′;s′l))

pes

 (24)

= (1− λ)
pesl
pesl−1

∑
T ′∈Tsl;T

 ∏
s′l∈sib(sl)

πD−l(sub(T ′; s′l))
∏

s∈L(sub(T ′;s′l))

pes

 (25)

= (1− λ)
pesl
pesl−1

∏
s′l∈sib(sl)

 ∑
U∈T (D−l)

πD−l(U)
∏

u∈L(U)

peus′l

 (26)

=
(1− λ)pesl

∏
a̸=sl\sl−1

pwasl−1

pesl−1

. (27)

Similarly, for any T ∈ TsD−1
and T ′ ∈ TsD;T , πD(T ′)

πD(T ) = 1−λ
λ , we can derive

ωD

ωD−1
=

(1− λ)pesd
∏

a ̸=sd\si p
w
asD−1

λpesD−1

, (28)

in the same manner. The proof can then be concluded by taking the logarithm on both hands.

D.2 CONSTRUCTION OF TRANSFORMER FOR CTW

To make the presentation clear, in the following we separate the layers by their functionality and
present them separately. Recall that

a
(ℓ)
i = MHA

(
hi,H; {W (ℓ)

O,m,W
(ℓ)
Q,m,W

(ℓ)
K,m,W

(ℓ)
V,m}M

(ℓ)

m=1

)
≜ W

(ℓ)
O

[
b
(ℓ)
1,i ;b

(ℓ)
2,i ; . . . ;b

(ℓ)

M(ℓ),i

]
,

where {W (ℓ)
Q,m,W

(ℓ)
K,m,W

(ℓ)
V,m}M(ℓ)

m=1 are the E(ℓ)×E query matrices, key matrices, and value matrices

and W
(ℓ)
O is the E × M (ℓ)E(ℓ) output mapping matrix. For simplicity of presentation, we take
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Eℓ = E and W ℓ
O = [I; I; . . . ; I]. It is not hard to see the following constructions can be applied to

much smaller E(ℓ) while taking WO as a permutation matrix.

We have omitted the dimensionlity of several zero matrices when they are obvious from the context.
The first and second layer constructions are illustrated in Fig. 11.

Figure 11: Transformer construction for D = 2. The left figure illustrates the first layer – finite-
memory context-extension layer, which append the previous D tokens. The right figure demonstrate
the MHA of the second layer – statistics collection layer, which extracts forward and backward
statistics based on the matched suffix indicated by a green square.

D.2.1 FINITE-MEMORY CONTEXT-EXTENSION LAYER

We begin with the first layer, which is referred to as a finite-memory context-extension layer.

Theorem 7 (Restate Theorem 3). There is an M -headed transformer layer that can perform finite-
memory context-extension, defined by the following output, with the initial one-hot embedded input
H(1):

h
(2)
i = (si,M+1;0;posi) = (xi;xi−1; . . . ;xi−M ;0;posi), (29)

where si,M+1 = (xi; . . . ;xi−M ) is the vector version of the M -length suffix si,M+1 = xi
i−M .

Proof of Theorem 3. The input of the of the first layer is a initial one-hot embedded input with
positional embedding H(1), where its n-th column is

h
(1)
i = (xi;0;posi) ∈ RE , (30)

where positional encoding

posi = (1; cos(iπ/N); sin(iπ/N)), (31)

where N is the maximum context window size.

The multi-head attention in the first layer is consisted of M (1) = D heads parameterized by
(W

(1)
Q,m,W

(1)
K,m,W

(1)
V,m)m=1,2,...,M(1) . Specifically, for m = 1, 2, . . . ,M (1),

W
(1)
Q,m =

(
0 Rot(m)
0 0

)
, W

(1)
K,m =

(
0 cI2×2

0 0

)
, W

(1)
V,m =

0mA×A 0
IA×A 0
0 0

 , (32)
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where Rot(m) =

(
cos(mπ/N) sin(mπ/N)
− sin(mπ/N) cos(mπ/N)

)
is a rotation matrix that rotates clockwise by an

angle of mπ/C, and c ∈ R+ is a temperature factor. The query, key, and value after the mapping are

W
(1)
Q,mh(1)

n =

(
posn−m

0

)
, W

(1)
K,mh

(1)
i = c

(
posi
0

)
, W

(1)
V,mh

(1)
i =

0mA×1

xi

0

 . (33)

Take c = ∞ or sufficiently large. It is seen that the m-th head essentially copies the m-th earlier
symbol to stack at the (m+ 1)-th position below the original symbol xi. Together with the residual
link, the attention layer gives exactly the h

(2)
i shown in (34) while the FF layer in this layer can be

set as all zero.

h
(2)
i = (xi;xi−1;xi−2;xi−M(1) ;0;posi) = (si,M(1)+1;0;posi), (34)

where si,l = (xi;xi−1; · · · ;xi−l+1) is the one-hot embedded version of suffix si,l =
(xi−l+1, . . . , xi−1, xi).

D.2.2 STATISTICS COLLECTION LAYER

Theorem 8 (Restate Theorem 4). There is an M ′-head attention layer, where M ′ ≤ M +1, that can
perform statistics collection, defined by the following output, with H(2) in (8) as its input:

a
(2)
i = (si,M+1;gi,M ′ ;g←i−1,M ′ ;0;posi), (35)

where gi,M ′ := (gi,si,0 ; . . . ;gi,si,M′−1
) and g←i−1,M ′ = (g←i−1,si,0 ; . . . ;g

←
i−1,si,M′−1

).

Proof of Theorem 4. To make the proof self-contained, we first recall some key notations. The
second layer is referred to as the statistics collection layer, which uses a sequence of vectors h(2)

i ,
i = 1, 2, . . . , N , defined in (8) as its input, restated as follows.

h
(2)
i = (si,M+1;0;posi), (36)

where si,M+1 = (xi; . . . ;xi−M ). To rigorously specify the function of this layer, recall the definition
of the k-gram statistics vector gi,s, which in plain words, is the empirical probability distribution of
the next token associated with the suffix s for a sequence xi

1. Mathematically, for a suffix s whose
length is k − 1 and the current position i,

gi,s(a) =
ni,s(a)∑
q∈A ni,s(q)

∀a ∈ A, (37)

where ni,s is the counting vector defined in (5).

The k-gram backward statistics vector g←i−1,s is defined similarly, which is the empirical probability
distribution of the previous token associated with the suffix s for data xi−1

1 , and mathematically

g←i−1,s(a) =

∑
q∈A ni,as(q)∑
q∈A ni,s(q)

∀a ∈ A, (38)

where
∑

q∈A ni,s(q) is the number of appears of the sub-string s in the sequence xi−1
1 .

The multi-head attention in the second layer is consisted of M (2) = M ′ ≤ M (1) +1 = M +1 heads
parameterized by (W

(2)
Q,m,W

(2)
K,m,W

(2)
V,m)m=0,1,2,...,M(2)−1. Specifically, for m = 1, 2, . . . ,M (2)−1,

W
(2)
Q,m =

(
I(m−1)A×(m−1)A 0

0 0

)
, W

(2)
K,m =

(
0(m−1)A×A cI(m−1)A×(m−1)A 0

0 0 0

)
, (39)

W
(2)
V,m =


0(M(1)+m)A×A 0

IA×A 0

0(M(2)−1)A×A 0

0A×A [0A×(m−1)A, IA×A,0]
0 0

 . (40)
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The corresponding query, key, and value vectors after the mapping are

W
(2)
Q,mh(2)

n =

(
sn,m−1

0

)
, W

(2)
K,mh

(2)
i = c

(
si−1,m−1

0

)
, W

(2)
V,mh

(2)
i =


0(M(1)+m)A×1

xi

0(M(2)−1)A×1

xi−m
0

 .

For m = M (2), W (2)
Q,m,W

(2)
K,m are of the same structure, while W (2)

V,m does not contains that IA×A in

that [0A×(m−1)A, IA×A,0] block, and thus W (1)
V,mh

(1)
i does not have xi−m.

It is not hard to see that taking c → ∞ gives

(si,M(1)+1;gi,M(2)−1;g
←
i−1,M(2)−1;0;posi) = [MHA(H(2)) +H(2)]i, (41)

where

gi,M ′ = (gi,si,0 ; . . . ;gi,si,M′−1
)

g←i−1,M ′ = (g←i−1,si,0 ; . . . ;g
←
i−1,si,M′−1

).

Note that the counting vector can be obtained via

ni,si,l(a) =
ni,si,l(a)∑
q∈A ni,si,l(q)

∑
q∈A ni,si,l(q)∑

q∈A ni,si,l−1
(q)

· · ·
∑

q∈A ni,si,1(q)∑
q∈A ni,si,0(q)

∑
q∈A

ni,si,0(q)

 (42)

= gi,si,l
(a)

l−1∏
j=0

g←i−1,si,j (xi−j)

 · i, (43)

by the information contained in vector (si,M(1)+1;gi,M(2)−1;g
←
i−1,M(2)−1;0;posi).

Since pei,si,l and pi,si,l
in (16) are functions of ni,si,l , we can then obtain (approximate) the following

output by a sufficiently wide FF layer that

h3
i = (si,M(1)+1;pi,D; lei,D; ln(pwi,si,D );0;posi), (44)

where lei,D contains the logarithm of pe along the path from root () to (xi−d+1, . . . , xi), and pi,D
stacks the optimal prediction given suffices si,0, . . . , si,D, i.e.,

lei,D = (ℓei,si,0 ; ℓ
e
i,si,1 ; . . . ; ℓ

e
i,si,D ) = (ln(pei,si,0); ln(p

e
i,si,1); . . . ; ln(p

e
i,si,D )), (45)

pi,D = (pi,si,0 ;pi,si,1 ; . . . ;pi,si,D ), (46)

and ln(pwi,si,D ) = ln(pei,si,D ) with suffix |si,D| = D. These quantities can be extracted, since they

are functions of the statistics collected from a
(2)
i .

This functional layer essentially collects k-gram statistics for various lengths of k = 1, 2, . . . ,M (2)

via multi-head attention and then process the the statistics for follow-up optimal scheme.

D.2.3 INDUCTIVE CTW LAYER

Recall the input and the expected outputs of the inductive CTW layer that

h
(ℓ)
i = (si,M(1)+1;pi,D; lei,D; δi,D; δi,D−1; . . . ; δi,D−ℓ+4; ℓ

w
i,si,D+3−ℓ

;0;posi), (47)

for ℓ = 3, 4, . . . , 3+D, where δi,l := ln(ωi,l)− ln(ωi,l−1) for l = d,D−1, . . . , 1 are the the weight
difference, and we take M (1) = D.
Theorem 9 (Restatement of Theorem 5). There exists a A-head transformer layer that can perform
the induction: Takes H(ℓ) in (47) as input and outputs H(ℓ+1). And the final readout layer taking
H(D+2) as input can output the A-dimensional Bayesian optimal next token prediction vector
PπCTW(·|xn

1−D) =
∑

l=0,...,D ωn,lpn,sn,l
.
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Proof of Theorem 5. For any fixed ℓ = 3, 4, . . . , 2 + D, we specify the construction for the ℓ-th
transformer layer. It contains A heads and for each m = 1, 2, . . . , A, the Q,K, V matrices are

W
(ℓ)
Q,m =


I(D+1−ℓ)A×(D+1−ℓ)A 0

0 [em,0A×2]
0 0
0 I2×2

 , W
(ℓ)
K,m =

cI(D+2−ℓ)A×(D+2−ℓ)A 0
0 0
0 cI2×2

 ,

W
(ℓ)
V,m =

0(placeℓ+m)×(placeℓ+m) 0

[01×(placeℓ−1), 1] 0
0 0

 ,

where em is the A-dimensional one-hot vector at position m, and placeℓ = (M (1)+D+2)A+D+ℓ−1

is index of element ℓwi,si,D+3−ℓ
in h

(ℓ)
i . The corresponding query, key, and value vectors after the

mapping are

W
(ℓ)
Q,mh(ℓ)

n =

sn,D+1−ℓ
em
0

posn

 , W
(ℓ)
K,mh

(ℓ)
i = c

(
si,D+2−ℓ

0
posi

)
, W

(ℓ)
V,mh

(ℓ)
i =

0(placeℓ+m)×1

ℓwi,si,D+3−ℓ

0

 .

At position n, the query of m-head will select the latest (due to positional embedding) position with
suffix [sn,D+1−ℓ; em], and append its ℓw at the end. It is not hard to see that taking c → ∞ gives

a
(ℓ)
i = [MHA(H(2)) +H(2)]i

= (si,D+1;pi,D; lei,D; δi,D; δi,D−1; . . . ; δi,D+4−ℓ; ℓ
w
i,si,D+3−ℓ

; [ℓwi,qsi,D+2−ℓ
]q∈A;0;posi)

Recall ln(ωn,l)−ln(ωn,l−1) = ln(1−λ)−Il=D ln(λ)+ℓen,sn,l
−ℓen,sn,l−1

+
∑

q∈A ℓwn,qsn,l−1
−ℓwn,sn,l

by Theorem 2. δi,D+3−ℓ = ln(ωi,D+3−ℓ)− ln(ωi,D+2−ℓ) can be computed by a
(ℓ)
i and thus h(ℓ+1)

i
can be approximated via the FF layer following the ℓ-th multi-head attention layer.

The final layer approximate an A-dimensional vector

PπCTW(·|xn
1−D) =

∑
l=0,...,D

ωn,l · pn,sn,l
(·), (48)

by an FF layer taking input

h(D+3)
n = (sn,M(1)+1;pn,D; len,D; δn,D; . . . ; δn,1;0;posi). (49)

The proof is now complete.
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