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ABSTRACT

Foundation models pretrained on large-scale natural images are widely adapted to
various cross-domain low-resource downstream tasks, benefiting from generaliz-
able and transferable patterns captured by their representations. However, these
representations are later found to gradually vanish during finetuning, accompanied
by a degradation of model’s original generalizability. In this paper, we argue
that such tasks can be effectively adapted without sacrificing the benefits of pre-
trained representations. We approach this by introducing Representation Invariance
FineTuning (RIFT), a regularization that maximizes the representation similarity
between pretrained and finetuned models by leveraging orthogonal invariance of
manifolds in a computationally efficient way. Experiments demonstrate that our
method is compatible with mainstream finetuning methods, offering competitive or
even enhanced performance and better preservation of the generalizability.

1 INTRODUCTION

Foundation models pretrained on large-scale natural images have been widely recognized as strong
initializations for various downstream tasks Siméoni et al. (2025); Yu et al. (2025); Fang et al. (2023),
particularly in data-scarce scenarios Liu et al. (2024a); Zhang et al. (2024a;b), as low-resource
learning tasks usually fail to train a powerful model to cover the complex data distributions, resulting
in poor performance Tian et al. (2020). A representative example is medical image analysis Wang
et al. (2023); Dai et al. (2023), where collecting labeled samples is difficult due to privacy concerns,
rare diseases, heterogeneous sources, and the high annotation cost. In contrast, the generalizable
and transferable patterns captured by pretrained representations can strongly compensate for this
limitation, which are shown to be shared across tasks Mehra et al. (2024).

Meanwhile, such tasks typically exhibit significant domain gaps, which necessitate finetuning (i.e.,
training on specific datasets with smaller learning rates, fewer epochs and selective parameters) to
successfully adapt foundation models Jia et al. (2022b); Chen et al. (2022); Hu et al. (2022). The
primary intention of finetuning is to implicitly minimize Euclidean distance shift of pretrained model
in parameter space, thereby not only enabling better transfer of established semantic knowledge
to downstream tasks but also preserving the inherent generalizability to support future incremental
requirements, such as continual and multi-task learning Wang et al. (2024); Zhang & Yang (2021).

However, these benefits of pretrained representations are not retained as expected, and instead degrade
severely during finetuning Wang et al. (2025); Chen et al. (2025); Kumar et al. (2022). Particularly,
recent Platonic Representation Hypothesis reveals that foundation models possess enough capacity
and scalability to capture non-conflicting shared representations across modalities and tasks, yet this
potential is often wasted, as simplicity bias may converge along shortcut paths tailored to the current
task Huh et al. (2024). This leaves us wondering, how can pretrained representations avoid being
shaved away by such an Occam’s razor in cross-domain low-resource finetuning?

Many biological systems adjust to new environments while protecting their core functions, a stability
that arises from constraints imposed throughout the evolution, e.g., protein structures influenced by
hydrophobic interactions remain robust in their overall fold even when large temperature fluctuations
perturb local residues Hatakeyama & Kaneko (2015); Tang et al. (2020). Inspired by this principle, we
hypothesize that pretrained and finetuned representations fail to coexist due to insufficient constraints.
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Intuitively, one can restrict finetuning by aligning it with pretrained representations to prevent
excessive drift. This alignment can be achieved through similarity measures, with Centered Kernel
Alignment (CKA) as a popular choice Kornblith et al. (2019). A straightforward approach is to
add a regularization term that keeps representation similarity above certain threshold to the loss
function, but it incurs considerable computational cost due to the high complexity of pairwise CKA
calculations. To alleviate this, we propose Representaion Invariance FineTuning (RIFT) to make three
efforts. First, we exploit the orthogonal invariance of CKA by maintaining orthogonality between
two feature embeddings, as a cheaper alternative. Second, we perform distributional rather than
sample-wise alignment for each mini-batch, leveraging the precomputed mean and covariance for an
efficient statistical approximation. Third, we use only feature embeddings from the last layer before
task head to avoid orthogonality violations in multi-layer architectures or nonlinear activations.

Overall, our contributions can be summarized as follows:

• We demonstrate that the benefits of pretrained representations can be well preserved while still
effectively adapting to downstream tasks, especially in cross-domain low-resource scenarios.

• We propose RIFT, a simple regularization for finetuning to constrain representation similarity by
the orthogonal invariance of CKA with improved computational efficiency.

• Our method is compatible with mainstream finetuning methods, achieving competitive or even
enhanced performance while better preserve the generalizability.

We hope our work can shed some light on the finetuning paradigms that emphasize both generalization
and adaptation.

2 RELATED WORK

2.1 REPRESENTATION INVARIANCE AND SIMILARITY

Pretrained representations have been shown to capture rich and diverse features from real-world
datasets, and are widely used to accelerate and stabilize the convergence of downstream tasks Yu
et al. (2025); Wu et al. (2023); He et al. (2022); Liang et al. (2025). However, these representations
have been found to inevitably degrade during finetuning, with downstream task performance being
adversely affected and catastrophic forgetting also weakening pretrained semantic knowledge. Con-
sequently, several studies have proposed methods to address these issues Aghajanyan et al. (2021);
Razdaibiedina et al. (2023); Ma et al. (2021). Yet, despite these efforts, the generalizability of
pretrained representation is neglected, and remains unverified as inevitable degradation, with no
effective approaches yet established Wang et al. (2025); Chen et al. (2025); Kumar et al. (2022). In
this paper, we confront the challenge of whether pretrained representations and their generalizability
can be simultaneously preserved, i.e., exploring the representation invariance in finetuning.

Representation similarity metrics provide a natural tool to quantify such invariance. Different
similarity measures Klabunde et al. (2025); Huh et al. (2024) have been proposed to compare
representations across layers or models to better understand neural network behaviors, e.g., Canonical
Correlation Analysis (CCA) Morcos et al. (2018) and Centered Kernel Alignment (CKA) Kornblith
et al. (2019). These metrics exhibit various desirable invariances, such as invariance to invertible
linear transformations, orthogonal transformations, and isotropic scaling. Among them, CKA offers
superior consistency across architectures, stronger invariance, and more interpretable results.

2.2 FINETUNING AND ORTHOGONAL CONSTRAINTS

Typically, finetuning is divided into full finetuning Lv et al. (2024) and parameter-efficient finetuning
(PEFT) Ding et al. (2023). Full finetuning retrains all pretrained parameters Kirillov et al. (2023);
Touvron et al. (2023); Liu et al. (2023), while PEFT updates only a subset or newly introduced ones,
e.g., prompt tuning Zu et al. (2024); Jia et al. (2022b); Bahng et al. (2022), adapter tuning Chen et al.
(2022); He et al. (2021); Sung et al. (2022), and LoRA Hu et al. (2022); Liu et al. (2024b); Hayou
et al. (2024).

Introducing orthogonal constraints during training and finetuning Qiu et al. (2023); Liu et al. (2024c);
Ma et al. (2024); Yang et al. (2025); Qiu et al. (2025); Duan et al. (2025) has been proposed to
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preserve pretrained generative abilities. The motivation lies in the fact that orthogonal transformations
preserve both the spectral norm of weight matrices and angular relationships Qiu et al. (2023; 2025).
In particular, OFT Qiu et al. (2023) enforces such constraints on the weight matrix to maintain
hyperspherical energy. In contrast, RIFT is fundamentally different from these approaches: (1)
RIFT operates directly on the final representations rather than imposing constraints on specific
weights, thereby avoiding the limitations detailed in Sec. 4.3. (2) RIFT prioritizes preserving the
generalizability of pretrained representations, rather than solely transferring established semantic
knowledge to downstream tasks, though it achieves this as well.

3 PRELIMINARY: CKA FOR REPRESENTATION SIMILARITY

Notation. Bold symbols denote matrices or vectors (e.g., X and x), while scalars are written in
lowercase (e.g., x). The dataset X = {(xi)}ni=1 ∈ Rn×d where n is the number of samples and d is
feature dimension. The Frobenius norm is denoted by ∥ · ∥F .

Model. A model is represented by fθ, where θ denotes the parameters, and we simplify it as f . The
notation Fθ(X) denotes features extracted by backbone, which is distinct from the classification
output fθ(X). They are omitted as X and Fθ. The parameters of pretrained model are denoted as θ0.

CKA has been a widely used metric for representation similarity. Formally, the centered feature
embedding Fθ,c ∈ Rn×d computed by fθ on X is defined as

Fθ,c := Fθ −
1

n
11⊤Fθ (1)

where 1 ∈ Rn is the all-ones vector. The linear CKA of F between fθ0 and fθ is then given by

CKA(Fθ0 ,Fθ) =

∥∥∥F⊤
θ0,c

Fθ,c

∥∥∥2
F∥∥∥F⊤

θ,cFθ,c

∥∥∥
F

∥∥∥F⊤
θ0,c

Fθ0,c

∥∥∥
F

(2)

which is the cosine similarity of centered features’ Gram matrices and quantifies the structural
alignment degree. It is particularly sensitive to dimensional collapse, while remaining invariant to
orthogonal transformations and isotropic scalings. The invariance is stated as
Property 3.1 (CKA Similarity-Transformation Invariance). For any scalar α > 0 and orthogonal
matrix Q ∈ O(d), Fθ = αFθ0Q satisfies

CKA(Fθ0 ,Fθ) = 1 (3)

where such transformations ensure a high CKA value, implying that feature embeddings remain
highly similar. This condition motivates the following definition.
Definition 3.2 (Similarity-Invariant Parameter Subspace). Given θ0, define the set

Mθ0 := {θ ∈ Θ | ∃Q ∈ O(d),∃α > 0 such that Fθ = αFθ0Q} . (4)

which offers a promising way to identify finetuned models preserving the pretrained representation,
and we primarily focus on feature embeddings from the last layer before task head.

4 METHOD

4.1 PROBLEM FORMULATION

The goal is to find a finetuned model that both maximizes downstream task performance and preserves
representation similarity with pretrained model. This is formulated as an optimization problem:

θ∗ = argmin
θ

Lcls(θ) s.t. CKA(Fθ0 ,Fθ) ≥ ϵ (5)

where Lcls(θ) is the classification loss and ϵ ∈ [0, 1] is threshold. To solve Eq. 5, we can introduce
the Representation Similarity Constrained (RSC) Loss and try to minimize it:

LRSC(θ) = Lcls(θ) + λLCKA(θ) (6)
LCKA(θ) = 1− CKA(Fθ0 ,Fθ) (7)

where LCKA(θ) is the similarity loss, and λ is the regularization strength. However, computing
LCKA(θ) causes considerable computational overhead, as pairwise CKA incurs high complexity.

3
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4.2 REPRESENTATION INVARIANCE FINETUNING

Figure 1: (a) Orthogonal transformation of
the pretrained representation. (b) Orthogonal
transformation of the covariance.

To efficiently preserve representation similarity, we
reformulate Eq. 5 with Definition 3.2 as

θ∗ = arg min
θ∈Mθ0

L(θ) (8)

which implicitly guarantees representation similarity,
and replaces the explicit CKA computation. Given a
learnable orthogonal matrix Q ∈ Rd×d and scaling
factor α, we enforce the finetuned representation to
reside on orthogonal manifold of pretrained represen-
tation with Property 3.1 by∥∥Fθ(X)− αFθ0(X)Q

∥∥2
F

(9)
Notably, directly imposing this constraint either de-
mands a sample-wise forward pass through the pre-
trained model or substantial storage. We instead ap-
proximate it by matching the mini-batch µ ∈ Rd and covariance Σ ∈ Rd×d of for every mini-batch:∥∥µθ − αµθ0Q

∥∥2
F

and
∥∥Σθ − α2Q⊤Σθ0Q

∥∥2
F

(10)
The analysis of this relaxation rationality is provided in Theorem A3.5. In practice, we find that
the transformation αQ has already adjusted both scale and orientation of pretrained representations,
implicitly aligning their mean with current representations. We also observe that dynamic α brings
little convergence benefits and increases training burden. Therefore, we simplify Eq. 10 to covariance
matching with α = 1, and further propose the Representation Invariance FineTuning (RIFT) Loss:

LRIFT(θ,Q) = Lcls(θ) + LCov(θ,Q) (11)

LCov(θ,Q) =
∥∥Σθ −Q⊤Σθ0Q

∥∥2
F

(12)

Figure 2: (a) Applying Orthogonal trans-
formation at the intermediate layer. (b)
Applying orthogonal transformation at
the last layer.

Generalization and Adaptation. Here, Q applies only
global isometric rotations to the whole feature space with-
out altering relative angles among different class clusters
or sample vectors, thereby preserving semantic consis-
tency and generalizability of the pretrained representa-
tion, i.e., any sample, whether in- or out-of-pretrained-
distribution, are mapped to its original predicted label
after the current orthogonal transformation. With this
foundation, Lcls(θ) promotes the representation to gener-
ate additional semantic structures for finetuning datasets.

Compatibility and Efficiency. Importantly, RIFT reveals
that generalization and adaptation are not mutually exclu-
sive, and can serve as a plug-and-play training strategy
compatible with mainstream finetuning methods, since it
constrains only the output representations without modi-
fying networks. RIFT can also be easily integrated with
more advanced orthogonal finetuning techniques by up-
dating Q. Through trace-based decoupling of covariance
from individual samples, the computational complexity of
RIFT is reduced from O(nd2) to O(d2). Detailed training time is presented in Tab. A5.

4.3 WHY ORTHOGONAL CONSTRAINTS IMPOSED ONLY AT FINAL FEATURE EMBEDDINGS

An intriguing question is why we apply the orthogonal transformation to last-layer feature embeddings
before task head rather than output of another or each layer. The reason initially lies in fact that final
feature embeddings are used for task decisions, which must be kept. Although imposing individual
constraints on a single linear layer guarantees similar outputs, extending it to multi-layer models or
introducing nonlinearities (e.g., activations) breaks the full model representation invariance.

We first expand the network depth and apply orthogonal transformations on just one layer, using
an autoencoder trained for image reconstruction in Fig 2. As shown in Fig. 2 (b), applying random
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Figure 3: Representation similarity
diminishes with layer-wise orthog-
onal constraints.

orthogonal transformations to the final feature embeddings of
pretrained model allows for clear image reconstruction. In con-
trast, results in Fig 2 (a) fail because constraint is only added to
the encoder, while the decoder remains untransformed, causing
a distribution mismatch and thus hindering the complete recov-
ery of feature embeddings in deeper layers. This demonstrates
that applying constraints at other layers cannot guarantee the
invariance of final feature embeddings.

Then we further apply layer-wise random independent orthogo-
nal transformations, and conduct a toy experiment in Fig. 3 with
two Gaussian-distributed classes on 6-layer linear or nonlinear
networks. The results indicate that they still results in severe
representation degradation in deep networks with nonlinearities
further making the invariance preservation uncertain. These
findings highlight constraining final feature embeddings is the
key to global representation invariance.

5 EVALUATION

5.1 SETTING

We choose medical image classification as the representative cross-domain low-resource downstream
task. The backbone is a Vision Transformer Dosovitskiy et al. (2020) (ViT-B/16), pretrained on
ImageNet-1K (12 encoder layers, 768-dim embeddings, 12 attention heads). We compare our method
RIFT against RSC by integrating them into mainstream finetuning methods, including full finetuning
(FULL), classification-head only (LINEAR), training from scratch (SCRATCH), and PEFT(VPT,
AdaptFormer, LoRA). Evaluation metrics contains CKA for representation similarity measure (Sim)
as well as accuracy (Acc) and mean Average Precision (mAP) for classification performance. For
reference, the representaion similarity of LINEAR is always 1 since backbone is frozen. Experiments
are conducted on five medical datasets, including three MedFM subsets Wang et al. (2023) (Chest,
Colon, Endo), ISIC2018 Codella et al. (2019), and APTOS2019 Karthik & Dane. They covers
diverse modalities (skin, fundus, chest X-ray, pathology, colonoscopy) and tasks (multi-class, binary,
multi-label). Additional training and evaluation details are provided in Appendix A1.

5.2 MAIN RESULT

5.2.1 FINETUNING RESULT

Quantitative result on medical image classification. The results in Table 1 demonstrate that RIFT
consistently improves representation similarity across both single-label and multi-label datasets,
while maintaining competitive and even enhanced accuracy. For non-PEFT methods, although
FULL finetuning achieves higher Acc than SCRATCH, it often results in lower Sim, highlighting the
degradation of pretrained representation with FULL. In contrast, both RIFT and RIFT* are able to
preserve or even enhance Sim compared to FULL, with RIFT* achieving the best balance between
downstream task performance and pretrained representation preservation across datasets. Notably, on
single-label datasets such as ISIC2018 and APTOS2019, RIFT variants maintain Acc close to FULL,
while substantially improving Sim by 50–87.5%, indicating that the learned patterns remain closer to
pretrained feature space, which is critical for transferability and generalization. Compared to RSC,
RIFT achieves higher representation similarity with better downstream adaptation, suggesting that
orthogonal transformations provide a more effective constraint than direct CKA-based regularization.

For PEFT methods, including LoRA, Adaptformer, and VPT, the trends are similar but more pro-
nounced. While these methods already restrict parameter updates to preserve pretrained knowledge,
applying RIFT still yields substantial gains in Sim, often exceeding 15–28%, while the Acc remains
comparable or slightly higher in RIFT* variants. This demonstrates that RIFT effectively regularizes
the adaptation process without sacrificing performance, leading to representations both task-effective
and semantically faithful to the original model. Moreover, across multi-label datasets, where main-
taining correlations between multiple outputs is crucial, RIFT significantly enhances Sim, suggesting
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Table 1: Quantitative result on medical image classification. For each task, the average result
from 3 runs is reported. Dataset type is explicitly indicated: single-label (left) vs. multi-label (right).
Methods are grouped into non-PEFT and PEFT for clarity. Bold indicates the best performance.
Values in the last column show relative changes (%): +/- denote increase/decrease relative to the first
row of each block. RIFT refers to the default setting with regularization coefficient λ = 1, while
RIFT* and RSC* correspond to the best λ selected for each dataset.

Model Single-label datasets Multi-label datasets Average

ISIC2018 (7) APTOS2019 (5) MedFM-Colon (2) MedFM-Chest (19) MedFM-Endo (4)
Acc Sim Acc Sim Acc Sim mAP Sim mAP Sim Acc/mAP Sim

Non-PEFT Methods

SCRATCH 66.91 0.36 69.49 0.37 89.42 0.67 11.89 0.47 17.08 0.39 50.96 0.45

FULL 84.63 0.32 84.06 0.52 99.74 0.58 33.56 0.58 58.11 0.61 72.02 0.52
+RSC* 85.19 0.35 84.97 0.59 99.51 0.82 34.62 0.44 57.52 0.67 +0.47% +9.62%
+RIFT (ours) 83.95 0.60 83.61 0.73 99.05 0.82 33.11 0.55 55.42 0.70 -1.37% +30.77%
+RIFT* (ours) 84.85 0.48 85.25 0.54 99.51 0.84 35.24 0.63 58.62 0.66 +0.93% +21.15%

PEFT Methods

LINEAR 73.57 1.00 77.87 1.00 94.24 1.00 23.55 1.00 37.80 1.00 61.41 1.00

LoRA Hu et al. (2022) 80.85 0.38 81.01 0.61 96.17 0.78 25.91 0.59 39.56 0.77 64.70 0.63
+RIFT(ours) 77.51 0.74 79.24 0.79 96.07 0.82 24.28 0.63 39.24 0.76 -2.22% +20.18%
+RIFT*(ours) 80.92 0.40 81.01 0.61 96.37 0.79 25.77 0.61 39.88 0.77 +0.14% +1.59%

Adaptformer Chen et al. (2022) 80.42 0.51 80.60 0.75 97.25 0.78 25.13 0.61 40.08 0.67 64.69 0.66
+RIFT(ours) 77.65 0.74 80.15 0.85 95.87 0.86 23.82 0.59 38.63 0.75 -2.27% +15.15%
+RIFT*(ours) 79.96 0.56 80.60 0.81 97.54 0.81 25.24 0.65 40.55 0.71 +0.14% +7.58%

VPT Jia et al. (2022a) 77.71 0.46 78.96 0.60 94.79 0.72 24.00 0.51 41.64 0.65 63.42 0.59
+RIFT(ours) 76.32 0.74 78.69 0.85 95.48 0.86 22.19 0.59 37.70 0.75 -2.11% +28.81%
+RIFT*(ours) 78.31 0.50 78.96 0.66 95.48 0.86 24.58 0.47 40.54 0.67 +0.24% +4.43%

Figure 4: PCA distribution visualization. We compare first two principal components of LINEAR,
FULL, and FULL+RIFT(λ = 1) features across five medical image datasets. The first figure
summarizes the distance and overlap of the pretrained model features. Darker colors indicate higher
feature density, while lighter colors indicate lower density.

better preservation of semantic structure. By coupling adaptation with representation similarity, RIFT
preserves established semantic knowledge, allowing it to serve downstream tasks more effectively.

PCA distribution visualization. Fig. 4 shows the PCA feature distribution results of samples
extracted from pretrained and finetuned models. The bar charts summarize the distance from the
pretrained model’s feature center to the finetuned model’s feature center, as well as the overlap
between features. FULL shows a noticeable distance and lack of overlap between features, indicating
significant representation differences compared to LINEAR. In contrast, RIFT exhibits a high
overlap of pretrained features on the ISIC2018, APTOS2019, and MedFM-Colon datasets. Even
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for the multi-label classification datasets, MedFM-Chest and MedFM-Endo, although the expected
overlap is not observed, the distance is closer compared to FULL. These results indicate that
pretrained representations can be preserved without damaging their semantic structure by imposing
orthogonal constraints, upon which new branches for downstream tasks can grow. This may unlock a
temporal view of the Platonic Representation Hypothesis, This may unlock a temporal view of the
Platonic Representation Hypothesis, suggesting that models have sufficient capacity to accommodate
pretrained and finetuned knowledge simultaneously, yielding a shared representation.

Table 2: Quantitative result on different backbones. We adopt large-scale ViT pretrained on
ImageNet-21K with supervision and DINOv2 ViT-base.

Model Single-label datasets Multi-label datasets Average

ISIC2018 (7) APTOS2019 (5) MedFM-Colon (2) MedFM-Chest (19) MedFM-Endo (4)
Acc Sim Acc Sim Acc Sim mAP Sim mAP Sim Acc/mAP Sim

ViT-large(ImageNet-21K)

Scratch 66.07 0.46 69.67 0.40 89.88 0.59 12.12 0.47 17.30 0.34 51.01 0.45

Linear 78.44 1.00 78.69 1.00 95.19 1.00 25.13 1.00 38.11 1.00 63.11 1.00

FULL 83.33 0.56 83.61 0.88 99.71 0.69 35.39 0.53 55.58 0.67 71.52 0.67
+RIFT (ours) 83.66 0.60 82.24 0.89 99.12 0.73 34.39 0.81 58.23 0.66 +0.01% +11.05%
+RIFT* (ours) 84.13 0.52 83.06 0.87 99.51 0.75 38.06 0.67 58.23 0.66 +1.50% +4.56%

ViT-base(DINOv2 Oquab et al. (2023))

Scratch 60.58 0.22 54.37 0.65 85.36 0.69 10.46 0.78 16.08 0.37 45.37 0.54

Linear 75.53 1.00 80.33 1.00 94.06 1.00 23.24 1.00 36.12 1.00 61.85 1.00

FULL 76.82 0.30 76.78 0.49 98.13 0.53 12.29 0.64 22.20 0.37 57.24 0.47
+RIFT (ours) 69.78 0.40 76.50 0.52 92.34 0.68 12.83 0.62 38.18 0.35 +1.19% +10.30%
+RIFT* (ours) 79.63 0.45 76.50 0.52 99.71 0.48 12.83 0.62 40.15 0.36 +7.89% +4.39%

Quantitative result on different backbones. Tab. 2 presents the results of RIFT applied to ViT-large
and DINOv2 backbones. When applied to larger models and the self-supervised DINOv2 backbone,
RIFT consistently improves representation similarity while maintaining, or in some cases slightly
improving, classification performance. Notably, larger models overall exhibit higher post-finetuning
representation similarity, indicating stronger representational stability. In addition, the self-supervised
pretrained DINOv2 model shows that finetuning only the linear head (LINEAR) outperforms full
finetuning (FULL), especially on the MedFM-Chest dataset where the gap is substantial, highlighting
the superior generalization ability of self-supervised pretraining.

5.3 GENERALIZATION RESULT

Table 3: Qualitative result on zero-shot natural image classification. We adopt model finetuned
on ISIC2018 with several classical natural image datasets Parkhi et al. (2012); Nilsback & Zisserman
(2008); Netzer et al. (2011); Krause et al. (2013); Wah et al. (2011) estimated using 20-NN. RIFT*
indicates a regularization coefficient of λ = 0.6.

Model Oxford-IIIT Pet Oxford Flowers SVHN Stanford Cars CUB-200 Avg
Pretrained Backbone 84.19 96.93 38.39 25.50 54.96 59.99
FULL (Sim=0.32) 82.03 90.41 38.36 26.03 55.10 58.39
+RIFT (Sim=0.60) 83.65 95.44 37.83 25.61 55.29 59.56
+RIFT* (Sim=0.48) 84.38 95.38 39.59 27.11 55.29 60.35

Qualitative result on zero-shot natural image classification. As shown in Table 3, we performed
KNN evaluation on five unseen datasets to compare the generalization ability of different finetuned
models. Supporting our hypothesis, the pretrained models generally exhibit better overall general-
ization performance than the model fully finetuned on the ISIC2018 dataset (FULL). Furthermore,
compared to FULL, models with higher similarity (RIFT and RIFT*) tend to better preserve the
generalization capability of the pretrained models. Interestingly, RIFT and RIFT* even improves
generalization, likely due to incorporating additional transferable patterns in finetuning data.

Quantitative result on theoretical generalizability. Tab. 4 evaluates the generalizability of fine-
tuned models by comparing the sharpness of the loss function (i.e., stability under perturbations),
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Table 4: Quantitative result on theoretical generalizability. We validate sharpness
max∥ϵ∥≤ρ Lcls(θ + ϵ) − Lcls(θ) with lower values indicating better generalization across meth-
ods: FULL, RIFT(λ = 1), and LINEAR, with ρ = 0.01.

Metric Model ISIC2018 APTOS2019 MedFM-Chest MedFM-Colon MedFM-Endo Avg.

max∥ϵ∥≤ρ Lcls(θ + ϵ) ↓
LINEAR 0.7292 0.6442 4.7553 0.1995 1.1375 1.4931
FULL 0.6398 0.5701 4.3836 0.0509 1.0859 1.3461
RIFT (ours) 0.5558 0.5262 4.3338 0.0677 1.0036 1.2974

Lcls(θ) ↓
LINEAR 0.7159 0.5989 4.7415 0.1841 1.1343 1.4749
FULL 0.6125 0.5049 4.3727 0.0305 1.0743 1.3190
RIFT (ours) 0.5312 0.5082 4.3236 0.0496 0.9957 1.2817

Sharpness↓
LINEAR 0.0133 0.0453 0.0138 0.0154 0.0032 0.0182
FULL 0.0273 0.0652 0.0109 0.0204 0.0116 0.0271
RIFT (ours) 0.0246 0.0180 0.0102 0.0181 0.0080 0.0158

measured as max∥ϵ∥≤ρ Lcls(θ + ϵ)− Lcls(θ), across different finetuning methods. Lower sharpness
reflects better generalizability. LINEAR outperforms FULL with an average sharpness of 0.0182,
demonstrating its robustness due to the pretrained initialization. FULL exhibits a higher average
sharpness of 0.0271, indicating weaker generalization. RIFT achieves the lowest average sharpness
of 0.0158, demonstrating its ability to achieve flatter minima and better generalization. Notably,
RIFT consistently performs better than FULL across all datasets, with particularly strong results
on APTOS2019, where its sharpness (0.0180) is significantly lower than that of FULL (0.0652).
These results highlight that, under representation similarity constraints, RIFT actively guides the
optimization landscape toward flatter and more generalizable minima.

Figure 5: Attention heatmap visualization. We give more qualitative results on zero-shot natural
image classification to further demonstrate the generalizability of RIFT and RIFT*. The red boxes
highlight the regions most attended to by each method. Images are taken from previously unseen
datasets: Oxford-IIIT Pet, Oxford Flowers, Stanford Cars, and CUB-200.

Attention heatmap visualization. As shown in Fig. 5, the pretrained model focuses on the nose and
mouth regions of dogs in Oxford-IIIT Pet and on the head regions of birds in CUB-200. In contrast,
after direct finetuning (FULL), the attention shifts to less relevant regions, such as the back of the
dog or the bird’s reflection in the water. This supports the observation that pretrained and finetuned
(FULL) models generalize differently on unseen datasets, although both tend to overlook the flower
centers in the Oxford Flowers dataset. RIFT and RIFT, however, retain the generalization patterns of

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

pretrained representations, correctly attending to class-relevant objects across all cases, and in some
instances even improving upon them (e.g., on the flower dataset), thereby further strengthening the
generalization ability of current learned representations.

5.4 ABLATION STUDY

Ablation studies are conducted to further explore the impact of different components. The key
differences among the examined methods lie in whether the Q matrix is learnable, the application of
mean alignment (i.e., using µ), the chosen batch size and the regularization coefficient λ.

Ablation of matrix Q. As shown in Tab. 5 (a), employing a learnable Q matrix improves accuracy
and similarity metrics by 0.4% and 0.04, respectively, compared to using a fixed Q parameter.
This demonstrates that a learnable orthogonal matrix can more effectively preserve pretrained
representations and leverage their benefits to strengthen downstream task adaptation.

Table 5: Ablation study on fixed Q, aligning µ, and batch size.

(a) Ablation of matrix Q.

Matrix Q Acc Sim

Fixed Q 83.55 0.56
Learnable Q 83.95↑ 0.60↑

(b) Ablation of aligning µ.

mean µ Acc Sim

w/ µ 83.49 0.51
w/o µ 83.95↑ 0.60↑

(c) Ablation of batch size.

Batch Size Acc Sim

4 81.42 0.21
32 83.33 0.30
128 83.95↑ 0.60↑

Ablation of alignment of µ. Tab. 5 (b) shows that removing mean alignment (w/o µ) achieves better
accuracy and similarity, with gains of 0.46% and 0.09 over applying it (w/ µ). This indicates that
mean alignment may impose unnecessary constraints on feature distribution, limiting the model’s
ability to exploit data structure. Without it, the model learns more flexible representations, yielding
improved performance.

Table 6: Ablation study of λ on ISIC2018 dataset.

λ 0.1 0.2 0.4 0.6 0.8 1.0
Acc ↑ 84.82 84.57 84.33 84.85 83.73 83.95
Sim ↑ 0.35 0.38 0.49 0.48 0.53 0.60

Ablation of batch size. Increasing
the batch size from 4 to 128, as shown
in Tab. 5 (c), significantly boosts ac-
curacy and similarity metrics, with
improvements of 2.53% and 0.39, re-
spectively. A larger batch size pro-
vides a more accurate estimation of the covariance matrix. The observed trend underscores the
importance of selecting an appropriate batch size.

Ablation of λ. As shown in Table 6, we examine the effect of the regularization coefficient λ
on different datasets and finetuning methods, varying it from 0.1 to 1.0. Overall, choosing an
appropriate λ yields dual benefits of adaptation and generalization. Even under extreme settings
(e.g., λ = 1), downstream performance shows only a slight drop without sacrificing the effective
adaptation. Additional results are provided in Tab. A2 and Tab. A3 in the Appendix.

6 CONCLUSION

We propose Representation Invariance FineTuning (RIFT), a simple and efficient constraint that
preserves pretrained representations by enforcing orthogonal-invariant CKA similarity between
pretrained and finetuned models. Our experiments across cross-domain and low-resource scenarios
show that RIFT integrates seamlessly with mainstream finetuning methods, achieving competitive
or even improved downstream task performance while mitigating the loss of generalization. These
findings suggest that effective adaptation does not need to come at the cost of established semantic
knowledge and generalizability, and highlight the value of explicitly preserving representation
invariance during finetuning. We believe this work opens up promising directions for finetuning
paradigms that emphasize the compatibility of adaptation and generalization in foundation models.

Limitations. Although our work demonstrates the effectiveness of RIFT in vision foundation models,
the challenge of preserving pretrained representations extends beyond vision. Future research should
investigate its applicability to other modalities (e.g., large language and multimodal models) and
broader cross-domain or low-resource tasks, such as embodied AI, mathematics, and programming.
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APPENDIX

LLM USAGE STATEMENT

ChatGPT-5 are used only as general-purpose assistive tools, such as for language polishing and
improving readability. No part of the research ideation, experimental design, or substantive writing is
generated by LLMs. The authors take full responsibility for the content of this paper.

A1 EXPERIMENT SETTINGS

We use the ViT-B/16 model Dosovitskiy et al. (2020), with an input image size of 224× 224 and a
patch size of 16. The pretrained model is trained in a supervised manner on ImageNet-1K. In our
experiments, the batch size is set to 128 to obtain a better estimation of the covariance matrix of the
finetuned features, and the learning rate is set to 6× 10−4. The experiments were conducted on 4
NVIDIA A100 40G GPUs, with each training session running for 50 epochs. Our code is built upon
the MMClassification framework Mmc. Tab. A1 presents detailed information about the experimental
dataset.

For Tab. 2, we use the ViT-Large model pretrained on ImageNet-21K in a supervised manner and the
DINOv2 (Base) model pretrained in a self-supervised manner. Their patch sizes are 16 and 14, input
image sizes are 384× 384 and 518× 518, and feature dimensions are 1024 and 768, respectively.

Table A1: Details of the dataset specifications.

Dataset Modality Task Type Classes Train Test Metric
ISIC2018 Codella et al. (2019) Dermoscopy Multiclass 7 10,015 1,512 Accuracy
APTOS2019 Karthik & Dane Fundus Multiclass 5 2,930 366 Accuracy
MedFM-Chest Wang et al. (2023) X-ray Multi-label 19 2,140 3,869 mAP
MedFM-Colon Wang et al. (2023) Pathology Binary 2 5,654 7,651 Accuracy
MedFM-Endo Wang et al. (2023) Endoscopy Multi-label 4 1,810 2,936 mAP

A2 MORE RESULTS

Figure A1: Similarity–accuracy curves of the representation similarity constrained (RSC) method
across different datasets. Models above the curve achieve a comparable balance between similarity
preservation and accuracy. The λ values range from 4.0 to 0.3, indicating a gradual decrease in the
weight of the similarity loss.

Similarity and accuracy curve. As shown in Fig. A1, our proposed RIFT method consistently
demonstrates an effective balance between similarity (sim) and accuracy (acc) across multiple
datasets. Direct finetuning, the RSC method (λ ranges from 4.0 to 0.3), and finetuning only the
linear classification head form the trade-off curve between classification accuracy and representation
similarity (with pretrained model). Models above the curve indicate a better balance between accuracy
and similarity, while those below the curve show the opposite. Direct finetuning achieves the highest
classification accuracy but the lowest representation similarity. Additionally, the trade-off curve
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Table A2: Detailed evaluation results of RIFT and RSC with different regularization coefficients λ of
Tab. 1. The selected λ corresponds to the parameter yielding the highest accuracy/mAP.

coefficient λ Single-label datasets Multi-label datasets

ISIC2018 (7) APTOS2019 (5) MedFM-Colon (2) MedFM-Chest (19) MedFM-Endo (4)
Acc Sim Acc Sim Acc Sim mAP Sim mAP Sim

RIFT Method

λ = 1.0 83.95 0.60 83.61 0.73 99.05 0.82 33.11 0.55 55.42 0.70
λ = 0.8 83.73 0.53 84.43 0.76 99.12 0.84 32.22 0.59 55.16 0.70
λ = 0.6 84.85 0.48 85.25 0.54 99.51 0.84 35.24 0.62 53.66 0.72
λ = 0.4 84.33 0.50 84.70 0.71 99.51 0.83 34.01 0.53 56.45 0.67
λ = 0.2 84.57 0.38 83.47 0.53 99.44 0.82 34.47 0.56 57.38 0.67
λ = 0.1 84.82 0.35 84.84 0.59 99.41 0.83 34.02 0.44 58.62 0.66

RSC Method

λ = 4.0 75.71 0.91 77.05 0.84 96.37 0.98 22.41 0.73 33.88 0.98
λ = 1.5 79.56 0.94 81.33 0.86 98.10 0.98 25.60 0.71 40.38 0.95
λ = 0.7 82.25 0.82 82.15 0.87 98.40 0.95 27.01 0.68 45.63 0.87
λ = 0.3 83.20 0.75 83.52 0.77 98.95 0.90 26.86 0.62 51.41 0.77
λ = 0.2 83.47 0.35 82.79 0.53 99.51 0.82 33.73 0.56 57.52 0.67
λ = 0.1 85.19 0.35 84.97 0.59 99.12 0.83 34.62 0.44 56.26 0.66

LoRA+RIFT Method

λ = 1.0 77.51 0.74 79.24 0.79 24.28 0.63 96.07 0.82 39.24 0.76
λ = 0.2 78.84 0.60 80.05 0.73 25.51 0.59 96.07 0.81 39.69 0.77
λ = 0.1 80.32 0.46 80.19 0.67 25.77 0.61 96.37 0.79 38.68 0.78
λ = 0.02 80.92 0.40 81.01 0.61 24.42 0.73 96.17 0.80 39.88 0.77

Adaptformer+RIFT Method

λ = 1 77.65 0.74 80.15 0.85 23.82 0.59 95.87 0.86 38.63 0.75
λ = 0.1 79.17 0.64 80.60 0.81 24.97 0.64 96.07 0.80 40.55 0.71
λ = 0.02 79.96 0.56 79.51 0.79 25.24 0.65 97.54 0.81 37.16 0.61

VPT+RIFT Method

λ = 1 76.32 0.74 78.69 0.85 22.19 0.59 95.48 0.86 37.70 0.75
λ = 0.1 77.38 0.68 78.96 0.66 24.27 0.56 94.50 0.74 37.68 0.71
λ = 0.02 78.31 0.50 78.69 0.57 24.58 0.47 95.38 0.72 40.54 0.67

Table A3: Detailed evaluation results of RIFT with different regularization coefficients λ from Tab. 2.
The selected λ corresponds to the parameter yielding the highest accuracy/mAP.

coefficient λ Single-label datasets Multi-label datasets

ISIC2018 (7) APTOS2019 (5) MedFM-Colon (2) MedFM-Chest (19) MedFM-Endo (4)
Acc Sim Acc Sim Acc Sim mAP Sim mAP Sim

ViT-large(ImageNet-21K)+RIFT Method

λ = 1.0 83.66 0.60 82.24 0.89 34.39 0.81 99.12 0.73 58.23 0.66
λ = 0.1 84.13 0.52 83.06 0.87 38.06 0.67 99.51 0.75 56.40 0.68

ViT-base(Dinov2)+RIFT Method

λ = 1.0 69.78 0.40 76.50 0.52 12.83 0.62 92.34 0.68 38.18 0.35
λ = 0.1 79.63 0.45 68.31 0.28 12.76 0.67 99.71 0.48 40.15 0.36

highlights the rapid decline in accuracy as similarity increases (with higher weight on RSC). Our
proposed RIFT method shows comparable results on the ISIC2018, APTOS2019, MedFM-Colon, and
MedFM-Endo datasets compared to the RSC. Although on the MedFM-Chest dataset, we failed to
find a balance in the similarity-accuracy trade-off, these overall results strongly demonstrate that RIFT
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Figure A2: Visualization of attention maps for different finetuning methods on the ISIC2018 dataset.
The first row illustrates how the finetuned models forget original knowledge as representation
similarity changes, while the second row shows how they learn the new task at the corresponding
similarity levels. This also highlights the potential of RIFT for future applications in continual
and multi-task learning.

Table A4: Comparison of parameter distance to average center for FULL and RIFT methods across
five datasets.

Dataset FULL RIFT Change↓

ISIC2018 1.35 0.93 ↓ 0.42
APTOS2019 0.49 0.45 ↓ 0.04
MedFM-Chest 1.02 0.98 ↓ 0.04
MedFM-Colon 0.45 0.67 ↑ 0.22
MedFM-Endo 0.68 0.58 ↓ 0.10

Avg. 0.80 0.72 ↓ 0.08

effectively leverages the trade-off between similarity and accuracy, avoiding the severe similarity
degradation observed in the direct finetuning method (FULL) when enforcing high accuracy, thereby
achieving superior overall performance.

Visualization of attention maps demonstrating learning and forgetting. As shown in Fig. A2,
the first row illustrates the changes in the attention maps of the pretrained model as similarity
decreases. After finetuning directly on the ISIC2018 dataset (FULL), the attention to the ImageNet-
1K image target (bird) vanishes. In contrast, applying a direct similarity constraint (RSC) or an
indirect constraint (RIFT) preserves attention to the target object, even retaining artifacts (red dashed
box). The second row shows that as classification accuracy improves, the finetuned model gradually
enhances its attention to the target object (skin lesion). Notably, the artifacts from the pretrained
model are also preserved. For FULL finetuning, the artifacts (orange dashed box) appear in both
ImageNet-1K and ISIC2018 images. These observations highlight the necessity of considering
similarity constraints.

Enhanced parameter centrality for multi-task learning. Results in Tab. A4 demonstrate that the
RIFT method exhibits better parameter centrality across multiple datasets, thereby validating its
adaptability in multi-task training. Specifically, the RIFT method significantly reduces the distance of
model parameters to the average parameter center on four datasets: ISIC2018, APTOS2019, MedFM-
Chest, and MedFM-Endo, with reductions of 0.42, 0.04, 0.04, and 0.10, respectively. Although the
distance increases slightly (by 0.22) on the MedFM-Colon dataset, the overall performance of RIFT
remains superior to the FULL method, with an average distance reduction of 0.08. These results
indicate that the RIFT method can more effectively extract shared features, achieving better parameter
centrality and generalization in multi-task training.

Training time comparison. The results in Tab. A5 reveal significant variations in training efficiency
across the evaluated methods. The LINEAR method demonstrates the fastest performance, requiring
the least time for both per-iteration and full-epoch training. In contrast, the FULL and RIFT methods
exhibit nearly identical computational costs, suggesting comparable efficiency. Notably, the RSC
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Table A5: Training time per iteration and for 50 epochs on single NVIDIA A100 40G with a batch
size of 128.

Metric LINEAR FULL RSC RIFT

One Iteration (s) 3.91 8.38 16.68 8.47
50 Epochs (min) 26.65 57.08 111.04 57.83

method incurs the highest computational overhead, making it the least efficient among the tested
approaches.

Computational Complexity Analysis. The loss in Eq. equation 11 promotes the transferability of
mean vectors while preserving the structural invariance of covariance matrices under orthogonal
transformations. The orthonormal constraint Q ∈ Vd,d guarantees that rotations in the feature space
remain isometric. By decoupling mean and covariance alignment, the computational complexity is
reduced from O(nd2) to O(d2) through trace-based operations, while still maintaining the geometric
structure of the representation space. This simplification preserves the essential properties enforced
by orthogonal covariance transformations without introducing additional approximation error.

A3 ANALYSIS

Definition A3.1 (Multi-layer linear network with layerwise orthogonal rotations). Let X ∈ Rn×d

be the input data with n samples and d features, and let W1,W2, . . . ,WL ∈ Rd×d be the weight
matrices of an L-layer linear network. Define the network

f(X) = XW1W2 · · ·WL ∈ Rn×d (A1)
Consider applying layerwise orthogonal rotations Q1, Q2, . . . , QL ∈ O(d) to obtain the rotated
network

f ′(X) = X(W1Q1)(W2Q2) · · · (WLQL) = XW ′ (A2)
where O(d) denotes the set of d× d orthogonal matrices. Denote by σ1(·) the largest singular value
(spectral norm) of a matrix.
Assumption A3.2. Let W = W1W2 · · ·WL ∈ Rd×d denote the weight matrix of a pretrained
L-layer linear network. We assume that W exhibits strong generalization, formalized by

σ1(W ) ≪ min
i=1,...,L

σ1(Wi) (A3)

Proposition A3.3 (Informal). Let W = W1W2 · · ·WL be an L-layer linear network with Wi ∈
Rd×d, and assume that W exhibits strong generalization in the sense of Assumption A3.2, i.e.,

σ1(W ) ≪ min
i=1,...,L

σ1(Wi) (A4)

Then there exist orthogonal matrices Q1, . . . , QL ∈ O(d) such that the rotated network
W ′ = W1Q1W2Q2 · · ·WLQL (A5)

has a strictly larger spectral norm than the original W .

Intuitively, because the pretrained network already generalizes well, its layers are not perfectly
aligned to maximize the spectral norm, so an appropriate choice of layerwise rotations can increase
it by improving the alignment of dominant singular directions across layers.
Assumption A3.4 (Bounded Cross-Covariance). Let X with n samples and feature dimension d,
and denote the feature matrices Y = Fθ(X) ∈ Rn×d, Y0 = Fθ0(X) ∈ Rn×d. Let Q ∈ Rd×d be
orthogonal (Q⊤Q = Id) and α ∈ R, and define the aligned feature matrix Z := αY0Q with residual
ε := Y − Z.

For any A ∈ Rn×d, let Ā := 1
n1

⊤
nA ∈ R1×d denote its column mean, where 1n ∈ Rn is the all-ones

vector, and define the column-centered version Ã := A − 1nĀ. The empirical cross-covariance
between A,B ∈ Rn×d is given by Cov(A,B) := 1

n Ã
⊤B̃ ∈ Rd×d.

By construction, Cov(ε, Y0) = Cov(Y, Y0)− αQ⊤Cov(Y0, Y0). We assume this cross-covariance is
bounded as ∥Cov(ε, Y0)∥F ≤ γ for some constant γ ≥ 0.
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Theorem A3.5. Define Y := Fθ(X) ∈ Rn×d, Y0 := Fθ0(X) ∈ Rn×d as feature matrices of n
samples with d-dimensional features. Denote the row-wise means µθ := 1

n1
⊤
n Y , µθ0 := 1

n1
⊤
n Y0, and

the empirical covariances Σθ := 1
n (Y −1nµθ)

⊤(Y −1nµθ), Σθ0 := 1
n (Y0−1nµθ0)

⊤(Y0−1nµθ0).
Let Q ∈ Rd×d be orthogonal (Q⊤Q = Id) and α ∈ R. Define Z := αY0Q, ε := Y −Z. Assume the
cross-covariance Cov(ε, Y0) :=

1
n (ε− 1nε̄)

⊤(Y0 − 1nȲ0) satisfies ∥Cov(ε, Y0)∥F ≤ γ, where ε̄ :=
1
n1

⊤
n ε, Ȳ0 := 1

n1
⊤
n Y0. Define E := 1

n∥Y −αY0Q∥2F , ∆µ := µθ−αµθ0Q, ∆Σ := Σθ−α2Q⊤Σθ0Q.
Then ∣∣∣E −

(
∥∆µ∥22 + tr(∆Σ)

)∣∣∣ ≤ 2|α|
√
d γ (A6)

Proof. Let
ε = Y − Z = Y − αY0Q (A7)

Its row-wise mean is
ε̄ =

1

n
1⊤n ε = µθ − αµθ0Q = ∆µ (A8)

Define the centered matrices
Ỹ = Y − 1nµθ, Ỹ0 = Y0 − 1nµθ0 , ε̃ = ε− 1nε̄ = Ỹ − αỸ0Q (A9)

so that
Cov(ε) =

1

n
ε̃⊤ε̃ (A10)

Using Y = Z + ε and bilinearity of covariance, we have
Cov(Y ) = Cov(Z) + Cov(ε) + Cov(ε, Z) + Cov(Z, ε) (A11)

Since Z̃ = αỸ0Q, it follows that

Cov(Z) =
1

n
Z̃⊤Z̃ = α2Q⊤Σθ0Q (A12)

Therefore
∆Σ = Cov(Y )− Cov(Z) = Cov(ε) + Cov(ε, Z) + Cov(Z, ε) (A13)

and hence
tr(∆Σ) = tr(Cov(ε)) + 2 tr(Cov(ε, Z)) (A14)

On the other hand, the error can be written as

E =
1

n
∥Y − αY0Q∥2F =

1

n
∥ε∥2F = ∥∆µ∥22 + tr(Cov(ε)) (A15)

Subtracting ∥∆µ∥22 + tr(∆Σ) gives
E −

(
∥∆µ∥22 + tr(∆Σ)

)
= −2 tr(Cov(ε, Z)) (A16)

Now observe that

Cov(ε, Z) =
1

n
ε̃⊤Z̃ =

1

n
ε̃⊤(αỸ0Q) = αCov(ε, Y0)Q (A17)

Therefore
| tr(Cov(ε, Z))| = |α| | tr(Cov(ε, Y0)Q)| ≤ |α|

√
d ∥Cov(ε, Y0)∥F ≤ |α|

√
d γ (A18)

where we used | tr(AQ)| ≤ ∥A∥∗ ≤
√
d ∥A∥F

Combining the results, we conclude∣∣∣E − (∥∆µ∥22 + tr(∆Σ))
∣∣∣ = 2 | tr(Cov(ε, Z))| ≤ 2|α|

√
d γ (A19)

Remark A3.6 (Interpretation and Significance). Theorem A3.5 shows that the RIFT objective,
expressed in terms of the mean difference ∆µ and the covariance difference ∆Σ, accurately approxi-
mates the original alignment loss E . Specifically, if the residual ε has zero cross-covariance with the
pretrained representation Y0 (i.e., γ = 0), the RIFT objective equals the true alignment loss exactly.
When small cross-covariances exist, the discrepancy is explicitly bounded by 2|α|

√
d γ, depending

only on the feature dimension and the cross-covariance magnitude. This provides theoretical support
for using covariance-based orthogonal alignment: it eliminates the need to compute E over all
samples while retaining the key alignment characteristics of the original representation space.
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