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ABSTRACT

We present a novel theoretical framework for deep reinforcement learning (RL) in
continuous environments by modeling the problem as a continuous-time stochastic
process, drawing on insights from stochastic control. Building on previous work,
we introduce a viable model of actor—critic algorithm that incorporates both explo-
ration and stochastic transitions. For single-hidden-layer neural networks, we show
that the state of the environment can be formulated as a two time scale process: the
environment time and the gradient time. Within this formulation, we characterize
how the time-dependent random variables that represent the environment’s state
and estimate of the cumulative discounted return evolve over gradient steps in the
infinite width limit of two-layer networks. Using the theory of stochastic differen-
tial equations, we derive, for the first time in continuous RL, an equation describing
the infinitesimal change in the state distribution at each gradient step, under a
vanishingly small learning rate. Overall, our work provides a novel nonparamet-
ric formulation for studying overparametrized neural actor-critic algorithms. We
empirically corroborate our theoretical result using a toy continuous control task.

1 INTRODUCTION

A reinforcement learning agent (RL) (Sutton & Barto, [1998)) learns to behave intelligently by
interacting with an environment to maximize the rewards it receives. Neural networks have contributed
significantly to the improvement and advance of RL in the recent past. An agent equipped with neural
networks and trained using RL can effectively learn intelligent behavior by optimizing the rewards
it receives over time. Neural networks, in conjunction with RL, have been effective not only for
simulated arcade games (Mnih et al.| 2013} 2015)) and robotic control (Lillicrap et al., 2016) but have
also been employed for real-world robotic control problems (Levine et al., 2016} |Zhu et al., [2020;
Song et al.| [2023; [Kautmann et al.l 2023). One of the most popular subclasses of deep RL algorithms
is the actor critic framework with neural network function approximations (Sutton et al., [1999; |Silver
et al.,[2014; [Lillicrap et al.,|2015; |Haarnoja et al.,[2018)). The incorporation of neural networks into
reinforcement learning harnesses their universal function approximation capabilities, allowing agents
to model and navigate a wide range of environments. Despite these advances and the development of
numerous algorithms, a gap remains in our theoretical understanding of deep RL.

A related field of study is deep supervised learning which also employs neural networks to solve
stationary problems. We have seen several new theories explaining their efficacy in a supervised
learning setting (Jacot et al.,2018}|Allen-Zhu et al.,[2019a;|Roberts et al., 2021} |Couillet & Liao,[2022)
as to why neural networks that are highly overparameterized or “wide” and “deep” are successful in
approximating functions (Krizhevsky et al.|[2012; He et al., 2016} Szegedy et al.,[2017)) learned using
gradient updates. One common approach to deep learning theory is to study them in the limit of the
width tending to infinity (Cybenko, |1989; Lee et al.,[2017; Mei et al.|[2018; Neyshabur et al., 2018},
Jacot et al.| [2018)). One of the most critical and effective features of these models of neural networks
is to model the inputs, parameters, and outputs as a probability distribution and individual activation
being a sample drawn from this distribution. Theories exploring the evolution of these distributions
through training phases, particularly as they undergo gradient updates, provide insightful perspectives
for neural networks (Yang & Hu, [2020; [Berthier et al., {2024} |Ben Arous et al.| 2022).
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Despite recent work explaining the efficacy of deep RL (Cai et al.,|2019a; [Wang et al.|[2019; |Agarwal
et al., [2021}; [Lyle et al.l 2022b), its success in control tasks remains largely unexplained from a
theoretical perspective. Although there have been some theoretical analyses in RL with continuous
states and actions (Fazel et al., 2018}, |Lutter et al.l 2021} Huang et al., 2024]), progress in developing
a theory of continuous control with neural network function approximation has been limited. The
primary challenge that accounts for gaps in deep RL theory, despite having numerous theoretical
results in deep supervised learning, is that the data distribution also changes with gradient steps in
RL. To better understand the learning process of an RL agent, we would like to ideally characterize
how the distribution changes as the agent learns with gradient-based updates.

It is easier to describe how the state distribution changes from moment to moment than to describe the
full evolution over environment time. This is the philosophy behind the study of stochastic differential
equations (SDEs) in the continuous setting. These ideas have been successfully applied to optimal
control of continuous systems (Kushner & Dupuis| 2001; |(Oksendall, [2013)). We adopt this idea to
theoretically derive equations for how the state distribution changes locally at small gradient steps.
We combine methods from deep learning theory that study change over gradient steps for NNs and
methods from control theory that study the change in environment time to provide equations that
encapsulate changes across both time scales: environment and gradient.

We formulate agent’s learning in continuous state and action environments using the continuous-time
actor-critic framework provided by Jia & Zhou| (2022)), with fixes to exploratory dynamics. We
show that our exploratory dynamics can be simulated in discrete time while remaining faithful to the
underlying continuous-time process, with a single source of noise that is equivalent to a system with
both environment and exploration noise. We use a linearized single hidden layer NN, for both actor
and critic, as a theoretical model to study over-parameterized NNs (Lee et al.|[2019;|Cai et al.|[2019b)).
One of our key insights is to use the It6 -Taylor expansion (Kloeden & Platen, [1992)) to present the
time-dependent state variable as a polynomial in the parameters of the linearized NN and thereby
tracking the changes in this polynomial expression. Combined with the Gaussian nature of the neural
network outputs (Lee et al.,2017), we are able to present a nonparametric equation that captures the
changes in the state of the environment over both the environment time and the gradient steps, up to
an error term. Our main result shows that, strikingly, this closed system has only five time-dependent
variables which describe one step gradient change. We empirically corroborate the exploratory nature
of our simulation and also demonstrate that the RL agent is able to learn a near optimal policy using
the episodic actor-critic which we analyze, in the linear quadratic regulator (LQR) environment.

2 STOCHASTIC PROCESSES

To formalize the idea behind stochasticity in continuous environments, we introduce continuous time
stochastic processes. A one-dimensional Wiener process, taking values in the Euclidean space R, is
one of the central building blocks of the theory of stochastic processes (Karatzas & Shreve, [2014;
Oksendal, 2013).

Definition 2.1. A stochastic process w; is called a Wiener process if the sample paths of w,; are
almost surely continuous square-integrable Martingale with wy = 0 and E[(w; — wg)?] =t — s.

The multidimensional Wiener process is a concatenation of such single-dimensional processes. Such
a process has stationary independent increments, and that makes it ideal to model noise in the
environment. The general form of a time invariant stochastic differential equation (SDE) in R* is

dXt = b(Xt)dt+O'(Xt)dwt, (1)
where w; is an m—dimensional Wiener process, X; is the random variable corresponding to the
random variable X at time ¢, b, which is the drift component of the equation, is a function such that
b : R — R* and o is another function such that o : R¥ — R™. b determines the direction of the
deterministic part of the transition dynamics and ¢ that of the stochastic part. The solution of this
SDE, under certain conditions over b and o, is obtained using the Itd integral. The natural filtration
generated by X = {X;,¢ > 0} is denoted by {F; };>¢ (see Section[A]for definitions).

For an equally spaced partition of the time intervals 0 =ty <t; <ty... <%, <... <T, consider
the discrete summation.

n—1 n—1
XA = X0+ D b(Xy,) AL+ Y o(XAY) Awy, )
j=0 =0
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where tj 1 — t; = At > 0and Aw; = wy,,, —w, ~ N(0,At). The limit as At — 0, of the
right-hand side of the equation, when it exists, defines the It0 integral in probability:

t t
Xi = Xo+ / b(Xl)dl + / (T(Xl)dwl. 3)
0 0

See Section [E] for details on the conditions under which the solution to equation E] exists. In RL,
such a process can be used to define the moment-to-moment changes in the environment’s state such
that the transitions have independent noise added to them and solution to the equation represents the
time-dependent random variables.

3 CONTINUOUS-TIME REINFORCEMENT LEARNING

Commonly RL in discrete time models environment data that correspond to ticks: the agent observes
the state of the environment, takes an action that changes the state of the environment, and receives
a reward. Instead, we consider a continuous-time model of RL (Baird, |1994; Doyal, [2000; Wang
et al., 2020} Jia & Zhou, [2021)). Several continuous-time formulations already exist, our approach
is distinct in being explicitly exploratory: both the policy and the environment contribute to the
transition noise. It is also structured in a way that makes analysis with neural networks more
tractable.We define continuous-time reinforcement learning in a control affine Markov decision
process (MDP) which is defined by the tuple M = (S, A, (g, h, o), r, so, 5) over time ¢t € [0,T).
Here, S C R% is the set of all possible states of the environment and sy € S is the state of the
environment at the start time. A C R% is the set of actions available to the agent. r : R — R
is the reward function that determines the reward the agent receives in a given environment state.
B € (0,1) is the discounting factor that ensures future rewards are less valuable than current rewards.
g : R% — R% and h : R% — R9%*d represent the deterministic component of the transition
dynamics. o : R% — R *9s accounts for the stochasticity of the transition in any given state, which
is assumed to be independent of the action. At time ¢ and infinitesimally small time discretizations,
the agent’s state, s changes according to the following SDE:

dsy = (g(st) + h(st)ar) dt + o(sy)dwy,

where w; is a ds-dimensional Wiener process and action a;. We further assume that g, h, o, r are all
smooth, meaning infinitely differentiable. Although this may seem restrictive, the study of smooth
functions, which have an analytical form, has been used in theoretical settings to better understand
both control systems (Jurdjevic, |1997) and neural networks (Montanari & Subag} [2024).

The agent is equipped with a smooth policy 7 : S — A that determines its decision making process.
A policy determines the action the agent takes in a state. This is similar to feedback control in control
theory. The SDE corresponding to a policy 7 is therefore obtained by replacing a; = 7 (s;). which
has a unique solution in probability under Lipschitz continuity of the dynamics. The time-dependent
state random variable is defined on a filtered probability space (2, F,P"; {FV };>0). Therefore,
the Ito integral solution, as in equation 3] of the above SDE is denoted by s7.

The state value function, in context of RL, is defined as

T
v"(s,t) =E / e_B(l_t)r(sZr)dl‘ S¢ = 3] ,

t

which is the expected cumulative discounted rewards given that the agent starts in state s (or s; = s)
and follows policy 7 from time ¢ until it terminates at time 7". The expectation is on the stochasticity
of the environment dynamics. The agent’s goal is to maximize the objective J(7) = v™ (s, 0) by
learning the optimal policy 7* € II, where II is the family of policies available to the agent, e.g. the
set of neural networks with one hidden layer. Unlike in control theory, the agent does not have access
to the dynamics of the system: g, h, 0 and optimizes its policy by collecting data points. These data
points are in the form of indexed state, action, and reward tuples by time. To collect these data, the
agent explores different parts by taking random actions. Therefore, we also define the following SDE:

dsf = (9(87) + h(31)m(87)) dt + h(8¢)dw} + o (57 )dw,

which has noise from policy w; and from the environment w;. For this exploratory SDE to be
effective, we need to justify a numerical scheme where the exploratory noise is associated with the
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policy and can be simulated in a discrete time. Therefore, for fixed At > 0, and deterministic policy
7 consider the following numerical scheme (similar to Equation 2)):

n—1
s =s0+ ) (g(sfjt’ﬂ) + h(se) (m(s"™) + Abj)) At +o(s;"") Aw;,
j=1

where Aw; ~ N (0, At), Ab; ~ N(0,1/At), At =t; —t;_1Vj € N.

For d;, = d, = 1 we prove the equivalence of the exploratory dynamics and above the numerical
scheme. Proving results in 1D is a common approach in numerical methods for control theory
(Kushner & Dupuis, 2001) for simplicity and tractability. We anticipate that higher dimensional
results follow similarly.

Lemma 3.1. Suppose that g, h, o and w are Lipschitz continuous and satisfy linear growth condition:

lg(@)[] < Kq(1 + |2]), ||h(2)]] < Kn(1 + |2]), ||7(2)]] < Kr(1+ [a]),

then stAt’7T — st weakly where s¥ is solution to the SDE:

dsT = (g(sT) + h(s])w(s]))dt + h(s])dw; + o(s])dwy.
Moreover, the solution to this SDE has the same pathwise distribution as the following SDE:

sy = (9(87) + h(30)m(37))dt + / h(37)? + o (57)?dw;. (©)

The proof is in Section[B] We refer to equation[das exploratory dynamics and use it in our analysis
as a proxy for the state random variable under exploration. We depart from the relaxed-control
formulation of exploratory dynamics introduced by [Wang et al.|(2020) because, in that model, the
policy’s stochasticity vanishes whenever the environment is deterministic (i.e. o(-) = 0 almost
everywhere). Given these dynamics and the objective, the agent’s goal is to learn an optimal policy
from a set of admissible policies.

4 CONTINUOUS-TIME ACTOR CRITIC

Actor-Critic algorithms (Sutton & Barto, [1998) train an agent with an acfor that is the decision
making entity and a critic that is an estimate of the value function that guides the improvement of
the policy. Algorithms from this family learn the critic and the actor alternately using samples from
the rollouts of the policy. In deep RL both are parameterized by a neural network. As demonstrated
in a series of papers on continuous-time RL (Wang et al., [2020; Jia & Zhou, [2021};|2022; 2023) the
gradient updates for learning the actor and policy are different compared to discrete-time algorithms.
We adapt the results presented by Jia & Zhou| (2021} 2022} to develop an algorithm for actor-critic
learning in a continuous-time setting under our exploratory dynamics. We first define an admissible
policy as follows:

Definition 4.1. A policy 7 : R% — R%  which is a function that maps from R% to R% is called
admissible if:

1. The function 7 is smooth everywhere.
2. The SDE (equation[d)) admits a weak solution in the sense of probability (see Section[A.)).

3. w(x) is uniformly Lipschitz continuous in x, which means that there exists a constant C > 0
such that:
|l (z) = m(2")]] < Cll — 2'|].

Furthermore, let £™ be the infinitesimal generator associated with the process in Equation 4}

27,0 = 2Dy (g 4 n(@prtan) 0 LD 4 Ly 0 TIEY,

which captures the local change over time in a function f. We also make the assumption that
5(-) = v/h(:)2 +0o(-)2 # 0 almost everywhere in R%. We state a result by Jia & Zhou (2022)
in our deterministic policy setting under exploratory dynamics (Equation ) which provides a
relationship between the solution to an equation with the infinitesimal generator and the value
function corresponding to an admissible policy.
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Lemma 4.2. Assume that there is a unique viscosity solution v € C(R% x [0,T)) to the following
partial differential equation (PDE):

LTv(x,t) + r(z,m(z)) — fv(x,t) =0,

with terminal condition v(z,T) = 0, z € R%, which satisfies |v(x,t)] < C(1 + ||z||)* for
some constants 1, C. Then v is the value function corresponding to admissible policy T, that is,
v(z,t) = v™(x,t) for all (z,t) € R% x [0,T].

In policy gradient setup, the agent’s policy is parameterized by parameters 6 and the agent learns by
taking gradient steps in the direction of steepest ascent of the objective: .J(7¥). We will denote this
by J(#). The deterministic policy analog of Theorem 2 by Jia & Zhou|(2022), for d, = ds = 1, gives
a policy update formulation similar to the discrete time policy gradient (Sutton et al.,[1999; Silver
et al.,|2014) in a continuous time setting. Since estimating the expectation above requires multiple
trajectories, in practice the agent learns in a stochastic manner by sampling a single trajectory and
updating the parameters based on it. In addition, the value estimate is parameterized by parameters
¢. This is called episodic RL. Gradient-based updates for the estimate of value estimate parameters
and policy, which bear similarities to coagent networks (Thomas}, 2011} |Kostas et al., [2020), are as
follows:

T 57’ I 6 6 6
Go.0) = [ e-“Wl@v(éf 1:6) + () = BT M)} a,
©

T 5. 0 0 0
G(o.0) = [ o) [atv@? 56) 4 7(6T") - BulsT ,1;¢)] .

Algorithm 1 Episodic Actor-Critic (Continuous-Time Gradients)

Inputs: initial state so, horizon T', time step At, number of episodes N, number of mesh grids K = |T/At],
and a learning rate 7, discount 3, the value v(s, t; ¢) and policy 7 (s; 0).
Required: an environment simulator (s’,7) = ENVIRONMENT(s, a, At) according to the dynamics [4] that
maps (s, a) to next state s” and reward 7 at time ¢.

1: Initialize 0, ¢.

2: for episode j = 1to N do

3: Initialize k <— 0. Observe o and set s, < xo.

4: while k£ < K do

5: Generate action a;, = m(xzy,;0).

6: Apply ay,, in environment: (s¢, 71, ) < ENVIRONMENT A (Lx, Sty , Gy, )-
7: k< k+1.

8: end while

9: Compute continuous-time gradient estimates:

10: For t; = 1At, define
0i = Ow(se,,tizd) + re;, — Bu(se,,ti; ).

11: Then set
K—-1 K—1
_pt, Ov(se;,ti; ) _pt, Om(se;;0)
— Bt; ti tii9) 5 - Bt i39) s A

Aqb_;e 53 8§ At, Ab ;e 00 0i At

12: Update (value estimate and policy parameters):
@ — d+noay Ad, 0+ 0+ n,ap AD.

13: end for

5 LINEARIZED TWO-LAYER NEURAL NETWORKS

In deep reinforcement learning both actor and critic are parametrized by neural networks. Often
times, to study a complex object such as a neural network, researchers utilize a simplified model
(Lee et al.,[2019; (Cai et al., 2019b; |Arora et al., | 2019) that makes the problem tractable. We consider
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Figure 1: We illustrate As, ; using an agent (the robot in blue) whose goal is to reach the target
in the top right corner, starting from the bottom left. The jagged blue trajectories correspond to its
non-smooth stochastic paths in the environment. At gradient time 7, the agent follows the trajectory
on the left, and after one gradient step, it moves along the trajectory on the right, closer to the goal.
While the moment-to-moment change in environment time is represented by Equation [] (dotted
curve), Theorem provides an expression for the change over a gradient step, As; - (solid curve).

two-layer feedforward neural networks with tanh activations, ¢, to ensure smoothness of dynamics.
The network output is given by:

1 &
F(SaVVvC) = %ZC.‘Q@(WK 'S)v (6)
k=1

where W = [Wy,...,W,] € R*:, C = [C1,...,C,] € R%*" The parameters are initialized as
Cf ~ Unif(—1,1), Wy ~ N(0, 14, /ds). During training, only W is updated, while C is fixed. Let
WY be the initialization of the first layer. The linearized approximation of the policy for wide neural
networks (Allen-Zhu et al.l[2019b% (Gao et al.,2019; [Lee et al, 2019) around W70 is:

FIn(5W) = Fx (5 W) + ®(s; WO) (W — WP), @

with ®(s; W0) = ﬁ [CY' (WP - 5)sT,...,Cop' (W0 - s)sT] € Réexnds This formulation is
linear in W, and nonlinear in s and W9, in addition to being admissible. The linearized value
estimate function: F!"(s,¢; U) is defined in a similar way (see Section . Moreover, [Tiwari et al.
(2025)) have shown empirically that the linearized two-layer NN performs similarly to the canonical
NN in the complex and non-linear MuJoCo Cheetah environment at very large widths. We assume
tanh activations because they are symmetric and smooth. Further, it is assumed that the learning
rate 77 scales as O(1/+/n). Under this parameterization, the gradient-based updates (Equation are

denoted as ((A}(U7 W), G (U, W). Equipped with this parameterization, we state our main result about
the gradient time dynamics of state variable.

6 MAIN RESULT: CHANGE IN STATE WITH GRADIENT STEP

A natural question to ask is: how does the time dependent state random variable change over learning
steps in actor-critic setting? Understanding this change moment to moment, meaning from one
gradient update to another, would give us an idea of how the agent learns. To do so we describe the
gradient dynamics as follows, at gradient time step 7 the parameters of the policy (W) and the value
estimate (U") are updated as:

W™ =W 4 9G(UT, W), U™ =UT +GUT,WT).

Since the environment state is also a function of W7, the state depends on both the environment
time ¢ and the gradient time step 7: s, . Although its dynamics in environment time are given by
Equation []its dynamics in gradient time are also governed by the actor-critic algorithm described
in Section 4] (see Figure[I)). The agent therefore has two “clocks”: environment clock and gradient
clock. In Algorithm [I] the faster environment clock goes from 0 to 7" whereas the slower gradient
clock only moves by 7, in parallel. A scalar random variable is Gaussian up to an error of O(1/y/n)
when its distribution is close to the Gaussian cumulative distribution function (CDF), v, and satisfies:
sup,cp | Pr(X, < z)—v(z)| = O (1/y/n). In the setting introduced in previous sections, we are
able to derive a closed system, that is, the changes in these variables over gradient steps depend only
on one another.
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Theorem 6.1. An agent equipped with linearized single hidden layer policy and value estimate
function of width n, tanh activation, under exploratory environment dynamics (Equation[d), where
g, h,o are all smooth, with Lipschitz continuous smooth reward, r, that learns using episodic
actor-critic updates and learning rate n = O(1/\/n) has the following variables at gradient time
T and environment time t: the state 5, ., action a;, = Fff”(ém; W), derivative of the action
= 05 F"(3, ; WT), value estimate v, , = F'"(5, .; UT) and time derivative of the value estimate
v}, = O F™(3y ; U"). Furthermore, suppose that neural networks are initialized i.i.d:
Policy parameters: W2 ~ N(0,1), C2 ~ Unif(—1,1)
Value estimate parameters: U,S’Q, UB,Q ~ N(0,1), BY ~ Unif(—1,1).

Thus the law of 5; r, ay r, , Uy~ is defined with respect to both trajectory randomness and initialization.
Denote by q; r = Ully,r +7(51,7) — Bur. Conditioned on the values of 5, -, a;,r, a;ﬁ, Vg7, v,’f,T,for
t € [0, T, the change in these variables over a single gradient step: Avy -, Av; -, Aay -, Aay ., up
to an error of O(1/+/n), are as follows:

Avy ; is Gaussian with mean n/OT e PR B2 (U - [3e,0, 1)@ (U - 81,7, 1)) (31,75, + ).+ dL,
and variance (As; ,)°E [BzUl2 (" (U - [8¢.7,t]) — " (U.[8t,7,t]) (U1 5t,r + Ugt))2:| ,

Avy . is Gaussian with mean n/OT e PR [B2Us¢" (U - [31.7,8))¢" (U - [31,, 1)) (51,750, + W) qu.7 ]
and variance (Asq ,)*E [B2U12U§ (@ (U - 5o t]) — " (U[5e.r, 1) (Uréer + UQt))Q] :

Aay ; is Gaussian with mean 1) /OT e PR [C? (W50 )@ (WEir)31,r8t0a1,7 ) dl
and variance (As; ;)*E [CQW2 (" (W5ir) — gp”(WEth)Wét’T)Q]

Aaj , is Gaussian with mean 1 /OT e PR [CP°W " (W50 )" (WEir)31,r 50, dl,

and variance (As; ,)*E [02W4 (" (W5tr) — <p’”(W§t,T)W§t’T)2} ,

where expectation is over W ~ N(0,1),C, B ~ Unif(—1,1), and U = [Uy, U] ~ N(0,1).
To denote the change in s; ;, define Z, ; - as:

t
Ziir=Yer / Yuj} h(8u,r) Cut,rdu, whereYy ; is solution to
0

dYir =(a,r + GQ,T)Yt,Tdt + 0" (8¢,7) Yy rdwy
Cutr =E [C2<p'(§l7TW)cp'(§u7TW)] , where C ~ Unif(—1,1),W ~ N(0,1), same as above.
In addition, define Z; ; = fot Zy1,7q1,7dl. Further, the change in 5,  is:
A8y =nZir — My r 4+ Gi.r + O(1/\/n), where

t
M+ =8t —s0 — / (g(gu,r) + h(gu,'r)auﬂ')dua
0

and G ; is a random variable and the martingale component of x+ ., which follows the dynamics:
Az - = (9(2e,r) + W21 ,r)ae,r)dt + 6 (2,7 )dwy,

where wy is an independent Wiener process and therefore Z; » = x - —E [z, ], where the expectation
is over the random dynamics.

The key takeaway is that the gradient time dynamics of an actor-critic algorithm with policy and
value estimate parameterized by single hidden layer neural networks can be expressed as a closed
system of five variables. As stated earlier, we provide the above result for the setting d, = ds = 1
as is common in control theory. We believe that high-dimensional results would require additional
effort because both the policy gradient and the change is state variable are complicated with dg x d
terms. Nevertheless, our result are on how an agent learns with non-linear function approximations in
a non-linear environment and allows us to present the main result in a tractable manner.
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6.1 PROOF SKETCH AND INTERPRETATION

Theorem } [ Theorem[G1&HAI

A : Martingale CLT
[ Ito Tay'”f"pa"s”" & Conditional LLN

Proposition [F2]
State Decomposition
(S¢,~ polynomial)

Y &

Lemma
Generalized Gradient Update
(Gaussian limit of neural outputs)

i N

P

Lemmas[] & Lemmas K1l & K2l Lemmal L]
Value Dynamics Action Dynamics State Dynamics
(Avtﬂ'v AU;,T) (AatJ’a Aa’;,T) (Agtﬂ')
Theorem[6.7]
Main Result

(Closed System of Variables)

Figure 2: Flowchart illustrating the proof structure. The blue boxes denote the foundations of the
proof and red is the main result, while rest are intermediate.

See Section[M]for the proof and Figure 2] for a flow chart. The proof begins by observing that the state
random variable can be written as an infinite polynomial using the Itd —Taylor expansion (Kloeden &
Platen, |1992)), which is almost surely equivalent to the solution

ddir = (9(81,r) + (3t ) Fi (81,0 WT))dt + 6(5¢,7)duwy.

This implies that the process can be reformulated as a polynomial in W™ — WP, We provide detailed
background on the Ité —Taylor series with examples in Section[C| In Section[D] we also present a
simplified example of the dynamics of a linear parameterized SDE with a single parameter evolving
on a different time scale, using the It6 -Taylor series. This example is intended to give a simplified
sense of the broader proof. We then derive the change in the value estimate (Section [F) over one and
two gradient steps. For the value estimate, we apply the martingale central limit theorem (Haeusler,
1988)) (Theorem [G.I]) together with its corresponding law of large numbers (Theorem[H.T) to obtain a
conditional central limit theorem (CLT) and the corresponding law of large numbers (LLN). This
yields the Gaussian limits described earlier, with an additional error term of order O(1/+/n). These
are similar to the Berry—Esséen theorem (Theorem , accouting for the O(1/+/n) error. Applying
a similar procedure to the action and its derivative results in the Gaussian formulations presented
above. Finally, in Section [g we derive the change in the state variable As; ;.

Notice that the changes in each of the auxiliary variables, a; -, a;;, Vg7, fULT, depend on As; , and
the TD error like expression g; . This is due to the fact that their distributions are a push-forward
of the distribution of the state. In turn, the change in s; , depends only on ¢ and other variables
at time ¢, 7. Intuitively, the variables (Z;; ,Cy.1 +, Zt,+) capture the infinitesimal change in the
environment state dynamics over a single gradient step, and we notice that the expression also
contains ay -, a; , which include the changes the action over environment time. Further notice that
the change in environment’s state As, , is not of order O(n), this is because of the divergence in the
dynamics, which is a result of the stochasticity in the environment but this stochastic part is mean
0. More formally, the expression that is not O(1/y/n) in As; ; is G¢,, — M, , are influenced by
the stochasticity in the environment and exploratory dynamics, which are both dependent on the
underlying Wiener processes. We illustrate this in Figure
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7  EMPIRICAL VALIDATION

7.1 EXPLORATORY DYNAMICS: OURS VS CANONICAL EXPLORATION

We verify the exploratory nature of our proposed dynamics (Equation[) and contrast it with dynamics
with the additive Wiener process: 7(s;) + w, for a deterministic environment. The environment
is defined by g(s) = 0.1, h(s) = 0.5,0(s) = 0.0,s9 = 1.0. We observe that an additive Wiener
process does not explore state-action pairs effectively (Figure [3), which is evident by the smoothness
of the trajectories whereas under exploratory dynamics (Figure ) we see stochastic jumps which
indicate better coverage of state action pairs.

State s;
N

] 0 X
0 2 4 0 2 4 0 2
Time Time Time
(a) At =0.05 (b) At = 0.005 (c) At = 0.0005

Figure 3: Simulation results with additive Wiener noise, showing the state trajectory (y-axis) over
time (x-axis) for increasingly fine discretizations.

0 2 4 0 2 4 0 2 4
Time Time Time
(a) At =0.05 (b) At = 0.005 (c) At = 0.0005

Figure 4: Simulation results under the exploratory dynamics of Equation 4 As the discretization step
decreases (At — 0), the approximated mean trajectory converges smoothly.

7.2 EPISODIC CONTINUOUS TIME ACTOR-CRITIC

We analyze algorithm [I]through a theoretical model and also evaluate it empirically using a linearized
single-hidden-layer actor and critic. This shows that the method behaves as expected in a toy setting.
We test it in an LQR environment with g(s) = s, h(s) = 1, o(s) = 0.1, exploratory noise scaled by
0.05, and discount factor 8 = 0.1. The initial state is sy = 2.0, the action range is [—5, 5], and the
reward 7(s) = —500s? drives the agent toward the origin. We use a time step At = 0.02, horizon
T = 1, and therefore 50 steps per episode. The environment dynamics are governed by Equation [4]
We also present results for higher-dimensional environments d; = 2,8, 32. In these environments
the start state is 14, the noise matrix is identity I,_, the reward is scaled to avoid overflow issues
and actions are similarly truncated. The exploration noise and discounting are the same as in d; = 1.
Code for linearized actor and critic are presented in Section|[N] our implementation is based on the
cleanrl codebase (Huang et al.,2022).

8 RELATED WORK

Our formulation is based on continuous-time RL (Doyal [1995} Jia & Zhoul, 2022; 2023)), and is
complementary to recent advances such as|Croissant et al.|(2024). It is also inspired by the ODE
view of RL learning dynamics in parameter space (Borkar & Meyn, |2000; Borkar et al.,[2021)), and
connects to early analyses of continuous environments for value-based methods (Antos et al., 2007).
Related strands in discrete settings have developed neural RL theory and careful empirical science
(Gaur et al., [2023} |Cai et al., 2019b; |Wang et al.| 2019; [Lyle et al.| [2022cza; [Yamamoto et al., 2024).
Our contribution is novel in casting actor—critic learning with over-parameterized networks into a
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Figure 5: Episodic continuous-time actor—critic with linearized networks. For each dimension
ds € {1,2,8,32} the agent learns a near-optimal policy. Results averaged over 20 seeds.

nonparametric framework over continuous state, action, and time, and in explicitly characterizing
gradient-time dynamics of the state distribution. We have also presented how a continuous time
model of RL can lead to theoretical analysis in continuous state and action settings.

Our workbuilds on how neural networks are formulated in a tractable manner [2018;
Lee et al}[2019} [Roberts et al.| 2021}, [Arora et all,[2019). Moreover, we remark that the limitations
from formulating the problem in this manner restrict us to the “lazy regime” where the features do
not change and the learning rate is too slow in comparison to more realistic settings
2020; [Ghorbani et all 2019). We believe that our work can be extended to deeper networks in the
linearized setting as done by [Lee et al| (2019). Our results, with rigor, can be extended to the finite

width scenario (Hanin & Nical [2020) and feature learning (Nichani et al} 2023)) in the future.

9 DISCUSSION

Our results recast deep RL in continuous control as a two-clock stochastic system: environment
time and gradient time, enabling local infinitesimal characterizations of how state, action, and value
estimates evolve under actor—critic learning. By combining It6 —Taylor expansions with infinite-
width linearizations, we obtain a nonparametric description of policy and value estimate updates and
derive, to our knowledge, the first equation for the gradient-time evolution of the state distribution
under vanishing step size for neural networks. This provides a principled bridge between stochastic
control and modern over-parameterized RL and opens room for simpler theoretical models that can
explain the learning dynamics of actor-critic algorithms. Most importantly, we show that there is
a simplification of over-parameterized neural networks that emerges from fundamental principles
of probability theory and stochastic processes. The analysis currently relies on smooth dynamics,
single-hidden-layer models, and asymptotic width; extending to finite-width networks , non-smooth
activations, partial observability, and richer continuous control benchmarks is a natural next step.
As noted, the results for higher-dimensions are also subject to future research since they would
add additional complexity to the proof. Empirical results in a toy LQR environment corroborate
both the exploratory dynamics and the validity of algorithm[I} We believe that this non-parametric
formulation of neural network-based learning could lead to empirical advancements by extending
the understanding of Deep RL in the research community. Further regret analysis and convergence
analysis are natural next steps.

10
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A BACKGROUND ON PROBABILITY SPACES AND FILTRATION FOR
CONTINUOUS-TIME RANDOM PROCESSES

To establish the background, for continuous-time RL, we introduce ideas from probability theory
and stochastic processes, which are used to prove our main result of concentration of states around a
low-dimensional manifold. These preliminaries can also be found in chapters 2 and 3 by (@ksendal
(1987) for the one-dimensional case or in chapter 6 by |Gliklikh| (2010) for the multidimensional case.
A complete probability space is defined by the triple (2, F, P) where,

1. Q is the sample space, for example it could be the set of all values from a die roll with 6
faces {1,2,3,4,5,6},
2. Fis aset of events, a single event could be a subset of policies from €2,

3. P is the probability function that maps an event to the probability of it occurring, for example
it could be the probability of observing these rolls.

Note that the set F is complete under union, intersection and complement in addition to containing
the null set and is called the o-algebra. We will consider random variables on a probability space
(92, F, P) and taking values in the finite-dimensional space R?. Let 7(¢) be a stochastic process
that takes values in R? on a probability space (€2, F, P). We will generally describe with stochastic
processes which take values in a finite time interval [0, T"). For every such stochastic process 7 and
any time ¢ this determines three o-subalgebras of F:

1. Past: the o-algebra of pre-images of Borel sets in R? for 0 < s < ¢,
2. Present: the o-algebra generated by mappings of 7(¢), and
3. Future: the o-algebra generated by pre-images of Borel sets in R for t < s < T.

Taken together, these define a family of non-decreasing o-subalgebras B, for ¢t € [0, T'), the reason
being our countinuous time MDPs also terminate within a finite time. The conditional expectation
with respect to a o-subalgebra is an orthogonal projection from L?($), F, P) to L2(Q, Fy, P) over
the Hilbert space of square integrable random variables in L?(2, 7, P). The same projection extends
to the L' space of integrable random variables. Therefore, for every n € L!(Q, F, P) the orthogonal
projection to L (Q, Fo, P) is then denoted by E [n|Fo]. A more detailed treatment can be found in
the textbook by [Karatzas & Shreve| (2014). We present the definition a martingale process and a
filtration, as stated in Section 3.2 by |@ksendal| (1987).

Definition A.1. A filtration on (Q0, F) is a family B = {B, }o<i<T of o-algebras B, C F such that
0<s<t = B;C B,
i.e. B is increasing. A d-dimensional stochastic process n(t),t € [0,T) on (Q, F, P) is called a
martingale with respect to a filtration B and P if
1. n(t) is By measurable for all t
2. E[ln(t)]] < oo forall t, and

3. E[n(t)|Bs] = n(s) forall s < t.

A.1 WEAK SOLUTION

Consider the time-invariant stochastic differential equation (SDE):

dXt = b(Xt) dt+O'(Xt) th, Xo = 2o,
where b : R? — R is the drift coefficient, o : RY — R%*™ is the diffusion coefficient, z is a given
initial probability distribution on R,
We say that this SDE admits a weak solution in the sense of probability if there exists a probability
space (£, F,P), a filtration (F;);c[o,7) satisfying the usual conditions, an m-dimensional (F%)-
Brownian motion W = (W}),c(0,7], an R%-valued, (F;)-adapted process X = (X;);c(0,7], Such
that: Xy = x¢ a.s., Forall ¢t € [0, T, the process X satisfies the SDE:

t t
Xt:Xo+/ b(Xs)ds+/ o(X,)dW,, P-as.
0 0
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B FORMULATION OF EXPLORATORY DYNAMICS

Control theory and its applications are in continuous-time (Kushner & Dupuis, 2001). Therefore,
these applications and theories are related to the study of continuous-time stochastic differential
equations (SDEs) (Oksendal, [2013}; [Karatzas & Shreve, [2014). Despite the fact that all real-world
physical processes, such as robotic control, financial processes, or control of chemical processes, are
continuous in time, they are simulated in discrete time: due to the inherent time discretized nature
of computer clocks. This motivated the study of numerical schemes for SDE:s i.e., discrete-time
processes that converge, in some sense, to continuous-time processes (Kloeden & Platen, |1992;
Kushner & Dupuis}, 2001). Despite their connections, there is a marked difference between control
and RL: RL does not assume agent’s awareness of the underlying dynamics of the environment but
control does. This also means that one fundamental aspect of RL: exploration is absent in control
theory. This means an absence of numerical scheme for SDEs with stochastic exploratory policies.
We bridge this gap, in context of control affine systems, and posit an open problem. One trivial way to
obtain time-dependent randomization of actions is by adding another Wiener process to the feedback
policy which increases the number of dimensions of the numerical simulation. We present a result for
a policy with added noise that converges to stochastic dynamics with exploration without adding an
additional dimension to the numerical simulation.

For fixed At > 0, any deterministic policy 7 consider the following:

fm_so+z( BT Bl (55 + AB)) ) Ao (5 AWS,

where AW, ~ N(0,At),ABj ~ N(0,1/At), At =t; —t;_1Vj € N.
We obtain the following result for d; = 1,d, = 1, which is a common approach in numerical methods
control theory results (Kushner & Dupuis, |2001): to derive and present results in one dimension for

simplicity and tractability. The higher dimensional results follow. We will use b(z, 7w(x)) to denote
the coefficient of dt : ¢(5]) + h8])w(ST) in short.

Lemma B.1. Suppose that g, h, o and 7 are Lipschitz continuous and satisfy linear growth condition:
lg()|] < Kg(1 + |z]), [|n(@)]| < Kn(1 + [z]), [[7(z)]| < Kx(1+ |2]),

At

then sy " — st weakly where sy is solution to the SDE:

dsf = (g(sT) + h(sT)m(s]))dt + h(s])dw, + o(s])dw;. 9

Moreover, the solution to this SDE has the same pathwise distribution as the following SDE:
dsy = (g(87) + h(87)m(3]))dt + /h(8T)? + o (57 )2 dw. (10)

Proof. The first part of the Lemma can be proved using the popular and standard Martingale approach
detailed in Chapter 11 by |Stroock & Varadhan| (2006). For some function f € C3(R%) denote by

fn=(f(st, At, ™)), where we will be omitting the superscript At, 7 in f; for brevity as it is implied,
similarly we omit 7 in the superscript when its obvious from the context. Consider the following
Taylor expansion of this stochastic processes:
Su=FGRL, + (9(sB0,) + hlsi, ) (r(sRL,) + ABy) ) At + (s )AW;)
=f(s2, + (9G2,) + Rlsi, ) (T(2,)) ) A+ (st JAWS Ly +o(sPE AW, ),

where A'W; = AtN(0,1/At) = N(0, At), independent of AW. Consider the following Taylor
expansion:

Fu =GR + AL (BE,) (9(20,) + h(se,_)m(s50,)) + AWy f (s (st )m(sl,)

+ Aanlf/(stA”tfl)a( e f”( A"t ) ((h(stnl)ﬂ(sﬁf 1))2 + U(stnl)Q) + O(At?)).
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Now consider the processes:

i = 1 =F (5B = f(s50,) — E [F(sR1) = f(s2,)

n—1

v —vno1 = [f(s5) = FsB,)]

where the expectation is conditioned over the canonical filtration. For the sake of brevity in this proof,
we make the following substitution:

a(x) := g(z) + h(x) m(x).

Expanding these terms we obtain:

=3 () (o s2.) () s )
z (1) o) +162) 0 )]

Jj=1
Here 4 is the martingale part and v is the remainder. Now we rewrite the indices n for fixed At
such that the integer index is determined by the time. We work on a uniform grid ¢;, := k At for
k=0,1,...,N with At = T'/N. Define, for 0 < ¢t < T,
n(t) == min{ne{l,... N}: t <t,} = 1+ [t/At],  andset n(T):= N.
Thent € [tyt)—1, tn(r) )» and the left gridpoint before t is

ltlae == tnew-1-

We work on a filtered probability space (€2, F, (F¢)¢>0, P) satisfying the usual conditions and carry
two independent standard Brownian motions W = (W;)>0 and W’ = (W});>o with Wy = W = 0.
On the grid t;, = kAt we set the discrete noises to be the Brownian increments:

AWy =Wy, — Wi,  AWL =W, —W/

trt1 tro
so that AW, AW '~ Sy (0, At), independent of each other and of F%, .
Following this notation, we rewrite p and v as:

n(t)—1
A= S0 P (oo ) AW,y + h(s3 ) AW .

j=1
n(t)—1

D(t) = (£, ) alsBt) + 57(s50,) (% + R2)(sEE,) ) A

Jj=

(i, ) alsnt, )+ AR, ) (@ R, L)) 6

—

where n(t) is the unique index with ¢ € [t,)—1,fn@)). Then for all ¢ € [0,7] and 6(t) :=
t—tpw—1 =t — (n(t) = 1)At € [0, At).,

F(s2) = fls0) + a(t) + v(t) + r241),  E[r*(0)]] = O(A).

We now show increment bounds for fi and 7. Fix p > 2. We want to show that there exists Cp, 7 < 00,
independent of At < 1, suchthatforall0 < s <t < T,

E|fi(t) — fi(s)|” < Cpr |t — /2, (11)
E|o(t) — 0(s)|” < Cpr |t — s|P. (12)

For the martingale part, apply the Burkholder—Davis—Gundy inequality to the increment i(t) — fi(s)
to obtain

2 [0 - i) < GE(@ - @)
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where the quadratic variation over (s, ] is

() — (1)s = Z (f (StAjt 1))Q(hQ + %) (s tAt ) At + (partial-step terms).
J: (tj,l,tj]C(s,t]

Using global linear growth of h, g, o and uniform moment bounds for s yields [<ﬁ>t — (ﬁ)s] <
Cr |t — s|, hence equation[11]

For the finite-variation part, by definition

70~ 705 = [ (F68,) alstly) + 368 (0 + )68 ) du,

where |u] A+ is the left gridpoint before u. Using linear growth and the uniform moment bounds
gives E | v(t) — U(s) [P < Cp |t — s|P, which is equation[12]

Therefore, For any p > 2 there exists C, 7 such that

sup E| f(sp') = f(s8N)|" < Cprlt—sP/?,  0<s<t<T.

At<1
Hence, by the Kolmogorov continuity theorem, for every a € (0, 3 ) the family {f(s2)}as
admits modifications with sample paths that are o-Holder contmuous on [ T, uniformly in A¢. In

particular, any weak limit is supported on C([0, T')).

Finally, we have that s2 converges weakly to a stochastic process, s; such that f(s;) fo Lf(s))dl
where L = (0(2)? + h(z)?)3 2 50z T alz )— is Martingale. This implies, as is common in the

martingale approach, that such a process s; 1sxun1que1y identified, in the sense of probability, by the
solution to Equation[9} Finally, this equation has the same probability on the way to the solution of
SDE in Equation[I0|because it has the same generator L, which implies the same law or the pathwise

distribution (see chapter 5, 6 by Stroock & Varadhan|(2006)). O

Therefore, to simulate the dynamics of exploratory agents, we can simulate the solutions to SDE
[I0] In this setting, we assume that the agent has access to the magnitude of time discretization for
exploration, that is, the scalar At.

B.1 OPEN PROBLEM: NUMERICAL SCHEME FOR GENERAL CONTINUOUS-TIME PROCESSES
WITH EXPLORATION

While the above numerical scheme holds for control affine SDE:s, it need not hold for more general
control problems. Specifically, when the function b(s, a) (from Equation has higher-order nonzero
derivatives, greater than order 1, in a, then we do not have the ability to obtain a stochastic process
such as B ~ N(0,1/At) with a simplified multiplicative structure. This implies that the expression
AtB is not the only expression that contains B in the Taylor expansion of the proof for Lemma[3.1]
instead higher-order terms such as AB? appear and lead to local changes approaching infinity as
At — 0. Solving this problem is an avenue for future research.

C I1O —TAYLOR EXPANSION

A common method to analyze smooth functions is using the Taylor series. Taylor series of a function,
f, centered around a fixed point, say z, is an analytical formula which is a summation of powers

of the increment, §, multiplied higher-order derivatives: f(z + §) = Z;X’O ! (Lj(z 6%, where f() is
the ¢-th derivative. In deep RL, the random variable we are interested in is the state as a function
of time parameterized by a two-layer linearized NN. For stochastic dynamics, the vanilla Taylor
expansion is not sufficient; this is because the dw; term in dynamics (Equation |4} also contributes to
the increments. Therefore, we utilize the [t6 —Taylor expansion which accounts for this stochastic
increment. Following the textbook by Kloeden & Platen|(1992), we first define the multiple stochastic
integrals, coefficient functions, and hierarchical sets of indices to define the [t6 —Taylor expansion.
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C.1 MULTIPLE STOCHASTIC INTEGRALS

To extend the Taylor expansion to SDEs, we require multiple stochastic integrals, which generalize
the deterministic integrals in the classical Taylor series. These integrals appear naturally when the
1t6 calculus is applied to SDEs. We define these using the setting of 1D SDEs. For a multi-index
a = (j1,J2,---,Jk), where each j; € {0,1} with j; = 0 corresponding to a time increment and

7i = 1 corresponding to a Wiener process Wt(j i), the multiple stochastic integral is defined as:

t I lo ) )
L[f] = / / f(ll)le(ljl)"'le(,fk),
0o Jo 0

where each dZ{" is either ds if j = 0or dws if j = 1. These integrals encapsulate both drift and
diffusion effects in the stochastic process and are key building blocks of the Itd —Taylor expansion.
We provide definitions in the context of a smooth function f.

C.2 COEFFICIENT FUNCTIONS

Each multiple stochastic integral is multiplied by a coefficient function derived from the original
function f and its partial derivatives with respect to time and state variables. Consider an SDE of the
form:

dxy = b(xy)dt + o (zy)dwy,

we define the differential operators as follows:

Of(z,t) of(z,t) 1 02 f(z,t)
0 . 9 9 - 2 9
Of(z,t)
Lt = -,
Jlat) = (@)=
The coefficient function corresponding to a multi-index « = (51, j2, - - -, jx) is defined recursively as:

fula) = DL o L9 f(2).

These recursively applied operators capture the evolving influence of both deterministic and stochastic
components on the function f, and are essential to systematically construct terms in the Itd—Taylor
expansion. For a 1D example and letting f(z) = z, we have f(o.1) = bo’ + 300" For example,
for the SDE defined by a two-layer linearized NN, which combines the formulation in Section [3] with
the setting of Section 3] the differentical operators are defined as:

af(xz) 1
or +§

0%f(x)

0x2 "’

LOf(z) = (g9(x) + h(z) (f(s: W) + @ (2, W)W))

L'f(x) =\/o(x)? + h(a:)Qagigf)

(O’(SL’)2 + h(x)Q)

C.3 HIERARCHICAL SETS

We also define the successor and predecessor of a multi-index « as follows. Let o = (j1, j2, - - - , Jk)-
The predecessor of « (denoted «™) is obtained by removing the last entry: o™ := (j1,J2, - - -, jr—1)-
Then the o multi-index is defined as the multi-index obtained by deleting all the components that
are equal to 0. For o = (1, 1,0, 1), we have ot = (1,1,1).

These constructions allow us to define coefficient functions and multiple stochastic integrals re-
cursively using a tree-like structure over multi-indices. For example, for « = (0, 1), we have

L[f] = J§ Lo~ [fldt = [y [ fdwdt

To organize and truncate the infinite [to—Taylor expansion, we define hierarchical sets of multi-indices
that determine which terms to include based on their order. Let & = (j1, jo, - - - , ji) be a multi-index
and define the length of « as:

o] = leo + law,
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where |a|o denotes the number of zero entries (corresponding to time increments dt), and |«/,, is the
number of non-zero entries (corresponding to stochastic increments dw;). Let ko () be the number
of zeros before the first nonzero component (or the total length if all are zero). Fori = 1,...,|a™],
define k;(«) as the number of components between the ith and (¢ + 1)th non-zero components (or up
to the end if i = |a"|). For example, if « = (0, 1,2,0), then ™ = (1,2), |a™| = 2, and

ko(()&) = 1, k’1(0z) = 0, k‘g(&) =1.

For a desired strong or weak approximation order p, we define the hierarchical set:

Ap :=A{allel <p},
and a” € A, for each o € \{v},

where v is the multi-index of length zero. The set of all hierarchical sets is M = UpenAp.

C.4 TRUNCATED ITO —TAYLOR EXPANSION

Equipped with definitions, we can provide the following result of the Itd —Taylor expansion for a
smooth f.

Theorem C.1 (Ito—Taylor Expansion (Kloeden & Platen, 1992, Theorem 5.5.1)). Let p and T be two

stopping times such that

to < plw) <7(w) <T wp.l.
Let A C M be a hierarchical set, and let f : R — R. Then the Ito —Taylor expansion holds:

f(r, X7) = Z Ia [fa(Xp)}p,T + Z Io [fa(X-)]p,q— )

acA a€B(A)

provided that there exist all derivatives of all orders of f, drift a, diffusion b, and the required multiple
1t6 integrals exist.

Therefore, for kK = 0,1, ... and f(x) = x the truncated It6 —Taylor expansion is:

XF =" Lfa(X0)os (13)

a€N,

where A, = {a € M : |a| < K} is the hierarchical set of all multi-indices of size less than or equal
to k. We refer to the other terms, not included in the expansion, as the remainder terms. We denote
by B, = {a € M : |a] < k,|alo = ||} the set of all multi-indices of size x with all elements set to
0 and therefore correspond to the deterministic part of the series We use the notation Q0 = A, — B,
to denote the non-deterministic part of the Itd -Taylor expansion. We denote by =, the set of all
multi-indices of size k, i.e. E; = {a € M : |a] = Kk}
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C.5 EXAMPLE ITO —-TAYLOR EXPANSION

As an example, letting I,, = [1],, and omitting the arguments of the functions (which is X in this
case) the Itd —Taylor expansion for kK = 3 is:

Xy =Xo+blgy+oln+ (bb/ + ;a%”) I0,0)
+ <bcr + ~o%0 > Ioqy +b0'I1,0)+ 00" I 1)
+ [ (bb’ 2to00” + a2b”) %(72 (bb" + 3b'b")
+ ((¢") + 0"V + 200" + 4041)(4)} 0,0,0)

* 2 2

1 1
b (U/b/ + bo_// + O,O_/U// + 0,20_/11) + 70_2 (b//o_/ + leo_/l

+bo + ((01)2 + oo ) o’ +200'0" + 20’2 (4)> I(O,O,l)

1
+ |:b(o,/b/ + O’b”) + 50,2 (a,//b/ + 25" + ba'”/):| I(O,I,O)
1 n _r
+ b ((o’ +aa)+§a (c"0" 4+ 200" +00")| L1,
1
+o (bb” 2100’ + 20217”/) (1,0,0)
1
bo" + o't +oo'c” + 2020”/) I1,0,1)
+o(a'V +b"0)[(11,0) + 0 ((0')> +00") [111) + R,

where R denotes the remainder.

D LINEAR TWO-TIMESCALE SYSTEM

Suppose that you have the following SDE controlled by a parameter 6(7):

YD _ y0)

Consider the following update: (7 + n) = (1) + nf(6,). Consider the 1td -Taylor expansion for
the X, (0) (following the expansion in Section|C.3):

dX] = —-0(m)X] dt + o dw; and

X(0) =Xo — 0Xol (o) + oIy + 0> XoI00) + 0 Lio1y +0- Iy 0)+0- L1y
+ [-6X0 (0° X0 + 6°)] 1(0,0,0) + 0 L(0,0,1)
+0-I01,0)+ 0 Lo1,1)+00°L100)+0-T101)+ 01,100 40 L111) + R
=Xo — 0Xol (o) + oIy + 6> Xol(0,0) — [0X0 (0°Xo + 6%)] L0,0,0) + 06 L(1,0,0) + R,
of which the leading expression, minus R, is denoted by X (6). Further, consider the expression
X320 +n0) — X2 (9):
XP(0 +nf(0)) = X2 (0) = —nf(0)XoLo) + (0 +nf(0))* — %) XoL(0,0)
— Xo [(0+0(0)) ((0+nf(0))*Xo + (0 +nf(0)?) — 0 (0> X0+ 6%)] I 0,00
+o [(9 + ﬁf(a))2 - 92] I(1,0,0)
= —nf(0)Xol (o) + 20nf(0)XoI(0,0) — 36*nf(0)(Xo + 1)I(0,0,0) + 2001 (0)01(1,0,0) + O(n?)
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D.1 ANALYTIC SOLUTION TO TWO-TIMESCALE SDESs

Suppose that you have the SDE and the ODE as described above:
do(r)
dr

dX] = —0(r)X] dt + o dw; and = f(0()).

LetY, := a(;i t and, therefore, heuristically:

odX]
37’t =— X7 f(0(7))dt — Y[ 0(r)dt
Therefore, solving the following ODE with the random variable X7 gives the solution to Y;":
AY; = — X7 f(0(r))dt — Y7 0(7)dt, with Y'(0,7) = 0. (14)

The two-dimensional SDE can be written as:
X7 —0(T) 0 X7
d|JE| = dt dwy.
H [—f(em) —6(r )H } *[0] e

We simplify the notation by omitting 7 since it is fixed and also denote Z; = [

8]ty [ o
dZ, =F(0) Zydt + o’ dw,.

X,
}/t'

Consider L, L' operators for this two-dimensional SDE are as follows:

B 0 9 1,
0]
1 R
L =rax

Here we ignore the 9/t term because the dynamics are time invariant. Expanding the SDE using
the It6 -Taylor expansion for Z letting f(Z) = Z, we obtain the following:

Zy =Zoy+ LOfLoy+ L' Iy + L°L f1 (g 0) + L°L" fI(o.1) + L' L f1(1 0y + R
_ 9X 92X0 —of
=%+ {—f(H)Xo - oy} o+ [ ] Ty + [eﬂ 0)Xo + e?yo} oo+ [—of«n] fao

0 0
+ [0] Loy + [0} Iny+R

X e o 62X
= {Yﬂ + {—f(H)XO : HYO] I+ M Ty + [20]"( )Xo o 02, }

0]+ [ 10+ 3] 10+ oy Too + [ 5700 f0n + 7

Consider the expansion for the third term here:
2} =L°L°LO f1(90,0y + L°LOL" fI(00.1) + LOL'"L° f1(0 1 0) + L' L°L° f I3 0.0)
+ L0L1L1f1(0,1,1) + L1L0L1f1(1,0,1) + LlLlLOfI(l,l,o) + LlLlLOfI(l,l,l)
—92X, 0 0 o6?
= | —202£(0) X, — 02 £(0) X, — 933/0] I(0,0,0) + {0} Io,00) + [0} Io1,0) + [a@f(&) I(1,0,0)
0 0 0 0
+ {0] To,1,1) + {0] I,01) + {0} Ii,0) + [0} Ii

—03X, 06?
= —302f(93)X0} T0,0,0) + [209]‘(0)] I(1,0,0)
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Combining the two expressions, we obtain the following:

G B AT LI S P A

—9 Xo 0'92
+ [ 362 f( } (0,0,0) T [20913(9)} I10,0) + R

The expressions for Y closely mirror the expression for X given that 6 changes according to
df(r)/dr = f(0). This insight can be used to reason about the changes, in gradient step, for the
more general control affine problem with linearized neural network where the It -Taylor expansion
is polynomial in AW,

E CRITIC FORMULATION

To evaluate the changes in the random variables of interest we present the following update rules in
the actor-critic framework. The value estimate parameterized by a linearized neural network can be
denoted by:

FU(S,t; U, B) :% ZBN()D<UN : [S’t])7

O (s, 6 U) =Fy (5,6, U°) + (s, 1 U°) (U — UP),

similar to Equation[7] Here U = [Uy,...,U,] € R*%*Y and B = [By,..., B,] € R™" and ¢
is the smooth activation function, tanh. We denote by [s, ¢] the concatenation of the state and time
variables. The parameters are initialized in the same way as described in Section B°, U remain
fixed after initialization. The matrix ¥ is defined as:

Wi, t5U°) = —= (B (UF 5,5, 1T, .., BAG (UL - [5, 1) [s,1)T] € RIX(0D),

5i-

Based on this formulation of the linearized NN we can define the gradient updates for the value
estimate and the policy as follows:

T

GU,W) = / e PG LU T 0L U) + e (3 ) - BOW AT U) |, (5)
0

o~ T w . w w : w

GUW)= / e Plo(sr WO T o™ (15T s U) + (3T ) = pUM (ST U)|dl. (16)
0

In this settlng there are two time-dependent random variables whose changes we track over gradient
steps: v "(t, 51,7), St.r. We will use the shorthand v; , to denote the first term. We also omit the
superscript n for s, denoting the state under the gradient updates described above for a linearized NN
of width n.
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F EXPRESSION FOR CHANGE IN VALUE ESTIMATE OVER GRADIENT STEP

To better analyze and understand the change in the value estimate, we evaluate the changes in v; -
over gradient steps. For the learning rate 7, consider the difference:

Vtirtn = Vi =F($tr4m; t;U°) + W(s oy, 6 U°) (U7 = U°)
— (F(tr, t;U%) + W(sy 0, ; UO)(UT — UY))

B (p(U? - [8t,719,t]) — (UL - [s7.6,1]))
(84,74, UYUTHT —W(50 1, 6 UYUT) — (U(St,74, t:UY) — U(5p,7, 8, U°)) U°

L
n
+
1 & . .
:ﬁ Z Bg <90/(U2 Bt D[St r4n — St O]TUE
1 _ - 2
+ §<P//(U;8 : [St,’rvo]) ([st,TJrn - St,’rvO]TU,S,l) ) + O(UQ)
1 < s .
+ % Z B, (<,0/(U2 ) [st’ﬁLmt})[st77+n,t]TUg+" —¢' (U - [sr,tat])[st,mt]TUn)

1< .
U Z B (& (UL (st D[54 11T — ' (UL - [s7.6, 1) [5e.r,8]T) UY

7)

We use A3, = Sy 4y — ¢, as the shorthand. We further analyze the two expressions above.

1 ~ T
% Z Bg (‘P/(Ug ) [St"rJrn»t])[st,TJrnat]TUg-i_n - ‘P/(Ug ) [ST,tat])[St,Tat]TUN)

1 < By .
:ﬁ Z By (50/([]2 [t [AS 7, t]TUn
k=1

+ 00 (UL - [8t,r4, D[ ASer, 1] GUT, W)t
+ @/(Ug : [St,7+777 t])[gt,T) t]TU;— + WSOI(UE ) [St,T‘H]v t])[gtﬂ') t]T@(UTa WT)K

— (U - [3T7t7t])[§t77,t]TU2> .
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Taylor expanding on these expressions individually we obtain:

1 — _ _ _
=B ((@’(UB trs 1)+ @ (U2 - [t 1) [ A5, 0 U2
k=1

4 5@ (U0 0. 1]) (18507, 07U + 002 ) e, 40
+ (06 (U2 - 5tr, 1) [0, 6] TGO, W),

g (U2 51,0, 1]) (U2 - [A50,7,0]) [Ad0,r, ] GO, W), + O(n?) )
+ (06! (U2 - Btor ) 3, 1] TGO, W),

+ 1 (U - [81,741]) ([A51,7, 0] UY) [Be,r, 8] T CUT, W),

+ DU [Burs ) (1850,0]T UL BT, W) + O ) = @ (U2 - 30, [ tFU,:>

1 « , _ _
o 3o (b s
k=1

450" (U0 0. 1]) (180,707 U + O02) ) o140
+ (09 (U2 Tt ) [A17, 1] TGO, W70

1" (U2 (31, 1)) (U2 - [850,7,0]) [Ader, (] G, W)+ O(r?) )
+ (09 (U2 Bt ) 51,0 ] GUT, W70

+ 1 (U - (8,7 1]) ([B51,7, 0] UD) [Bt,, 4] T GUT, W),

+ 26" (U2 [5e.r. 1)) (52,7, 0]TUD) BT, W) + 0(n2))>

1 n
=— BO " 0'~7—tA~,,_ T00
> n<(so (U2 507, ])[ 851,70 U2

1
5@ (UL rr, 1) (850,01 U2 4 O6P) ) 50, 4] U7
+ (06! (U2 [31,m, A, 8] T CUT, W)+ O())

+ (06 (U2 Btor ) B, ] TGO, W),

+ U@l(US : [gtﬂ'a t]) ([Agt,‘m O}TUS) [gtn'a t]T@(UT? WT)K + 0(772))) .
(18)
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Now, consider the second term in the summation above (Equation@) for Vg ryy — Vi1t

% iBS (' U2 - sty tD[st,rms 1] = @' (U2 - [51,1]) [Bors 8] 1) UL
Z B; ( [3t,ms tDIst.ran, 11T + 9" (UL - [Be,r, D[ ASt,7, 0T Ullst,rn, 1]
+00?) = ' (U - [5r.451]) 30,7, t]T> Up
f Z By ( 2 e D)o, ]+ ¢/ (U2 - [31, )[AS1,r, 0]
+ @ (U Ber, DA, 01T +0(0%) = @' (U - [57.4,1])[3e,r, t]T> Ug
f Z B ( W (e t)AS, 0] + 9" (UL - (B, 1) A3 ULy 30,71
+ O(n2)> U?l.

We further simplify the expression for the second last in the expansion of equation[I8] To do so we
denote by g » = 00" (I, 5175 U) + r(si,) — Bv'™(1, 51,73 U).

7 2R (02 B D TG, W)
Z”B()(’ [3e,r, 1)) (/O e_ﬁl\f ¢ (U - [31,r, D(gl,rgt,r+lt)q(8,l;U)dl>>

T
1 . . -
o [ LS B s DU )G+ 0
0

k=1

S\

F.1 SUMMARY STATISTICS AND POLYNOMIAL EXPRESSION OF STATE VARIABLE

Consider the random variable defined by:
1 n
Yir=—= ) BUL¢ (UL [5er.t). (19)

We prove that as n — oo and for 7 = O(/n) it converges to a Gaussian variable conditioned on 5y .

To do so, we first need to isolate the dependence of U? on 3, ,, for any x. Consider the following
expansion for 5; ,:

§t,7— = Z Z Ioé[faﬂ—(SO)]O,ta

k=0 aE€Ex
where f(x) = x and f, ; correspond to the coefficient function (as defined in Section|C.2) for the
dynamics defined by:

dsi = (g(gt,‘r) =+ h(gtﬂ') (FW(S; WO) + (I)(gt,‘r; WO)(WT - WO))) ,

which are the dynamics of the agent under a linearized pohcy at gradient time 7, meaning with
parameters W™ . This dependency arises from W™ — WY, since the stochastic gradient-based update
in Equatlon. 16| We define by C; the set of all possible indices: ¢ = {cg, c1,...,¢;} where ¢; € Z+
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with and 0 < ¢; <4 as C;. These c;’s correspond to the order of the derivative of @ in the It6 -Taylor
series of 5; . We also define the set of all integers that form the exponents of these derivative terms:
m = {mg,m1,...,m;} wherem; € Z* and 0 < m; < ias M;. We denote by AW™ = W™ —Wwo
The state variable, written as It6 -Taylor series, can be split into two: 5, ; which depends on AW™
and the other part 5;  — 5, ; which is independent of the weights AW 7. To show the independence of
5¢,+ with respect to U,g , we analyze the variable 5; . This variable, 5; -, can be rewritten as follows.

§t,7— = i Z B, + Z (Cc’m’aH;-:l (FT(rcj)(SO; WO) + Q)(Cj)(so; WO)AWT>mj Ia[l]O,t7
i=1 a€Z; ceC;,meM;

(20)

where the coefficient C, m, o is determined by the iterative application based on coefficient functions
of the differential operator described in Section Also note that =; is the set of all multi-indices
of size ¢ (see Section|C.2). We therefore analyze the expression:

l=/nl ‘
AWT = Z / nG(U—n pyG=1m)
i=1 Y0

L7/n] S

T (i—1)n . .
=Y [ et W ot w o)
i=1 70

~ﬂ_w(i—1)77 wi—1)n

+ (3] — Bu'n(l, 57 ; Uy L.

To obtain our results, we will use a version of the Berry—Esséen theorem (Theorem 2.2.14 in the
textbook by [Tao|(2012)).

Theorem F.1 (Berry—Esséen theorem, less weak form). Let X have mean zero, unit variance, and
finite third moment, and let F' be any smooth function, bounded in magnitude by 1, and Lipschitz. Let

X+ X,

L = NG ,  Wwhere Xq,..., X, are i.i.d. copies of X.

Then we have

EF(Z,) = EF(G) + o(;ﬁ EIX]? (1 + sup |F’(x)|)) ,

where G = N(0,1).

To show the independence of random variables: U, 2’1, 5¢,r in the limit n — oo, we fix Kk = n without
loss of generality and we start with the case of 7 = 7, which means a single gradient update.

T
AW :n/ GU°,wo)
0
0 ) 0
:ne—qu)(ger ; WO)T[ atvlm(l,gz'rw ,UO)

0 . 0
+rE ) = B ETT U | dl

T 0] 0]
:77/ e PaE" WO o, F 7" U0, BY)
0

0

0]
+r(E ) = BRGE LU, B |dl.

Substituting this into a general expression with AW as a multiplicative factor within the summation
of 5; » above (Equation [20).
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) (50; WO AW =@ () (50; WOG(U°, W)

T ) 0
:n/ e~ (50, WYD" WO T |t (1,575 U0)
0
wo : wO
+r(sp ) = pLET U |dl.

F.2 SINGLE GRADIENT STEP DYNAMICS IN VARIABLE

The dependence on B, U? in thlS expresswn arises from the expression inside the square brackets:
. 0
Qo (1, 57" U0) — ol 5T UO).
. 0 . 0
O™ (LT U°) = B (LT U0)

1 n n ﬂ_
-7 ZlBSUB,Qso'(UK JEN Z 1),

Now substitute this expression in the polynomial expansion of s; » (Equation @)

St :Z Z B, + ( Z (Cc7m7aH§.=1 ( F&) (50; WO) + @) (s0; WO)AWT>ija[1]O,t>7

i=1 a€Z; ceC;,meM;

T
ZZIBM( > Cc,m,aH;_1<F£Cj><so;W0>+n / D) (50, WD (57" s WO)T

=1 a€sE; ceC;,meM;

%\

[atvﬁ“(z,ngw U0 + (3T ) — Boln(, 57 ;UO)]dl> Ia[l]o,t)

We substittue the summation for ®():

o0 T 0
St = ZBa+< Y Comalli_ 1<F<Cﬂ<so;W°>+n / e 1D (50, WOYB(3T" s WO)T

i=1 a€s, cEC;i,mEM,; 0
WO
G )+
1 n TrWU _ m;
—= Y B (UL (U2 57" 1) = BelU - [5 ,m)}dZ)
k=1

—1 o m;
%ZBS(US,MUSWW 1)~ B(UY rﬂw,mdz)
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Here, the first four equalities are a result of successive substitution, and the last equality is a result of
Taylor expansion of the polynomial under the exponent m;. To simplify the expression, we denote

by K (5, W° U° n,n) the expression in large brackets with the exponent m; i.e.

T 0
K(j,W°,U°% n,n) =<F£Cf‘>(so;W°> +1 / e o) (s, WOYB (T WO)T
0

wo

G

wo

n-l . mj
+ % > B (UB,ch’(Um 5T ) - Be(U - 5T J])dlD .
k=1

Also, note that this expression, K, is independent of U, BS. We further denote by 5?;1 the

expression for s; ,, up to the n-th term in the expression above:

I I

i=1 a€E;

Z CC,m,OLH;‘-ZI (K(ja WO; an n, 77)

ceC;,meM;

0

T
m.; W ~7rWO _
+ LB, ( | 0 a5 ) = Bt ,M> + 0P 1/?)]1411%
0

Jn
:Z Boz + Z (Cc,m,oz (H;:1K(ja W07U0,n717))
i=1 a€E; ceCi,meM;
T)BO i T 0 WO wo ) 0 70
+ = Zm Un 290/(Un' [5? al])fﬂw(Un [5? al] HZ": K(]/7W 7U ,l,nﬂl)dl
N ! 0 ’ 7=t
Jj=1 J'#j
+0(*n )| Lo [Uos

>

=1

Z Bo + Z (Cc,m,a (H§'=1K(ja WO? UO’ n, 77))

acZ; ceC;,meM;

0 T g y
' 7:/B?’: Z Z Z Cc7m’a< </0 U3’2¢/(Un ' [5? ’l]) - ﬁ@(Un : [5? 7”)

i=1 a€ZE; c€Cy,meM;

H;’.,:lK(j'7 wo U 1,n, n)dl)
J'#i

+ O(nznl/z)] I [0,

2D
where the first equality is through substitution and the second is obtained using a polyno-
mial expansion and suppressing all O(n?) terms. We will denote by K_; _, the product
m; H;,ZlK (4, WO U°, n,n) and omit other variables as they are apparent from the context. There-

-/

J
fore, we can substitute these expressions into the primary variable of interest in this section that is
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BoUR 19" (U - st t)-
BUp 1" (Uy - [st.,1])

BOUY o' (Ug S>3 Bat | Y. Coma (Lo, K(G,WO,U% 1n,n),

ceC;,meM;

%

"BOZ< / (v 2@'(U2'[§fwo7l])5<P(U3'[5fwo,l])K_j,_ndl>

+0(n2n1/2)11 [1o,: + U2, )

which upon being Taylor expanded results in:
BLUp 1 &' (Uy - [5t.:1])

B, (ww,?,lz-zm,_n LU0,

+ ¢’ (Un1Rnt*n+

ZZB Y Y Y

i=1 a€g; ceC, meM,; j=1

T 0 wo
(Cc,m,a (/ (U3,2<)0/(U2 : [5? 7”) - 690([]79, ' [gf ’l]) K],ndl> ‘|Ia[1]0,t
0

+ 0(n2n‘1/2)>
(22)

where the expression Ry, _, that is used to denote all terms that do not involve By, U} | in the
summation of s ,:

Rt,n,fn = Z Z Ba +

i=1 a€E;

Y Cema (o K(j, WO, U° n,n)) ] Los  (23)
ceC;,meM;

Note that R ,, _,, converges to s ,, as n — co. Substituting the general expression for BYU? ¢’ (U
[St,m,1]) (following Equation into the expression for Y; ;,, (Equation we obtain the followmg:

Yin = \F Z BRUR 1/ (U [50.:t])

ZBOUO ﬁlRt"?—"f—i_Ucmt)

3 i 24
+ % Z (32)2 UL 1"(UR Ryt — + U 51) Z Z B, + Z Z Z (24)
k=1

i=1 a€=; ceC; meM,; j=1

Cemya (/OT (U02<p(UO Gl ) —BU- 57" J]))andzﬂf[}ot

+0(*n™ ") a o

)

Equation equation 24| provides a decomposition for s; ,, after one gradient step. Since the expression
in the second summation above is not necessarily mean 0, we have the summation of n terms
multiplied with - of order O(n).
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F.3 TwoO GRADIENT STEP DYNAMICS

Since we already have the result for a single gradient step, which form the base case of our argument
in the inductive proof, we derive the expression for an additional gradient step. The reason behind
doing so is to ensure that none of the error terms “explode” over multiple gradient steps. Consider

the following expansion:

1
Yion =—= ZBSUS,M/(US < [5¢,20,t])

k=1
:Ln BgU,gl@ (Ug,lRt 2n,—K ‘i‘[],,€ gt)
rk=1
+ g > (BY)? UL (U2 | Ryt + U2 5t) NN B> Y N

k=1 i=1 a€=; ceC; meM,; j=1

Coma ( /0 (U2.26(Us - 9, 1) = BAU - [gl,mz]))Kj,,idO ]Ia[l]o,t
+O(m’n "I [1o -

We further expand the expression for R 2, — .

Rt,2n,7n :Z Z Ba +

i=1 a€E;

Z (Cc,m,a (szlK(Ja Woa an R, 277)) ‘| Ia[l]O,b
ceCi,meM;

Upon substituting the value for K (j, W° U°,1,n,2n), we obtain the following.
T
K(j,W°,U0° n,2n) = F{ (s0: W) + 1 / PR (50; WO)B (85 WO) T
0

[r(gw,)

+*ZB°( (U0 umru ])6¢(U3'[§u,n,U})dquj.

(25)

(26)

27)

Once again using the shorthand K_; _,, = ij;’./:lK(j/, WO, U°, n,2n). We first decompose the

, i #
first expression.
®(%) (s0; WOD(5,,.,; WO
1 n
= Z [cggu,,,d(wggw)x

((WO) 50Cop D (W050) + ¢ CUWD) 1) (W050)) |

:% Zn: [Cg (RW,MMPI(WSRW)%H)
k=1

0 i
(WO URTR —f-c 77B Z (/ ,(Ug ' [go,uau]) - ﬂ@(Ug : [go,uau}) K—j’—’idu>

O(nznl/z)] Ia[1]071>> X

()50, C D (W iS0,0) + e, CEWD 1D (W0 ) ) |,
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where we utilize the Taylor expression as in Equation[22]and the substitution in Equation 23] for x
instead of n. Therefore, we can ignore the expressions, other than R, ; _,,¢ (WOR,, 1,—n) because

they have the leading term of O(nn~3/2) while the summation is over the n, variables. Decomposing
the other expressions in Equation 27}

T(glm) :r(Rn,l,ﬂi)

Ry S Y B Y S Y

i=1 a€=; ceC; meM; j=1

Come ([ (2 02 )~ 30 ) st |
0

For succinctness, we denote by

61 (50, W2, C9) = C (W) 50 @D (W50) + ¢ (WO)5 1@ (Wiso)) . (28)

Therefore, following a similar expansion for ¢’, ¢ we can expand the expression in Equation
K(]? W07U07 n) 277)
T
= (F#c” (50: W) + 77/ @) (50; WO) B (51,5 WO) T
0

[T(EUW)
n-! ™m;
T % Z B, (Ufg,z‘Pl(Ug [Bum,u]) — Bo(U, - [gu,n7u])du])

T n—1
:<F7$Cf)(80;WO)+77/O e K ZCO nai—n® (W0 Ry )¢ (SO,W,?,CS)> +O(nn‘1)1

X | (Ron) + ZB (U 20U - Ry u]) = B (UL - [Rons )
n’ 1
+ <<R ZB"( @ (U - [Ryunsul) = B¢/ (U - [R u])
rc’ 1
nBO T 0 1170 [z _ 0. 712 .
Z Z B, + Z Z Z(Ccm(x U n,2%¥ (Un [Sl,OJ]) ﬁ‘p(Un [Sl,Oyl]) K—],—ndl
i=1 a€Z; ceC; meM,; j=1 0

+ O(nZn_l/Q)] du)

:<F75CJ>(SO;W0)+77/T@— [( HZCO Ry (WOR, ot —0) () (50, WP, co)ﬂ
0

2 (U2 2 (U2 (R u]) = Bp (U R ) ) | du

+
=y
3!:0
IS
3
+
Sl
]
U:J
=
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We note that in the expression above, every term except O(n?n~'/2) is independent of U2, BY. We
substitute this expression for K (j, W°, U, n, 2n) into Ry 2, _» (Equation :

Rt,Qn,—n :Z Z Boz +

1=1 a€=;

T
+7}/ e Pu
0

+ [P(Rya) + 7 ZB (U220 (U2 - (R )) = Bo(U - (Rl ) |

Z CC,m,OéH;:l <F71(-Cj)(50; WO)

ceC; ,meM;

n—1
(= 3 Ol (W Ry ) 0, W cfi))]

+0(772n1/2)> J]Ia[l}o,t

B

i=1 a€ZE;

T
+n/ e P
0

+ [ (Rn u,—n + —= Z BO (UOI 2‘/7 UO/ ) [Rn,u,—mu]) - B@(US’ ) [Rn,u,—nau]))}du>

> Cemolli, (F#Cf’(sm wo)

ceC;,meM,;

n—1
( 3 2! (V2 ) (0, 2 )

+ Z ij(n2n_1/2)ijn1 Ia[l]o,t

Jj=1

Substituting this into the expression for Y; o,, we obtain a summation over i.i.d. terms while separating
out the terms with dependent terms, similar to the one-step update in Equation [24]

Yioy = Z BOUO / n lRt 2n,—k,—k T UE,Qt)

+ % Z (BY)? U219"(U2 4 Rat— + UL t) > Z Z
k=1 i1 e,

where Ry 2, —n,—n is the expression as follows:

Rt,277,7n,7n = Z Z Ba + Z (Cc,m,aH;':1 <F7$—cj)(50; Wo)

i=1 a€=; ceC;,meM;

T
+77/ e P
0

+ PRy ) + ZBO( 0, o' (U - (R i]) — Bip(U? [,,%n,u]))}du) j,

n—1
1 )
(3 22 O OV 216 a0 W2, CO)

which represents the removal of the dependency on the random variables at index n across two
gradient steps, and R; 2,), _«,— follows similarly.
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F.4 GROWTH OF RESIDUAL PART IN STATE VARIABLE

Following the expressions for s; ,, s¢,2,, We can prove the following proposition.
Proposition F.2. Given a T that is a multiple of n and k < n we find that 3; ; is the sum of two
variables: one independent of B, UP and another of order O(nn’l/Q).

Proof. We prove this by induction. For the initial gradient step 7 = 7, this is evident from the
decomposition in Equation [21] Note that once again we prove for n to simplify the summation and
notation and all these results apply for . To prove for general 7 we assume that it holds for 7 — 7
and then prove that this case holds for 7. For 7 — 7, we write s; _, = Rtﬁ_m_n + O(nnil/z),
where Rt77_n7_n is the expression independent of B?L, UO First, we define R; - _,, following the
notation and explanation provided in Section [F:2}

Rt,‘r,—n :i Z Boz +

=1 a€ZE;

Z (Cc,m,oc (szlK(]a Woa an n, T)) ] Ioc[]']O,ta where

ceC;,meM;

T
K(j,W° U%n,7) :<F7£Cf)(so; WO + n/ e Pl (50; WO)B (5, p; WO)T
0

[T(ELT,U)
ZBO( w [Btr—n ﬂw(Um-[éz,T_ndzD )

Therefore, similar to Section [F.3[we can rewrite K (5, W°,U° n, ) as:
K(iw,u°n,1)
T
= (F}rcf)(so; WO + 77/ e P ) (50: WOYD (3, _,; WO)T

0

[T(guﬁ—n)
1 n—1 m;
LD (U226 (U2 - (uur—gyul) = Bo(UR - (B u])duD

T
- (Fw(so; WO [ e

0

n—1
1 _
<n Z Can,uﬁn‘Pl(ngRn,uﬁn)¢( (50, WO CO))

 [r(Brn) + ZBO( 220 (U By t)) = (UL - [Rr i) | du

n’ 1
mj
2 —1/2
+O0(n*n~Y )) )
Substituting this into the expression of R, - _, above we obtain:

Rt,T,,n:iZBﬁ >, Cc,m,aH;1<F,$Cf>(SO;W°)

i=1 a€Z; ceCi,meM;

T n—1
el _ _
[ e [(nEjOSRT-W,_nw’(W,SRT_n,u,_nw( (50, W2, C2))
0

+ [r(Be i n) Z B (U o' (U - Ry, u]) = B (U - [Re . u]))}du> h

n/l

+> mOmn K,
j=1

Ioz[l]o,tv
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which we simplify by removing the I,,[1]o + expression:

Ririn :i > Bo+ > Cemalli, (F;rcj) (s0; W)

i=1 a€l; ceC;,meM;

T L 1 n—1 ~ B
ay e [(RZCSRW,%w’(WSRTn,u,n)a:( (50, W2, C2))
0 k=1

+ [r(Rm,uﬁn)

TS ZBO( %20 (U -[RT_n,u,_n,uDMUS,~[RT_7,,U,_muJ>)}du) La[1]o.

2 n-1/2 Z Z ZCCmQKfj,—n a[ ]

i=1 a€E; j=1

We denote the part of the expression that does not include the O(n>n~1/2) as R, _n which is
independent of B?L, U,?. Therefore, following the definition of I, ; _,, and 5, - we can write:

5.1 :RT ti—n + 0(77271*1/2)

T
Z (CQm,C!( <[) US,QSOI(UH : [gl,‘r—nv l]) - ﬂ@(Un ! [gl,‘r—nal}>

i=1 a€X; ceCi,meM;
Hl, 1K(j’,W°,U°,l7n,n)dl>,
J "#j

which proves the statement of the proposition. O

G GENERALIZED LEMMA FOR GRADIENT UPDATES

Using the single-step and two-step which we now use to establish the following lemma. We further
assume that ¢ and ¢’ are Lipschitz continuous. To prove this result, we first state a type of Berry-
Eseen theorem for Martingales which will be used for proving a conditional central limit theorem in
what follows. This is a restatement of the main result, theorem 1, by |[Haeusler| (1988)) with .

Theorem G.1 (Haeusler (1988)), simplified version). Let (X}, fk)kz1 be a sequence of square-
integrable martingale differences, i.e.

E[X) | Fr-1]=0, E[X?]<o0
such that Fo C F1 C Fo. ...

Define the partial sums
the Fo-conditional variance

and the predictable quadratic variation
n
2
(Shn = ZE[Xk | Fr—1]-
k=1
Let v(x) denote the standard normal distribution function. Then there exists a universal constant

C > 0 such that S
IP(B: < :c) —v(x)

37

sup
z€R

< C(Ln+ Np),




Under review as a conference paper at ICLR 2026

where
n

1 1
:?kz [1X%)?], N, ::F%E{|<S> D2|3/2}

Equipped with this theorem, we prove the following key lemma.
Lemma G.2. Atf gradient step T, which is an integer multiple of 1), a random variable of the form:

1 O -
Yir = 5 2 B (U2 B )

conditioned upon 8, ; = s is equal in distribution to the sum of a 0 centered Gaussian random
variable with variance:

E [B2U12 (¢ (Ups + Uzt))ﬂ , where Uy, Us ~ N(0,1), B ~ Unif(—1,1),
up to an error term of order O(1/+/n).

Proof. We prove this using proposition [F.2]for 7, which are integer multiples of 7.

Bounding the error: For a fixed scalar s we have that Y;(s) = ﬁ Son_y BYUR 1o (UY - [s,1]) is
equal to a Gaussian of variance E {B2U12 (@' (Urs + Ugt))2:| plus O(1/y/n) by Theorem The

variance will be denoted by var(s) = E {BQUI2 (¢’ (Urs + Ugt))2:| . From propositionwe know
that §; , = Ry, + O(nn~1/2), where R; , _,, is independent of B%, U?. Let ,
= = 3 B (UL [Ri o) and X, = =B (UL [Reroc ).
Let Fo be the event s; » = s and the subsequent F. be defined canonically such that B2, U?, Rtm,,{
are measurable and Fy C F; ... C F. Clearly,
E [Xu|Fi1] = E [BYFea] E[UL,1¢'(U2 - (Rt 1])| Fama] =0,

since BY is independent of R, ;. (see Equation[23). Now we note that, following the notation in
theorem |[G. ] we have the Fy-conditional variance:

- %ZE (B0, P (UL - [Rur, ]I 0]

which is non-zero if (U? - [R; . _,]) is measurably non-zero. Note that | D,, — var(s)| is O(n~'/2n)
because |R; ;.. — s| is also O(n~'/2n). Further, the predictable quadratic variation is defined as:

Shn = ZE[X;? | Fr—1],
k=1

and since we have ¢’ is Lipschitz with some Lipschitz constant C',» and Ris—r—581r = O(n=1%p),
we have:

(S)n = E |B2UZ (¢ (Uise.r + Uat))’] + O(),
where the expectation is over the randomness of Uy, Us, B. Consequently, we have
N, = O((U)3/2)~

We also have the following'
1

L= g BB 0 Fer D) = 0 (7).

since [ BYUD 1¢'(U? - [3¢,7,1])| = O(1). Therefore, by theoremwe have the following:
sup

(5 52) o]0 ().

This proves the statement of the lemma.
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H CoONDITIONAL LAW OF LARGE NUMBERS

Using the Martingale CLT above (Theorem [G.1I), we provide a corollary which will be applied
to obtain a conditional law of large numbers, which will be used in subsequent proofs to bound
expressions to 0 by O(1/+/n).

Theorem H.1 (Conditional LLN via martingale CLT). Let (Y, Fi)r>1 be Fi-adapted with (i :=
E[Y};] and E|Yy|? < oo, and fix a sub-o-field Fy C F1. Given the Doob split

Yi—p = X+ Ag, Xy = Yk—E(Yk |~Fk71)> A = E(Yk |]—'k,1)—,u,
and the partial sums

M, ::zn:Xk, R, ::Zn:Ak, Sh ::zn:Yk:,un—i—Mn—l—Rn.
k=1 k=1 k=1

We also we define the Fy-conditional variance and the predictable quadratic variation as:

By(Fo) :=E[M;, | Fo] = Y E[Xi | Fol,  (M)n:=> E[X} | Fral.
k=1 k=1

Under the following assumptions

(i) Conditional variance growth: there exists o*(Fo) € (0,00) a.s. such that

B?L(fo) a.s. O'Z(fo).

n n—00

(ii) Conditional Haeusler convergence to 0:

1

n

Ln(Fo) = By ;EHXkP | Fo] =0 as.,
NolF0) 1= i)~ B | Fi] 50 as
(iii) (Predictable remainder) % m 0.
We have (conditional LLN with rate in L)
Eligl/k—u Fo Sa\z/(ﬁ]:o)—l-g a.s.,

for a constant C depending only on supy, E|Zy|. In particular, % Sor Y — pin L' (hence in
probability) given F, with leading rate O, (n’l/ ).

Proof sketch. Write Y;, — yu = = 4 BaConditionally on Jy,
1 B, (F 2(F
B[] | 7] < L@z £ = PoFo) VL)
giving the 1/+/n term. The coboundary gives E(|R,,| | Fo) = Oa.(1), hence E(|R,|/n | Fo) =

n vn
0,5.(1/n), which proves (A).

For (B), we apply the conditional Haeusler bound to M,,/B,,(Fy) (theorem [G.I)) and the Stein
inequality for bounded C test functions to get

B[P, /Bu(Fo)) | Fo] ~ BIF(G)| < O+ o) (Ln(Fo) + NalF0)) = Ous (0™,
Finally, replace M,, /B,,(Fo) by v/n (Y, — 11)//02(Fo): since B,,(Fo)/v/n — \/a2(Fo) as. by

(i) and R, /\/n — 0in L* (from (iii)), this perturbation is 0, (1) in the test function bound. O

My
n
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I  SUFFICIENT STATISTICS FOR CHANGE IN VALUE ESTIMATES

In Section [ we describe the expression for the change in the value estimates over gradient steps.
We state the following lemma summarizing the expression for the change over the gradient step
n = O(1/+/n) in the following lemma.

Lemma L.1. The change in the value estimate in a single step of gradient update A3, ; is as follows:

AUt;r :Ast;r

1 . . .
3B (SO0 )~ O ) (R + 02 )
k=1

7 n 0 1770 [~ N TA i ,
+%;BH (/U2 Fur ) 50 0 TEOT. W) + O,
(29)

and its distribution, conditioned on §; -, v; +,v; _, at -, is a Gaussian with mean:
L, s t,ro Yt

T
/ B [B2/ (U - (3102 D (U - 51y ) (B1r B + 1)arr] L, where
0
Qr = 0w +7(517) — Bur and U = [Uy,Us] ~ N(0,1), B ~ Unif(—1,1),

multiplied by n and variance:

E[B2UR (¢"(U - (51, 1)) = ¢ (Ul50r, 1)) (Ui + Uat))’|
where U = [Uy,Us] ~ N(0,1), B ~ Unif(—1,1),
multiplied by (A3, +)? up to an error of O(1/y/n).
Proof. The derivation of the expression in equation [29]is provided in Section[F]and we obtain it here

subsuming all the terms that are of order O(7?). The argument for the Gaussian variance, under the
conditioned variables described above, is derived from Lemma[G.2]

To prove the mean converging at rate O(1/4/n), we use Theorem The expression above in
Equation 29| can be re-written as:

NS0 (o (10 5 s TR
v (¢ W2 v )50, 1] GO, 7))
T 1 (30)
=0 [ IS B UL B DO 5 )61t + D)l
0

k=1

Therefore, in the notation of Theorem [H.I] and the leave one out notation of Lemmal[G.2] we write:

T
Vi = / e_ﬁl(Bg)2<p/(U,g : [Rt,f,fmt])‘fQ/(U;g ’ [Rl,‘r,fml])(Rl,T,fnRt,Tﬁn + lt)‘]l.,'r-
0
We propose p (for LLN) as above and therefore the assumptions hold as follows:

1. The growth of conditional variance assumption holds because the squared difference between
w and Y, is bounded |Y,, — p| = O(1/+/n) and therefore their sum increased to power 2
divided by nis O(1).

2. Conditional Haeusler convergence to 0: once again since |Y,, — | = O(1/4/n) and
|E[Y,|Fx_1] — 1 = O(1/+/n) and therefore |V, — u|> = O(n~3/2) we have that:
2= Yo —E[Ya|Fa]P o
=
o(1)

a.s.

and also
E[ |(M), — Bj (Fo)[*'? | Fo]
0(1)

— 0.
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3. Let
T
/”L(Stﬂ') = / e PIE [B2LP/(U : [§t,7,t])<p/(U : [gl,'ra ”)(gl,'rgt,f =+ lt)‘]l,'r] dl
0

Since all Y,; — pu(s;.,) has a leading (B2)? leading product term and is of order O(1//n)
we know that it is centered around zero and therefore, R, /+/n — 0.

Therefore, we have that expression in Equation converges to p1(s;,-) at the rate O(1/+/n) in its
cdf. O

We provide a similar lemma for the variable U27T = OVt 7.

Lemma L.2. The change in the value estimate in a single step of gradient update A3 ; is as follows:

NE

Adyvrr =A5 7 [ BUL LU (‘PW(US [8teot]) — 9" (UL 31,7, 1]) (UL 1317 + UL ot) )]

1

a
Il

BRUL, (U2 [5trs )5, T GUT. W), ) + O,

HM: §‘H

n
f
(€28

and its distribution, conditioned on 5 ;, vy -, UQ’T, at,r and A3, -, is a Gaussian with mean:
T
/ e P'B [B*Usg" (U - [3t.7, )" (U - [51,7,11) (51,751, + Ut)qu -] dl, where
0
= o™ +r(31,7) — Bui and U = [Uy,Us] ~ N(0,1), B ~ Unif(—1,1),

multiplied by n and variance:

E |B2UUS (¢ (U - 31,0, t]) — " (U.[3t.7,]) (U15¢ + + Ugt))2:|
where U = [Uy,Us] ~ N(0,1), B ~ Unif(—1,1),

multiplied by (A3; . )? with an additional error of O(1/+/n).

Proof. The proof is based on taking a partial derivative with respect to ¢ in Equation 29]and the rest
follows from from the conditional law of large numbers and CLT. O

J CHANGE IN ACTION OVER GRADIENT STEP

We define by a; - the action chosen by the agent at time ¢ and the gradient step 7. Formally, it is
defined as a;, = F"(3; s W7™) = Fr(31,0; WO) + ®(5;-; WO)AWT™. Now, similar to the value

41



Under review as a conference paper at ICLR 2026

estimate in Section[F] consider the change in this variable:

At 7y — Gt =Fr(8¢,74m; WO) + (54,740 VVO)(VVTJW7 - WO)
—F, (§t WO+ OG, s WHWT — W)

ZCO (Wist.rtn) — (W5:.r))

+ (@(st i WOWTHT — ®(5; s WOYWT) — (B (5,743 WO) — @(50,7; W) WP

Z CO ( W( St T)(Sf T4+n — St,T)Wrg
(W,Sgt,'r) ((St,T—i-T] - gt,T)ng)2> + 0(772)

Co (@' WSt r4)StragWITT = ' (Ws74)5 - W)

+

+
ﬁ~m~%‘
iM-

\E

Cg (<P/(ngst,'r+n)5t,'r+n - @/(Wgsf,t)gt,'r) W,S.

Il
—

K
Similar to the previous section, consider the first expression in the summation above:

WR2C2' (W25 ;). To evaluate the sum of these variables in infinite width limit we have to separate
the dependence of 5, » on W,g, Cg, we observe the following about s, g and x = n:

St,0 = Z Z Ba + Z Cc,m,ané':l (F7ECJ)(SOa WO)>mj Iac[]']o.,t

i=1 a€ZE; ceC;ymeM;

o0 1 n m;
X (5t T comati ()
=1 a€E; ceCi,meMi k=1

where we can factor out the expression for kK = n as follows:

snO:iZ(Bﬁ > Cemoll ( Zc soW)>mj

i=1 a€Z; cECi,meM-

+ Z cmaZ—CO (CJ) SOW,?)KLn—i—O(n_Q))Ia[l}o,u

ceC;,meM,;

where similar to the previous sections we have the following notation:

mj
K—j,—" ] —1 (\f Z CO () Sow )) ’
and the derivative of ¢; order of ¢ is:

0% ()

P (sgWD) = (W2 2

x=sqWY

We further denote by R; g —p:

I n—1 my
Rt,O,fn = Z Z (Ba + Z (Cc,m aH; 1 (\/15 Z CSQO(CJ)(SOW;S)> )Ioz[]-]o,t
k=1

=1 a€ZE; ceC; ,meM;
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Using this leave-one-out formulation, we further rewrite the summation as follows.
CO (‘0/ Wost O CO %0/ WoRt 0.— )
=3 - :

c] SOWO)WO //(WoRt 0, —n)K—j,—){

[ n

153D SIED SIS SEO 3!

i=1 a€E; ceC;,meM,; j=1 K 1

(32)

Using the conditional law of large numbers above and the fact that (%) (s, WY is odd (for an odd
function ¢ = tanh), and together with W2¢"” (W2 R, o _,,) which is symmetric in W2, we have that:

1 - 0V2, (cj) 0 o, 0 _ 1
E Z(Cn) 4 “ (SOWK)WNSD (WNRt,Oyfn)K*j,*W =0 ﬁ )

since the sequence inside the summation has mean 0 (by law of large numbers). Also, we note that,
given the result that the 1t6 -Taylor expansion converges, we have:

i

YD > Cema Y (OO (soWHW (WIR10,-n)K—j s = O(1).
i=1 a€ZE; ceC;,meM; 7j=1

Once again, similar to Lemma @] we can show that the expression in Equation [32]is distributed
as Gaussian with mean 0 and variance E[C?W?2p(W s)] with an additional error term of order
O(1/+/n), conditioned on s; ¢ = s.

Now to show the inductive step, suppose that for a 7 that is an integral multiple of 1 we can express
the general expression of Equation [32] as the sum of a Gaussian plus and an error term of order
O(1/+/n). Now we expand it recursively'

1 .
ﬁzcgip/(wgstr = \/72 Qp/ WoRtrfn)
k=1

S n
+ Z Z Z (Cc,m « Z % z_: SOWO)WOQDH(WSRt,O,—n)K—j7—K-

i=1 a€ZE; ceC;,meM,;
(33)
To isolate the dependence on W, C? in K_; _,, we expand the expression for £ = n as follows:

K j n= ( ZCO ©) (5, , W2) + @l (so;WO)WT> :

n

:Hl ([ZC StT )+;Z¢(CJ)(SO wo BO)W7>

k=1

=K _jnn + ~ Z;mj‘b(c’)(so; Wy BO)K —j—n.
p

Therefore, the additional dependence on W, BY in equation |33|is O(1/n?). Therefore, we have
shown that for a general 7 the inductive argument is valid.

Continuing the decomposition of the expressions in Aa; ; above, we observe:

ZCO {(WOS1rin)StranWitT — ' (WPs, )50, W)

_AstTfZC(J( " WOStT)WS)

Zc (W05, 1)5:.G(U,W)UT, W), + O(?).
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Further expanding the expression for Aa; , we have the following:

ZCO W ; St T+'I])St T+n — ,(WBST,t)gtﬂ') W,S

ZB(J( WostT)AstTJrga (w? stT)As”W 3¢ T>W0+O( 2.

We also express the mean term which includes the gradient vector as follows:

Z 00 (W03:.:)30-G(U,W)(UT, W), + O
= / Z C*' (Ws12)¢' (Wis1) (51.r5e.r)ar,rdl.

K SUFFICIENT STATISTICS FOR CHANGE IN ACTION

In Section[J]] we derive the change in the action variable: a; , over the gradient step. Here we provide
a lemma, analogous to Lemma. [.1]but for a; -, summarizing the sufficient statistics required to track
the change in the action variable.

Lemma K.1. The change in the action variable in a single step of gradient update Aa ; is as
follows:
1
Aay; =N — 72 Z COWY (¢ (W05, 1) — " (W05, ) W05, )
(34)
o / Z OO (W51, ) (W051.) (11t rdl + O(?)

and its distribution, condltloned on 8¢ 7,V r, ’Ut,.r, at,r and A3, -, is a Gaussian with mean:
T
/ e PR [CQ@’(WE,:,T)@’(W§l,T)§l7T§t7qu,T] dl, where
0
Qe = 0" +1r(317) — Bu and W ~ N(0,1),C ~ Unif(—1,1),
multiplied by 1 and variance:
E[C2W2 (" (Wiir) = ¢ (Wsi )W)’
where W ~ N(0,1),C ~ Unif(—1,1),
multiplied by (A3, +)? up to an error of O(1/y/n).
Proof. The result and proof are similar to that of Lemma|[.T] The proof of Gaussian variance follows
from the derivation and demonstration of the inductive step in Section |J|(see the discussion around
Equation [32)) and the combination of the conditional law of large numbers (Theorem [H.T)) and the

conditional CLT (Theorem|[G.T)). The proof of the Gaussian mean originates from the conditional law
of large numbers (Theorem [H. I)). O

A corollary of this lemma for azF;iﬂ, which we utilize to estimate the change in the state variable, is
also presented below. We denote by a; , = 0, Flin,

Lemma K.2. The change in the action variable in a single step of gradient update Aay ; is as
follows:

I G y N ~
Aa;&,r :Ast,fﬁ Z Cg(W,S)z (‘p/H(W;SSt,T) - @///(Wgst,f)wlgst,‘r)
(35)
+n / Z (COPWO" (W05, ) (W51 (BirGor Jatndl + O
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and its distribution, conditioned on 5¢ ;, V¢ -, ULT, at,r and A3y -, is a Gaussian with mean:

T
/ e P'E [02ch”(Wétﬁ)@'(W§lﬁ)§lﬁ§mqm] dl, where

0
Qe = O™ +1(31,) — Buf and W ~ N (0,1),C ~ Unif(—1,1),

LT LT

multiplied by n and variance:
E |C2W* (0" (Wi p) = " (Wi )W)
and W ~ N(0,1),C ~ Unif(—1,1),
multiplied by (A3; - )?up to an error of O(1/y/n).

Proof. The proof proceeds by taking the partial with respect to s in equation [34]and then a similar
application of Theorems [G.T|and [H.1] O

L CHANGE IN STATE OVER GRADIENT STEP

We analyze and better understand how the state variable changes over gradient steps. Similarly to
Section[F|and following the notation in Section[F.I} we consider the difference for the learning rate 7,
i.e. A8y = 8t 74y — 5t and present the following Lemma.

Lemma L.1. Define Z; ; ; as:
t
Ziyr=Yer / Yuj} h(8u,r) Cut,rdu, with Yy ; is solution to
0
dY;t,T :(atﬂ' + a::,q—)Y;,Tdt + Ul(gt,‘r> Y;ﬁ,‘rdwt
Cuiyr =E [C?¢ (51, W)¢/ (3., W)] , with C ~ Unif(—1,1),W ~ N(0,1).

. t - . . -
In addition, define Zy » = [y Zt,,-(v] , +7(51,-) — Bvy . )dl. The change in the state variable, A3y -,
conditioned on vy r, a7, agﬁ, O¢vy 7, is as follows:

ASyr =0Zir — My + Gir + O(1/y/n), where
¢
Mig =51 =50~ [ (g50r) + W5 )an)du,
0

and G - is a random variable and the martingale component of x -, which follows similar dynamics
to gt,‘r:

dmtﬂ' = (g('rt,T + h(xt,‘r)a't,r)dt + 5($t,7)dw2,

where wy is an independent Wiener process and therefore Z; , = xy - —E [z, ], where the expectation
is over the random process w.

Proof. Using the Itd -Taylor expansion of the state variable at time ¢ (Equation [20) and taking the
difference for 7 and 7 + 7).

Agtﬂ— = i Z Z Cc,m,a (Hé—l (FTE_Cj) (50; WO) + n@(cj)(so; WO)AWT+7])mj Ia[l]oﬂg

i=1 a€Z; ceC;,meM;

-~ (F,(ff)(sm WO + nd(e) (s0; WO)AWT) ’ I&[Uw)

+3 > Ballallos — I[1o.)

i=1 a€Z;
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Consider the deterministic parts of A3, -, with respect to I or the deterministic part of the transition
where we have I, [1]o = I/, [1]o..

Asir :i > 2. Cema (H;‘:l (P (503 W) + 8L (s WO)AW”’!)””

i=1 a€=;NB; ceC;,meM;

_ H;'.:l (F#Cj)(so; W) + &) (sq; WO)AWT) ’ )I;[l]o,t

:Z Z (Cc,mﬂ(anjq)(cj)(so;Wo)é(UT,WT)Kj —|—O(772)> I! o,
i=1

acZE;NB; ceCi,meM; Jj=1

where K_; = H;,:l (Ffrcj)(sog WO) + &) (s0; WO)AWT) " The stochastic part of AS; , is
. i'#3
then written as:

Asir = i Y Coma ( Ty (B (503 W) + @) (s WO)AW””)W

i=1 a€Z;NN; ceC;,mEM,;
_ H§:1 (F#cj)(so; W) + &) (50, WO)AWT) ’ )1;[[1}[”

+3 Y Bat > Cemalli, (F7§0j)(30;W0)+<I>(CJ)(50;WO)AWT) " (Ia[Yot — I'[1o4)-

i=1 a€Z;NQ; ceCi,meM;

Simplifying these expressions as in the deterministic analog, we obtain the following.

ASir = > > Cc,m,a(anj@@(smWO)@UﬂWT)Kj+0<n?>>1;m0,t

i=1 a€E; ceC;,meM,; j=1

+Y° > Bat Y Cemolll, (FécJ)(so;WO)+q>(cj)(50;W0)AW7)mJ‘

i=1 a€Z;NN; ceC;,meM;
x (Ia[1o,e — I5[1o,e)-
(36)

We seek to simplify the expression which emerges in both of these terms:

T
() (s0; WOG(UT, WT) = / e Po() (50, WOYB(ST s WO)T [atw,f +r(5,,) — ﬁm] dl,
0

T n
1
=/ <§ Cgéz,Ttp’(W,?éz,rW(C")(SovW3702)> dl
0

n
k=1

T
></ e Pl
0

where ¢ is as defined in equation 28}

at'Ul,T + 7"(5[77—) - ﬁvln"| dl,

01 (50, WP, C2) = C2 (WD) 500D (W050) + ¢ (W) 1) (We50) )

To simplify these expressions, we first provide a result for the polynomial expansion, using the Itd
-Taylor series (Section . Consider the differential of s;(1/) with respect to W and we define:

St7 = Vws:(W)|lw=w,,
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which can be defined as the solution to:
dSt)T = (At,'r St’f,— + h(gt,‘,-) q)(gt,‘r; WO)) dt + O'/(gt",-) St’fr dwt, SO = 0,

At,T = g/(gtn-) + h/(gt,T)(F‘ﬂ'(gt,T) + ‘I)(gtn'; WO)AWT) + h(gt,‘r) (FTIr(gtﬂ') + (b/(gtﬂ'; WO)AWT) .

Given that we have the entire path: 5; , and a; ; to condition upon, we can “reconstruct” the driving
Brownian motion w; as follows.

dgt,‘r - g(gt,r) + h(gt,‘r)at,rdt

d p—
o 5(30,7)
t g~ ~ ~
d _
wy = / Sur = 98ur) + hEu,r)urdt )
0 U(Su,'r)

because we have a solution with strong uniqueness due to the Lipschitz assumption on the dynamics
(see theorem 5.2.5 in the textbook by Karatzas & Shreve|(2014)) and 6 # 0. Now we further define
Zygr = St P(s1; WO)T for some fixed s, and therefore the corresponding ODE as:

dZtJ,T = (Atq,l,r Zt,l,T + h(gt,T> (I)(gt,T; WO) q)(gl,r; WO)T) dt + Ul(gt,‘r) Zt7l,7' dwt~

To solve for Z; ; -, we define Y} ; , as the solution to the equation:

AV =AYy rdt +0'(30) YVirdwr, Yo =1,

th,l,T = / Y h Su T (Su,‘r§ Wo)q)(gl,T; WO)Tdu'

‘We also note that
o i
=> > > <QMW<E:WW¢WK%JV%Kﬁ>%Uhn
i=1 a€Z; c€C;,meEM; Jj=1

which is the same as the expression in equation barring the O(n?) error. For intuition of this
gradient of the state variable with respect to the parameters see the example in Section[D]

which corresponds to the first expression in equation Therefore, to solve for Y; . we have access to
all Ay -, 38t ., w;,, are all known and ®(5; ;) <I>(§l,T)T depends only on 5, - and 5, » Therefore, we
can now rewrite the change in state at gradient step 7 as follows:

T
N / Zvr Grvnr +1(50r) — Buis) dl + O()
0
+ Z Z B,
i=1 a€=;N

+ Z (Cc)m)aﬂé»:l (F;_CJ)(So, W0> —|— CI)(CJ')(SO; WO)AWT) ’ (Ia[l]o,t — I(;[l](ht)
ceC;,meM;
(37

Finally, note the remaining expression from that of A5, ,:

S Y Bat Y Cema Mooy (B (s0sW0) + 0 (50 WOAWT) " (La[1]o. — I4[1]o,0),

i=1 a€=E;NQ; c€C;,meM,;
which can be decomposed into two parts:

M= Y Bt Y Comalli (F(s0sW) + 00 (s WO A7) ™ 11,

i=1 a€Z;NN; ceC; ,meM;
=3 Y Bat > Comalliny (9 (50 W) + @) (s0; WOAWT ) I [1]o,
=1 a€Z;NN; ceC;,meM;
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where My » = §; » — E [3; ], where the expectation is about the randomness of the stochastic process
5¢,7, and is therefore the martingale component of s, -, conditioned on 5; ..

t
Mt,T = gt,T — S0 — / (g(gu,T) + h(gu,‘r)au,r)du
0

Similarly, G, is the martingale part of an independent instantiation of the process §; -, because we
do not condition on 1[0, t]. Putting all these different components together in Equation we have
the statement of the Lemma. O

M MAIN RESULT: PUTTING IT ALL TOGETHER

In the previous sections we derive the sufficient statistics and evolution equations for the value
estimate (Section [H), action (Section E[), and state (Section . Putting all these components together,
we can derive a closed system and summary statistics required to describe the gradient dynamics of
the actor critic algorithm described in Sections 4] [E]under the assumptions of Section[3] We prove
the main result for gradient time 7, which is an integer multiple of 1 and a 1-dimensional system i.e.
ds = d, = 1 in finite time T < 1.

Proof. The expression for As; » comes from the lemma The expression for Aay -, AaQ’T follows
from the lemmas The expression for the change in Av; -, Av; . follows from the lemmas

We conclude the proof by stating that the system is closed up to an error of O(1/y/n): the
changes in all these variables for a single gradient step depend only on each other. O

N CODE FOR LINEARIZED ACTOR AND CRITIC

We use the cleanrl repository to simplify our implementation in section ??. The code for the actor
and critic are modified as follows. First we present LQR environment code block:

Listing 1: Environment construction for continuous-time LQR control.

register (
id="LQRd-v1",
entry_point="custom_envs.lqgr_d_env:LQRdJEnv",
nondeterministic=True,

)

def make_env(env_id, seed, idx, capture_video, run_namne,
A, B, Q/ R, Qf/
dt=0.02, T=1.0,
Sigma=None, x0_mean=None, x0_std=0.0,
u_max=20.0, exp_noise=0.05):

def thunk () :
kwargs = dict (
A=A,

Sigma=Sigma,
x0_mean=x0_mean,
x0_std=x0_std,
u_max=u_max,
seed=seed,
exp_noise=exp_noise,

48



Under review as a conference paper at ICLR 2026

30

31 if capture_video and idx ==

32 env = gym.make (env_id, render_mode="rgb_array", xxkwargs)
33 env = gym.wrappers.RecordVideo (env, f"videos/{run_name}")
34 else:

35 env = gym.make (env_id, **kwargs)

36

37 env = gym.wrappers.RecordEpisodeStatistics (env)

38 env.action_space.seed (seed)

39 return env

40

41 return thunk

42

43 # Example: scalar LOR with diagonal A, B, 0O, R

4 d = args.data_dim

45
46
47 A = -0.5 % np.eye(d)
4 B = np.eye(d, m)
49 Q = args.reward_scale x np.eye (d)
R
Q
S

=
Il

args.action_dim

50 = np.zeros((m, m))
51 f = np.zeros((d, d))

52 igma = args.process_noise x np.eye (d)
53

54 lgr_env = make_env (

55 "LOQRdA-v1",

56 seed=123 + args.seed,

57 idx=1,

58 x0_mean=1.0,

59 x0_std=0.0,

60 capture_video=False,

61 run_name="test_run",

62 A=A, B=B, 0=0Q, R=R, Qf=0Qf,

63 dt=0.02, T=1.0, Sigma=Sigma,

64 exp_noise=args.exploration_noise,
65 u_max=args.u_max,

66 )

67

68 envs = gym.vector.SyncVectorEnv ([lgr_env])

The linearized actor and critic code blocks are as follows:

Listing 2: Linearized actor and critic networks for continuous-time AC.

1
2 def tanh_gradient (x: torch.Tensor) -> torch.Tensor:
3 y = torch.tanh (x)

4 grad_tanh = 1 - y xx 2

5 return grad_tanh

7 eclass VNetwork (nn.Module) :

9 def _ init_ (self, env, width: int = 256):

10 super () .__init__ ()

11 self.width = width

12 self.state_dim = np.array(env.single_observation_space.shape).

prod() + 1 # +1 for time

14 # initial weights
15 self.fcl = nn.Linear (self.state_dim, self.width, bias=False)
16 nn.init.normal_(self.fcl.weight, mean=0.0, std=1 / self.

state_dim)

18 # linearization copy (trainable)
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def

self.fcl_copy = nn.Linear (self.state_dim, self.width, bias=
False)
self.fcl_copy.load_state_dict (self.fcl.state_dict())

self.v_head = nn.Linear (self.width, 1, bias=False)
nn.init.normal_(self.v_head.weight, mean=0.0, std=1.0 / np.sqrt
(self.width))

forward(self, x_with_time: torch.Tensor) -> torch.Tensor:

# x _with_time has shape (B, state_dim+1)

preactivation_init = self.fcl(x_with_time)

init_intermediate = tanh_gradient (preactivation_init)

intermediate_linear = self.fcl_copy(x_with_time) -
preactivation_init

h = torch.tanh(preactivation_init) + intermediate_linear =

init_intermediate
v = self.v_head(h) / np.sqrt(self.width)
return v.squeeze(-1) # (B,)

class Actor (nn.Module) :

def

def

__init_ (self, env, width: int = 256):

super () .__init__ ()

self.width = width

self.state_dim = np.array(env.single_observation_space.shape) .

prod ()
self.fcl = nn.Linear (self.state_dim, self.width, bias=False)
nn.init.normal_(self.fcl.weight, mean=0.0, std=1 / self.
state_dim)

self.fcl_copy = nn.Linear (self.state_dim, self.width, bias=
False)
self.fcl_copy.load_state_dict(self.fcl.state_dict())

self.fc_mu = nn.Linear (self.width,
np.prod(env.single_action_space.shape),
bias=False)

# action rescaling (Box space)
self.register_buffer(
"action_scale",
torch.tensor (
(env.action_space.high - env.action_space.low) / 2.0,
dtype=torch.float32,
)y
)
self.register_buffer(
"action_bias",
torch.tensor (
(env.action_space.high + env.action_space.low) / 2.0,
dtype=torch.float32,
)y
)

forward(self, x: torch.Tensor) —-> torch.Tensor:

preactivation_init = self.fcl (x)

init_intermediate = tanh_gradient (preactivation_init)

intermediate_linear = self.fcl_copy(x) - preactivation_init

h = torch.tanh(preactivation_init) + intermediate_linear =
init_intermediate

out_x = self.fc_mu(h) / np.sqrt(self.width)

return out_x # actions will be clipped by the caller
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We optimize these using SGD and in an online episodic manner.

O LLM USAGE AND REPRODUCIBILITY STATEMENT

For our work, we used large language models for supportive, non-substantive tasks: we rely on them
mainly for discovery (e.g., quickly locating references or related concepts), checking grammar and
readability in the drafts, and clarifying technical notions when we need a different perspective to aid
understanding. Additionally, we use them for code snippets. All core research contributions, proofs,
experiments, and arguments are developed independently.

Reproducibility Statement. Our work is primarily theoretical, and we have provided complete
proofs of all claims in the appendix along with detailed explanations of the assumptions underlying
our results. For empirical validation, we include a toy continuous control experiment in the main text
(Section[7) with full details of the environment dynamics, parameter initialization, and training setup,
ensuring that the experiment can be replicated without ambiguity. Since the empirical component is
intentionally simple and illustrative, and the theoretical framework is fully specified with proofs, the
results presented in this paper can be readily reproduced using the information provided.
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