

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FROM TICKS TO FLOWS: DYNAMICS OF NEURAL REINFORCEMENT LEARNING IN CONTINUOUS ENVIRONMENTS

Anonymous authors

Paper under double-blind review

ABSTRACT

We present a novel theoretical framework for deep reinforcement learning (RL) in continuous environments by modeling the problem as a continuous-time stochastic process, drawing on insights from stochastic control. Building on previous work, we introduce a viable model of actor-critic algorithm that incorporates both exploration and stochastic transitions. For single-hidden-layer neural networks, we show that the state of the environment can be formulated as a two time scale process: the environment time and the gradient time. Within this formulation, we characterize how the time-dependent random variables that represent the environment’s state and estimate of the cumulative discounted return evolve over gradient steps in the infinite width limit of two-layer networks. Using the theory of stochastic differential equations, we derive, for the first time in continuous RL, an equation describing the infinitesimal change in the state distribution at each gradient step, under a vanishingly small learning rate. Overall, our work provides a novel nonparametric formulation for studying overparametrized neural actor-critic algorithms. We empirically corroborate our theoretical result using a toy continuous control task.

1 INTRODUCTION

A reinforcement learning agent (RL) (Sutton & Barto, 1998) learns to behave intelligently by interacting with an environment to maximize the rewards it receives. Neural networks have contributed significantly to the improvement and advance of RL in the recent past. An agent equipped with neural networks and trained using RL can effectively learn intelligent behavior by optimizing the rewards it receives over time. Neural networks, in conjunction with RL, have been effective not only for simulated arcade games (Mnih et al., 2013; 2015) and robotic control (Lillicrap et al., 2016) but have also been employed for real-world robotic control problems (Levine et al., 2016; Zhu et al., 2020; Song et al., 2023; Kaufmann et al., 2023). One of the most popular subclasses of deep RL algorithms is the actor critic framework with neural network function approximations (Sutton et al., 1999; Silver et al., 2014; Lillicrap et al., 2015; Haarnoja et al., 2018). The incorporation of neural networks into reinforcement learning harnesses their universal function approximation capabilities, allowing agents to model and navigate a wide range of environments. Despite these advances and the development of numerous algorithms, a gap remains in our theoretical understanding of deep RL.

A related field of study is deep supervised learning which also employs neural networks to solve stationary problems. We have seen several new theories explaining their efficacy in a supervised learning setting (Jacot et al., 2018; Allen-Zhu et al., 2019a; Roberts et al., 2021; Couillet & Liao, 2022) as to why neural networks that are highly overparameterized or “wide” and “deep” are successful in approximating functions (Krizhevsky et al., 2012; He et al., 2016; Szegedy et al., 2017) learned using gradient updates. One common approach to deep learning theory is to study them in the limit of the width tending to infinity (Cybenko, 1989; Lee et al., 2017; Mei et al., 2018; Neyshabur et al., 2018; Jacot et al., 2018). One of the most critical and effective features of these models of neural networks is to model the inputs, parameters, and outputs as a probability distribution and individual activation being a sample drawn from this distribution. Theories exploring the evolution of these distributions through training phases, particularly as they undergo gradient updates, provide insightful perspectives for neural networks (Yang & Hu, 2020; Berthier et al., 2024; Ben Arous et al., 2022).

Despite recent work explaining the efficacy of deep RL (Cai et al., 2019a; Wang et al., 2019; Agarwal et al., 2021; Lyle et al., 2022b), its success in control tasks remains largely unexplained from a theoretical perspective. Although there have been some theoretical analyses in RL with continuous states and actions (Fazel et al., 2018; Lutter et al., 2021; Huang et al., 2024), progress in developing a theory of continuous control with neural network function approximation has been limited. The primary challenge that accounts for gaps in deep RL theory, despite having numerous theoretical results in deep supervised learning, is that the data distribution also changes with gradient steps in RL. To better understand the learning process of an RL agent, we would like to ideally characterize how the distribution changes as the agent learns with gradient-based updates.

It is easier to describe how the state distribution changes from moment to moment than to describe the full evolution over *environment time*. This is the philosophy behind the study of stochastic differential equations (SDEs) in the continuous setting. These ideas have been successfully applied to optimal control of continuous systems (Kushner & Dupuis, 2001; Oksendal, 2013). We adopt this idea to theoretically derive equations for how the state distribution changes locally at small gradient steps. We combine methods from deep learning theory that study change over gradient steps for NNs and methods from control theory that study the change in environment time to provide equations that encapsulate changes across both time scales: environment and gradient.

We formulate agent’s learning in continuous state and action environments using the continuous-time actor-critic framework provided by Jia & Zhou (2022), with fixes to exploratory dynamics. We show that our exploratory dynamics can be simulated in discrete time while remaining faithful to the underlying continuous-time process, with a single source of noise that is equivalent to a system with both environment and exploration noise. We use a linearized single hidden layer NN, for both actor and critic, as a theoretical model to study over-parameterized NNs (Lee et al., 2019; Cai et al., 2019b). One of our key insights is to use the Itô -Taylor expansion (Kloeden & Platen, 1992) to present the time-dependent state variable as a polynomial in the parameters of the linearized NN and thereby tracking the changes in this polynomial expression. Combined with the Gaussian nature of the neural network outputs (Lee et al., 2017), we are able to present a nonparametric equation that captures the changes in the state of the environment over both the environment time and the gradient steps, up to an error term. Our main result shows that, strikingly, this closed system has only five time-dependent variables which describe one step gradient change. We empirically corroborate the exploratory nature of our simulation and also demonstrate that the RL agent is able to learn a near optimal policy using the episodic actor-critic which we analyze, in the linear quadratic regulator (LQR) environment.

2 STOCHASTIC PROCESSES

To formalize the idea behind stochasticity in continuous environments, we introduce continuous time stochastic processes. A one-dimensional Wiener process, taking values in the Euclidean space \mathbb{R} , is one of the central building blocks of the theory of stochastic processes (Karatzas & Shreve, 2014; Oksendal, 2013).

Definition 2.1. *A stochastic process w_t is called a Wiener process if the sample paths of w_t are almost surely continuous square-integrable Martingale with $w_0 = 0$ and $\mathbb{E}[(w_t - w_s)^2] = t - s$.*

The multidimensional Wiener process is a concatenation of such single-dimensional processes. Such a process has stationary independent increments, and that makes it ideal to model noise in the environment. The general form of a time invariant stochastic differential equation (SDE) in \mathbb{R}^k is

$$dX_t = b(X_t)dt + \sigma(X_t)dw_t, \quad (1)$$

where w_t is an m -dimensional Wiener process, X_t is the random variable corresponding to the random variable X at time t , b , which is the *drift* component of the equation, is a function such that $b : \mathbb{R}^k \rightarrow \mathbb{R}^k$ and σ is another function such that $\sigma : \mathbb{R}^k \rightarrow \mathbb{R}^m$. b determines the direction of the deterministic part of the transition dynamics and σ that of the stochastic part. The solution of this SDE, under certain conditions over b and σ , is obtained using the Itô integral. The natural filtration generated by $X = \{X_t, t \geq 0\}$ is denoted by $\{\mathcal{F}_t\}_{t \geq 0}$ (see Section A for definitions).

For an equally spaced partition of the time intervals $0 = t_0 < t_1 < t_2 \dots < t_n < \dots < T$, consider the discrete summation.

$$X_{t_n}^{\Delta t} = X_0 + \sum_{j=0}^{n-1} b(X_{t_j}) \Delta t + \sum_{j=0}^{n-1} \sigma(X_{t_j}^{\Delta t}) \Delta w_j, \quad (2)$$

108 where $t_{j+1} - t_j = \Delta t > 0$ and $\Delta w_j = w_{t_{j+1}} - w_{t_j} \sim \mathcal{N}(0, \Delta t)$. The limit as $\Delta t \rightarrow 0$, of the
 109 right-hand side of the equation, when it exists, defines the Itô integral in probability:
 110

$$111 \quad X_t = X_0 + \int_0^t b(X_l)dl + \int_0^t \sigma(X_l)dw_l. \quad (3)$$

113 See Section A for details on the conditions under which the solution to equation 1 exists. In RL,
 114 such a process can be used to define the moment-to-moment changes in the environment's state such
 115 that the transitions have independent noise added to them and solution to the equation represents the
 116 time-dependent random variables.
 117

118 3 CONTINUOUS-TIME REINFORCEMENT LEARNING

120 Commonly RL in discrete time models environment data that correspond to ticks: the agent observes
 121 the state of the environment, takes an action that changes the state of the environment, and receives
 122 a reward. Instead, we consider a continuous-time model of RL (Baird, 1994; Doya, 2000; Wang
 123 et al., 2020; Jia & Zhou, 2021). **Several continuous-time formulations already exist, our approach**
 124 **is distinct in being explicitly exploratory: both the policy and the environment contribute to the**
 125 **transition noise. It is also structured in a way that makes analysis with neural networks more**
 126 **tractable.** We define continuous-time reinforcement learning in a control affine *Markov decision*
 127 *process* (MDP) which is defined by the tuple $\mathcal{M} = (\mathcal{S}, \mathcal{A}, \langle g, h, \sigma \rangle, r, s_0, \beta)$ over time $t \in [0, T]$.
 128 Here, $\mathcal{S} \subseteq \mathbb{R}^{d_s}$ is the set of all possible states of the environment and $s_0 \in \mathcal{S}$ is the state of the
 129 environment at the start time. $\mathcal{A} \subseteq \mathbb{R}^{d_a}$ is the set of actions available to the agent. $r : \mathbb{R}^{d_s} \rightarrow \mathbb{R}$
 130 is the reward function that determines the reward the agent receives in a given environment state.
 131 $\beta \in (0, 1)$ is the discounting factor that ensures future rewards are less valuable than current rewards.
 132 $g : \mathbb{R}^{d_s} \rightarrow \mathbb{R}^{d_s}$ and $h : \mathbb{R}^{d_s} \rightarrow \mathbb{R}^{d_s \times d_a}$ represent the deterministic component of the transition
 133 dynamics. $\sigma : \mathbb{R}^{d_s} \rightarrow \mathbb{R}^{d_s \times d_s}$ accounts for the stochasticity of the transition in any given state, which
 134 is assumed to be independent of the action. At time t and infinitesimally small time discretizations,
 135 the agent's state, s changes according to the following SDE:
 136

$$ds_t = (g(s_t) + h(s_t)a_t) dt + \sigma(s_t)dw_t,$$

137 where w_t is a d_s -dimensional Wiener process and action a_t . We further assume that g, h, σ, r are all
 138 smooth, meaning infinitely differentiable. Although this may seem restrictive, the study of smooth
 139 functions, which have an analytical form, has been used in theoretical settings to better understand
 140 both control systems (Jurdjevic, 1997) and neural networks (Montanari & Subag, 2024).

141 The agent is equipped with a smooth policy $\pi : \mathcal{S} \rightarrow \mathcal{A}$ that determines its decision making process.
 142 A policy determines the action the agent takes in a state. This is similar to feedback control in control
 143 theory. The SDE corresponding to a policy π is therefore obtained by replacing $a_t = \pi(s_t)$, which
 144 has a unique solution in probability under Lipschitz continuity of the dynamics. The time-dependent
 145 state random variable is defined on a filtered probability space $(\Omega, \mathcal{F}, \mathbb{P}^W; \{\mathcal{F}_t^W\}_{t \geq 0})$. Therefore,
 146 the Itô integral solution, as in equation 3, of the above SDE is denoted by s_t^π .

147 The state value function, in context of RL, is defined as

$$149 \quad v^\pi(s, t) = \mathbb{E} \left[\int_t^T e^{-\beta(l-t)} r(s_l^\pi) dl \mid s_t = s \right],$$

150 which is the expected cumulative discounted rewards given that the agent starts in state s (or $s_l = s$)
 151 and follows policy π from time t until it terminates at time T . The expectation is on the stochasticity
 152 of the environment dynamics. The agent's goal is to maximize the objective $J(\pi) = v^\pi(s_0, 0)$ by
 153 learning the optimal policy $\pi^* \in \Pi$, where Π is the family of policies available to the agent, e.g. the
 154 set of neural networks with one hidden layer. Unlike in control theory, the agent does not have access
 155 to the dynamics of the system: g, h, σ and optimizes its policy by collecting data points. These data
 156 points are in the form of indexed state, action, and reward tuples by time. To collect these data, the
 157 agent *explores* different parts by taking random actions. Therefore, we also define the following SDE:
 158

$$159 \quad \hat{ds}_t^\pi = (g(\hat{s}_t^\pi) + h(\hat{s}_t^\pi)\pi(\hat{s}_t^\pi)) dt + h(\hat{s}_t^\pi)dw'_t + \sigma(\hat{s}_t^\pi)dw_t,$$

160 which has noise from policy w'_t and from the environment w_t . For this exploratory SDE to be
 161 effective, we need to justify a numerical scheme where the exploratory noise is associated with the

162 policy and can be simulated in a discrete time. Therefore, for fixed $\Delta t > 0$, and deterministic policy
 163 π consider the following numerical scheme (similar to Equation 2):
 164

$$165 \quad s_{t_n}^{\Delta t, \pi} = s_0 + \sum_{j=1}^{n-1} \left(g(s_{t_j}^{\Delta t, \pi}) + h(s_{t_j}^{\Delta t, \pi}) (\pi(s_{t_j}^{\Delta t, \pi}) + \Delta b_j) \right) \Delta t + \sigma(s_{t_j}^{\Delta t, \pi}) \Delta w_j,$$

166 where $\Delta w_j \sim \mathcal{N}(0, \Delta t)$, $\Delta b_j \sim \mathcal{N}(0, 1/\Delta t)$, $\Delta t = t_j - t_{j-1} \forall j \in \mathbb{N}$.
 167

168 For $d_s = d_a = 1$ we prove the equivalence of the exploratory dynamics and above the numerical
 169 scheme. Proving results in 1D is a common approach in numerical methods for control theory
 170 (Kushner & Dupuis, 2001) for simplicity and tractability. **We anticipate that higher dimensional**
 171 **results follow similarly.**
 172

173 **Lemma 3.1.** *Suppose that g, h, σ and π are Lipschitz continuous and satisfy linear growth condition:*

$$174 \quad \|g(x)\| \leq K_g(1 + |x|), \|h(x)\| \leq K_h(1 + |x|), \|\pi(x)\| \leq K_\pi(1 + |x|),$$

175 then $s_t^{\Delta t, \pi} \rightarrow s_t$ weakly where s_t^π is solution to the SDE:
 176

$$177 \quad ds_t^\pi = (g(s_t^\pi) + h(s_t^\pi)\pi(s_t^\pi))dt + h(s_t^\pi)dw_t' + \sigma(s_t^\pi)dw_t.$$

178 Moreover, the solution to this SDE has the same pathwise distribution as the following SDE:
 179

$$180 \quad d\tilde{s}_t^\pi = (g(\tilde{s}_t^\pi) + h(\tilde{s}_t^\pi)\pi(\tilde{s}_t^\pi))dt + \sqrt{h(\tilde{s}_t^\pi)^2 + \sigma(\tilde{s}_t^\pi)^2}dw_t. \quad (4)$$

181 The proof is in Section B. We refer to equation 4 as exploratory dynamics and use it in our analysis
 182 as a proxy for the state random variable under exploration. **We depart from the relaxed-control**
 183 **formulation of exploratory dynamics introduced by Wang et al. (2020) because, in that model, the**
 184 **policy's stochasticity vanishes whenever the environment is deterministic (i.e. $\sigma(\cdot) = 0$ almost**
 185 **everywhere).** Given these dynamics and the objective, the agent's goal is to learn an optimal policy
 186 from a set of admissible policies.
 187

188 4 CONTINUOUS-TIME ACTOR CRITIC

189 Actor-Critic algorithms (Sutton & Barto, 1998) train an agent with an *actor* that is the decision
 190 making entity and a *critic* that is an estimate of the value function that guides the improvement of
 191 the policy. Algorithms from this family learn the critic and the actor alternately using samples from
 192 the rollouts of the policy. In deep RL both are parameterized by a neural network. As demonstrated
 193 in a series of papers on continuous-time RL (Wang et al., 2020; Jia & Zhou, 2021; 2022; 2023) the
 194 gradient updates for learning the actor and policy are different compared to discrete-time algorithms.
 195 We adapt the results presented by Jia & Zhou (2021; 2022) to develop an algorithm for actor-critic
 196 learning in a continuous-time setting under our exploratory dynamics. We first define an admissible
 197 policy as follows:
 198

199 **Definition 4.1.** *A policy $\pi : \mathbb{R}^{d_s} \rightarrow \mathbb{R}^{d_a}$, which is a function that maps from \mathbb{R}^{d_s} to \mathbb{R}^{d_a} is called
 200 admissible if:*

- 201 1. *The function π is smooth everywhere.*
- 202 2. *The SDE (equation 4) admits a weak solution in the sense of probability (see Section A.1).*
- 203 3. *$\pi(x)$ is uniformly Lipschitz continuous in x , which means that there exists a constant $C > 0$
 204 such that:*

$$205 \quad \|\pi(x) - \pi(x')\| \leq C\|x - x'\|.$$

206 Furthermore, let \mathcal{L}^π be the infinitesimal generator associated with the process in Equation 4:
 207

$$208 \quad \mathcal{L}^\pi f(x, t) = \frac{\partial f(x, t)}{\partial t} + (g(x) + h(x)\pi(x)) \circ \frac{\partial f(x, t)}{\partial x} + \frac{1}{2}\tilde{\sigma}(x)^2 \circ \frac{\partial^2 f(x, t)}{\partial x^2},$$

209 which captures the local change over time in a function f . We also make the assumption that
 210 $\tilde{\sigma}(\cdot) = \sqrt{h(\cdot)^2 + \sigma(\cdot)^2} \neq 0$ almost everywhere in \mathbb{R}^{d_s} . We state a result by Jia & Zhou (2022)
 211 in our deterministic policy setting under exploratory dynamics (Equation 4) which provides a
 212 relationship between the solution to an equation with the infinitesimal generator and the value
 213 function corresponding to an admissible policy.
 214

216 **Lemma 4.2.** Assume that there is a unique viscosity solution $v \in C(\mathbb{R}^{d_s} \times [0, T])$ to the following
 217 partial differential equation (PDE):
 218

$$219 \quad \mathcal{L}^\pi v(x, t) + r(x, \pi(x)) - \beta v(x, t) = 0,$$

220 with terminal condition $v(x, T) = 0$, $x \in \mathbb{R}^{d_s}$, which satisfies $|v(x, t)| \leq C(1 + \|x\|)^\mu$ for
 221 some constants μ, C . Then v is the value function corresponding to admissible policy π , that is,
 222 $v(x, t) = v^\pi(x, t)$ for all $(x, t) \in \mathbb{R}^{d_s} \times [0, T]$.
 223

224 In policy gradient setup, the agent's policy is parameterized by parameters θ and the agent learns by
 225 taking gradient steps in the direction of steepest ascent of the objective: $J(\pi^\theta)$. We will denote this
 226 by $J(\theta)$. The deterministic policy analog of Theorem 2 by Jia & Zhou (2022), for $d_a = d_s = 1$, gives
 227 a policy update formulation similar to the discrete time policy gradient (Sutton et al., 1999; Silver
 228 et al., 2014) in a continuous time setting. Since estimating the expectation above requires multiple
 229 trajectories, in practice the agent learns in a stochastic manner by sampling a single trajectory and
 230 updating the parameters based on it. In addition, the value estimate is parameterized by parameters
 231 ϕ . This is called episodic RL. Gradient-based updates for the estimate of value estimate parameters
 232 and policy, which bear similarities to coagent networks (Thomas, 2011; Kostas et al., 2020), are as
 233 follows:
 234

$$\begin{aligned} \widehat{\mathbb{G}}(\phi, \theta) &= \int_0^T e^{-\beta l} \frac{\partial v(\tilde{s}_l^{\pi^\theta}, l; \phi)}{\partial \phi} \left[\partial_t v(\tilde{s}_l^{\pi^\theta}, l; \phi) + r(\tilde{s}_l^{\pi^\theta}) - \beta v(\tilde{s}_l^{\pi^\theta}, l; \phi) \right] dl, \\ \widehat{\mathcal{G}}(\phi, \theta) &= \int_0^T e^{-\beta l} \frac{\partial \pi(\tilde{s}_l^{\pi^\theta}; \theta)}{\partial \theta} \left[\partial_t v(\tilde{s}_l^{\pi^\theta}, l; \phi) + r(\tilde{s}_l^{\pi^\theta}) - \beta v(\tilde{s}_l^{\pi^\theta}, l; \phi) \right] dl. \end{aligned} \quad (5)$$

240 **Algorithm 1** Episodic Actor-Critic (Continuous-Time Gradients)

241 **Inputs:** initial state s_0 , horizon T , time step Δt , number of episodes N , number of mesh grids $K = \lfloor T/\Delta t \rfloor$,
 242 and a learning rate η , discount β , the value $v(s, t; \phi)$ and policy $\pi(s; \theta)$.
 243 **Required:** an environment simulator $(s', r) = \text{ENVIRONMENT}(s, a, \Delta t)$ according to the dynamics 4 that
 244 maps (s, a) to next state s' and reward r at time t .
 245

1: Initialize θ, ϕ .
 2: **for** episode $j = 1$ to N **do**
 3: Initialize $k \leftarrow 0$. Observe x_0 and set $s_{t_k} \leftarrow x_0$.
 4: **while** $k < K$ **do**
 5: Generate action $a_{t_k} = \pi(x_{t_k}; \theta)$.
 6: Apply a_{t_k} in environment: $(s_{t_{k+1}}, r_{t_k}) \leftarrow \text{ENVIRONMENT}_{\Delta t}(t_k, s_{t_k}, a_{t_k})$.
 7: $k \leftarrow k + 1$.
 8: **end while**

9: **Compute continuous-time gradient estimates:**
 10: For $t_i = i\Delta t$, define

$$254 \quad \delta_i = \partial_t v(s_{t_i}, t_i; \phi) + r_{t_i} - \beta v(s_{t_i}, t_i; \phi).$$

255 11: Then set

$$256 \quad \Delta\phi = \sum_{i=0}^{K-1} e^{-\beta t_i} \frac{\partial v(s_{t_i}, t_i; \phi)}{\partial \phi} \delta_i \Delta t, \quad \Delta\theta = \sum_{i=0}^{K-1} e^{-\beta t_i} \frac{\partial \pi(s_{t_i}; \theta)}{\partial \theta} \delta_i \Delta t.$$

257 12: **Update (value estimate and policy parameters):**

$$258 \quad \phi \leftarrow \phi + \eta \alpha_\phi \Delta\phi, \quad \theta \leftarrow \theta + \eta \alpha_\theta \Delta\theta.$$

259 13: **end for**

260 **5 LINEARIZED TWO-LAYER NEURAL NETWORKS**

261 In deep reinforcement learning both actor and critic are parametrized by neural networks. Often
 262 times, to study a complex object such as a neural network, researchers utilize a simplified model
 263 (Lee et al., 2019; Cai et al., 2019b; Arora et al., 2019) that makes the problem tractable. We consider

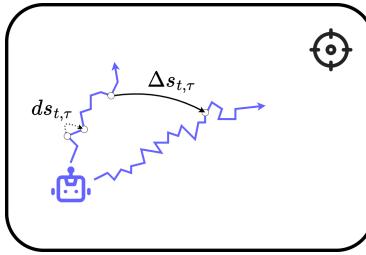


Figure 1: We illustrate $\Delta s_{t, \tau}$ using an agent (the robot in blue) whose goal is to reach the target in the top right corner, starting from the bottom left. The jagged blue trajectories correspond to its non-smooth stochastic paths in the environment. At gradient time τ , the agent follows the trajectory on the left, and after one gradient step, it moves along the trajectory on the right, closer to the goal. While the moment-to-moment change in environment time is represented by Equation 4 (dotted curve), Theorem 6.1 provides an expression for the change over a gradient step, $\Delta s_{t, \tau}$ (solid curve).

two-layer feedforward neural networks with tanh activations, φ , to ensure smoothness of dynamics. The network output is given by:

$$F(s; W, C) = \frac{1}{\sqrt{n}} \sum_{\kappa=1}^n C_\kappa \varphi(W_\kappa \cdot s), \quad (6)$$

where $W = [W_1, \dots, W_n] \in \mathbb{R}^{nd_s}$, $C = [C_1, \dots, C_n] \in \mathbb{R}^{d_a \times n}$. The parameters are initialized as $C_k \sim \text{Unif}(-1, 1)$, $W_k \sim \mathcal{N}(0, I_{d_s}/d_s)$. During training, only W is updated, while C is fixed. Let W^0 be the initialization of the first layer. The linearized approximation of the policy for wide neural networks (Allen-Zhu et al., 2019b; Gao et al., 2019; Lee et al., 2019) around W^0 is:

$$F_\pi^{\text{lin}}(s; W) = F_\pi(s; W^0) + \Phi(s; W^0)(W - W^0), \quad (7)$$

with $\Phi(s; W^0) = \frac{1}{\sqrt{n}} [C_1^0 \varphi'(W_1^0 \cdot s) s^\top, \dots, C_n^0 \varphi'(W_n^0 \cdot s) s^\top] \in \mathbb{R}^{d_a \times nd_s}$. This formulation is linear in W , and nonlinear in s and W^0 , in addition to being admissible. The linearized value estimate function: $F_v^{\text{lin}}(s, t; U)$ is defined in a similar way (see Section E). Moreover, Tiwari et al. (2025) have shown empirically that the linearized two-layer NN performs similarly to the canonical NN in the complex and non-linear MuJoCo Cheetah environment at very large widths. We assume tanh activations because they are symmetric and smooth. Further, it is assumed that the learning rate η scales as $O(1/\sqrt{n})$. Under this parameterization, the gradient-based updates (Equation 5) are denoted as $\widehat{\mathbb{G}}(U, W)$, $\widehat{\mathcal{G}}(U, W)$. Equipped with this parameterization, we state our main result about the gradient time dynamics of state variable.

6 MAIN RESULT: CHANGE IN STATE WITH GRADIENT STEP

A natural question to ask is: *how does the time dependent state random variable change over learning steps in actor-critic setting?* Understanding this change moment to moment, meaning from one gradient update to another, would give us an idea of how the agent learns. To do so we describe the *gradient dynamics* as follows, at gradient time step τ the parameters of the policy (W^τ) and the value estimate (U^τ) are updated as:

$$W^{\tau+\eta} = W^\tau + \eta \widehat{\mathbb{G}}(U^\tau, W^\tau), \quad U^{\tau+\eta} = U^\tau + \eta \widehat{\mathbb{G}}(U^\tau, W^\tau).$$

Since the environment state is also a function of W^τ , the state depends on both the environment time t and the gradient time step τ : $s_{t, \tau}$. Although its dynamics in environment time are given by Equation 4 its dynamics in gradient time are also governed by the actor-critic algorithm described in Section 4 (see Figure 1). The agent therefore has two “clocks”: environment clock and gradient clock. In Algorithm 1, the faster environment clock goes from 0 to T whereas the slower gradient clock only moves by η , in parallel. A scalar random variable is Gaussian up to an error of $O(1/\sqrt{n})$ when its distribution is close to the Gaussian cumulative distribution function (CDF), ν , and satisfies: $\sup_{x \in \mathbb{R}} |\Pr(X_n < x) - \nu(x)| = O(1/\sqrt{n})$. In the setting introduced in previous sections, we are able to derive a closed system, that is, the changes in these variables over gradient steps depend only on one another.

324 **Theorem 6.1.** *An agent equipped with linearized single hidden layer policy and value estimate*
 325 *function of width n , tanh activation, under exploratory environment dynamics (Equation 4), where*
 326 *g, h, σ are all smooth, with Lipschitz continuous smooth reward, r , that learns using episodic*
 327 *actor-critic updates and learning rate $\eta = O(1/\sqrt{n})$ has the following variables at gradient time*
 328 *τ and environment time t : the state $\tilde{s}_{t,\tau}$, action $a_{t,\tau} = F_\pi^{\text{lin}}(\tilde{s}_{t,\tau}; W^\tau)$, derivative of the action*
 329 *$= \partial_s F_\pi^{\text{lin}}(\tilde{s}_{t,\tau}; W^\tau)$, value estimate $v_{t,\tau} = F_v^{\text{lin}}(\tilde{s}_{t,\tau}; U^\tau)$ and time derivative of the value estimate*
 330 *$v'_{t,\tau} = \partial_t F_v^{\text{lin}}(\tilde{s}_{t,\tau}; U^\tau)$. Furthermore, suppose that neural networks are initialized i.i.d:*

$$331 \quad \text{Policy parameters: } W_\kappa^0 \sim \mathcal{N}(0, 1), C_\kappa^0 \sim \text{Unif}(-1, 1)$$

$$332 \quad \text{Value estimate parameters: } U_{\kappa,2}^0, U_{\kappa,2}^1 \sim \mathcal{N}(0, 1), B_\kappa^0 \sim \text{Unif}(-1, 1).$$

333 *Thus the law of $\tilde{s}_{t,\tau}, a_{t,\tau}, v_{t,\tau}$ is defined with respect to both trajectory randomness and initialization.*
 334 *Denote by $q_{l,\tau} = v'_{l,\tau} + r(\tilde{s}_{l,\tau}) - \beta v_{l,\tau}$. Conditioned on the values of $\tilde{s}_{t,\tau}, a_{t,\tau}, a'_{t,\tau}, v_{t,\tau}, v'_{t,\tau}$, for*
 335 *$t \in [0, T]$, the change in these variables over a single gradient step: $\Delta v_{t,\tau}, \Delta v'_{t,\tau}, \Delta a_{t,\tau}, \Delta a'_{t,\tau}$, up*
 336 *to an error of $O(1/\sqrt{n})$, are as follows:*

$$337 \quad \Delta v_{t,\tau} \text{ is Gaussian with mean } \eta \int_0^T e^{-\beta l} \mathbb{E} [B^2 \varphi'(U \cdot [\tilde{s}_{t,\tau}, t]) \varphi'(U \cdot [\tilde{s}_{l,\tau}, l]) (\tilde{s}_{l,\tau} \tilde{s}_{t,\tau} + lt) q_{l,\tau}] dl,$$

$$338 \quad \text{and variance } (\Delta s_{t,\tau})^2 \mathbb{E} [B^2 U_1^2 (\varphi''(U \cdot [\tilde{s}_{t,\tau}, t]) - \varphi''(U \cdot [\tilde{s}_{l,\tau}, t]) (U_1 \tilde{s}_{t,\tau} + U_2 t))^2],$$

$$339 \quad \Delta v'_{l,\tau} \text{ is Gaussian with mean } \eta \int_0^T e^{-\beta l} \mathbb{E} [B^2 U_2 \varphi''(U \cdot [\tilde{s}_{t,\tau}, t]) \varphi''(U \cdot [\tilde{s}_{l,\tau}, l]) (\tilde{s}_{l,\tau} \tilde{s}_{t,\tau} + lt) q_{l,\tau}] dl$$

$$340 \quad \text{and variance } (\Delta s_{t,\tau})^2 \mathbb{E} [B^2 U_1^2 U_2^2 (\varphi'''(U \cdot [\tilde{s}_{t,\tau}, t]) - \varphi'''(U \cdot [\tilde{s}_{l,\tau}, t]) (U_1 \tilde{s}_{t,\tau} + U_2 t))^2],$$

$$341 \quad \Delta a_{t,\tau} \text{ is Gaussian with mean } \eta \int_0^T e^{-\beta l} \mathbb{E} [C^2 \varphi'(W \tilde{s}_{t,\tau}) \varphi'(W \tilde{s}_{l,\tau}) \tilde{s}_{l,\tau} \tilde{s}_{t,\tau} q_{l,\tau}] dl$$

$$342 \quad \text{and variance } (\Delta s_{t,\tau})^2 \mathbb{E} [C^2 W^2 (\varphi''(W \tilde{s}_{t,\tau}) - \varphi''(W \tilde{s}_{l,\tau}) W \tilde{s}_{t,\tau})^2]$$

$$343 \quad \Delta a'_{l,\tau} \text{ is Gaussian with mean } \eta \int_0^T e^{-\beta l} \mathbb{E} [C^2 W \varphi''(W \tilde{s}_{t,\tau}) \varphi'(W \tilde{s}_{l,\tau}) \tilde{s}_{l,\tau} \tilde{s}_{t,\tau} q_{l,\tau}] dl,$$

$$344 \quad \text{and variance } (\Delta s_{t,\tau})^2 \mathbb{E} [C^2 W^4 (\varphi'''(W \tilde{s}_{t,\tau}) - \varphi'''(W \tilde{s}_{l,\tau}) W \tilde{s}_{t,\tau})^2],$$

345 *where expectation is over $W \sim \mathcal{N}(0, 1)$, $C, B \sim \text{Unif}(-1, 1)$, and $U = [U_1, U_2] \sim \mathcal{N}(0, 1)$.*

346 *To denote the change in $s_{t,\tau}$, define $Z_{t,l,\tau}$ as:*

$$347 \quad Z_{t,l,\tau} = Y_{t,\tau} \int_0^t Y_{u,\tau}^{-1} h(\tilde{s}_{u,\tau}) \mathcal{C}_{u,l,\tau} du, \text{ where } Y_{t,\tau} \text{ is solution to}$$

$$348 \quad dY_{t,\tau} = (a_{t,\tau} + a'_{t,\tau}) Y_{t,\tau} dt + \sigma'(\tilde{s}_{t,\tau}) Y_{t,\tau} dw_t$$

$$349 \quad \mathcal{C}_{u,l,\tau} = \mathbb{E} [C^2 \varphi'(\tilde{s}_{l,\tau} W) \varphi'(\tilde{s}_{u,\tau} W)], \text{ where } C \sim \text{Unif}(-1, 1), W \sim \mathcal{N}(0, 1), \text{ same as above.}$$

350 *In addition, define $\mathbb{Z}_{t,\tau} = \int_0^t Z_{t,l,\tau} q_{l,\tau} dl$. Further, the change in $\tilde{s}_{t,\tau}$ is:*

$$351 \quad \Delta \tilde{s}_{t,\tau} = \eta \mathbb{Z}_{t,\tau} - M_{t,\tau} + G_{t,\tau} + O(1/\sqrt{n}), \text{ where}$$

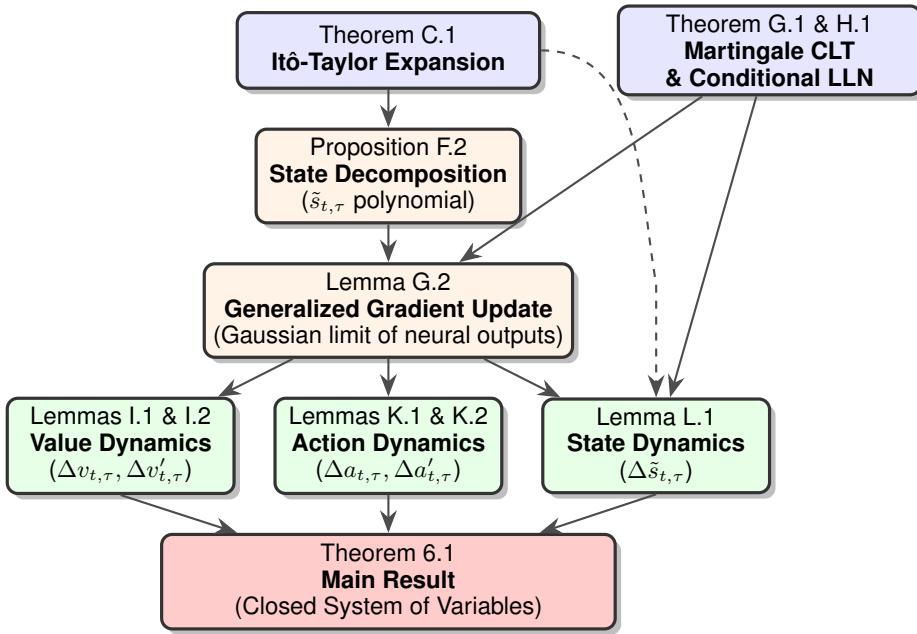
$$352 \quad M_{t,\tau} = \tilde{s}_{t,\tau} - s_0 - \int_0^t (g(\tilde{s}_{u,\tau}) + h(\tilde{s}_{u,\tau}) a_{u,\tau}) du,$$

353 *and $G_{t,\tau}$ is a random variable and the martingale component of $x_{t,\tau}$, which follows the dynamics:*

$$354 \quad dx_{t,\tau} = (g(x_{t,\tau}) + h(x_{t,\tau}) a_{t,\tau}) dt + \tilde{\sigma}(x_{t,\tau}) dw'_t,$$

355 *where w'_t is an independent Wiener process and therefore $Z_{t,\tau} = x_{t,\tau} - \mathbb{E}[x_{t,\tau}]$, where the expectation*
 356 *is over the random dynamics.*

357 *The key takeaway is that the gradient time dynamics of an actor-critic algorithm with policy and*
 358 *value estimate parameterized by single hidden layer neural networks can be expressed as a closed*
 359 *system of five variables. As stated earlier, we provide the above result for the setting $d_a = d_s = 1$*
 360 *as is common in control theory. We believe that high-dimensional results would require additional*
 361 *effort because both the policy gradient and the change is state variable are complicated with $d_s \times d_s$*
 362 *terms. Nevertheless, our result are on how an agent learns with non-linear function approximations in*
 363 *a non-linear environment and allows us to present the main result in a tractable manner.*

378 6.1 PROOF SKETCH AND INTERPRETATION
379402 Figure 2: Flowchart illustrating the proof structure. The blue boxes denote the foundations of the
403 proof and red is the main result, while rest are intermediate.
404405 See Section M for the proof and Figure 2 for a flow chart. The proof begins by observing that the state
406 random variable can be written as an infinite polynomial using the Itô –Taylor expansion (Kloeden &
407 Platen, 1992), which is almost surely equivalent to the solution

408
409
$$d\tilde{s}_{t,\tau} = (g(\tilde{s}_{t,\tau}) + h(\tilde{s}_{t,\tau})F_\pi^{\text{lin}}(s_{t,\tau}; W^\tau))dt + \tilde{\sigma}(\tilde{s}_{t,\tau})dw_t.$$

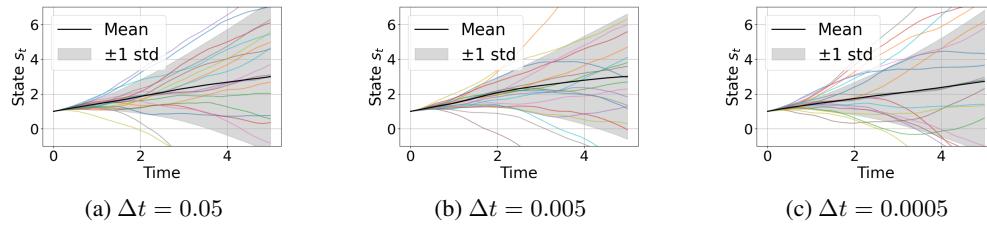
410

411 This implies that the process can be reformulated as a polynomial in $W^\tau - W^0$. We provide detailed
412 background on the Itô –Taylor series with examples in Section C. In Section D, we also present a
413 simplified example of the dynamics of a linear parameterized SDE with a single parameter evolving
414 on a different time scale, using the Itô -Taylor series. This example is intended to give a simplified
415 sense of the broader proof. We then derive the change in the value estimate (Section F) over one and
416 two gradient steps. For the value estimate, we apply the martingale central limit theorem (Haeusler,
417 1988) (Theorem G.1) together with its corresponding law of large numbers (Theorem H.1) to obtain a
418 conditional central limit theorem (CLT) and the corresponding law of large numbers (LLN). This
419 yields the Gaussian limits described earlier, with an additional error term of order $O(1/\sqrt{n})$. These
420 are similar to the Berry–Esséen theorem (Theorem F.1), accounting for the $O(1/\sqrt{n})$ error. Applying
421 a similar procedure to the action and its derivative results in the Gaussian formulations presented
422 above. Finally, in Section L, we derive the change in the state variable $\Delta s_{t,\tau}$.423 Notice that the changes in each of the auxiliary variables, $a_{t,\tau}, a'_{t,\tau}, v_{t,\tau}, v'_{t,\tau}$, depend on $\Delta s_{t,\tau}$ and
424 the TD error like expression $q_{t,\tau}$. This is due to the fact that their distributions are a push-forward
425 of the distribution of the state. In turn, the change in $s_{t,\tau}$ depends only on q and other variables
426 at time t, τ . Intuitively, the variables $(Z_{t,l,\tau}, C_{u,l,\tau}, Z_{t,\tau})$ capture the infinitesimal change in the
427 environment state dynamics over a single gradient step, and we notice that the expression also
428 contains $a_{t,\tau}, a'_{t,\tau}$ which include the changes in the action over environment time. Further notice that
429 the change in environment's state $\Delta s_{t,\tau}$ is not of order $O(\eta)$, this is because of the divergence in the
430 dynamics, which is a result of the stochasticity in the environment but this stochastic part is mean
431 0. More formally, the expression that is not $O(1/\sqrt{n})$ in $\Delta s_{t,\tau}$ is $G_{t,\tau} - M_{t,\tau}$ are influenced by
432 the stochasticity in the environment and exploratory dynamics, which are both dependent on the
433 underlying Wiener processes. We illustrate this in Figure 1.

432 7 EMPIRICAL VALIDATION

434 7.1 EXPLORATORY DYNAMICS: OURS VS CANONICAL EXPLORATION

436 We verify the exploratory nature of our proposed dynamics (Equation 4) and contrast it with dynamics
 437 with the additive Wiener process: $\pi(s_t) + w_t$, for a deterministic environment. The environment
 438 is defined by $g(s) = 0.1$, $h(s) = 0.5$, $\sigma(s) = 0.0$, $s_0 = 1.0$. We observe that an additive Wiener
 439 process does not explore state-action pairs effectively (Figure 3), which is evident by the smoothness
 440 of the trajectories whereas under exploratory dynamics (Figure 4) we see stochastic jumps which
 441 indicate better coverage of state action pairs.



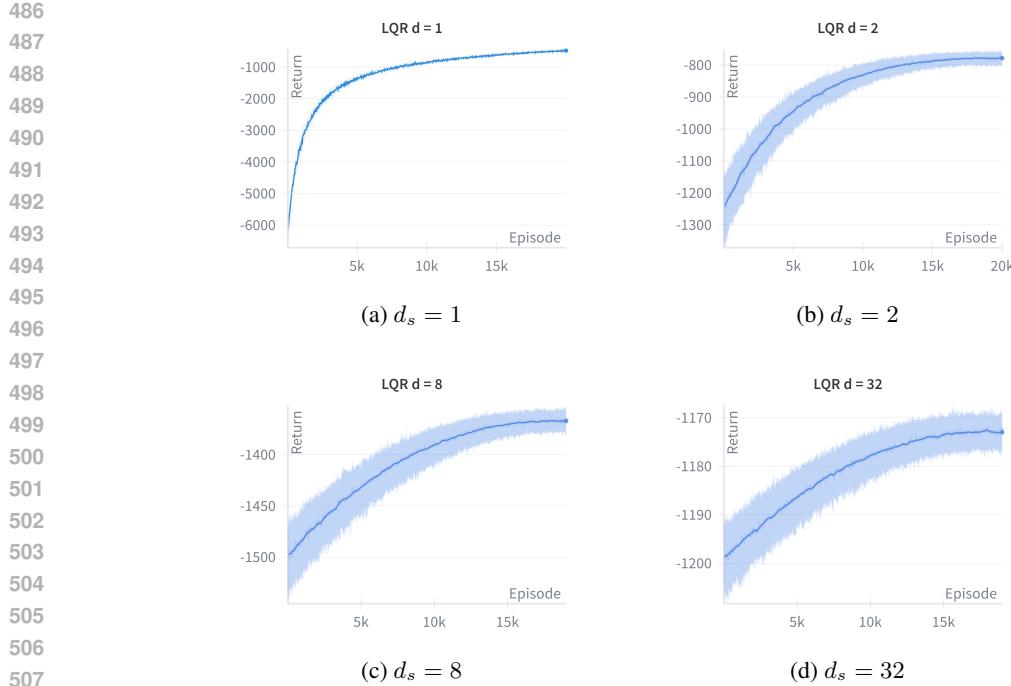


Figure 5: Episodic continuous-time actor–critic with linearized networks. For each dimension $d_s \in \{1, 2, 8, 32\}$ the agent learns a near-optimal policy. Results averaged over 20 seeds.

nonparametric framework over continuous state, action, and time, and in explicitly characterizing gradient-time dynamics of the state distribution. We have also presented how a continuous time model of RL can lead to theoretical analysis in continuous state and action settings.

Our work builds on how neural networks are formulated in a tractable manner (Jacot et al., 2018; Lee et al., 2019; Roberts et al., 2021; Arora et al., 2019). Moreover, we remark that the limitations from formulating the problem in this manner restrict us to the “lazy regime” where the features do not change and the learning rate is too slow in comparison to more realistic settings (Yang & Hu, 2020; Ghorbani et al., 2019). We believe that our work can be extended to deeper networks in the linearized setting as done by Lee et al. (2019). Our results, with rigor, can be extended to the finite width scenario (Hanin & Nica, 2020) and feature learning (Nichani et al., 2023) in the future.

9 DISCUSSION

Our results recast deep RL in continuous control as a two-clock stochastic system: environment time and gradient time, enabling local infinitesimal characterizations of how state, action, and value estimates evolve under actor–critic learning. By combining Itô –Taylor expansions with infinite-width linearizations, we obtain a nonparametric description of policy and value estimate updates and derive, to our knowledge, the first equation for the gradient-time evolution of the state distribution under vanishing step size for neural networks. This provides a principled bridge between stochastic control and modern over-parameterized RL and opens room for simpler theoretical models that can explain the learning dynamics of actor-critic algorithms. Most importantly, we show that there is a simplification of over-parameterized neural networks that emerges from fundamental principles of probability theory and stochastic processes. The analysis currently relies on smooth dynamics, single-hidden-layer models, and asymptotic width; extending to finite-width networks, non-smooth activations, partial observability, and richer continuous control benchmarks is a natural next step. As noted, the results for higher-dimensions are also subject to future research since they would add additional complexity to the proof. Empirical results in a toy LQR environment corroborate both the exploratory dynamics and the validity of algorithm 1. We believe that this non-parametric formulation of neural network-based learning could lead to empirical advancements by extending the understanding of Deep RL in the research community. Further regret analysis and convergence analysis are natural next steps.

540 REFERENCES
541

542 Alekh Agarwal, Sham M. Kakade, Jason D. Lee, and Gaurav Mahajan. On the theory of policy
543 gradient methods: Optimality, approximation, and distribution shift. *Journal of Machine Learning
544 Research*, 22(98):1–76, 2021.

545 Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
546 parameterization. *ArXiv*, abs/1811.03962, 2019a.

547 Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
548 parameterization. In *International conference on machine learning*, pp. 242–252. PMLR, 2019b.

549 András Antos, Csaba Szepesvári, and Rémi Munos. Fitted q-iteration in continuous action-space
550 mdps. In J. Platt, D. Koller, Y. Singer, and S. Roweis (eds.), *Advances in Neural Information
551 Processing Systems*, volume 20. Curran Associates, Inc., 2007.

552 Sanjeev Arora, Nadav Cohen, Noah Golowich, and Wei Hu. A convergence analysis of gradient
553 descent for deep linear neural networks. *ArXiv*, abs/1810.02281, 2019.

554 Leemon C. Baird. Reinforcement learning in continuous time: advantage updating. *Proceedings of
555 1994 IEEE International Conference on Neural Networks (ICNN'94)*, 4:2448–2453 vol.4, 1994.

556 Gerard Ben Arous, Reza Gheissari, and Aukosh Jagannath. High-dimensional limit theorems for sgd:
557 Effective dynamics and critical scaling. *Advances in Neural Information Processing Systems*, 35:
558 25349–25362, 2022.

559 Raphaël Berthier, Andrea Montanari, and Kangjie Zhou. Learning time-scales in two-layers neural
560 networks. *Foundations of Computational Mathematics*, pp. 1–84, 2024.

561 V. S. Borkar and S. P. Meyn. The o.d.e. method for convergence of stochastic approximation and
562 reinforcement learning. *SIAM Journal on Control and Optimization*, 38(2):447–469, 2000. doi:
563 10.1137/S0363012997331639.

564 Vivek Borkar, Shuhang Chen, Adithya Devraj, Ioannis Kontoyiannis, and Sean Meyn. The ode
565 method for asymptotic statistics in stochastic approximation and reinforcement learning. *arXiv*,
566 2021.

567 Q. Cai, Zhuoran Yang, Jason Lee, and Zhaoran Wang. Neural temporal-difference and q-learning
568 provably converge to global optima. *arXiv: Learning*, 2019a.

569 Qi Cai, Zhuoran Yang, Jason D. Lee, and Zhaoran Wang. Neural temporal-difference learning
570 converges to global optima. *Advances in Neural Information Processing Systems*, 32, 2019b. ISSN
571 1049-5258. Publisher Copyright: © 2019 Neural information processing systems foundation. All
572 rights reserved.; 33rd Annual Conference on Neural Information Processing Systems, NeurIPS
573 2019 ; Conference date: 08-12-2019 Through 14-12-2019.

574 Romain Couillet and Zhenyu Liao. Random matrix methods for machine learning. 2022.

575 Lorenzo Croissant, Marc Abeille, and Bruno Bouchard. Near-continuous time reinforcement learning
576 for continuous state-action spaces. In *International Conference on Algorithmic Learning Theory*,
577 pp. 444–498. PMLR, 2024.

578 George Cybenko. Approximation by superpositions of a sigmoidal function. *Mathematics of Control,
579 Signals and Systems*, 2:303–314, 1989.

580 Kenji Doya. Temporal difference learning in continuous time and space. In *NIPS*, 1995.

581 Kenji Doya. Reinforcement learning in continuous time and space. *Neural Computation*, 12:219–245,
582 2000.

583 Maryam Fazel, Rong Ge, Sham Kakade, and Mehran Mesbahi. Global convergence of policy gradient
584 methods for the linear quadratic regulator. In *International conference on machine learning*, pp.
585 1467–1476. PMLR, 2018.

594 Ruiqi Gao, Tianle Cai, Haochuan Li, Cho-Jui Hsieh, Liwei Wang, and J. Lee. Convergence of
 595 adversarial training in overparametrized neural networks. In *Neural Information Processing*
 596 *Systems*, 2019.

597 Mudit Gaur, Vaneet Aggarwal, and Mridul Agarwal. On the global convergence of fitted q-iteration
 598 with two-layer neural network parametrization. In *International Conference on Machine Learning*,
 599 pp. 11013–11049. PMLR, 2023.

600 Behrooz Ghorbani, Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Limitations of lazy
 601 training of two-layers neural network. *Advances in Neural Information Processing Systems*, 32,
 602 2019.

603 Yuri E. Gliklikh. Global and stochastic analysis with applications to mathematical physics. In *Global*
 604 *and Stochastic Analysis with Applications to Mathematical*, 2010.

605 Tuomas Haarnoja, Aurick Zhou, P. Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
 606 entropy deep reinforcement learning with a stochastic actor. *ArXiv*, abs/1801.01290, 2018.

607 Erich Haeusler. On the rate of convergence in the central limit theorem for martingales with
 608 discrete and continuous time. *The Annals of Probability*, 16(1):275–299, 1988. doi: 10.1214/aop/1176991901.

609 Boris Hanin and Mihai Nica. Finite depth and width corrections to the neural tangent kernel. *ArXiv*,
 610 abs/1909.05989, 2020.

611 Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
 612 *2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 770–778, 2016.

613 Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Ki-
 614 nal Mehta, and João G.M. Araújo. Cleanrl: High-quality single-file implementations of deep
 615 reinforcement learning algorithms. *Journal of Machine Learning Research*, 23(274):1–18, 2022.

616 Yilie Huang, Yanwei Jia, and Xun Yu Zhou. Sublinear regret for a class of continuous-time linear-
 617 quadratic reinforcement learning problems. *arXiv preprint arXiv:2407.17226*, 2024.

618 Arthur Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Convergence and generalization in
 619 neural networks. In *NeurIPS*, 2018.

620 Yanwei Jia and Xun Yu Zhou. Policy evaluation and temporal-difference learning in continuous time
 621 and space: A martingale approach. *Econometrics: Econometric & Statistical Methods - Special*
 622 *Topics eJournal*, 2021.

623 Yanwei Jia and Xun Yu Zhou. Policy gradient and actor-critic learning in continuous time and space:
 624 Theory and algorithms. *Journal of Machine Learning Research*, 23(275):1–50, 2022.

625 Yanwei Jia and Xun Yu Zhou. q-learning in continuous time. *Journal of Machine Learning Research*,
 626 24(161):1–61, 2023.

627 Velimir Jurdjevic. *Geometric control theory*. Cambridge university press, 1997.

628 Ioannis Karatzas and Steven Shreve. *Brownian motion and stochastic calculus*, volume 113. Springer,
 629 2014.

630 Elia Kaufmann, Leonard Bauersfeld, Antonio Loquercio, Matthias Müller, Vladlen Koltun, and
 631 Davide Scaramuzza. Champion-level drone racing using deep reinforcement learning. *Nature*, 620
 632 (7976):982–987, 2023.

633 Peter E. Kloeden and Eckhard Platen. Numerical solution of stochastic differential equations. 1992.

634 James Kostas, Chris Nota, and Philip Thomas. Asynchronous coagent networks. In *International*
 635 *Conference on Machine Learning*, pp. 5426–5435. PMLR, 2020.

636 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolutional
 637 neural networks. *Communications of the ACM*, 60:84 – 90, 2012.

648 Harold J. Kushner and Paul Dupuis. *Numerical Methods for Stochastic Control Problems in Continu-
649 ous Time*, volume 24 of *Stochastic Modelling and Applied Probability*. Springer, New York, NY, 2
650 edition, 2001. ISBN 978-1-4613-0007-6. doi: 10.1007/978-1-4613-0007-6.

651

652 Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S. Schoenholz, Jeffrey Pennington, and
653 Jascha Narain Sohl-Dickstein. Deep neural networks as gaussian processes. *ArXiv*, abs/1711.00165,
654 2017.

655 Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
656 Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
657 under gradient descent. *Advances in neural information processing systems*, 32, 2019.

658

659 Sergey Levine, Chelsea Finn, Trevor Darrell, and P. Abbeel. End-to-end training of deep visuomotor
660 policies. *ArXiv*, abs/1504.00702, 2016.

661

662 Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Manfred Otto Heess, Tom Erez,
663 Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement
664 learning. *CoRR*, abs/1509.02971, 2015.

665

666 Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Manfred Otto Heess, Tom Erez,
667 Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement
668 learning. *CoRR*, abs/1509.02971, 2016.

669

670 Michael Lutter, Shie Mannor, Jan Peters, Dieter Fox, and Animesh Garg. Value iteration in continuous
671 actions, states and time. *arXiv preprint arXiv:2105.04682*, 2021.

672

673 Clare Lyle, Mark Rowland, and Will Dabney. Understanding and preventing capacity loss in
674 reinforcement learning, 2022a.

675

676 Clare Lyle, Mark Rowland, Will Dabney, M. Kwiatkowska, and Yarin Gal. Learning dynamics and
677 generalization in deep reinforcement learning. In *International Conference on Machine Learning*,
678 2022b.

679

680 Clare Lyle, Mark Rowland, Will Dabney, Marta Kwiatkowska, and Yarin Gal. Learning dynamics
681 and generalization in reinforcement learning. *arXiv preprint arXiv:2206.02126*, 2022c.

682

683 Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the landscape of
684 two-layer neural networks. *Proceedings of the National Academy of Sciences of the United States
685 of America*, 115:E7665 – E7671, 2018.

686

687 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
688 Wierstra, and Martin A. Riedmiller. Playing atari with deep reinforcement learning. *ArXiv*,
689 abs/1312.5602, 2013.

690

691 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
692 mare, Alex Graves, Martin A. Riedmiller, Andreas Kirkeby Fidjeland, Georg Ostrovski, Stig
693 Petersen, Charlie Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan
694 Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement
695 learning. *Nature*, 518:529–533, 2015.

696

697 Andrea Montanari and Eliran Subag. Solving systems of random equations via first and second-order
698 optimization algorithms, 2024.

699

700 Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann LeCun, and Nathan Srebro. Towards
701 understanding the role of over-parametrization in generalization of neural networks. *ArXiv*,
702 abs/1805.12076, 2018.

703

704 Eshaan Nichani, Alex Damian, and Jason D Lee. Provable guarantees for nonlinear feature learning in
705 three-layer neural networks. *Advances in Neural Information Processing Systems*, 36:10828–10875,
706 2023.

707

708 Bernt Øksendal. Stochastic differential equations : an introduction with applications. *Journal of the
709 American Statistical Association*, 82:948, 1987.

702 Bernt Oksendal. *Stochastic differential equations: an introduction with applications*. Springer
 703 Science & Business Media, 2013.
 704

705 Daniel A. Roberts, Sho Yaida, and Boris Hanin. The principles of deep learning theory. *ArXiv*,
 706 abs/2106.10165, 2021.

707 David Silver, Guy Lever, Nicolas Manfred Otto Heess, Thomas Degris, Daan Wierstra, and Martin A.
 708 Riedmiller. Deterministic policy gradient algorithms. In *International Conference on Machine
 709 Learning*, 2014.

710 Yunlong Song, Angel Romero, Matthias Müller, Vladlen Koltun, and Davide Scaramuzza. Reaching
 711 the limit in autonomous racing: Optimal control versus reinforcement learning. *Science Robotics*,
 712 8, 2023.

713 Daniel W. Stroock and S. R. Srinivasa Varadhan. *Multidimensional Diffusion Processes*. Classics in
 714 Mathematics. Springer, Berlin, Heidelberg, 2006.

715 Richard S Sutton and Andrew G Barto. *Introduction to reinforcement learning*, volume 135. MIT
 716 press Cambridge, 1998.

717 Richard S. Sutton, David A. McAllester, Satinder Singh, and Y. Mansour. Policy gradient methods for
 718 reinforcement learning with function approximation. In *Neural Information Processing Systems*,
 719 1999.

720 Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A. Alemi. Inception-v4,
 721 inception-resnet and the impact of residual connections on learning. In *AAAI*, 2017.

722 Terence Tao. *Topics in random matrix theory*, volume 132. American Mathematical Soc., 2012.

723 Philip S Thomas. Policy gradient coagent networks. *Advances in Neural Information Processing
 724 Systems*, 24, 2011.

725 Saket Tiwari, Omer Gottesman, and George Konidaris. Geometry of neural reinforcement learning
 726 in continuous state and action spaces. In *The Thirteenth International Conference on Learning
 727 Representations*, 2025.

728 Haoran Wang, Thaleia Zariphopoulou, and Xun Yu Zhou. Reinforcement learning in continuous time
 729 and space: A stochastic control approach. *J. Mach. Learn. Res.*, 21:198:1–198:34, 2020.

730 Lingxiao Wang, Qi Cai, Zhuoran Yang, and Zhaoran Wang. Neural policy gradient methods: Global
 731 optimality and rates of convergence. *ArXiv*, abs/1909.01150, 2019.

732 Kakei Yamamoto, Kazusato Oko, Zhuoran Yang, and Taiji Suzuki. Mean field langevin actor-
 733 critic: Faster convergence and global optimality beyond lazy learning. In *Forty-first International
 734 Conference on Machine Learning*, 2024.

735 Greg Yang and Edward J. Hu. Feature learning in infinite-width neural networks. *ArXiv*,
 736 abs/2011.14522, 2020.

737 Henry Zhu, Justin Yu, Abhishek Gupta, Dhruv Shah, Kristian Hartikainen, Avi Singh, Vikash
 738 Kumar, and Sergey Levine. The ingredients of real-world robotic reinforcement learning. *ArXiv*,
 739 abs/2004.12570, 2020.

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

1	Introduction	1
----------	---------------------	----------

764

765

2	Stochastic Processes	2
----------	-----------------------------	----------

766

767

3	Continuous-Time Reinforcement Learning	3
----------	---	----------

768

769

770

4	Continuous-Time Actor Critic	4
----------	-------------------------------------	----------

771

772

5	Linearized Two-Layer Neural Networks	5
----------	---	----------

773

774

6	Main Result: Change in State with Gradient Step	6
----------	--	----------

775

776

6.1	Proof Sketch and Interpretation	8
-----	---	---

777

778

7	Empirical Validation	9
----------	-----------------------------	----------

779

780

7.1	Exploratory Dynamics: Ours Vs Canonical Exploration	9
-----	---	---

781

7.2	Episodic Continuous Time Actor-Critic	9
-----	---	---

782

783

8	Related Work	9
----------	---------------------	----------

784

785

9	Discussion	10
----------	-------------------	-----------

786

787

A	Background on Probability Spaces and Filtration for Continuous-Time Random Processes	17
----------	---	-----------

788

A.1	Weak Solution	17
-----	-------------------------	----

789

B	Formulation of Exploratory Dynamics	18
----------	--	-----------

790

791

B.1	Open Problem: Numerical Scheme for General Continuous-Time Processes with Exploration	20
-----	---	----

792

793

C	Itô –Taylor Expansion	20
----------	------------------------------	-----------

794

795

C.1	Multiple Stochastic Integrals	21
-----	---	----

796

797

C.2	Coefficient Functions	21
-----	---------------------------------	----

798

799

C.3	Hierarchical Sets	21
-----	-----------------------------	----

800

801

C.4	Truncated Itô –Taylor Expansion	22
-----	---	----

802

803

C.5	Example Itô –Taylor Expansion	23
-----	---	----

804

805

D	Linear Two-Timescale System	23
----------	------------------------------------	-----------

806

807

D.1	Analytic Solution to Two-Timescale SDEs	24
-----	---	----

808

809

E	Critic Formulation	25
----------	---------------------------	-----------

810	F Expression for Change in Value Estimate over Gradient Step	26
811	F.1 Summary Statistics and Polynomial Expression of State Variable	28
812	F.2 Single Gradient Step Dynamics in Variable	30
813	F.3 Two Gradient Step Dynamics	33
814	F.4 Growth of Residual Part in State Variable	36
815		
816		
817		
818	G Generalized Lemma for Gradient Updates	37
819		
820	H Conditional Law of Large Numbers	39
821		
822		
823	I Sufficient Statistics for Change in Value Estimates	40
824		
825	J Change in Action over Gradient Step	41
826		
827	K Sufficient Statistics for Change in Action	44
828		
829	L Change in State over Gradient Step	45
830		
831		
832	M Main Result: Putting it all Together	48
833		
834	N Code for Linearized Actor and Critic	48
835		
836	O LLM Usage and Reproducibility Statement	51
837		
838		
839		
840		
841		
842		
843		
844		
845		
846		
847		
848		
849		
850		
851		
852		
853		
854		
855		
856		
857		
858		
859		
860		
861		
862		
863		

864 **A BACKGROUND ON PROBABILITY SPACES AND FILTRATION FOR**
 865 **CONTINUOUS-TIME RANDOM PROCESSES**
 866

867 To establish the background, for continuous-time RL, we introduce ideas from probability theory
 868 and stochastic processes, which are used to prove our main result of concentration of states around a
 869 low-dimensional manifold. These preliminaries can also be found in chapters 2 and 3 by Øksendal
 870 (1987) for the one-dimensional case or in chapter 6 by Gliklikh (2010) for the multidimensional case.
 871 A complete probability space is defined by the triple (Ω, \mathcal{F}, P) where,

872 1. Ω is the sample space, for example it could be the set of all values from a die roll with 6
 873 faces $\{1, 2, 3, 4, 5, 6\}$,
 874 2. \mathcal{F} is a set of events, a single event could be a subset of policies from Ω ,
 875 3. P is the probability function that maps an event to the probability of it occurring, for example
 876 it could be the probability of observing these rolls.

877 Note that the set \mathcal{F} is complete under union, intersection and complement in addition to containing
 878 the null set and is called the σ -algebra. We will consider random variables on a probability space
 879 (Ω, \mathcal{F}, P) and taking values in the finite-dimensional space \mathbb{R}^d . Let $\eta(t)$ be a stochastic process
 880 that takes values in \mathbb{R}^d on a probability space (Ω, \mathcal{F}, P) . We will generally describe with stochastic
 881 processes which take values in a finite time interval $[0, T]$. For every such stochastic process η and
 882 any time t this determines three σ -subalgebras of \mathcal{F} :

883 1. **Past:** the σ -algebra of pre-images of Borel sets in \mathbb{R}^d for $0 < s < t$,
 884 2. **Present:** the σ -algebra generated by mappings of $\eta(t)$, and
 885 3. **Future:** the σ -algebra generated by pre-images of Borel sets in \mathbb{R}^d for $t < s < T$.

886 Taken together, these define a family of non-decreasing σ -subalgebras \mathcal{B}_t for $t \in [0, T]$, the reason
 887 being our continuous time MDPs also terminate within a finite time. The *conditional expectation*
 888 with respect to a σ -subalgebra is an orthogonal projection from $L^2(\Omega, \mathcal{F}, P)$ to $L^2(\Omega, \mathcal{F}_0, P)$ over
 889 the Hilbert space of square integrable random variables in $L^2(\Omega, \mathcal{F}, P)$. The same projection extends
 890 to the L^1 space of integrable random variables. Therefore, for every $\eta \in L^1(\Omega, \mathcal{F}, P)$ the orthogonal
 891 projection to $L^1(\Omega, \mathcal{F}_0, P)$ is then denoted by $\mathbb{E}[\eta | \mathcal{F}_0]$. A more detailed treatment can be found in
 892 the textbook by Karatzas & Shreve (2014). We present the definition a martingale process and a
 893 filtration, as stated in Section 3.2 by Øksendal (1987).

894 **Definition A.1.** A filtration on (Ω, \mathcal{F}) is a family $\mathcal{B} = \{\mathcal{B}_t\}_{0 \leq t < T}$ of σ -algebras $\mathcal{B}_t \subset \mathcal{F}$ such that

$$0 \leq s < t \implies \mathcal{B}_s \subset \mathcal{B}_t,$$

895 i.e. \mathcal{B}_t is increasing. A d -dimensional stochastic process $\eta(t), t \in [0, T]$ on (Ω, \mathcal{F}, P) is called a
 896 martingale with respect to a filtration \mathcal{B} and P if

901 1. $\eta(t)$ is \mathcal{B}_t measurable for all t
 902 2. $\mathbb{E}[\eta(t)] < \infty$ for all t , and
 903 3. $\mathbb{E}[\eta(t) | \mathcal{B}_s] = \eta(s)$ for all $s \leq t$.

904 **A.1 WEAK SOLUTION**

905 Consider the time-invariant stochastic differential equation (SDE):

$$dX_t = b(X_t) dt + \sigma(X_t) dW_t, \quad X_0 = x_0,$$

906 where $b : \mathbb{R}^d \rightarrow \mathbb{R}^d$ is the drift coefficient, $\sigma : \mathbb{R}^d \rightarrow \mathbb{R}^{d \times m}$ is the diffusion coefficient, x_0 is a given
 907 initial probability distribution on \mathbb{R}^d .

908 We say that this SDE admits a weak solution in the sense of probability if there exists a probability
 909 space $(\Omega, \mathcal{F}, \mathbb{P})$, a filtration $(\mathcal{F}_t)_{t \in [0, T]}$ satisfying the usual conditions, an m -dimensional (\mathcal{F}_t) -
 910 Brownian motion $W = (W_t)_{t \in [0, T]}$, an \mathbb{R}^d -valued, (\mathcal{F}_t) -adapted process $X = (X_t)_{t \in [0, T]}$, such
 911 that: $X_0 = x_0$ a.s., For all $t \in [0, T]$, the process X satisfies the SDE:

$$X_t = X_0 + \int_0^t b(X_s) ds + \int_0^t \sigma(X_s) dW_s, \quad \mathbb{P}\text{-a.s.}$$

918 B FORMULATION OF EXPLORATORY DYNAMICS

920 Control theory and its applications are in continuous-time (Kushner & Dupuis, 2001). Therefore,
 921 these applications and theories are related to the study of continuous-time stochastic differential
 922 equations (SDEs) (Oksendal, 2013; Karatzas & Shreve, 2014). Despite the fact that all real-world
 923 physical processes, such as robotic control, financial processes, or control of chemical processes, are
 924 continuous in time, they are simulated in discrete time: due to the inherent time discretized nature
 925 of computer clocks. This motivated the study of *numerical schemes* for SDEs i.e., discrete-time
 926 processes that converge, in some sense, to continuous-time processes (Kloeden & Platen, 1992;
 927 Kushner & Dupuis, 2001). Despite their connections, there is a marked difference between control
 928 and RL: RL does not assume agent’s awareness of the underlying dynamics of the environment but
 929 control does. This also means that one fundamental aspect of RL: exploration is absent in control
 930 theory. This means an absence of numerical scheme for SDEs with stochastic exploratory policies.
 931 We bridge this gap, in context of control affine systems, and posit an open problem. One trivial way to
 932 obtain time-dependent randomization of actions is by adding another Wiener process to the feedback
 933 policy which increases the number of dimensions of the numerical simulation. We present a result for
 934 a policy with added noise that converges to stochastic dynamics with exploration **without adding an**
934 additional dimension to the numerical simulation.

935 For fixed $\Delta t > 0$, any deterministic policy π consider the following:

$$937 \quad s_{t_n}^{\Delta t, \pi} = s_0 + \sum_{j=1}^{n-1} \left(g(s_{t_j}^{\Delta t, \pi}) + h(s_{t_j}) (\pi(s_{t_j}^{\Delta t, \pi}) + \Delta B_j) \right) \Delta t + \sigma(s_{t_j}^{\Delta t, \pi}) \Delta W_j, \quad (8)$$

940 where $\Delta W_j \sim \mathcal{N}(0, \Delta t)$, $\Delta B_j \sim \mathcal{N}(0, 1/\Delta t)$, $\Delta t = t_j - t_{j-1} \forall j \in \mathbb{N}$.

942 We obtain the following result for $d_s = 1$, $d_a = 1$, which is a common approach in numerical methods
 943 control theory results (Kushner & Dupuis, 2001): to derive and present results in one dimension for
 944 simplicity and tractability. The higher dimensional results follow. We will use $b(x, \pi(x))$ to denote
 945 the coefficient of dt : $g(\tilde{s}_t^\pi) + h(\tilde{s}_t^\pi) \pi(\tilde{s}_t^\pi)$ in short.

946 **Lemma B.1.** Suppose that g, h, σ and π are Lipschitz continuous and satisfy linear growth condition:

$$948 \quad \|g(x)\| \leq K_g(1 + |x|), \|h(x)\| \leq K_h(1 + |x|), \|\pi(x)\| \leq K_\pi(1 + |x|),$$

949 then $s_t^{\Delta t, \pi} \rightarrow s_t$ weakly where s_t^π is solution to the SDE:

$$951 \quad ds_t^\pi = (g(s_t^\pi) + h(s_t^\pi) \pi(s_t^\pi)) dt + h(s_t^\pi) dw_t' + \sigma(s_t^\pi) dw_t. \quad (9)$$

953 Moreover, the solution to this SDE has the same pathwise distribution as the following SDE:

$$954 \quad d\tilde{s}_t^\pi = (g(\tilde{s}_t^\pi) + h(\tilde{s}_t^\pi) \pi(\tilde{s}_t^\pi)) dt + \sqrt{h(\tilde{s}_t^\pi)^2 + \sigma(\tilde{s}_t^\pi)^2} dw_t. \quad (10)$$

956 *Proof.* The first part of the Lemma can be proved using the popular and standard Martingale approach
 957 detailed in Chapter 11 by Stroock & Varadhan (2006). For some function $f \in C^3(\mathbb{R}^{d_s})$ denote by
 958 $f_n = (f(s_{t_n}^{\Delta t, \pi}))$, where we will be omitting the superscript $\Delta t, \pi$ in f_l for brevity as it is implied,
 959 similarly we omit π in the superscript when its obvious from the context. Consider the following
 960 Taylor expansion of this stochastic processes:

$$962 \quad f_n = f(s_{t_{n-1}}^{\Delta t} + \left(g(s_{t_{n-1}}^{\Delta t}) + h(s_{t_{n-1}}) (\pi(s_{t_{n-1}}^{\Delta t}) + \Delta B_j) \right) \Delta t + \sigma(s_{t_{n-1}}^{\Delta t}) \Delta W_j)$$

$$964 \quad = f(s_{t_{n-1}}^{\Delta t} + \left(g(s_{t_{n-1}}^{\Delta t}) + h(s_{t_{n-1}}) (\pi(s_{t_{n-1}}^{\Delta t})) \right) \Delta t + h(s_{t_{n-1}}) \Delta W_{n-1} + \sigma(s_{t_{n-1}}^{\Delta t}) \Delta W_{n-1}),$$

966 where $\Delta' W_j = \Delta t \mathcal{N}(0, 1/\Delta t) = \mathcal{N}(0, \Delta t)$, independent of ΔW . Consider the following Taylor
 967 expansion:

$$969 \quad f_n = f(s_{t_{n-1}}^{\Delta t}) + \Delta t f'(s_{t_{n-1}}^{\Delta t}) \left(g(s_{t_{n-1}}^{\Delta t}) + h(s_{t_{n-1}}) \pi(s_{t_{n-1}}^{\Delta t}) \right) + \Delta W_{n-1} f'(s_{t_{n-1}}^{\Delta t}) h(s_{t_{n-1}}) \pi(s_{t_{n-1}}^{\Delta t})$$

$$971 \quad + \Delta W_{n-1} f'(s_{t_{n-1}}^{\Delta t}) \sigma(s_{t_{n-1}}) + \frac{1}{2} f''(s_{t_{n-1}}^{\Delta t}) \left(\left(h(s_{t_{n-1}}) \pi(s_{t_{n-1}}^{\Delta t}) \right)^2 + \sigma(s_{t_{n-1}})^2 \right) + O(\Delta t^2).$$

972 Now consider the processes:
 973

$$\begin{aligned} 974 \quad \mu_n - \mu_{n-1} &:= f(s_{t_n}^{\Delta t}) - f(s_{t_{n-1}}^{\Delta t}) - \mathbb{E} \left[f(s_{t_n}^{\Delta t}) - f(s_{t_{n-1}}^{\Delta t}) \right] \\ 975 \\ 976 \quad \nu_n - \nu_{n-1} &:= \mathbb{E} \left[f(s_{t_n}^{\Delta t}) - f(s_{t_{n-1}}^{\Delta t}) \right], \end{aligned}$$

977 where the expectation is conditioned over the canonical filtration. For the sake of brevity in this proof,
 978 we make the following substitution:
 979

$$980 \quad a(x) := g(x) + h(x) \pi(x).$$

981 Expanding these terms we obtain:
 982

$$\begin{aligned} 983 \quad \mu_n &= \sum_{j=1}^n f'(s_{t_{j-1}}^{\Delta t}) \left(\sigma(s_{t_{j-1}}^{\Delta t}) \Delta W_{j-1} + h(s_{t_{j-1}}^{\Delta t}) \Delta W'_{j-1} \right) \\ 984 \\ 985 \quad \nu_n &= \sum_{j=1}^n \left[f'(s_{t_{j-1}}^{\Delta t}) a(s_{t_{j-1}}^{\Delta t}) + \frac{1}{2} f''(s_{t_{j-1}}^{\Delta t}) (h^2 + \sigma^2)(s_{t_{j-1}}^{\Delta t}) \right] \Delta t \end{aligned}$$

988 Here μ is the martingale part and ν is the remainder. Now we rewrite the indices n for fixed Δt
 989 such that the integer index is determined by the time. We work on a uniform grid $t_k := k \Delta t$ for
 990 $k = 0, 1, \dots, N$ with $\Delta t = T/N$. Define, for $0 \leq t < T$,
 991

$$992 \quad n(t) := \min\{n \in \{1, \dots, N\} : t < t_n\} = 1 + \lfloor t/\Delta t \rfloor, \quad \text{and set } n(T) := N.$$

993 Then $t \in [t_{n(t)-1}, t_{n(t)}]$, and the *left gridpoint before* t is
 994

$$995 \quad \lfloor t \rfloor_{\Delta t} := t_{n(t)-1}.$$

996 We work on a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, \mathbb{P})$ satisfying the usual conditions and carry
 997 two independent standard Brownian motions $W = (W_t)_{t \geq 0}$ and $W' = (W'_t)_{t \geq 0}$ with $W_0 = W'_0 = 0$.
 998 On the grid $t_k = k \Delta t$ we set the discrete noises to be the Brownian increments:
 999

$$1000 \quad \Delta W_k := W_{t_{k+1}} - W_{t_k}, \quad \Delta W'_k := W'_{t_{k+1}} - W'_{t_k},$$

1001 so that $\Delta W_k, \Delta W'_k \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \Delta t)$, independent of each other and of \mathcal{F}_{t_k} .
 1002

1003 Following this notation, we rewrite μ and ν as:
 1004

$$\begin{aligned} 1005 \quad \widehat{\mu}(t) &:= \sum_{j=1}^{n(t)-1} f'(s_{t_{j-1}}^{\Delta t}) \left[\sigma(s_{t_{j-1}}^{\Delta t}) \Delta W_{j-1} + h(s_{t_{j-1}}^{\Delta t}) \Delta W'_{j-1} \right], \\ 1006 \\ 1007 \quad \widehat{\nu}(t) &:= \sum_{j=1}^{n(t)-1} \left(f'(s_{t_{j-1}}^{\Delta t}) a(s_{t_{j-1}}^{\Delta t}) + \frac{1}{2} f''(s_{t_{j-1}}^{\Delta t}) (\sigma^2 + h^2)(s_{t_{j-1}}^{\Delta t}) \right) \Delta t \\ 1008 \\ 1009 &\quad + \left(f'(s_{t_{n(t)-1}}^{\Delta t}) a(s_{t_{n(t)-1}}^{\Delta t}) + \frac{1}{2} f''(s_{t_{n(t)-1}}^{\Delta t}) (\sigma^2 + h^2)(s_{t_{n(t)-1}}^{\Delta t}) \right) \theta(t) \end{aligned}$$

1010 where $n(t)$ is the unique index with $t \in [t_{n(t)-1}, t_{n(t)}]$. Then for all $t \in [0, T]$ and $\theta(t) :=$
 1011 $t - t_{n(t)-1} = t - (n(t) - 1) \Delta t \in [0, \Delta t]$,
 1012

$$1013 \quad f(s_t^{\Delta t}) = f(s_0) + \widehat{\mu}(t) + \widehat{\nu}(t) + r^{\Delta t}(t), \quad \mathbb{E}[|r^{\Delta t}(t)|] = O(\Delta t^2).$$

1014 We now show increment bounds for $\widehat{\mu}$ and $\widehat{\nu}$. Fix $p \geq 2$. We want to show that there exists $C_{p,T} < \infty$,
 1015 independent of $\Delta t \leq 1$, such that for all $0 \leq s < t \leq T$,
 1016

$$1017 \quad \mathbb{E} |\widehat{\mu}(t) - \widehat{\mu}(s)|^p \leq C_{p,T} |t - s|^{p/2}, \quad (11)$$

$$1018 \quad \mathbb{E} |\widehat{\nu}(t) - \widehat{\nu}(s)|^p \leq C_{p,T} |t - s|^p. \quad (12)$$

1019 For the martingale part, apply the Burkholder–Davis–Gundy inequality to the increment $\widehat{\mu}(t) - \widehat{\mu}(s)$
 1020 to obtain
 1021

$$1022 \quad \mathbb{E} |\widehat{\mu}(t) - \widehat{\mu}(s)|^p \leq C_p \mathbb{E} \left(\langle \widehat{\mu} \rangle_t - \langle \widehat{\mu} \rangle_s \right)^{p/2},$$

1026 where the quadratic variation over $(s, t]$ is
 1027

$$1028 \langle \hat{\mu} \rangle_t - \langle \hat{\mu} \rangle_s = \sum_{j: (t_{j-1}, t_j] \subset (s, t]} (f'(s_{t_{j-1}}^{\Delta t}))^2 (h^2 + \sigma^2) (s_{t_{j-1}}^{\Delta t}) \Delta t + \text{(partial-step terms)}.$$

1031 Using global linear growth of h, g, σ and uniform moment bounds for $s^{\Delta t}$ yields $\mathbb{E}[\langle \hat{\mu} \rangle_t - \langle \hat{\mu} \rangle_s] \leq$
 1032 $C_T |t - s|$, hence equation 11.

1033 For the finite-variation part, by definition
 1034

$$1035 \hat{\nu}(t) - \hat{\nu}(s) = \int_s^t \left(f'(s_{\lfloor u \rfloor_{\Delta t}}^{\Delta t}) a(s_{\lfloor u \rfloor_{\Delta t}}^{\Delta t}) + \frac{1}{2} f''(s_{\lfloor u \rfloor_{\Delta t}}^{\Delta t}) (h^2 + \sigma^2) (s_{\lfloor u \rfloor_{\Delta t}}^{\Delta t}) \right) du,$$

1038 where $\lfloor u \rfloor_{\Delta t}$ is the left gridpoint before u . Using linear growth and the uniform moment bounds
 1039 gives $\mathbb{E}|\hat{\nu}(t) - \hat{\nu}(s)|^p \leq C_{p,T} |t - s|^p$, which is equation 12.

1040 Therefore, For any $p > 2$ there exists $C_{p,T}$ such that
 1041

$$1042 \sup_{\Delta t \leq 1} \mathbb{E} |f(s_t^{\Delta t}) - f(s_s^{\Delta t})|^p \leq C_{p,T} |t - s|^{p/2}, \quad 0 \leq s < t \leq T.$$

1044 Hence, by the Kolmogorov continuity theorem, for every $\alpha \in (0, \frac{1}{2} - \frac{1}{p})$ the family $\{f(s^{\Delta t})\}_{\Delta t}$
 1045 admits modifications with sample paths that are α -Hölder continuous on $[0, T]$, uniformly in Δt . In
 1046 particular, any weak limit is supported on $C([0, T])$.
 1047

1048 Finally, we have that $s_t^{\Delta t}$ converges weakly to a stochastic process, s_t such that $f(s_t) - \int_0^t Lf(s_l) dl$
 1049 where $L = (\sigma(x)^2 + h(x)^2) \frac{1}{2} \frac{\partial}{\partial x^2} + a(x) \frac{\partial}{\partial x}$ is Martingale. This implies, as is common in the
 1050 martingale approach, that such a process s_t is uniquely identified, in the sense of probability, by the
 1051 solution to Equation 9. Finally, this equation has the same probability on the way to the solution of
 1052 SDE in Equation 10 because it has the same generator L , which implies the same law or the pathwise
 1053 distribution (see chapter 5, 6 by Stroock & Varadhan (2006)). \square
 1054

1055 Therefore, to simulate the dynamics of exploratory agents, we can simulate the solutions to SDE
 1056 10. In this setting, we assume that the agent has access to the magnitude of time discretization for
 1057 exploration, that is, the scalar Δt .
 1058

1059 B.1 OPEN PROBLEM: NUMERICAL SCHEME FOR GENERAL CONTINUOUS-TIME PROCESSES 1060 WITH EXPLORATION

1062 While the above numerical scheme holds for control affine SDEs, it need not hold for more general
 1063 control problems. Specifically, when the function $b(s, a)$ (from Equation 1) has higher-order nonzero
 1064 derivatives, greater than order 1, in a , then we do not have the ability to obtain a stochastic process
 1065 such as $B \sim \mathcal{N}(0, 1/\Delta t)$ with a simplified multiplicative structure. This implies that the expression
 1066 $\Delta t B$ is not the only expression that contains B in the Taylor expansion of the proof for Lemma 3.1
 1067 instead higher-order terms such as ΔB^2 appear and lead to local changes approaching infinity as
 1068 $\Delta t \rightarrow 0$. Solving this problem is an avenue for future research.
 1069

1070 C ITÔ –TAYLOR EXPANSION

1072 A common method to analyze smooth functions is using the Taylor series. Taylor series of a function,
 1073 f , centered around a fixed point, say x , is an analytical formula which is a summation of powers
 1074 of the increment, δ , multiplied higher-order derivatives: $f(x + \delta) = \sum_{i=0}^{\infty} \frac{f^{(i)}(x)}{i!} \delta^i$, where $f^{(i)}$ is
 1075 the i -th derivative. In deep RL, the random variable we are interested in is the state as a function
 1076 of time parameterized by a two-layer linearized NN. For stochastic dynamics, the *vanilla* Taylor
 1077 expansion is not sufficient; this is because the dw_t term in dynamics (Equation 4) also contributes to
 1078 the increments. Therefore, we utilize the Itô –Taylor expansion which accounts for this stochastic
 1079 increment. Following the textbook by Kloeden & Platen (1992), we first define the multiple stochastic
 integrals, coefficient functions, and hierarchical sets of indices to define the Itô –Taylor expansion.

1080

C.1 MULTIPLE STOCHASTIC INTEGRALS

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

To extend the Taylor expansion to SDEs, we require *multiple stochastic integrals*, which generalize the deterministic integrals in the classical Taylor series. These integrals appear naturally when the Itô calculus is applied to SDEs. We define these using the setting of 1D SDEs. For a multi-index $\alpha = (j_1, j_2, \dots, j_k)$, where each $j_i \in \{0, 1\}$ with $j_i = 0$ corresponding to a time increment and $j_i = 1$ corresponding to a Wiener process $W_t^{(j_i)}$, the *multiple stochastic integral* is defined as:

$$I_\alpha[f] = \int_0^t \int_0^{l_k} \cdots \int_0^{l_2} f(l_1) dZ_{l_1}^{(j_1)} \cdots dZ_{l_k}^{(j_k)},$$

where each $dZ_s^{(j)}$ is either ds if $j = 0$ or dw_s if $j = 1$. These integrals encapsulate both drift and diffusion effects in the stochastic process and are key building blocks of the Itô–Taylor expansion. We provide definitions in the context of a smooth function f .

C.2 COEFFICIENT FUNCTIONS

1097

1098

1099

Each multiple stochastic integral is multiplied by a *coefficient function* derived from the original function f and its partial derivatives with respect to time and state variables. Consider an SDE of the form:

$$dx_t = b(x_t)dt + \sigma(x_t)dw_t,$$

we define the differential operators as follows:

$$\begin{aligned} L^0 f(x, t) &:= \frac{\partial f(x, t)}{\partial t} + b(x) \frac{\partial f(x, t)}{\partial x} + \frac{1}{2} \sigma(x)^2 \frac{\partial^2 f(x, t)}{\partial x^2}, \\ L^1 f(x, t) &:= \sigma(x) \frac{\partial f(x, t)}{\partial x} \end{aligned}$$

The *coefficient function* corresponding to a multi-index $\alpha = (j_1, j_2, \dots, j_k)$ is defined recursively as:

$$f_\alpha(x) := L^{j_1} L^{j_2} \cdots L^{j_k} f(x).$$

These recursively applied operators capture the evolving influence of both deterministic and stochastic components on the function f , and are essential to systematically construct terms in the Itô–Taylor expansion. For a 1D example and letting $f(x) = x$, we have $f_{(0,1)} = b\sigma' + \frac{1}{2}\sigma^2\sigma''$. For example, for the SDE defined by a two-layer linearized NN, which combines the formulation in Section 3 with the setting of Section 5, the differential operators are defined as:

$$\begin{aligned} L^0 f(x) &= (g(x) + h(x) (f(s; W^0) + \Phi(x, W^0)W)) \frac{\partial f(x)}{\partial x} + \frac{1}{2} (\sigma(x)^2 + h(x)^2) \frac{\partial^2 f(x)}{\partial x^2}, \\ L^1 f(x) &= \sqrt{\sigma(x)^2 + h(x)^2} \frac{\partial f(x)}{\partial x}. \end{aligned}$$

C.3 HIERARCHICAL SETS

1121

1122

1123

We also define the successor and predecessor of a multi-index α as follows. Let $\alpha = (j_1, j_2, \dots, j_k)$. The *predecessor* of α (denoted α^-) is obtained by removing the last entry: $\alpha^- := (j_1, j_2, \dots, j_{k-1})$. Then the α^+ multi-index is defined as the multi-index obtained by deleting all the components that are equal to 0. For $\alpha = (1, 1, 0, 1)$, we have $\alpha^+ = (1, 1, 1)$.

1124

1125

1126

1127

1128

1129

1130

These constructions allow us to define coefficient functions and multiple stochastic integrals recursively using a tree-like structure over multi-indices. For example, for $\alpha = (0, 1)$, we have $I_\alpha[f] = \int_0^t I_{\alpha^-}[f]dt = \int_0^t \int_0^l f dw_l dt$

1131

1132

1133

To organize and truncate the infinite Itô–Taylor expansion, we define *hierarchical sets* of multi-indices that determine which terms to include based on their *order*. Let $\alpha = (j_1, j_2, \dots, j_k)$ be a multi-index and define the length of α as:

$$|\alpha| := |\alpha|_0 + |\alpha|_W,$$

1134 where $|\alpha|_0$ denotes the number of zero entries (corresponding to time increments dt), and $|\alpha|_w$ is the
 1135 number of non-zero entries (corresponding to stochastic increments dw_t). Let $k_0(\alpha)$ be the number
 1136 of zeros before the first nonzero component (or the total length if all are zero). For $i = 1, \dots, |\alpha^+|$,
 1137 define $k_i(\alpha)$ as the number of components between the i th and $(i+1)$ th non-zero components (or up
 1138 to the end if $i = |\alpha^+|$). For example, if $\alpha = (0, 1, 2, 0)$, then $\alpha^+ = (1, 2)$, $|\alpha^+| = 2$, and
 1139

$$1140 \quad k_0(\alpha) = 1, \quad k_1(\alpha) = 0, \quad k_2(\alpha) = 1.$$

1141
 1142
 1143 For a desired strong or weak approximation order p , we define the hierarchical set:
 1144

$$1145 \quad \mathcal{A}_p := \{\alpha \mid |\alpha| \leq p\},$$

$$1146 \quad \text{and } \alpha^- \in \mathcal{A}_p \text{ for each } \alpha \in \setminus \{v\},$$

1147 where v is the multi-index of length zero. The set of all hierarchical sets is $\mathcal{M} = \cup_{p \in \mathbb{N}} \mathcal{A}_p$.
 1148
 1149

1150 C.4 TRUNCATED ITÔ –TAYLOR EXPANSION

1151 Equipped with definitions, we can provide the following result of the Itô –Taylor expansion for a
 1152 smooth f .
 1153

1154 **Theorem C.1** (Itô–Taylor Expansion (Kloeden & Platen, 1992, Theorem 5.5.1)). *Let ρ and τ be two
 1155 stopping times such that*

$$1156 \quad t_0 \leq \rho(\omega) \leq \tau(\omega) \leq T \quad \text{w.p.I.}$$

1157 Let $\mathcal{A} \subset \mathcal{M}$ be a hierarchical set, and let $f : \mathbb{R}^d \rightarrow \mathbb{R}$. Then the Itô –Taylor expansion holds:
 1158

$$1159 \quad f(\tau, X_\tau) = \sum_{\alpha \in \mathcal{A}} I_\alpha [f_\alpha(X_\rho)]_{\rho, \tau} + \sum_{\alpha \in \mathcal{B}(\mathcal{A})} I_\alpha [f_\alpha(X_\cdot)]_{\rho, \tau},$$

1160 provided that there exist all derivatives of all orders of f , drift a , diffusion b , and the required multiple
 1161 Itô integrals exist.
 1162

1163 Therefore, for $\kappa = 0, 1, \dots$ and $f(x) = x$ the truncated Itô –Taylor expansion is:
 1164

$$1165 \quad X_t^\kappa = \sum_{\alpha \in \Lambda_\kappa} I_\alpha [f_\alpha(X_0)]_{0, t}, \tag{13}$$

1166 where $\Lambda_\kappa = \{\alpha \in \mathcal{M} : |\alpha| \leq \kappa\}$ is the hierarchical set of all multi-indices of size less than or equal
 1167 to κ . We refer to the other terms, not included in the expansion, as the remainder terms. We denote
 1168 by $\mathcal{B}_\kappa = \{\alpha \in \mathcal{M} : |\alpha| \leq \kappa, |\alpha|_0 = |\alpha|\}$ the set of all multi-indices of size κ with all elements set to
 1169 0 and therefore correspond to the deterministic part of the series. We use the notation $\Omega_\kappa = \Lambda_\kappa - \mathcal{B}_\kappa$
 1170 to denote the non-deterministic part of the Itô -Taylor expansion. We denote by Ξ_κ the set of all
 1171 multi-indices of size κ , i.e. $\Xi_\kappa = \{\alpha \in \mathcal{M} : |\alpha| = \kappa\}$
 1172

1188 C.5 EXAMPLE ITÔ –TAYLOR EXPANSION
11891190 As an example, letting $I_\alpha = [1]_\alpha$, and omitting the arguments of the functions (which is X_0 in this
1191 case) the Itô –Taylor expansion for $\kappa = 3$ is:

$$\begin{aligned}
X_t = & X_0 + b I_{(0)} + \sigma I_{(1)} + \left(bb' + \frac{1}{2} \sigma^2 b'' \right) I_{(0,0)} \\
& + \left(b\sigma' + \frac{1}{2} \sigma^2 \sigma'' \right) I_{(0,1)} + b\sigma' I_{(1,0)} + \sigma\sigma' I_{(1,1)} \\
& + \left[b \left(bb' + (b')^2 + \sigma\sigma'' + \frac{1}{2} \sigma^2 b'' \right) + \frac{1}{2} \sigma^2 (bb'' + 3b'b'') \right. \\
& \quad \left. + \left((\sigma')^2 + \sigma\sigma'' \right) b'' + 2\sigma\sigma' b''' + \frac{1}{4} \sigma^4 b^{(4)} \right] I_{(0,0,0)} \\
& + \left[b \left(\sigma'b' + b\sigma'' + \sigma\sigma'\sigma'' + \frac{1}{2} \sigma^2 \sigma''' \right) + \frac{1}{2} \sigma^2 \left(b''\sigma' + 2b'\sigma'' \right. \right. \\
& \quad \left. \left. + b\sigma''' + \left((\sigma')^2 + \sigma\sigma'' \right) \sigma'' + 2\sigma\sigma'\sigma''' + \frac{1}{2} \sigma^2 \sigma^{(4)} \right) \right] I_{(0,0,1)} \\
& + \left[b(\sigma'b' + \sigma b'') + \frac{1}{2} \sigma^2 (\sigma''b' + 2\sigma'b'' + b\sigma''') \right] I_{(0,1,0)} \\
& + \left[b \left((\sigma')^2 + \sigma\sigma'' \right) + \frac{1}{2} \sigma^2 (\sigma''\sigma' + 2\sigma\sigma'' + \sigma\sigma''') \right] I_{(0,1,1)} \\
& + \sigma \left(bb'' + (b')^2 + \sigma\sigma'b'' + \frac{1}{2} \sigma^2 b''' \right) I_{(1,0,0)} \\
& + \sigma \left(b\sigma'' + \sigma'b' + \sigma\sigma'\sigma'' + \frac{1}{2} \sigma^2 \sigma''' \right) I_{(1,0,1)} \\
& + \sigma(\sigma'b' + b''\sigma) I_{(1,1,0)} + \sigma \left((\sigma')^2 + \sigma\sigma'' \right) I_{(1,1,1)} + R,
\end{aligned}$$

1218 where R denotes the remainder.
12191220 D LINEAR TWO-TIMESCALE SYSTEM
12211222 Suppose that you have the following SDE controlled by a parameter $\theta(\tau)$:
1223

$$dX_t^\tau = -\theta(\tau)X_t^\tau dt + \sigma dw_t \quad \text{and} \quad \frac{d\theta(\tau)}{d\tau} = f(\theta).$$

1226 Consider the following update: $\theta(\tau + \eta) = \theta(\tau) + \eta f(\theta_\tau)$. Consider the Itô -Taylor expansion for
1227 the $X_t(\theta)$ (following the expansion in Section C.5):
1228

$$\begin{aligned}
X_t(\theta) = & X_0 - \theta X_0 I_{(0)} + \sigma I_{(1)} + \theta^2 X_0 I_{(0,0)} + 0 \cdot I_{(0,1)} + 0 \cdot I_{(1,0)} + 0 \cdot I_{(1,1)} \\
& + [-\theta X_0 (\theta^2 X_0 + \theta^2)] I_{(0,0,0)} + 0 \cdot I_{(0,0,1)} \\
& + 0 \cdot I_{(0,1,0)} + 0 \cdot I_{(0,1,1)} + \sigma\theta^2 I_{(1,0,0)} + 0 \cdot I_{(1,0,1)} + 0 \cdot I_{(1,1,0)} + 0 \cdot I_{(1,1,1)} + R \\
= & X_0 - \theta X_0 I_{(0)} + \sigma I_{(1)} + \theta^2 X_0 I_{(0,0)} - [\theta X_0 (\theta^2 X_0 + \theta^2)] I_{(0,0,0)} + \sigma\theta^2 I_{(1,0,0)} + R,
\end{aligned}$$

1235 of which the leading expression, minus R , is denoted by $X_t^3(\theta)$. Further, consider the expression
1236 $X_t^3(\theta + \eta\theta) - X_t^3(\theta)$:
1237

$$\begin{aligned}
X_t^3(\theta + \eta f(\theta)) - X_t^3(\theta) = & -\eta f(\theta) X_0 I_{(0)} + ((\theta + \eta f(\theta))^2 - \theta^2) X_0 I_{(0,0)} \\
& - X_0 [(\theta + \eta f(\theta)) ((\theta + \eta f(\theta))^2 X_0 + (\theta + \eta f(\theta))^2) - \theta (\theta^2 X_0 + \theta^2)] I_{(0,0,0)} \\
& + \sigma [(\theta + \eta f(\theta))^2 - \theta^2] I_{(1,0,0)} \\
= & -\eta f(\theta) X_0 I_{(0)} + 2\theta\eta f(\theta) X_0 I_{(0,0)} - 3\theta^2\eta f(\theta) (X_0 + 1) I_{(0,0,0)} + 2\sigma\eta f(\theta)\theta I_{(1,0,0)} + O(\eta^2)
\end{aligned}$$

1242 D.1 ANALYTIC SOLUTION TO TWO-TIMESCALE SDES
12431244 Suppose that you have the SDE and the ODE as described above:
1245

1246
$$dX_t^\tau = -\theta(\tau)X_t^\tau dt + \sigma dw_t \quad \text{and} \quad \frac{d\theta(\tau)}{d\tau} = f(\theta(\tau)).$$

1247

1248 Let $Y_t^\tau := \frac{\partial X_t^\tau}{\partial \tau}$ and, therefore, heuristically:
1249

1250
$$\frac{\partial dX_t^\tau}{\partial \tau} = -X_t^\tau f(\theta(\tau))dt - Y_t^\tau \theta(\tau)dt.$$

1251

1252 Therefore, solving the following ODE with the random variable X^τ gives the solution to Y_t^τ :
1253

1254
$$dY_t^\tau = -X_t^\tau f(\theta(\tau))dt - Y_t^\tau \theta(\tau)dt, \quad \text{with } Y(0, \tau) = 0. \quad (14)$$

1255 The two-dimensional SDE can be written as:
1256

1257
$$d \begin{bmatrix} X_t^\tau \\ Y_t^\tau \end{bmatrix} = \begin{bmatrix} -\theta(\tau) & 0 \\ -f(\theta(\tau)) & -\theta(\tau) \end{bmatrix} \begin{bmatrix} X_t^\tau \\ Y_t^\tau \end{bmatrix} dt + \begin{bmatrix} \sigma \\ 0 \end{bmatrix} dw_t.$$

1258

1259 We simplify the notation by omitting τ since it is fixed and also denote $Z_t = \begin{bmatrix} X_t \\ Y_t \end{bmatrix}$:
1260

1261
$$d \begin{bmatrix} X_t \\ Y_t \end{bmatrix} = \begin{bmatrix} -\theta & 0 \\ -f(\theta) & -\theta \end{bmatrix} \begin{bmatrix} X_t \\ Y_t \end{bmatrix} dt + \begin{bmatrix} \sigma \\ 0 \end{bmatrix} dw_t$$

1262
1263
1264
1265

1266 Consider L^0, L^1 operators for this two-dimensional SDE are as follows:
1267

1268
$$L^0 = -\theta X \frac{\partial}{\partial X} - (f(\theta)X + \theta Y) \frac{\partial}{\partial Y} + \frac{1}{2}\sigma^2 \frac{\partial^2}{\partial X^2}$$

1269
1270
$$L^1 = \sigma \frac{\partial}{\partial X}.$$

1271

1272 Here we ignore the $\partial/\partial t$ term because the dynamics are time invariant. Expanding the SDE using
1273 the Itô-Taylor expansion for Z letting $f(Z) = Z$, we obtain the following:
1274

1275
$$Z_t = Z_0 + L^0 f I_{(0)} + L^1 f I_{(1)} + L^0 L^0 f I_{(0,0)} + L^0 L^1 f I_{(0,1)} + L^1 L^0 f I_{(1,0)} + R$$

1276
1277
$$= Z_0 + \begin{bmatrix} -\theta X_0 \\ -f(\theta)X_0 - \theta Y_0 \end{bmatrix} I_{(0)} + \begin{bmatrix} \sigma \\ 0 \end{bmatrix} I_{(1)} + \begin{bmatrix} \theta^2 X_0 \\ \theta f(\theta)X_0 + \theta^2 Y_0 \end{bmatrix} I_{(0,0)} + \begin{bmatrix} -\sigma\theta \\ -\sigma f(\theta) \end{bmatrix} I_{(1,0)}$$

1278
1279
$$+ \begin{bmatrix} 0 \\ 0 \end{bmatrix} I_{(0,1)} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} I_{(1,1)} + R$$

1280
1281
$$= \begin{bmatrix} X_0 \\ Y_0 \end{bmatrix} + \begin{bmatrix} -\theta X_0 \\ -f(\theta)X_0 - \theta Y_0 \end{bmatrix} I_{(0)} + \begin{bmatrix} \sigma \\ 0 \end{bmatrix} I_{(1)} + \begin{bmatrix} \theta^2 X_0 \\ 2\theta f(\theta)X_0 + \theta^2 Y_0 \end{bmatrix} I_{(0,0)} + \begin{bmatrix} -\sigma\theta \\ -\sigma f(\theta) \end{bmatrix} I_{(1,0)} + R$$

1282
1283
$$= \begin{bmatrix} X_0 \\ 0 \end{bmatrix} + \begin{bmatrix} -\theta X_0 \\ -f(\theta)X_0 \end{bmatrix} I_{(0)} + \begin{bmatrix} \sigma \\ 0 \end{bmatrix} I_{(1)} + \begin{bmatrix} \theta^2 X_0 \\ 2\theta f(\theta)X_0 \end{bmatrix} I_{(0,0)} + \begin{bmatrix} -\sigma\theta \\ -\sigma f(\theta) \end{bmatrix} I_{(1,0)} + R$$

1284
1285

1286 Consider the expansion for the third term here:
1287

1288
$$\bar{Z}_t^3 = L^0 L^0 L^0 f I_{(0,0,0)} + L^0 L^0 L^1 f I_{(0,0,1)} + L^0 L^1 L^0 f I_{(0,1,0)} + L^1 L^0 L^0 f I_{(1,0,0)}$$

1289
1290
$$+ L^0 L^1 L^1 f I_{(0,1,1)} + L^1 L^0 L^1 f I_{(1,0,1)} + L^1 L^1 L^0 f I_{(1,1,0)} + L^1 L^1 L^1 f I_{(1,1,1)}$$

1291
1292
$$= \begin{bmatrix} -\theta^3 X_0 \\ -2\theta^2 f(\theta)X_0 - \theta^2 f(\theta)X_0 - \theta^3 Y_0 \end{bmatrix} I_{(0,0,0)} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} I_{(0,0,1)} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} I_{(0,1,0)} + \begin{bmatrix} \sigma\theta^2 \\ \sigma\theta f(\theta) \end{bmatrix} I_{(1,0,0)}$$

1293
1294
$$+ \begin{bmatrix} 0 \\ 0 \end{bmatrix} I_{(0,1,1)} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} I_{(1,0,1)} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} I_{(1,1,0)} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} I_{(1,1,1)}$$

1295
1296
$$= \begin{bmatrix} -\theta^3 X_0 \\ -3\theta^2 f(\theta)X_0 \end{bmatrix} I_{(0,0,0)} + \begin{bmatrix} \sigma\theta^2 \\ 2\sigma\theta f(\theta) \end{bmatrix} I_{(1,0,0)}$$

1296 Combining the two expressions, we obtain the following:
 1297
 1298

$$1299 \quad Z_t = \begin{bmatrix} X_0 \\ 0 \end{bmatrix} + \begin{bmatrix} -\theta X_0 \\ -f(\theta)X_0 \end{bmatrix} I_{(0)} + \begin{bmatrix} \sigma \\ 0 \end{bmatrix} I_{(1)} + \begin{bmatrix} \theta^2 X_0 \\ 2\theta f(\theta)X_0 \end{bmatrix} I_{(0,0)} + \begin{bmatrix} -\sigma\theta \\ -\sigma f(\theta) \end{bmatrix} I_{(1,0)} \\ 1300 \quad + \begin{bmatrix} -\theta^3 X_0 \\ -3\theta^2 f(\theta)X_0 \end{bmatrix} I_{(0,0,0)} + \begin{bmatrix} \sigma\theta^2 \\ 2\sigma\theta f(\theta) \end{bmatrix} I_{(1,0,0)} + R. \\ 1301 \\ 1302 \\ 1303$$

1304
 1305
 1306 The expressions for Y closely mirror the expression for X given that θ changes according to
 1307 $d\theta(\tau)/d\tau = f(\theta)$. This insight can be used to reason about the changes, in gradient step, for the
 1308 more general control affine problem with linearized neural network where the Itô -Taylor expansion
 1309 is polynomial in ΔW^τ .
 1310
 1311

1312 E CRITIC FORMULATION

1313 To evaluate the changes in the random variables of interest we present the following update rules in
 1314 the actor-critic framework. The value estimate parameterized by a linearized neural network can be
 1315 denoted by:
 1316
 1317

$$1318 \quad F_v(s, t; U, B) = \frac{1}{\sqrt{n}} \sum_{\kappa=1}^n B_\kappa \varphi(U_\kappa \cdot [s, t]), \\ 1319 \\ 1320 \quad v^{\text{lin}}(s, t; U) = F_v(s, t; U^0) + \Psi(s, t; U^0)(U - U^0), \\ 1321 \\ 1322$$

1323 similar to Equation 7. Here $U = [U_1, \dots, U_n] \in \mathbb{R}^{n(d_s+1)}$ and $B = [B_1, \dots, B_n] \in \mathbb{R}^{1 \times n}$ and φ
 1324 is the smooth activation function, \tanh . We denote by $[s, t]$ the concatenation of the state and time
 1325 variables. The parameters are initialized in the same way as described in Section 5. B^0, U^0 remain
 1326 fixed after initialization. The matrix Ψ is defined as:
 1327
 1328

$$1329 \quad \Psi(s, t; U^0) = \frac{1}{\sqrt{n}} [B_1^0 \varphi'(U_1^0 \cdot [s, t]) [s, t]^\top, \dots, B_n^0 \varphi'(U_n^0 \cdot [s, t]) [s, t]^\top] \in \mathbb{R}^{1 \times n(d_s+1)}. \\ 1330 \\ 1331$$

1332 Based on this formulation of the linearized NN we can define the gradient updates for the value
 1333 estimate and the policy as follows:
 1334
 1335

$$1336 \quad \widehat{\mathbb{G}}(U, W) = \int_0^T e^{-\beta l} \Psi(\tilde{s}_l^{\pi^W}, l; U^0)^\top \left[\partial_t v^{\text{lin}}(l, \tilde{s}_l^{\pi^W}; U) + r(\tilde{s}_l^{\pi^W}) - \beta v^{\text{lin}}(l, \tilde{s}_l^{\pi^W}; U) \right], \quad (15) \\ 1337 \\ 1338$$

$$1339 \quad \widehat{\mathcal{G}}(U, W) = \int_0^T e^{-\beta l} \Phi(\tilde{s}_l^{\pi^W}; W^0)^\top \left[\partial_t v^{\text{lin}}(l, \tilde{s}_l^{\pi^W}; U) + r(\tilde{s}_l^{\pi^W}) - \beta v^{\text{lin}}(l, \tilde{s}_l^{\pi^W}; U) \right] dl. \quad (16) \\ 1340 \\ 1341$$

1342 In this setting there are two time-dependent random variables whose changes we track over gradient
 1343 steps: $v_t^{\text{lin}}(t, \tilde{s}_{t,\tau}), s_{t,\tau}$. We will use the shorthand $v_{t,\tau}$ to denote the first term. We also omit the
 1344 superscript n for s , denoting the state under the gradient updates described above for a linearized NN
 1345 of width n .
 1346
 1347

1350 F EXPRESSION FOR CHANGE IN VALUE ESTIMATE OVER GRADIENT STEP
1351
1352
1353
13541355 To better analyze and understand the change in the value estimate, we evaluate the changes in $v_{t,\tau}$
1356 over gradient steps. For the learning rate η , consider the difference:
1357

1358
1359
1360
1361
1362
1363
$$v_{t,\tau+\eta} - v_{t,\tau} = F(s_{t,\tau+\eta}, t; U^0) + \Psi(s_{t,\tau+\eta}, t; U^0)(U^{\tau+\eta} - U^0)$$

1364
$$- (F(\tilde{s}_{t,\tau}, t; U^0) + \Psi(s_{t,\tau}, t; U^0)(U^\tau - U^0))$$

1365
$$= \frac{1}{\sqrt{n}} \sum_{\kappa=1}^n B_\kappa^0 (\varphi(U_\kappa^0 \cdot [s_{t,\tau+\eta}, t]) - \varphi(U_\kappa^0 \cdot [s_{\tau,t}, t]))$$

1366
$$+ (\Psi(s_{t,\tau+\eta}, t; U^0)U^{\tau+\eta} - \Psi(\tilde{s}_{t,\tau}, t; U^0)U^\tau) - (\Psi(s_{t,\tau+\eta}, t; U^0) - \Psi(\tilde{s}_{t,\tau}, t; U^0))U^0$$

1367
$$= \frac{1}{\sqrt{n}} \sum_{\kappa=1}^n B_\kappa^0 \left(\varphi'(U_\kappa^0 \cdot [\tilde{s}_{t,\tau}, t]) [s_{t,\tau+\eta} - \tilde{s}_{t,\tau}, 0]^\top U_\kappa^0 \right.$$

1368
$$+ \frac{1}{2} \varphi''(U_\kappa^0 \cdot [\tilde{s}_{t,\tau}, 0]) ([s_{t,\tau+\eta} - \tilde{s}_{t,\tau}, 0]^\top U_{\kappa,1}^0)^2 \left. \right) + O(\eta^2)$$

1369
$$+ \frac{1}{\sqrt{n}} \sum_{\kappa=1}^n B_\kappa^0 (\varphi'(U_\kappa^0 \cdot [s_{t,\tau+\eta}, t]) [s_{t,\tau+\eta}, t]^\top U_\kappa^{\tau+\eta} - \varphi'(U_\kappa^0 \cdot [s_{\tau,t}, t]) [\tilde{s}_{t,\tau}, t]^\top U_\kappa^\tau)$$

1370
$$- \frac{1}{\sqrt{n}} \sum_{\kappa=1}^n B_\kappa^0 (\varphi'(U_\kappa^0 \cdot [s_{t,\tau+\eta}, t]) [s_{t,\tau+\eta}, t]^\top - \varphi'(U_\kappa^0 \cdot [s_{\tau,t}, t]) [\tilde{s}_{t,\tau}, t]^\top) U_\kappa^0$$

1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

We use $\Delta \tilde{s}_{t,\tau} = s_{t,\tau+\eta} - \tilde{s}_{t,\tau}$ as the shorthand. We further analyze the two expressions above.

1396
1397
1398
1399
1400
1401
1402
1403

1404 Taylor expanding on these expressions individually we obtain:
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418 $= \frac{1}{\sqrt{n}} \sum_{\kappa=1}^n B_{\kappa}^0 \left(\left(\varphi'(U_{\kappa}^0 \cdot [\tilde{s}_{t,\tau}, t]) + \varphi''(U_{\kappa}^0 \cdot [\tilde{s}_{t,\tau}, t])[\Delta \tilde{s}_{t,\tau}, 0]^{\top} U_{\kappa}^0 \right. \right.$
1419 $+ \frac{1}{2} \varphi'''(U_{\kappa}^0 \cdot [\tilde{s}_{t,\tau}, t]) ([\Delta \tilde{s}_{t,\tau}, 0]^{\top} U_{\kappa}^0)^2 + O(\eta^2) \left. \right) [\tilde{s}_{t,\tau}, t]^{\top} U_{\kappa}^{\tau}$
1420 $+ \left(\eta \varphi'(U_{\kappa}^0 \cdot [\tilde{s}_{t,\tau}, t]) [\Delta \tilde{s}_{t,\tau}, t]^{\top} \widehat{\mathbb{G}}(U^{\tau}, W^{\tau})_{\kappa} \right. \right.$
1421 $+ \eta \varphi''(U_{\kappa}^0 \cdot [\tilde{s}_{t,\tau}, t]) (U_{\kappa}^0 \cdot [\Delta \tilde{s}_{t,\tau}, 0]) [\Delta \tilde{s}_{t,\tau}, t]^{\top} \widehat{\mathbb{G}}(U^{\tau}, W^{\tau})_{\kappa} + O(\eta^2) \left. \right)$
1422 $+ \left(\eta \varphi'(U_{\kappa}^0 \cdot [\tilde{s}_{t,\tau}, t]) [\tilde{s}_{t,\tau}, t]^{\top} \widehat{\mathbb{G}}(U^{\tau}, W^{\tau})_{\kappa} \right. \right.$
1423 $+ \eta \varphi'(U_{\kappa}^0 \cdot [\tilde{s}_{t,\tau}, t]) ([\Delta \tilde{s}_{t,\tau}, 0]^{\top} U_{\kappa}^0) [\tilde{s}_{t,\tau}, t]^{\top} \widehat{\mathbb{G}}(U^{\tau}, W^{\tau})_{\kappa} \left. \right. \left. \right)$
1424 $+ \frac{\eta}{2} \varphi''(U_{\kappa}^0 \cdot [\tilde{s}_{t,\tau}, t]) ([\Delta \tilde{s}_{t,\tau}, 0]^{\top} U_{\kappa}^0)^2 \mathbb{G}(U^{\tau}, W^{\tau})_{\kappa} + O(\eta^2) \right) - \varphi'(U_{\kappa}^0 \cdot [s_{\tau,t}, t]) [\tilde{s}_{t,\tau}, t]^{\top} U_{\kappa}^{\tau} \Bigg)$
1425
1426
1427
1428
1429
1430
1431
1432
1433 $= \frac{1}{\sqrt{n}} \sum_{\kappa=1}^n B_{\kappa}^0 \left(\left(\varphi''(U_{\kappa}^0 \cdot [\tilde{s}_{t,\tau}, t]) [\Delta \tilde{s}_{t,\tau}, 0]^{\top} U_{\kappa}^0 \right. \right.$
1434 $+ \frac{1}{2} \varphi'''(U_{\kappa}^0 \cdot [\tilde{s}_{t,\tau}, t]) ([\Delta \tilde{s}_{t,\tau}, 0]^{\top} U_{\kappa}^0)^2 + O(\eta^2) \left. \right) [\tilde{s}_{t,\tau}, t]^{\top} U_{\kappa}^{\tau}$
1435 $+ \left(\eta \varphi'(U_{\kappa}^0 \cdot [\tilde{s}_{t,\tau}, t]) [\Delta \tilde{s}_{t,\tau}, t]^{\top} \widehat{\mathbb{G}}(U^{\tau}, W^{\tau})_{\kappa} \right. \right.$
1436 $+ \eta \varphi''(U_{\kappa}^0 \cdot [\tilde{s}_{t,\tau}, t]) (U_{\kappa}^0 \cdot [\Delta \tilde{s}_{t,\tau}, 0]) [\Delta \tilde{s}_{t,\tau}, t]^{\top} \widehat{\mathbb{G}}(U^{\tau}, W^{\tau})_{\kappa} + O(\eta^2) \left. \right)$
1437 $+ \left(\eta \varphi'(U_{\kappa}^0 \cdot [\tilde{s}_{t,\tau}, t]) [\tilde{s}_{t,\tau}, t]^{\top} \widehat{\mathbb{G}}(U^{\tau}, W^{\tau})_{\kappa} \right. \right.$
1438 $+ \eta \varphi'(U_{\kappa}^0 \cdot [\tilde{s}_{t,\tau}, t]) ([\Delta \tilde{s}_{t,\tau}, 0]^{\top} U_{\kappa}^0) [\tilde{s}_{t,\tau}, t]^{\top} \widehat{\mathbb{G}}(U^{\tau}, W^{\tau})_{\kappa} \left. \right. \left. \right)$
1439 $+ \frac{\eta}{2} \varphi''(U_{\kappa}^0 \cdot [\tilde{s}_{t,\tau}, t]) ([\Delta \tilde{s}_{t,\tau}, 0]^{\top} U_{\kappa}^0)^2 \widehat{\mathbb{G}}(U^{\tau}, W^{\tau})_{\kappa} + O(\eta^2) \right) \Bigg)$
1440
1441
1442
1443
1444
1445
1446
1447 $= \frac{1}{\sqrt{n}} \sum_{\kappa=1}^n B_{\kappa}^0 \left(\left(\varphi''(U_{\kappa}^0 \cdot [\tilde{s}_{t,\tau}, t]) [\Delta \tilde{s}_{t,\tau}, 0]^{\top} U_{\kappa}^0 \right. \right.$
1448 $+ \frac{1}{2} \varphi'''(U_{\kappa}^0 \cdot [\tilde{s}_{t,\tau}, t]) ([\Delta \tilde{s}_{t,\tau}, 0]^{\top} U_{\kappa}^0)^2 + O(\eta^2) \left. \right) [\tilde{s}_{t,\tau}, t]^{\top} U_{\kappa}^{\tau}$
1449 $+ \left(\eta \varphi'(U_{\kappa}^0 \cdot [\tilde{s}_{t,\tau}, t]) [\Delta \tilde{s}_{t,\tau}, t]^{\top} \widehat{\mathbb{G}}(U^{\tau}, W^{\tau})_{\kappa} + O(\eta^2) \right) \right.$
1450 $+ \left(\eta \varphi'(U_{\kappa}^0 \cdot [\tilde{s}_{t,\tau}, t]) [\tilde{s}_{t,\tau}, t]^{\top} \widehat{\mathbb{G}}(U^{\tau}, W^{\tau})_{\kappa} \right. \right.$
1451 $+ \eta \varphi'(U_{\kappa}^0 \cdot [\tilde{s}_{t,\tau}, t]) ([\Delta \tilde{s}_{t,\tau}, 0]^{\top} U_{\kappa}^0) [\tilde{s}_{t,\tau}, t]^{\top} \widehat{\mathbb{G}}(U^{\tau}, W^{\tau})_{\kappa} + O(\eta^2) \left. \right)$
1452 $+ \left(\eta \varphi'(U_{\kappa}^0 \cdot [\tilde{s}_{t,\tau}, t]) [\tilde{s}_{t,\tau}, t]^{\top} \widehat{\mathbb{G}}(U^{\tau}, W^{\tau})_{\kappa} \right. \right.$
1453 $+ \eta \varphi'(U_{\kappa}^0 \cdot [\tilde{s}_{t,\tau}, t]) ([\Delta \tilde{s}_{t,\tau}, 0]^{\top} U_{\kappa}^0) [\tilde{s}_{t,\tau}, t]^{\top} \widehat{\mathbb{G}}(U^{\tau}, W^{\tau})_{\kappa} \left. \right. \left. \right)$
1454 $+ \eta \varphi'(U_{\kappa}^0 \cdot [\tilde{s}_{t,\tau}, t]) ([\Delta \tilde{s}_{t,\tau}, 0]^{\top} U_{\kappa}^0)^2 \widehat{\mathbb{G}}(U^{\tau}, W^{\tau})_{\kappa} + O(\eta^2) \right) \Bigg).$
1455
1456
1457 (18)

1458 Now, consider the second term in the summation above (Equation 17) for $v_{t,\tau+\eta} - v_{t,\tau}$:

$$\begin{aligned}
1460 & \frac{1}{\sqrt{n}} \sum_{\kappa=1}^n B_{\kappa}^0 (\varphi'(U_{\kappa}^0 \cdot [s_{t,\tau+\eta}, t]) [s_{t,\tau+\eta}, t]^{\top} - \varphi'(U_{\kappa}^0 \cdot [s_{\tau,t}, t]) [\tilde{s}_{t,\tau}, t]^{\top}) U_{\kappa}^0 \\
1461 & = \frac{1}{\sqrt{n}} \sum_{\kappa=1}^n B_{\kappa}^0 \left(\varphi'(U_{\kappa}^0 \cdot [\tilde{s}_{t,\tau}, t]) [s_{t,\tau+\eta}, t]^{\top} + \varphi''(U_{\kappa}^0 \cdot [\tilde{s}_{t,\tau}, t]) [\Delta \tilde{s}_{t,\tau}, 0]^{\top} U_{\kappa}^0 [s_{t,\tau+\eta}, t]^{\top} \right. \\
1462 & \quad \left. + O(\eta^2) - \varphi'(U_{\kappa}^0 \cdot [s_{\tau,t}, t]) [\tilde{s}_{t,\tau}, t]^{\top} \right) U_{\kappa}^0 \\
1463 & = \frac{1}{\sqrt{n}} \sum_{\kappa=1}^n B_{\kappa}^0 \left(\varphi'(U_{\kappa}^0 \cdot [\tilde{s}_{t,\tau}, t]) [\tilde{s}_{t,\tau}, t]^{\top} + \varphi'(U_{\kappa}^0 \cdot [\tilde{s}_{t,\tau}, t]) [\Delta \tilde{s}_{t,\tau}, 0]^{\top} \right. \\
1464 & \quad \left. + \varphi'(U_{\kappa}^0 \cdot [\tilde{s}_{t,\tau}, t]) [\Delta \tilde{s}_{t,\tau}, 0]^{\top} + O(\eta^2) - \varphi'(U_{\kappa}^0 \cdot [s_{\tau,t}, t]) [\tilde{s}_{t,\tau}, t]^{\top} \right) U_{\kappa}^0 \\
1465 & = \frac{1}{\sqrt{n}} \sum_{\kappa=1}^n B_{\kappa}^0 \left(\varphi'(U_{\kappa}^0 \cdot [\tilde{s}_{t,\tau}, t]) [\Delta \tilde{s}_{t,\tau}, 0]^{\top} + \varphi''(U_{\kappa}^0 \cdot [\tilde{s}_{t,\tau}, t]) \Delta \tilde{s}_{t,\tau} U_{\kappa,1}^0 [\tilde{s}_{t,\tau}, t]^{\top} \right. \\
1466 & \quad \left. + O(\eta^2) \right) U_{\kappa}^0.
\end{aligned}$$

1480 We further simplify the expression for the second last in the expansion of equation 18. To do so we
1481 denote by $q_{l,\tau} = \partial_t v^{\text{lin}}(l, s_{l,\tau}; U) + r(s_{l,\tau}) - \beta v^{\text{lin}}(l, s_{l,\tau}; U)$.

$$\begin{aligned}
1483 & \frac{1}{\sqrt{n}} \sum_{\kappa=1}^n \eta B_{\kappa}^0 \left(\varphi'(U_{\kappa}^0 \cdot [\tilde{s}_{t,\tau}, t]) [\tilde{s}_{t,\tau}, t]^{\top} \widehat{\mathbb{G}}(U^{\tau}, W^{\tau})_{\kappa} \right) \\
1484 & = \frac{1}{\sqrt{n}} \sum_{\kappa=1}^n \eta B_{\kappa}^0 \left(\varphi'(U_{\kappa}^0 \cdot [\tilde{s}_{t,\tau}, t]) \left(\int_0^T e^{-\beta l} \frac{1}{\sqrt{n}} B_{\kappa}^0 \varphi'(U_{\kappa}^0 \cdot [\tilde{s}_{l,\tau}, l]) (\tilde{s}_{l,\tau} \tilde{s}_{t,\tau} + lt) q(s, l; U) dl \right) \right) \\
1485 & = \eta \int_0^T e^{-\beta l} \frac{1}{n} \sum_{\kappa=1}^n (B_{\kappa}^0)^2 \varphi'(U_{\kappa}^0 \cdot [\tilde{s}_{t,\tau}, t]) \varphi'(U_{\kappa}^0 \cdot [\tilde{s}_{l,\tau}, l]) (\tilde{s}_{l,\tau} \tilde{s}_{t,\tau} + lt) q_{l,\tau} dl
\end{aligned}$$

1492 F.1 SUMMARY STATISTICS AND POLYNOMIAL EXPRESSION OF STATE VARIABLE

1493 Consider the random variable defined by:

$$1495 \quad Y_{t,\tau} = \frac{1}{\sqrt{n}} \sum_{\kappa=1}^n B_{\kappa}^0 U_{\kappa,1}^0 \varphi'(U_{\kappa}^0 \cdot [\tilde{s}_{t,\tau}, t]). \quad (19)$$

1498 We prove that as $n \rightarrow \infty$ and for $\tau = O(\sqrt{n})$ it converges to a Gaussian variable conditioned on $\tilde{s}_{t,\tau}$.
1499 To do so, we first need to isolate the dependence of U_{κ}^0 on $\tilde{s}_{t,\tau}$, for any κ . Consider the following
1500 expansion for $\tilde{s}_{t,\tau}$:

$$1503 \quad \tilde{s}_{t,\tau} = \sum_{k=0}^{\infty} \sum_{\alpha \in \Xi_k} I_{\alpha} [f_{\alpha,\tau}(s_0)]_{0,t},$$

1506 where $f(x) = x$ and $f_{\alpha,\tau}$ correspond to the coefficient function (as defined in Section C.2) for the
1507 dynamics defined by:

$$1508 \quad d\tilde{s}_{t,\tau} = (g(\tilde{s}_{t,\tau}) + h(\tilde{s}_{t,\tau}) (F_{\pi}(s; W^0) + \Phi(\tilde{s}_{t,\tau}; W^0)(W^{\tau} - W^0))), \\
1509$$

1510 which are the dynamics of the agent under a linearized policy at gradient time τ , meaning with
1511 parameters W^{τ} . This dependency arises from $W^{\tau} - W^0$, since the stochastic gradient-based update
in Equation 16. We define by \mathcal{C}_i the set of all possible indices: $\mathbf{c} = \{c_0, c_1, \dots, c_i\}$ where $c_j \in \mathbb{Z}^+$

with and $0 \leq c_j \leq i$ as \mathcal{C}_i . These c_j 's correspond to the order of the derivative of Φ in the Itô -Taylor series of $\tilde{s}_{t,\tau}$. We also define the set of all integers that form the exponents of these derivative terms: $\mathbf{m} = \{m_0, m_1, \dots, m_i\}$ where $m_j \in \mathbb{Z}^+$ and $0 \leq m_j \leq i$ as \mathcal{M}_i . We denote by $\Delta W^\tau = W^\tau - W^0$ The state variable, written as Itô -Taylor series, can be split into two: $\bar{s}_{\tau,t}$ which depends on ΔW^τ and the other part $\tilde{s}_{t,\tau} - \bar{s}_{\tau,t}$ which is independent of the weights ΔW^τ . To show the independence of $\tilde{s}_{t,\tau}$ with respect to U_κ^0 , we analyze the variable $\tilde{s}_{t,\tau}$. This variable, $\tilde{s}_{t,\tau}$, can be rewritten as follows.

$$\tilde{s}_{t,\tau} = \sum_{i=1}^{\infty} \sum_{\alpha \in \Xi_i} \left(\mathbb{B}_\alpha + \sum_{\mathbf{c} \in \mathcal{C}_i, \mathbf{m} \in \mathcal{M}_i} \mathbb{C}_{\mathbf{c}, \mathbf{m}, \alpha} \Pi_{j=1}^i \left(F_\pi^{(c_j)}(s_0; W^0) + \Phi^{(c_j)}(s_0; W^0) \Delta W^\tau \right)^{m_j} \right) I_\alpha[1]_{0,t}, \quad (20)$$

where the coefficient $\mathbb{C}_{\mathbf{c}, \mathbf{m}, \alpha}$ is determined by the iterative application based on coefficient functions of the differential operator described in Section C.2. Also note that Ξ_i is the set of all multi-indices of size i (see Section C.2). We therefore analyze the expression:

$$\begin{aligned} \Delta W^\tau &= \sum_{i=1}^{\lfloor \tau/\eta \rfloor} \int_0^T \eta \hat{\mathcal{G}}(U^{(i-1)\eta}, W^{(i-1)\eta}) \\ &= \sum_{i=1}^{\lfloor \tau/\eta \rfloor} \int_0^T e^{-\beta l} \Phi(\tilde{s}_l^{\pi^{W^{(i-1)\eta}}}; W^0)^\top \left[\partial_t v^{\text{lin}}(l, \tilde{s}_l^{\pi^{W^{(i-1)\eta}}}; U^{(i-1)\eta}) \right. \\ &\quad \left. + r(\tilde{s}_l^{\pi^{W^{(i-1)\eta}}}) - \beta v^{\text{lin}}(l, \tilde{s}_l^{\pi^{W^{(i-1)\eta}}}; U^{(i-1)\eta}) \right] dl. \end{aligned}$$

To obtain our results, we will use a version of the Berry–Esséen theorem (Theorem 2.2.14 in the textbook by Tao (2012)).

Theorem F.1 (Berry–Esséen theorem, less weak form). *Let X have mean zero, unit variance, and finite third moment, and let F be any smooth function, bounded in magnitude by 1, and Lipschitz. Let*

$$Z_n := \frac{X_1 + \dots + X_n}{\sqrt{n}}, \quad \text{where } X_1, \dots, X_n \text{ are i.i.d. copies of } X.$$

Then we have

$$\mathbb{E}F(Z_n) = \mathbb{E}F(G) + O\left(\frac{1}{\sqrt{n}} \mathbb{E}|X|^3 (1 + \sup_{x \in \mathbb{R}} |F'(x)|)\right),$$

where $G \equiv \mathcal{N}(0, 1)$.

To show the independence of random variables: $U_{\kappa,1}^0, \tilde{s}_{t,\tau}$ in the limit $n \rightarrow \infty$, we fix $\kappa = n$ without loss of generality and we start with the case of $\tau = \eta$, which means a single gradient update.

$$\begin{aligned} \Delta W^\eta &= \eta \int_0^T \hat{\mathcal{G}}(U^0, W^0) \\ &= \eta e^{-\beta l} \Phi(\tilde{s}_l^{\pi^{W^0}}; W^0)^\top \left[\partial_t v^{\text{lin}}(l, \tilde{s}_l^{\pi^{W^0}}; U^0) \right. \\ &\quad \left. + r(\tilde{s}_l^{\pi^{W^0}}) - \beta v^{\text{lin}}(l, \tilde{s}_l^{\pi^{W^0}}; U^0) \right] dl \\ &= \eta \int_0^T e^{-\beta l} \Phi(\tilde{s}_l^{\pi^{W^0}}; W^0)^\top \left[\partial_t F_v(\tilde{s}_l^{\pi^{W^0}}, l; U^0, B^0) \right. \\ &\quad \left. + r(\tilde{s}_l^{\pi^{W^0}}) - \beta F_v(\tilde{s}_l^{\pi^{W^0}}, l; U^0, B^0) \right] dl. \end{aligned}$$

Substituting this into a general expression with ΔW as a multiplicative factor within the summation of $\tilde{s}_{t,\tau}$ above (Equation 20).

$$\begin{aligned}
1566 \\
1567 \quad \Phi^{(c)}(s_0; W^0) \Delta W^\eta &= \eta \Phi^{(c)}(s_0; W^0) \hat{\mathcal{G}}(U^0, W^0) \\
1568 \\
1569 &= \eta \int_0^T e^{-\beta l} \Phi^{(c)}(s_0; W^0) \Phi(\tilde{s}_l^{\pi^{W^0}}; W^0)^\top \left[\partial_t v^{\text{lin}}(l, \tilde{s}_l^{\pi^{W^0}}; U^0) \right. \\
1570 &\quad \left. + r(\tilde{s}_l^{\pi^{W^0}}) - \beta v^{\text{lin}}(l, \tilde{s}_l^{\pi^{W^0}}; U^0) \right] dl. \\
1571 \\
1572 \\
1573 \\
1574
\end{aligned}$$

F.2 SINGLE GRADIENT STEP DYNAMICS IN VARIABLE

The dependence on B_n^0, U_n^0 in this expression arises from the expression inside the square brackets:

$$\partial_t v^{\text{lin}}(l, \tilde{s}_l^{\pi^{W^0}}; U^0) - \beta v^{\text{lin}}(l, \tilde{s}_l^{\pi^{W^0}}; U^0).$$

$$\begin{aligned}
1575 \quad \partial_t v^{\text{lin}}(l, \tilde{s}_l^{\pi^{W^0}}; U^0) - \beta v^{\text{lin}}(l, \tilde{s}_l^{\pi^{W^0}}; U^0) \\
1576 \\
1577 &= \frac{1}{\sqrt{n}} \sum_{\kappa=1}^n B_\kappa^0 U_{\kappa,2}^0 \varphi'(U_\kappa \cdot [\tilde{s}_l^{\pi^{W^0}}, l]) - \beta \frac{1}{\sqrt{n}} \sum_{\kappa=1}^n B_\kappa \varphi(U_\kappa^0 \cdot [\tilde{s}_l^{\pi^{W^0}}, l]), \\
1578 \\
1579 \\
1580 \\
1581 \\
1582 \\
1583
\end{aligned}$$

Now substitute this expression in the polynomial expansion of $\tilde{s}_{t,\tau}$ (Equation 20).

$$\begin{aligned}
1584 \quad s_{t,\eta} &= \sum_{i=1}^{\infty} \sum_{\alpha \in \Xi_i} \mathbb{B}_\alpha + \left(\sum_{\mathbf{c} \in \mathcal{C}_i, \mathbf{m} \in \mathcal{M}_i} \mathbb{C}_{\mathbf{c}, \mathbf{m}, \alpha} \Pi_{j=1}^i \left(F_\pi^{(c_j)}(s_0; W^0) + \eta \Phi^{(c_j)}(s_0; W^0) \Delta W^\tau \right)^{m_j} I_\alpha[1]_{0,t} \right), \\
1585 \\
1586 \\
1587 \\
1588 \\
1589 &= \sum_{i=1}^{\infty} \sum_{\alpha \in \Xi_i} \mathbb{B}_\alpha + \left(\sum_{\mathbf{c} \in \mathcal{C}_i, \mathbf{m} \in \mathcal{M}_i} \mathbb{C}_{\mathbf{c}, \mathbf{m}, \alpha} \Pi_{j=1}^i \left(F_\pi^{(c_j)}(s_0; W^0) + \eta \int_0^T e^{-\beta l} \Phi^{(c_j)}(s_0; W^0) \Phi(\tilde{s}_l^{\pi^{W^0}}; W^0)^\top \right. \right. \\
1590 &\quad \left. \left. \left[\partial_t v^{\text{lin}}(l, \tilde{s}_l^{\pi^{W^0}}; U^0) + r(\tilde{s}_l^{\pi^{W^0}}) - \beta v^{\text{lin}}(l, \tilde{s}_l^{\pi^{W^0}}; U^0) \right] dl \right)^{m_j} I_\alpha[1]_{0,t} \right). \\
1591 \\
1592 \\
1593 \\
1594
\end{aligned}$$

We substittue the summation for $\Phi()$:

$$\begin{aligned}
1595 \quad s_{t,\eta} &= \sum_{i=1}^{\infty} \sum_{\alpha \in \Xi_i} \mathbb{B}_\alpha + \left(\sum_{\mathbf{c} \in \mathcal{C}_i, \mathbf{m} \in \mathcal{M}_i} \mathbb{C}_{\mathbf{c}, \mathbf{m}, \alpha} \Pi_{j=1}^i \left(F_\pi^{(c_j)}(s_0; W^0) + \eta \int_0^T e^{-\beta l} \Phi^{(c_j)}(s_0; W^0) \Phi(\tilde{s}_l^{\pi^{W^0}}; W^0)^\top \right. \right. \\
1596 &\quad \left. \left. \left[r(\tilde{s}_l^{\pi^{W^0}}) + \frac{1}{\sqrt{n}} \sum_{\kappa=1}^n B_\kappa^0 \left(U_{\kappa,2}^0 \varphi'(U_\kappa^0 \cdot [\tilde{s}_l^{\pi^{W^0}}, l]) - \beta \varphi(U_\kappa^0 \cdot [\tilde{s}_l^{\pi^{W^0}}, l]) \right) \right] dl \right)^{m_j} I_\alpha[1]_{0,t} \right), \\
1597 \\
1598 \\
1599 \\
1600 \\
1601 \\
1602 \\
1603 \\
1604 \\
1605 \\
1606 \\
1607 &= \sum_{i=1}^{\infty} \sum_{\alpha \in \Xi_i} \mathbb{B}_\alpha + \left(\sum_{\mathbf{c} \in \mathcal{C}_i, \mathbf{m} \in \mathcal{M}_i} \mathbb{C}_{\mathbf{c}, \mathbf{m}, \alpha} \Pi_{j=1}^i \left(F_\pi^{(c_j)}(s_0; W^0) + \eta \int_0^T e^{-\beta l} \Phi^{(c_j)}(s_0; W^0) \Phi(\tilde{s}_l^{\pi^{W^0}}; W^0)^\top \right. \right. \\
1608 &\quad \left. \left. \left[r(\tilde{s}_l^{\pi^{W^0}}) + \frac{1}{\sqrt{n}} \sum_{\kappa=1}^{n-1} B_\kappa^0 \left(U_{\kappa,2}^0 \varphi'(U_\kappa^0 \cdot [\tilde{s}_l^{\pi^{W^0}}, l]) - \beta \varphi(U_\kappa^0 \cdot [\tilde{s}_l^{\pi^{W^0}}, l]) \right) dl \right)^{m_j} \right. \right. \\
1609 &\quad \left. \left. + \int_0^T \frac{\eta m_j}{\sqrt{n}} B_\kappa^0 \left(U_{\kappa,2}^0 \varphi'(U_\kappa^0 \cdot [\tilde{s}_l^{\pi^{W^0}}, l]) - \beta \varphi(U_\kappa^0 \cdot [\tilde{s}_l^{\pi^{W^0}}, l]) \right) dl \right. \right. \\
1610 &\quad \left. \left. + O(\eta^2 n^{-1/2}) \right] I_\alpha[1]_{0,t} \right). \\
1611 \\
1612 \\
1613 \\
1614 \\
1615 \\
1616 \\
1617 \\
1618 \\
1619
\end{aligned}$$

1620 Here, the first four equalities are a result of successive substitution, and the last equality is a result of
 1621 Taylor expansion of the polynomial under the exponent m_j . To simplify the expression, we denote
 1622 by $K(j, W^0, U^0, n, \eta)$ the expression in large brackets $\left(\quad\right)$ with the exponent m_j i.e.
 1623
 1624
 1625
 1626
 1627

$$1628 K(j, W^0, U^0, n, \eta) = \left(F_\pi^{(c_j)}(s_0; W^0) + \eta \int_0^T e^{-\beta l} \Phi^{(c_j)}(s_0; W^0) \Phi(\tilde{s}_l^{\pi^{W^0}}; W^0)^\top \right. \\ 1629 \left. \left[r(\tilde{s}_l^{\pi^{W^0}}) \right. \right. \\ 1630 \left. \left. + \frac{1}{\sqrt{n}} \sum_{\kappa=1}^{n-1} B_\kappa^0 \left(U_{\kappa,2}^0 \varphi'(U_\kappa \cdot [\tilde{s}_l^{\pi^{W^0}}, l]) - \beta \varphi(U_\kappa \cdot [\tilde{s}_l^{\pi^{W^0}}, l]) dl \right) \right] \right)^{m_j}.$$

1635
 1636
 1637
 1638 Also, note that this expression, K , is independent of U_n^0, B_n^0 . We further denote by $s_{t,\eta}^{n-1}$ the
 1639 expression for $s_{t,\eta}$ up to the n -th term in the expression above:
 1640

$$1641 \\ 1642 \\ 1643 s_{t,\eta} = \sum_{i=1}^{\infty} \sum_{\alpha \in \Xi_i} \mathbb{B}_\alpha + \left[\sum_{\mathbf{c} \in \mathcal{C}_i, \mathbf{m} \in \mathcal{M}_i} \mathbb{C}_{\mathbf{c}, \mathbf{m}, \alpha} \Pi_{j=1}^i \left(K(j, W^0, U^0, n, \eta) \right. \right. \\ 1644 \left. \left. + \frac{\eta m_j}{\sqrt{n}} B_n^0 \left(\int_0^T U_{n,2}^0 \varphi'(U_n \cdot [\tilde{s}_l^{\pi^{W^0}}, l]) - \beta \varphi(U_n \cdot [\tilde{s}_l^{\pi^{W^0}}, l]) dl \right) + O(\eta^2 n^{-1/2}) \right] I_\alpha[1]_{0,t} \\ 1645 \\ 1646 = \sum_{i=1}^{\infty} \sum_{\alpha \in \Xi_i} \mathbb{B}_\alpha + \left[\sum_{\mathbf{c} \in \mathcal{C}_i, \mathbf{m} \in \mathcal{M}_i} \mathbb{C}_{\mathbf{c}, \mathbf{m}, \alpha} \left(\Pi_{j=1}^i K(j, W^0, U^0, n, \eta) \right) \right. \\ 1647 \left. + \frac{\eta B_n^0}{\sqrt{n}} \sum_{j=1}^i m_j \left(\left(\int_0^T U_{n,2}^0 \varphi'(U_n \cdot [\tilde{s}_l^{\pi^{W^0}}, l]) - \beta \varphi(U_n \cdot [\tilde{s}_l^{\pi^{W^0}}, l]) \right) \Pi_{j'=1}^i K(j', W^0, U^0, l, n, \eta) dl \right) \right. \\ 1648 \left. + O(\eta^2 n^{-1/2}) \right] I_\alpha[1]_{0,t} \\ 1649 \\ 1650 = \sum_{i=1}^{\infty} \left[\sum_{\alpha \in \Xi_i} \mathbb{B}_\alpha + \sum_{\mathbf{c} \in \mathcal{C}_i, \mathbf{m} \in \mathcal{M}_i} \mathbb{C}_{\mathbf{c}, \mathbf{m}, \alpha} \left(\Pi_{j=1}^i K(j, W^0, U^0, n, \eta) \right) \right. \\ 1651 \left. + \frac{\eta B_n^0}{\sqrt{n}} \sum_{i=1}^{\infty} \sum_{\alpha \in \Xi_i} \sum_{\mathbf{c} \in \mathcal{C}_i, \mathbf{m} \in \mathcal{M}_i} \mathbb{C}_{\mathbf{c}, \mathbf{m}, \alpha} \left(\left(\int_0^T U_{n,2}^0 \varphi'(U_n \cdot [\tilde{s}_l^{\pi^{W^0}}, l]) - \beta \varphi(U_n \cdot [\tilde{s}_l^{\pi^{W^0}}, l]) \right) \right. \right. \\ 1652 \left. \left. \Pi_{j'=1}^i K(j', W^0, U^0, l, n, \eta) dl \right) \right. \\ 1653 \left. + O(\eta^2 n^{-1/2}) \right] I_\alpha[1]_{0,t}, \\ 1654 \\ 1655 \\ 1656 \\ 1657 \\ 1658 \\ 1659 \\ 1660 \\ 1661 \\ 1662 \\ 1663 \\ 1664 \\ 1665 \\ 1666 \\ 1667 \\ 1668 \\ 1669 \\ 1670 \\ 1671 \\ 1672 \\ 1673$$

where the first equality is through substitution and the second is obtained using a polynomial expansion and suppressing all $O(\eta^2)$ terms. We will denote by $K_{-j,-n}$ the product $m_j \Pi_{j'=1}^i K(j', W^0, U^0, n, \eta)$ and omit other variables as they are apparent from the context. Therefore, we can substitute these expressions into the primary variable of interest in this section that is

$$\begin{aligned}
& B_n^0 U_{n,1}^0 \varphi'(U_n^0 \cdot [s_{t,\eta}, t]). \\
& B_n^0 U_{n,1}^0 \varphi'(U_n^0 \cdot [s_{t,\eta}, t]) = \\
& B_n^0 U_{n,1}^0 \varphi' \left(U_{n,1}^0 \sum_{i=1}^{\infty} \sum_{\alpha \in \Xi_i} \mathbb{B}_{\alpha} + \left[\sum_{\mathbf{c} \in \mathcal{C}_i, \mathbf{m} \in \mathcal{M}_i} \mathbb{C}_{\mathbf{c}, \mathbf{m}, \alpha} (\Pi_{j=1}^i K(j, W^0, U^0, l, n, \eta)) , \right. \right. \\
& \left. \left. + \frac{\eta B_{\kappa}^0}{\sqrt{n}} \sum_{j=1}^i \left(\int_0^T (U_{n,2}^0 \varphi'(U_{\kappa}^0 \cdot [\tilde{s}_l^{\pi^{W^0}}, l]) - \beta \varphi(U_n^0 \cdot [\tilde{s}_l^{\pi^{W^0}}, l]) K_{-j, -n} dl \right) \right. \right. \\
& \left. \left. + O(\eta^2 n^{-1/2}) \right] I_{\alpha}[1]_{0,t} + U_{n,2}^0 t \right) \\
& \dots \\
& \text{which upon being Taylor expanded results in:}
\end{aligned}$$

$$\begin{aligned}
& B_n^0 U_{n,1}^0 \varphi'(U_n^0 \cdot [s_{t,\eta}, t]) \\
& = B_n^0 U_{n,1}^0 \left(\varphi'(U_{n,1}^0 R_{\eta, t, -n} + U_{n,2}^0 t) \right. \\
& \quad \left. + \varphi''(U_{n,1}^0 R_{\eta, t, -n} + U_{n,2}^0 t) \left[\frac{\eta B_{\kappa}^0}{\sqrt{n}} \sum_{i=1}^{\infty} \sum_{\alpha \in \Xi_i} \mathbb{B}_{\alpha} + \sum_{\mathbf{c} \in \mathcal{C}_i} \sum_{\mathbf{m} \in \mathcal{M}_i} \sum_{j=1}^i \right. \right. \\
& \quad \left. \left. \mathbb{C}_{\mathbf{c}, \mathbf{m}, \alpha} \left(\int_0^T (U_{n,2}^0 \varphi'(U_n^0 \cdot [\tilde{s}_l^{\pi^{W^0}}, l]) - \beta \varphi(U_n^0 \cdot [\tilde{s}_l^{\pi^{W^0}}, l]) K_{-j, -n} dl \right) \right] I_{\alpha}[1]_{0,t} \right. \\
& \quad \left. + O(\eta^2 n^{-1/2}) \right). \\
& \dots \\
& \text{(22)}
\end{aligned}$$

where the expression $R_{t,\eta, -n}$ that is used to denote all terms that do not involve $B_n^0, U_{n,1}^0$ in the summation of $s_{t,\eta}$:

$$R_{t,\eta, -n} = \sum_{i=1}^{\infty} \sum_{\alpha \in \Xi_i} \mathbb{B}_{\alpha} + \left[\sum_{\mathbf{c} \in \mathcal{C}_i, \mathbf{m} \in \mathcal{M}_i} \mathbb{C}_{\mathbf{c}, \mathbf{m}, \alpha} (\Pi_{j=1}^i K(j, W^0, U^0, n, \eta)) \right] I_{\alpha}[1]_{0,t}. \quad (23)$$

Note that $R_{t,\eta, -n}$ converges to $s_{t,\eta}$ as $n \rightarrow \infty$. Substituting the general expression for $B_{\kappa}^0 U_{\kappa,1}^0 \varphi'(U_{\kappa}^0 \cdot [s_{t,\eta}, t])$ (following Equation 22) into the expression for $Y_{t,\eta}$ (Equation 19) we obtain the following:

$$\begin{aligned}
Y_{t,\eta} &= \frac{1}{\sqrt{n}} \sum_{\kappa=1}^n B_{\kappa}^0 U_{\kappa,1}^0 \varphi'(U_{\kappa}^0 \cdot [s_{t,\eta}, t]) \\
&= \frac{1}{\sqrt{n}} \sum_{\kappa=1}^n B_{\kappa}^0 U_{\kappa,1}^0 \varphi'(U_{\kappa,1}^0 R_{t,\eta, -\kappa} + U_{\kappa,2}^0 t) \\
&\quad + \frac{\eta}{n} \sum_{\kappa=1}^n (B_{\kappa}^0)^2 U_{\kappa,1}^0 \varphi''(U_{\kappa,1}^0 R_{t,\eta, -\kappa} + U_{\kappa,2}^0 t) \sum_{i=1}^{\infty} \sum_{\alpha \in \Xi_i} \mathbb{B}_{\alpha} + \sum_{\mathbf{c} \in \mathcal{C}_i} \sum_{\mathbf{m} \in \mathcal{M}_i} \sum_{j=1}^i \\
&\quad \left[\mathbb{C}_{\mathbf{c}, \mathbf{m}, \alpha} \left(\int_0^T (U_{\kappa,2}^0 \varphi'(U_{\kappa}^0 \cdot [\tilde{s}_l^{\pi^{W^0}}, l]) - \beta \varphi(U_{\kappa}^0 \cdot [\tilde{s}_l^{\pi^{W^0}}, l]) K_{-j, -\kappa} dl \right) \right] I_{\alpha}[1]_{0,t} \\
&\quad + O(\eta^2 n^{-1}) I_{\alpha}[1]_{0,t}.
\end{aligned} \quad (24)$$

Equation equation 24 provides a decomposition for $s_{t,\eta}$ after one gradient step. Since the expression in the second summation above is not necessarily mean 0, we have the summation of n terms multiplied with $\frac{\eta}{n}$ of order $O(\eta)$.

1728 F.3 TWO GRADIENT STEP DYNAMICS
1729

1730 Since we already have the result for a single gradient step, which form the base case of our argument
1731 in the inductive proof, we derive the expression for an additional gradient step. The reason behind
1732 doing so is to ensure that none of the error terms “explode” over multiple gradient steps. Consider
1733 the following expansion:

$$\begin{aligned}
 1734 \quad Y_{t,2\eta} &= \frac{1}{\sqrt{n}} \sum_{\kappa=1}^n B_{\kappa}^0 U_{\kappa,1}^0 \varphi'(U_{\kappa}^0 \cdot [s_{t,2\eta}, t]) \\
 1735 &= \frac{1}{\sqrt{n}} \sum_{\kappa=1}^n B_{\kappa}^0 U_{\kappa,1}^0 \varphi'(U_{\kappa,1}^0 R_{t,2\eta,-\kappa} + U_{\kappa,2}^0 t) \\
 1736 &\quad + \frac{\eta}{n} \sum_{\kappa=1}^n (B_{\kappa}^0)^2 U_{\kappa,1}^0 \varphi''(U_{\kappa,1}^0 R_{2\eta,t,-\kappa} + U_{\kappa,2}^0 t) \sum_{i=1}^{\infty} \sum_{\alpha \in \Xi_i} \mathbb{B}_{\alpha} + \sum_{\mathbf{c} \in \mathcal{C}_i} \sum_{\mathbf{m} \in \mathcal{M}_i} \sum_{j=1}^i \\
 1737 &\quad \left[\mathbb{C}_{\mathbf{c}, \mathbf{m}, \alpha} \left(\int_0^T (U_{\kappa,2}^0 \varphi'(U_{\kappa} \cdot [\tilde{s}_{l,\eta}, l]) - \beta \varphi(U_{\kappa} \cdot [\tilde{s}_{l,\eta}, l])) K_{-j,-\kappa} dl \right) \right] I_{\alpha}[1]_{0,t} \\
 1738 &\quad + O(\eta^2 n^{-1}) I_{\alpha}[1]_{0,t}. \tag{25}
 \end{aligned}$$

1747 We further expand the expression for $R_{t,2\eta,-\kappa}$.

$$1749 \quad R_{t,2\eta,-\kappa} = \sum_{i=1}^{\infty} \sum_{\alpha \in \Xi_i} \mathbb{B}_{\alpha} + \left[\sum_{\mathbf{c} \in \mathcal{C}_i, \mathbf{m} \in \mathcal{M}_i} \mathbb{C}_{\mathbf{c}, \mathbf{m}, \alpha} (\Pi_{j=1}^i K(j, W^0, U^0, \kappa, 2\eta)) \right] I_{\alpha}[1]_{0,t}. \tag{26}$$

1753 Upon substituting the value for $K(j, W^0, U^0, l, n, 2\eta)$, we obtain the following.

$$\begin{aligned}
 1755 \quad K(j, W^0, U^0, n, 2\eta) &= \left(F_{\pi}^{(c_j)}(s_0; W^0) + \eta \int_0^T e^{-\beta u} \Phi^{(c_j)}(s_0; W^0) \Phi(\tilde{s}_{u,\eta}; W^0)^{\top} \right. \\
 1756 &\quad \left. r(\tilde{s}_{u,\eta}) \right. \\
 1757 &\quad \left. + \frac{1}{\sqrt{n}} \sum_{\kappa=1}^{n-1} B_{\kappa}^0 (U_{\kappa,2}^0 \varphi'(U_{\kappa}^0 \cdot [\tilde{s}_{u,\eta}, u]) - \beta \varphi(U_{\kappa}^0 \cdot [\tilde{s}_{u,\eta}, u])) du \right)^{m_j}. \tag{27}
 \end{aligned}$$

1763 Once again using the shorthand $K_{-j,-\kappa} = m_j \prod_{j'=1}^i K(j', W^0, U^0, n, 2\eta)$. We first decompose the
1764 first expression.

$$\begin{aligned}
 1766 \quad \Phi^{(c_j)}(s_0; W^0) \Phi(\tilde{s}_{u,\eta}; W^0)^{\top} &= \frac{1}{n} \sum_{\kappa=1}^n \left[C_{\kappa}^0 \tilde{s}_{u,\eta} \varphi'(W_{\kappa}^0 \tilde{s}_{u,\eta}) \times \right. \\
 1767 &\quad \left. \left((W_{\kappa}^0)^{c_j} \tilde{s}_0 C_{\kappa}^0 \varphi^{(c_j+1)}(W_{\kappa}^0 \tilde{s}_0) + c_j C_{\kappa}^0 (W_{\kappa}^0)^{c_j-1} \varphi^{(c_j)}(W_{\kappa}^0 \tilde{s}_0) \right) \right] \\
 1768 &= \frac{1}{n} \sum_{\kappa=1}^n \left[C_{\kappa}^0 \left(R_{\eta,u,-\kappa} \varphi'(W_{\kappa}^0 R_{\eta,u,-\kappa}) \right. \right. \\
 1769 &\quad \left. \left. + \varphi''(W_{\kappa}^0 R_{\eta,u,-\kappa}) \frac{\eta B_{\kappa}^0}{\sqrt{n}} \sum_{j=1}^i \left(\int_0^T (U_{\kappa,2}^0 \varphi'(U_{\kappa}^0 \cdot [\tilde{s}_{0,u}, u]) - \beta \varphi(U_{\kappa}^0 \cdot [\tilde{s}_{0,u}, u])) K_{-j,-\kappa} du \right) \right. \right. \\
 1770 &\quad \left. \left. + O(\eta^2 n^{-1/2}) \right) I_{\alpha}[1]_{0,l} \right) \times \\
 1771 &\quad \left. \left((W_{\kappa}^0)^{c_j} \tilde{s}_{0,\eta} C_{\kappa}^0 \varphi^{(c_j+1)}(W_{\kappa}^0 \tilde{s}_{0,\eta}) + c_j C_{\kappa}^0 (W_{\kappa}^0)^{c_j-1} \varphi^{(c_j)}(W_{\kappa}^0 \tilde{s}_{0,\eta}) \right) \right], \tag{28}
 \end{aligned}$$

where we utilize the Taylor expression as in Equation 22 and the substitution in Equation 23 for κ instead of n . Therefore, we can ignore the expressions, other than $R_{\eta,l,-n}\varphi'(W_\kappa^0 R_{\eta,l,-n})$ because they have the leading term of $O(\eta n^{-3/2})$ while the summation is over the n variables. Decomposing the other expressions in Equation 27:

$$\begin{aligned}
r(\tilde{s}_{l,\eta}) &= r(R_{\eta,l,-\kappa}) \\
&+ r'(R_{\eta,l,-\kappa}) \frac{\eta B_\kappa^0}{\sqrt{n}} \sum_{i=1}^{\infty} \sum_{\alpha \in \Xi_i} \mathbb{B}_\alpha + \sum_{\mathbf{c} \in \mathcal{C}_i} \sum_{\mathbf{m} \in \mathcal{M}_i} \sum_{j=1}^i \\
&\mathbb{C}_{\mathbf{c}, \mathbf{m}, \alpha} \left(\int_0^T (U_{\kappa,2}^0 \varphi'(U_\kappa^0 \cdot [\tilde{s}_{u,0}, u]) - \beta \varphi(U_\kappa^0 \cdot [\tilde{s}_{u,0}, u]) K_{-j,-\kappa} du \right) I_\alpha[1]_{0,l} \\
&+ O(\eta^2 n^{-1/2}).
\end{aligned}$$

For succinctness, we denote by

$$\phi^{(c_j)}(s_0, W_\kappa^0, C_\kappa^0) = C_\kappa^0 \left((W_\kappa^0)^{c_j} \tilde{s}_0 \varphi^{(c_j+1)}(W_\kappa^0 \tilde{s}_0) + c_j (W_\kappa^0)^{c_j-1} \varphi^{(c_j)}(W_\kappa^0 \tilde{s}_0) \right). \quad (28)$$

Therefore, following a similar expansion for φ', φ we can expand the expression in Equation 27.

$$\begin{aligned}
K(j, W^0, U^0, n, 2\eta) &= \left(F_\pi^{(c_j)}(s_0; W^0) + \eta \int_0^T e^{-\beta u} \Phi^{(c_j)}(s_0; W^0) \Phi(\tilde{s}_{l,\eta}; W^0)^\top \right. \\
&\quad \left[r(\tilde{s}_{u,\eta}) \right. \\
&\quad \left. + \frac{1}{\sqrt{n}} \sum_{\kappa=1}^{n-1} B_\kappa^0 (U_{\kappa,2}^0 \varphi'(U_\kappa^0 \cdot [\tilde{s}_{u,\eta}, u]) - \beta \varphi(U_\kappa^0 \cdot [\tilde{s}_{u,\eta}, u]) du \right] \right)^{m_j} \\
&= \left(F_\pi^{(c_j)}(s_0; W^0) + \eta \int_0^T e^{-\beta u} \left[\left(\frac{1}{n} \sum_{\kappa=1}^{n-1} C_\kappa^0 R_{\eta,u,-n} \varphi'(W_\kappa^0 R_{\eta,u,-n}) \phi^{(c_j)}(s_0, W_\kappa^0, C_\kappa^0) \right) + O(\eta n^{-1}) \right] \right. \\
&\quad \times \left[r(R_{\eta,u,-n}) + \frac{1}{\sqrt{n}} \sum_{\kappa'=1}^{n-1} B_{\kappa'}^0 (U_{\kappa',2}^0 \varphi'(U_{\kappa'}^0 \cdot [R_{\eta,u,-n}, u]) - \beta \varphi(U_{\kappa'}^0 \cdot [R_{\eta,u,-n}, u])) \right. \\
&\quad \left. + \left(r'(R_{\eta,u,-n}) + \frac{1}{\sqrt{n}} \sum_{\kappa'=1}^{n-1} B_{\kappa'}^0 (U_{\kappa',2}^0 \varphi''(U_{\kappa'}^0 \cdot [R_{\eta,u,-n}, u]) - \beta \varphi'(U_{\kappa'}^0 \cdot [R_{\eta,u,-n}, u]) \right) \right. \\
&\quad \left. \frac{\eta B_n^0}{\sqrt{n}} \sum_{i=1}^{\infty} \sum_{\alpha \in \Xi_i} \mathbb{B}_\alpha + \sum_{\mathbf{c} \in \mathcal{C}_i} \sum_{\mathbf{m} \in \mathcal{M}_i} \sum_{j=1}^i \mathbb{C}_{\mathbf{c}, \mathbf{m}, \alpha} \left(\int_0^T (U_{n,2}^0 \varphi'(U_n^0 \cdot [\tilde{s}_{l,0}, l]) - \beta \varphi(U_n^0 \cdot [\tilde{s}_{l,0}, l]) K_{-j,-n} dl \right) \right. \\
&\quad \left. + O(\eta^2 n^{-1/2}) \right] du \right)^{m_j} \\
&= \left(F_\pi^{(c_j)}(s_0; W^0) + \eta \int_0^T e^{-\beta u} \left[\left(\frac{1}{n} \sum_{\kappa=1}^{n-1} C_\kappa^0 R_{\eta,u,-n} \varphi'(W_\kappa^0 R_{\eta,u,-n}) \phi^{(c_j)}(s_0, W_\kappa^0, C_\kappa^0) \right) \right. \right. \\
&\quad \left. + \left[r(R_{\eta,u,-n}) + \frac{1}{\sqrt{n}} \sum_{\kappa'=1}^{n-1} B_{\kappa'}^0 (U_{\kappa',2}^0 \varphi'(U_{\kappa'}^0 \cdot [R_{\eta,u,-n}, u]) - \beta \varphi(U_{\kappa'}^0 \cdot [R_{\eta,u,-n}, u])) \right] du \right. \\
&\quad \left. + O(\eta^2 n^{-1/2}) \right)^{m_j}.
\end{aligned}$$

1836 We note that in the expression above, every term except $O(\eta^2 n^{-1/2})$ is independent of U_n^0, B_n^0 . We
 1837 substitute this expression for $K(j, W^0, U^0, n, 2\eta)$ into $R_{t,2\eta,-n}$ (Equation 26):
 1838

$$\begin{aligned}
 1839 \quad R_{t,2\eta,-n} &= \sum_{i=1}^{\infty} \sum_{\alpha \in \Xi_i} \mathbb{B}_{\alpha} + \left[\sum_{\mathbf{c} \in \mathcal{C}_i, \mathbf{m} \in \mathcal{M}_i} \mathbb{C}_{\mathbf{c}, \mathbf{m}, \alpha} \prod_{j=1}^i \left(F_{\pi}^{(c_j)}(s_0; W^0) \right. \right. \\
 1840 &\quad + \eta \int_0^T e^{-\beta u} \left[\left(\frac{1}{n} \sum_{\kappa=1}^{n-1} C_{\kappa}^0 R_{\eta, u, -n} \varphi'(W_{\kappa}^0 R_{\eta, u, -n}) \phi^{(c_j)}(s_0, W_{\kappa}^0, C_{\kappa}^0) \right) \right. \\
 1841 &\quad \left. \left. + \left[r(R_{\eta, u, -n}) + \frac{1}{\sqrt{n}} \sum_{\kappa'=1}^{n-1} B_{\kappa'}^0 \left(U_{\kappa', 2}^0 \varphi'(U_{\kappa'}^0 \cdot [R_{\eta, u, -n}, u]) - \beta \varphi(U_{\kappa'}^0 \cdot [R_{\eta, u, -n}, u]) \right) \right] du \right. \\
 1842 &\quad \left. \left. + O(\eta^2 n^{-1/2}) \right)^{m_j} \right] I_{\alpha}[1]_{0,t} \\
 1843 &= \sum_{i=1}^{\infty} \sum_{\alpha \in \Xi_i} \mathbb{B}_{\alpha} + \left[\sum_{\mathbf{c} \in \mathcal{C}_i, \mathbf{m} \in \mathcal{M}_i} \mathbb{C}_{\mathbf{c}, \mathbf{m}, \alpha} \prod_{j=1}^i \left(F_{\pi}^{(c_j)}(s_0; W^0) \right. \right. \\
 1844 &\quad + \eta \int_0^T e^{-\beta u} \left[\left(\frac{1}{n} \sum_{\kappa=1}^{n-1} C_{\kappa}^0 R_{\eta, u, -n} \varphi'(W_{\kappa}^0 R_{\eta, u, -n}) \phi^{(c_j)}(s_0, W_{\kappa}^0, C_{\kappa}^0) \right) \right. \\
 1845 &\quad \left. \left. + \left[r(R_{\eta, u, -n}) + \frac{1}{\sqrt{n}} \sum_{\kappa'=1}^{n-1} B_{\kappa'}^0 \left(U_{\kappa', 2}^0 \varphi'(U_{\kappa'}^0 \cdot [R_{\eta, u, -n}, u]) - \beta \varphi(U_{\kappa'}^0 \cdot [R_{\eta, u, -n}, u]) \right) \right] du \right)^{m_j} \right. \\
 1846 &\quad \left. + \sum_{j=1}^i m_j O(\eta^2 n^{-1/2}) K_{-j, -n} \right] I_{\alpha}[1]_{0,t} \\
 1847 & \\
 1848 & \\
 1849 & \\
 1850 & \\
 1851 & \\
 1852 & \\
 1853 & \\
 1854 & \\
 1855 & \\
 1856 & \\
 1857 & \\
 1858 & \\
 1859 & \\
 1860 & \\
 1861 & \\
 1862 & \\
 1863 & \\
 1864 & \\
 1865 & \\
 1866 & \\
 1867 & \\
 1868 & \\
 1869 & \\
 1870 & \\
 1871 & \\
 1872 & \\
 1873 & \\
 1874 & \\
 1875 & \\
 1876 & \\
 1877 & \\
 1878 & \\
 1879 & \\
 1880 & \\
 1881 & \\
 1882 & \\
 1883 & \\
 1884 & \\
 1885 & \\
 1886 & \\
 1887 & \\
 1888 & \\
 1889 &
 \end{aligned}$$

Substituting this into the expression for $Y_{t,2\eta}$ we obtain a summation over i.i.d. terms while separating out the terms with dependent terms, similar to the one-step update in Equation 24.

$$\begin{aligned}
 1866 \quad Y_{t,2\eta} &= \frac{1}{\sqrt{n}} \sum_{\kappa=1}^n B_{\kappa}^0 U_{\kappa, 1}^0 \varphi'(U_{\kappa, 1}^0 R_{t, 2\eta, -\kappa, -\kappa} + U_{\kappa, 2}^0 t) \\
 1867 &\quad + \frac{\eta}{n} \sum_{\kappa=1}^n (B_{\kappa}^0)^2 U_{\kappa, 1}^0 \varphi''(U_{\kappa, 1}^0 R_{2\eta, t, -\kappa} + U_{\kappa, 2}^0 t) \sum_{i=1}^{\infty} \sum_{\alpha \in \Xi_i} \mathbb{B}_{\alpha} + \sum_{\mathbf{c} \in \mathcal{C}_i} \sum_{\mathbf{m} \in \mathcal{M}_i} \sum_{j=1}^i \\
 1868 &\quad \left[\mathbb{C}_{\mathbf{c}, \mathbf{m}, \alpha} \left(\int_0^T \left(U_{\kappa, 2}^0 \varphi'(U_{\kappa} \cdot [\tilde{s}_{l, \eta}, l]) - \beta \varphi(U_{\kappa} \cdot [\tilde{s}_{l, \eta}, l]) \right) K_{-j, -\kappa} dl \right) \right] I_{\alpha}[1]_{0,t} \\
 1869 &\quad + \frac{\eta^2}{n} \sum_{\kappa=1}^n O(1),
 1870 & \\
 1871 & \\
 1872 & \\
 1873 & \\
 1874 & \\
 1875 & \\
 1876 & \\
 1877 & \\
 1878 & \\
 1879 & \\
 1880 & \\
 1881 & \\
 1882 & \\
 1883 & \\
 1884 & \\
 1885 & \\
 1886 & \\
 1887 & \\
 1888 & \\
 1889 &
 \end{aligned}$$

where $R_{t,2\eta,-n,-n}$ is the expression as follows:

$$\begin{aligned}
 1880 \quad R_{t,2\eta,-n,-n} &= \sum_{i=1}^{\infty} \sum_{\alpha \in \Xi_i} \mathbb{B}_{\alpha} + \left[\sum_{\mathbf{c} \in \mathcal{C}_i, \mathbf{m} \in \mathcal{M}_i} \mathbb{C}_{\mathbf{c}, \mathbf{m}, \alpha} \prod_{j=1}^i \left(F_{\pi}^{(c_j)}(s_0; W^0) \right. \right. \\
 1881 &\quad + \eta \int_0^T e^{-\beta u} \left[\left(\frac{1}{n} \sum_{\kappa=1}^{n-1} C_{\kappa}^0 R_{\eta, u, -n} \varphi'(W_{\kappa}^0 R_{\eta, u, -n}) \phi^{(c_j)}(s_0, W_{\kappa}^0, C_{\kappa}^0) \right) \right. \\
 1882 &\quad \left. \left. + \left[r(R_{\eta, u, -n}) + \frac{1}{\sqrt{n}} \sum_{\kappa'=1}^{n-1} B_{\kappa'}^0 \left(U_{\kappa', 2}^0 \varphi'(U_{\kappa'}^0 \cdot [R_{\eta, u, -n}, u]) - \beta \varphi(U_{\kappa'}^0 \cdot [R_{\eta, u, -n}, u]) \right) \right] du \right)^{m_j} \right. \\
 1883 &\quad \left. + \sum_{j=1}^i m_j O(\eta^2 n^{-1/2}) K_{-j, -n} \right] I_{\alpha}[1]_{0,t} \\
 1884 & \\
 1885 & \\
 1886 & \\
 1887 & \\
 1888 & \\
 1889 &
 \end{aligned}$$

which represents the removal of the dependency on the random variables at index n across two gradient steps, and $R_{t,2\eta,-\kappa,-\kappa}$ follows similarly.

1890

F.4 GROWTH OF RESIDUAL PART IN STATE VARIABLE

1891

1892 Following the expressions for $s_{t,\eta}, s_{t,2\eta}$ we can prove the following proposition.

1893

1894 **Proposition F.2.** *Given a τ that is a multiple of η and $\kappa \leq n$ we find that $\tilde{s}_{t,\tau}$ is the sum of two*
 1895 *variables: one independent of B_κ^0, U_κ^0 and another of order $O(\eta n^{-1/2})$.*

1895

1896

1897 *Proof.* We prove this by induction. For the initial gradient step $\tau = \eta$, this is evident from the
 1898 decomposition in Equation 21. Note that once again we prove for n to simplify the summation and
 1899 notation and all these results apply for κ . To prove for general τ we assume that it holds for $\tau - \eta$
 1900 and then prove that this case holds for τ . For $\tau - \eta$, we write $s_{t,\tau-\eta} = \bar{R}_{t,\tau-\eta,-n} + O(\eta n^{-1/2})$,
 1901 where $\bar{R}_{t,\tau-\eta,-n}$ is the expression independent of B_n^0, U_n^0 . First, we define $R_{t,\tau,-n}$, following the
 1902 notation and explanation provided in Section F.2:

1902

$$1903 R_{t,\tau,-n} = \sum_{i=1}^{\infty} \sum_{\alpha \in \Xi_i} \mathbb{B}_\alpha + \left[\sum_{\mathbf{c} \in \mathcal{C}_i, \mathbf{m} \in \mathcal{M}_i} \mathbb{C}_{\mathbf{c}, \mathbf{m}, \alpha} (\Pi_{j=1}^i K(j, W^0, U^0, n, \tau)) \right] I_\alpha[1]_{0,t}, \text{ where}$$

$$1904$$

$$1905 K(j, W^0, U^0, n, \tau) = \left(F_\pi^{(c_j)}(s_0; W^0) + \eta \int_0^T e^{-\beta l} \Phi^{(c_j)}(s_0; W^0) \Phi(\tilde{s}_{l,\tau-\eta}; W^0)^\top \right.$$

$$1906 \left. \begin{aligned} & [r(\tilde{s}_{l,\tau-\eta}) \\ & + \frac{1}{\sqrt{n}} \sum_{\kappa=1}^{n-1} B_\kappa^0 (U_{\kappa,2}^0 \varphi'(U_\kappa \cdot [\tilde{s}_{l,\tau-\eta} - \beta \varphi(U_\kappa \cdot [\tilde{s}_{l,\tau-\eta} dl])]) \end{aligned} \right)^{m_j}.$$

$$1907$$

$$1908$$

$$1909$$

$$1910$$

$$1911$$

$$1912$$

1913

Therefore, similar to Section F.3 we can rewrite $K(j, W^0, U^0, n, \tau)$ as:

1914

$$K(j, W^0, U^0, n, \tau)$$

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

$$= \left(F_\pi^{(c_j)}(s_0; W^0) + \eta \int_0^T e^{-\beta u} \Phi^{(c_j)}(s_0; W^0) \Phi(\tilde{s}_{l,\tau-\eta}; W^0)^\top \right.$$

$$\left. \begin{aligned} & [r(\tilde{s}_{u,\tau-\eta}) \\ & + \frac{1}{\sqrt{n}} \sum_{\kappa=1}^{n-1} B_\kappa^0 (U_{\kappa,2}^0 \varphi'(U_\kappa \cdot [\tilde{s}_{u,\tau-\eta}, u]) - \beta \varphi(U_\kappa \cdot [\tilde{s}_{u,\tau-\eta}, u]) du] \end{aligned} \right)^{m_j}$$

$$= \left(F_\pi^{(c_j)}(s_0; W^0) + \eta \int_0^T e^{-\beta u} \left[\left(\frac{1}{n} \sum_{\kappa=1}^{n-1} C_\kappa^0 \bar{R}_{\eta,u,-n} \varphi'(W_\kappa^0 R_{\eta,u,-n}) \phi^{(c_j)}(s_0, W_\kappa^0, C_\kappa^0) \right) \right. \right.$$

$$+ \left. \left. \begin{aligned} & [r(\bar{R}_{\tau-\eta,u,-n}) + \frac{1}{\sqrt{n}} \sum_{\kappa'=1}^{n-1} B_{\kappa'}^0 (U_{\kappa',2}^0 \varphi'(U_{\kappa'}^0 \cdot [\bar{R}_{\tau-\eta,u,-n}, u]) - \beta \varphi(U_{\kappa'}^0 \cdot [\bar{R}_{\tau-\eta,u,-n}, u]) du] \end{aligned} \right] \right. \\ & \left. + O(\eta^2 n^{-1/2}) \right)^{m_j}.$$

1932

Substituting this into the expression of $R_{t,\tau,-n}$ above we obtain:

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

$$R_{t,\tau,-n} = \sum_{i=1}^{\infty} \sum_{\alpha \in \Xi_i} \mathbb{B}_\alpha + \left[\sum_{\mathbf{c} \in \mathcal{C}_i, \mathbf{m} \in \mathcal{M}_i} \mathbb{C}_{\mathbf{c}, \mathbf{m}, \alpha} \Pi_{j=1}^i \left(F_\pi^{(c_j)}(s_0; W^0) \right. \right.$$

$$+ \eta \int_0^T e^{-\beta u} \left[\left(\frac{1}{n} \sum_{\kappa=1}^{n-1} C_\kappa^0 \bar{R}_{\tau-\eta,u,-n} \varphi'(W_\kappa^0 \bar{R}_{\tau-\eta,u,-n}) \phi^{(c_j)}(s_0, W_\kappa^0, C_\kappa^0) \right) \right. \\ \left. \left. \begin{aligned} & [r(\bar{R}_{\tau-\eta,u,-n}) + \frac{1}{\sqrt{n}} \sum_{\kappa'=1}^{n-1} B_{\kappa'}^0 (U_{\kappa',2}^0 \varphi'(U_{\kappa'}^0 \cdot [\bar{R}_{\tau-\eta,u,-n}, u]) - \beta \varphi(U_{\kappa'}^0 \cdot [\bar{R}_{\tau-\eta,u,-n}, u]) du] \end{aligned} \right] \right. \\ & \left. + \sum_{j=1}^i m_j O(\eta^2 n^{-1/2}) K_{-j,-n} \right] I_\alpha[1]_{0,t},$$

1944 which we simplify by removing the $I_\alpha[1]_{0,t}$ expression:
1945

$$\begin{aligned}
1946 \quad R_{t,\tau,-n} = & \sum_{i=1}^{\infty} \sum_{\alpha \in \Xi_i} \mathbb{B}_\alpha + \left[\sum_{\mathbf{c} \in \mathcal{C}_i, \mathbf{m} \in \mathcal{M}_i} \mathbb{C}_{\mathbf{c}, \mathbf{m}, \alpha} \prod_{j=1}^i \left(F_\pi^{(c_j)}(s_0; W^0) \right. \right. \\
1947 & + \eta \int_0^T e^{-\beta u} \left[\left(\frac{1}{n} \sum_{\kappa=1}^{n-1} C_\kappa^0 \bar{R}_{\tau-\eta, u, -n} \varphi'(W_\kappa^0 \bar{R}_{\tau-\eta, u, -n}) \phi^{(c_j)}(s_0, W_\kappa^0, C_\kappa^0) \right) \right] \\
1948 & + \left. \left. \left[r(\bar{R}_{\tau-\eta, u, -n}) \right. \right. \right. \\
1949 & + \left. \left. \left. + \frac{1}{\sqrt{n}} \sum_{\kappa'=1}^{n-1} B_{\kappa'}^0 \left(U_{\kappa', 2}^0 \varphi'(U_{\kappa'}^0 \cdot [\bar{R}_{\tau-\eta, u, -n}, u]) - \beta \varphi(U_{\kappa'}^0 \cdot [\bar{R}_{\tau-\eta, u, -n}, u]) \right) \right] du \right)^{m_j} I_\alpha[1]_{0,t} \\
1950 & + O(\eta^2 n^{-1/2}) \sum_{i=1}^{\infty} \sum_{\alpha \in \Xi_i} \sum_{j=1}^i \mathbb{C}_{\mathbf{c}, \mathbf{m}, \alpha} K_{-j, -n} I_\alpha[1]_{0,t}. \\
1951 & \\
1952 & \\
1953 & \\
1954 & \\
1955 & \\
1956 & \\
1957 & \\
1958 & \\
1959 &
\end{aligned}$$

1960 We denote the part of the expression that does not include the $O(\eta^2 n^{-1/2})$ as $\bar{R}_{\tau, t, -n}$ which is
1961 independent of B_n^0, U_n^0 . Therefore, following the definition of $R_{t, \tau, -n}$ and $\tilde{s}_{t, \tau}$ we can write:

$$\begin{aligned}
1962 \quad \tilde{s}_{t, \tau} = & \bar{R}_{\tau, t, -n} + O(\eta^2 n^{-1/2}) \\
1963 & + \frac{\eta B_\kappa^0}{\sqrt{n}} \sum_{i=1}^{\infty} \sum_{\alpha \in \Xi_i} \mathbb{B}_\alpha + \sum_{\mathbf{c} \in \mathcal{C}_i, \mathbf{m} \in \mathcal{M}_i} \mathbb{C}_{\mathbf{c}, \mathbf{m}, \alpha} \left(\left(\int_0^T U_{n, 2}^0 \varphi'(U_n \cdot [\tilde{s}_{l, \tau-\eta}, l]) - \beta \varphi(U_n \cdot [\tilde{s}_{l, \tau-\eta}, l]) \right) \right. \\
1964 & \left. \left. \prod_{\substack{j'=1 \\ j' \neq j}}^i K(j', W^0, U^0, l, n, \eta) dl \right), \right. \\
1965 & \\
1966 & \\
1967 & \\
1968 & \\
1969 &
\end{aligned}$$

1970 which proves the statement of the proposition. \square
1971

1972 G GENERALIZED LEMMA FOR GRADIENT UPDATES 1973

1974 Using the single-step and two-step which we now use to establish the following lemma. We further
1975 assume that φ and φ' are Lipschitz continuous. To prove this result, we first state a type of Berry-
1976 Eseen theorem for Martingales which will be used for proving a conditional central limit theorem in
1977 what follows. This is a restatement of the main result, theorem 1, by Haeusler (1988) with .
1978

1979 **Theorem G.1** (Haeusler (1988), simplified version). *Let $(X_k, \mathcal{F}_k)_{k \geq 1}$ be a sequence of square-
1980 integrable martingale differences, i.e.*

$$1981 \quad \mathbb{E}[X_k \mid \mathcal{F}_{k-1}] = 0, \quad \mathbb{E}[X_k^2] < \infty,$$

1982 such that $\mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \mathcal{F}_2 \dots$

1983 Define the partial sums

$$1984 \quad S_n = \sum_{k=1}^n X_k,$$

1985 the \mathcal{F}_0 -conditional variance

$$1986 \quad D_n^2 := \sum_{k=1}^n \mathbb{E}[X_k^2 \mid \mathcal{F}_0],$$

1987 and the predictable quadratic variation

$$1988 \quad \langle S \rangle_n := \sum_{k=1}^n \mathbb{E}[X_k^2 \mid \mathcal{F}_{k-1}].$$

1989 Let $\nu(x)$ denote the standard normal distribution function. Then there exists a universal constant
1990 $C > 0$ such that

$$1991 \quad \sup_{x \in \mathbb{R}} \left| \mathbb{P} \left(\frac{S_n}{B_n} \leq x \right) - \nu(x) \right| \leq C (L_n + N_n),$$

1998 where

$$1999 \quad L_n := \frac{1}{B_n^3} \sum_{k=1}^n \mathbb{E}[|X_k|^3], \quad N_n := \frac{1}{B_n^3} \mathbb{E}[\langle S \rangle_n - D_n^2]^{3/2}.$$

2000 Equipped with this theorem, we prove the following key lemma.

2001 **Lemma G.2.** *At gradient step τ , which is an integer multiple of η , a random variable of the form:*

$$2002 \quad Y_{t,\tau} = \frac{1}{\sqrt{n}} \sum_{\kappa=1}^n B_\kappa^0 U_{\kappa,1}^0 \varphi'(U_\kappa^0 \cdot [\tilde{s}_{t,\tau}, t]),$$

2003 *conditioned upon $\tilde{s}_{t,\tau} = s$ is equal in distribution to the sum of a 0 centered Gaussian random*
 2004 *variable with variance:*

$$2005 \quad \mathbb{E}[B^2 U_1^2 (\varphi'(U_1 s + U_2 t))^2], \text{ where } U_1, U_2 \sim \mathcal{N}(0, 1), B \sim \text{Unif}(-1, 1),$$

2006 *up to an error term of order $O(1/\sqrt{n})$.*

2007 *Proof.* We prove this using proposition F.2 for τ , which are integer multiples of η .

2008 **Bounding the error:** For a fixed scalar s we have that $Y_t(s) = \frac{1}{\sqrt{n}} \sum_{\kappa=1}^n B_\kappa^0 U_{\kappa,1}^0 \varphi'(U_\kappa^0 \cdot [s, t])$ is
 2009 equal to a Gaussian of variance $\mathbb{E}[B^2 U_1^2 (\varphi'(U_1 s + U_2 t))^2]$ plus $O(1/\sqrt{n})$ by Theorem F.1. The
 2010 variance will be denoted by $\text{var}(s) = \mathbb{E}[B^2 U_1^2 (\varphi'(U_1 s + U_2 t))^2]$. From proposition F.2 we know
 2011 that $\tilde{s}_{t,\tau} = \bar{R}_{t,\tau,-\kappa} + O(\eta n^{-1/2})$, where $\bar{R}_{t,\tau,-\kappa}$ is independent of B_κ^0, U_κ^0 . Let ,

$$2012 \quad Z_{t,\tau} = \frac{1}{\sqrt{n}} \sum_{\kappa=1}^n B_\kappa^0 U_{\kappa,1}^0 \varphi'(U_\kappa^0 \cdot [R_{t,\tau,-\kappa}, t]) \text{ and } X_\kappa = \frac{1}{\sqrt{n}} B_\kappa^0 U_{\kappa,1}^0 \varphi'(U_\kappa^0 \cdot [\bar{R}_{t,\tau,-\kappa}, t]).$$

2013 Let \mathcal{F}_0 be the event $s_{t,\tau} = s$ and the subsequent \mathcal{F} be defined canonically such that $B_\kappa^0, U_\kappa^0, \bar{R}_{t,\tau,-\kappa}$
 2014 are measurable and $\mathcal{F}_0 \subseteq \mathcal{F}_1 \dots \subseteq \mathcal{F}_n$. Clearly,

$$2015 \quad \mathbb{E}[X_\kappa | \mathcal{F}_{\kappa-1}] = \mathbb{E}[B_\kappa^0 | \mathcal{F}_{\kappa-1}] \mathbb{E}[U_{\kappa,1}^0 \varphi'(U_\kappa^0 \cdot [\bar{R}_{t,\tau,-\kappa}, t]) | \mathcal{F}_{\kappa-1}] = 0,$$

2016 since B_κ^0 is independent of $\bar{R}_{t,\tau,-\kappa}$ (see Equation 23). Now we note that, following the notation in
 2017 theorem G.1, we have the \mathcal{F}_0 -conditional variance:

$$2018 \quad D_n^2 := \frac{1}{n} \sum_{\kappa=1}^n \mathbb{E}[(B_\kappa^0)^2 (U_{\kappa,1}^0)^2 \varphi'(U_\kappa^0 \cdot [\bar{R}_{t,\tau,-\kappa}])^2 | \mathcal{F}_0],$$

2019 which is non-zero if $\varphi'(U_\kappa^0 \cdot [\bar{R}_{t,\tau,-\kappa}])$ is measurably non-zero. Note that $|D_n - \text{var}(s)|$ is $O(n^{-1/2}\eta)$
 2020 because $|\bar{R}_{t,\tau,-\kappa} - s|$ is also $O(n^{-1/2}\eta)$. Further, the predictable quadratic variation is defined as:

$$2021 \quad \langle S \rangle_n := \sum_{k=1}^n \mathbb{E}[X_k^2 | \mathcal{F}_{k-1}],$$

2022 and since we have φ' is Lipschitz with some Lipschitz constant $C_{\varphi'}$ and $\bar{R}_{t,\tau,-\kappa} - \tilde{s}_{t,\tau} = O(n^{-1/2}\eta)$,
 2023 we have:

$$2024 \quad \langle S \rangle_n = \mathbb{E}[B^2 U_1^2 (\varphi'(U_1 \tilde{s}_{t,\tau} + U_2 t))^2] + O(\eta),$$

2025 where the expectation is over the randomness of U_1, U_2, B . Consequently, we have

$$2026 \quad N_n = O((\eta)^{3/2}).$$

2027 We also have the following:

$$2028 \quad L_n = \frac{1}{D_n^3} \frac{1}{n^{3/2}} \sum_{\kappa=1}^n \mathbb{E}[|B_\kappa^0 U_{\kappa,1}^0 \varphi'(U_\kappa^0 \cdot [\tilde{s}_{t,\tau}, t])|^3] = O\left(\frac{1}{\sqrt{n}}\right),$$

2029 since $|B_\kappa^0 U_{\kappa,1}^0 \varphi'(U_\kappa^0 \cdot [\tilde{s}_{t,\tau}, t])| = O(1)$. Therefore, by theorem G.1 we have the following:

$$2030 \quad \sup_{x \in \mathbb{R}} \left| \mathbb{P}\left(\frac{S_n}{B_n} \leq x\right) - \nu(x) \right| = O\left(\frac{1}{\sqrt{n}}\right).$$

2031 This proves the statement of the lemma. □

2052 H CONDITIONAL LAW OF LARGE NUMBERS 2053

2054 Using the Martingale CLT above (Theorem G.1), we provide a corollary which will be applied
2055 to obtain a conditional law of large numbers, which will be used in subsequent proofs to bound
2056 expressions to 0 by $O(1/\sqrt{n})$.

2057 **Theorem H.1** (Conditional LLN via martingale CLT). *Let $(Y_k, \mathcal{F}_k)_{k \geq 1}$ be \mathcal{F}_k -adapted with $\mu :=$
2058 $\mathbb{E}[Y_k]$ and $\mathbb{E}|Y_k|^3 < \infty$, and fix a sub- σ -field $\mathcal{F}_0 \subseteq \mathcal{F}_1$. Given the Doob split*

$$2059 \quad Y_k - \mu = X_k + A_k, \quad X_k := Y_k - \mathbb{E}(Y_k | \mathcal{F}_{k-1}), \quad A_k := \mathbb{E}(Y_k | \mathcal{F}_{k-1}) - \mu,$$

2060 and the partial sums

$$2062 \quad M_n := \sum_{k=1}^n X_k, \quad R_n := \sum_{k=1}^n A_k, \quad S_n := \sum_{k=1}^n Y_k = \mu n + M_n + R_n.$$

2065 We also we define the \mathcal{F}_0 -conditional variance and the predictable quadratic variation as:

$$2067 \quad B_n^2(\mathcal{F}_0) := \mathbb{E}[M_n^2 | \mathcal{F}_0] = \sum_{k=1}^n \mathbb{E}[X_k^2 | \mathcal{F}_0], \quad \langle M \rangle_n := \sum_{k=1}^n \mathbb{E}[X_k^2 | \mathcal{F}_{k-1}].$$

2071 Under the following assumptions

2073 (i) Conditional variance growth: there exists $\sigma^2(\mathcal{F}_0) \in (0, \infty)$ a.s. such that

$$2074 \quad \frac{B_n^2(\mathcal{F}_0)}{n} \xrightarrow[n \rightarrow \infty]{a.s.} \sigma^2(\mathcal{F}_0).$$

2077 (ii) Conditional Haeusler convergence to 0:

$$2079 \quad L_n(\mathcal{F}_0) := \frac{1}{B_n^3(\mathcal{F}_0)} \sum_{k=1}^n \mathbb{E}[|X_k|^3 | \mathcal{F}_0] \rightarrow 0 \quad a.s.,$$

$$2081 \quad N_n(\mathcal{F}_0) := \frac{1}{B_n^3(\mathcal{F}_0)} \mathbb{E}[|\langle M \rangle_n - B_n^2(\mathcal{F}_0)|^{3/2} | \mathcal{F}_0] \rightarrow 0 \quad a.s.$$

2084 (iii) (Predictable remainder) $\frac{R_n}{\sqrt{n}} \xrightarrow[n \rightarrow \infty]{a.s.} 0$.

2086 We have (conditional LLN with rate in \mathbb{L}^1)

$$2088 \quad \mathbb{E}\left[\left|\frac{1}{n} \sum_{k=1}^n Y_k - \mu\right| \middle| \mathcal{F}_0\right] \leq \frac{\sqrt{\sigma^2(\mathcal{F}_0)}}{\sqrt{n}} + \frac{C}{n} \quad a.s.,$$

2091 for a constant C depending only on $\sup_k \mathbb{E}|Z_k|$. In particular, $\frac{1}{n} \sum_{k=1}^n Y_k \rightarrow \mu$ in \mathbb{L}^1 (hence in
2092 probability) given \mathcal{F}_0 , with leading rate $O_{a.s.}(n^{-1/2})$.

2094 *Proof sketch.* Write $\bar{Y}_n - \mu = \frac{M_n}{n} + \frac{R_n}{n}$. Conditionally on \mathcal{F}_0 ,

$$2096 \quad \mathbb{E}\left[\left|\frac{M_n}{n}\right| \middle| \mathcal{F}_0\right] \leq \frac{1}{n} (\mathbb{E}[M_n^2 | \mathcal{F}_0])^{1/2} = \frac{B_n(\mathcal{F}_0)}{n} \sim \frac{\sqrt{\sigma^2(\mathcal{F}_0)}}{\sqrt{n}},$$

2098 giving the $1/\sqrt{n}$ term. The coboundary gives $\mathbb{E}(|R_n| | \mathcal{F}_0) = O_{a.s.}(1)$, hence $\mathbb{E}(|R_n|/n | \mathcal{F}_0) =$
2099 $O_{a.s.}(1/n)$, which proves (A).

2100 For (B), we apply the conditional Haeusler bound to $M_n/B_n(\mathcal{F}_0)$ (theorem G.1) and the Stein
2101 inequality for bounded C^1 test functions to get

$$2103 \quad \left|\mathbb{E}[F(M_n/B_n(\mathcal{F}_0)) | \mathcal{F}_0] - \mathbb{E}[F(G)]\right| \leq C(1 + \|F'\|_\infty) (L_n(\mathcal{F}_0) + N_n(\mathcal{F}_0)) = O_{a.s.}(n^{-1/2}).$$

2104 Finally, replace $M_n/B_n(\mathcal{F}_0)$ by $\sqrt{n}(\bar{Y}_n - \mu)/\sqrt{\sigma^2(\mathcal{F}_0)}$: since $B_n(\mathcal{F}_0)/\sqrt{n} \rightarrow \sqrt{\sigma^2(\mathcal{F}_0)}$ a.s. by
2105 (i) and $R_n/\sqrt{n} \rightarrow 0$ in L^1 (from (iii)), this perturbation is $o_{a.s.}(1)$ in the test function bound. \square

2106 I SUFFICIENT STATISTICS FOR CHANGE IN VALUE ESTIMATES 2107

2108 In Section F we describe the expression for the change in the value estimates over gradient steps.
2109 We state the following lemma summarizing the expression for the change over the gradient step
2110 $\eta = O(1/\sqrt{n})$ in the following lemma.

2111 **Lemma I.1.** *The change in the value estimate in a single step of gradient update $\Delta \tilde{s}_{t,\tau}$ is as follows:*

$$2113 \quad \Delta v_{t,\tau} = \Delta \tilde{s}_{t,\tau} \left[\frac{1}{\sqrt{n}} \sum_{\kappa=1}^n B_{\kappa}^0 U_{\kappa,1}^0 \left(\varphi''(U_{\kappa}^0 \cdot [\tilde{s}_{t,\tau}, t]) - \varphi''(U_{\kappa}^0 \cdot [\tilde{s}_{t,\tau}, t]) (U_{\kappa,1}^0 \tilde{s}_{t,\tau} + U_{\kappa,2}^0 t) \right) \right] \\ 2114 \quad + \frac{\eta}{\sqrt{n}} \sum_{\kappa=1}^n B_{\kappa}^0 \left(\varphi'(U_{\kappa}^0 \cdot [\tilde{s}_{t,\tau}, t]) [\tilde{s}_{t,\tau}, t]^{\top} \widehat{\mathbb{G}}(U^{\tau}, W^{\tau})_{\kappa} \right) + O(\eta^2), \\ 2115 \quad 2116 \quad 2117 \quad 2118 \quad (29)$$

2119 and its distribution, conditioned on $\tilde{s}_{t,\tau}, v_{t,\tau}, v'_{t,\tau}, a_{t,\tau}$, is a Gaussian with mean:

$$2121 \quad \int_0^T e^{-\beta l} \mathbb{E} [B^2 \varphi'(U \cdot [\tilde{s}_{t,\tau}, t]) \varphi'(U \cdot [\tilde{s}_{l,\tau}, l]) (\tilde{s}_{l,\tau} \tilde{s}_{t,\tau} + lt) q_{l,\tau}] dl, \text{ where} \\ 2122 \quad 2123 \quad q_{l,\tau} = \partial_t v_{l,\tau} + r(\tilde{s}_{l,\tau}) - \beta v_{l,\tau} \text{ and } U = [U_1, U_2] \sim \mathcal{N}(0, 1), B \sim \text{Unif}(-1, 1), \\ 2124$$

2125 multiplied by η and variance:

$$2126 \quad \mathbb{E} [B^2 U_1^2 (\varphi''(U \cdot [\tilde{s}_{t,\tau}, t]) - \varphi''(U \cdot [\tilde{s}_{t,\tau}, t]) (U_1 \tilde{s}_{t,\tau} + U_2 t))^2] \\ 2127 \quad \text{where } U = [U_1, U_2] \sim \mathcal{N}(0, 1), B \sim \text{Unif}(-1, 1), \\ 2128 \quad 2129$$

2130 multiplied by $(\Delta \tilde{s}_{t,\tau})^2$ up to an error of $O(1/\sqrt{n})$.

2132 *Proof.* The derivation of the expression in equation 29 is provided in Section F and we obtain it here
2133 subsuming all the terms that are of order $O(\eta^2)$. The argument for the Gaussian variance, under the
2134 conditioned variables described above, is derived from Lemma G.2.

2135 To prove the mean converging at rate $O(1/\sqrt{n})$, we use Theorem H.1. The expression above in
2136 Equation 29 can be re-written as:

$$2137 \quad \frac{\eta}{\sqrt{n}} \sum_{\kappa=1}^n B_{\kappa}^0 \left(\varphi'(U_{\kappa}^0 \cdot [\tilde{s}_{t,\tau}, t]) [\tilde{s}_{t,\tau}, t]^{\top} \widehat{\mathbb{G}}(U^{\tau}, W^{\tau})_{\kappa} \right) \\ 2138 \quad 2139 \quad 2140 \quad = \eta \int_0^T e^{-\beta l} \frac{1}{n} \sum_{\kappa=1}^n (B_{\kappa}^0)^2 \varphi'(U_{\kappa}^0 \cdot [\tilde{s}_{t,\tau}, t]) \varphi'(U_{\kappa}^0 \cdot [\tilde{s}_{l,\tau}, l]) (\tilde{s}_{l,\tau} \tilde{s}_{t,\tau} + lt) q_{l,\tau} dl. \\ 2141 \quad 2142 \quad 2143$$

Therefore, in the notation of Theorem H.1 and the leave one out notation of Lemma G.2 we write:

$$2145 \quad Y_{\kappa} = \int_0^T e^{-\beta l} (B_{\kappa}^0)^2 \varphi'(U_{\kappa}^0 \cdot [\bar{R}_{t,\tau,-\kappa}, t]) \varphi'(U_{\kappa}^0 \cdot [\bar{R}_{l,\tau,-\kappa}, l]) (\bar{R}_{l,\tau,-\kappa} \bar{R}_{t,\tau,-\kappa} + lt) q_{l,\tau} dl.$$

We propose μ (for LLN) as above and therefore the assumptions hold as follows:

1. The growth of conditional variance assumption holds because the squared difference between μ and Y_{κ} is bounded $|Y_{\kappa} - \mu| = O(1/\sqrt{n})$ and therefore their sum increased to power 2 divided by n is $O(1)$.
2. Conditional Haeusler convergence to 0: once again since $|Y_{\kappa} - \mu| = O(1/\sqrt{n})$ and $|\mathbb{E}[Y_{\kappa} | \mathcal{F}_{\kappa-1}] - \mu| = O(1/\sqrt{n})$ and therefore $|Y_{\kappa} - \mu|^3 = O(n^{-3/2})$ we have that:

$$2155 \quad \frac{\sum_{\kappa=1}^n |Y_{\kappa} - \mathbb{E}[Y_{\kappa} | \mathcal{F}_{\kappa-1}]|^3}{O(1)} \xrightarrow{0}, \text{a.s.}$$

2156 and also

$$2157 \quad \frac{\mathbb{E} [|\langle M \rangle_n - B_n^2(\mathcal{F}_0)|^{3/2} | \mathcal{F}_0]}{O(1)} \rightarrow 0.$$

2160 3. Let

2162

$$2163 \quad \mu(s_{t,\tau}) = \int_0^T e^{-\beta l} \mathbb{E} [B^2 \varphi'(U \cdot [\tilde{s}_{t,\tau}, t]) \varphi'(U \cdot [\tilde{s}_{l,\tau}, l]) (\tilde{s}_{l,\tau} \tilde{s}_{t,\tau} + lt) q_{l,\tau}] dl$$

2164

2165

2166 Since all $Y_\kappa - \mu(s_{t,\tau})$ has a leading $(B_\kappa^0)^3$ leading product term and is of order $O(1/\sqrt{n})$
2167 we know that it is centered around zero and therefore, $R_n/\sqrt{n} \rightarrow 0$.

2168

2169

2170

2171 Therefore, we have that expression in Equation 30 converges to $\mu(s_{t,\tau})$ at the rate $O(1/\sqrt{n})$ in its
2172 cdf. \square

2173

2174

2175

2176 We provide a similar lemma for the variable $v'_{t,\tau} = \partial_t v_{t,\tau}$.

2177

2178 **Lemma I.2.** *The change in the value estimate in a single step of gradient update $\Delta \tilde{s}_{t,\tau}$ is as follows:*

2179

$$2180 \quad \Delta \partial_t v_{t,\tau} = \Delta \tilde{s}_{t,\tau} \left[\frac{1}{\sqrt{n}} \sum_{\kappa=1}^n B_\kappa^0 U_{\kappa,1}^0 U_{\kappa,2}^0 \left(\varphi'''(U_\kappa^0 \cdot [\tilde{s}_{t,\tau}, t]) - \varphi'''(U_\kappa^0 \cdot [\tilde{s}_{t,\tau}, t]) (U_{\kappa,1}^0 \tilde{s}_{t,\tau} + U_{\kappa,2}^0 t) \right) \right]$$

2181

$$2182 \quad + \frac{\eta}{\sqrt{n}} \sum_{\kappa=1}^n B_\kappa^0 U_{\kappa,2}^0 \left(\varphi''(U_\kappa^0 \cdot [\tilde{s}_{t,\tau}, t]) [\tilde{s}_{t,\tau}, t]^\top \widehat{\mathbb{G}}(U^\tau, W^\tau)_\kappa \right) + O(\eta^2),$$

2183

2184

2185

2186

2187

2188 and its distribution, conditioned on $\tilde{s}_{t,\tau}, v_{t,\tau}, v'_{t,\tau}, a_{t,\tau}$ and $\Delta \tilde{s}_{t,\tau}$, is a Gaussian with mean:

2189

2190

$$2191 \quad \int_0^T e^{-\beta l} \mathbb{E} [B^2 U_2 \varphi''(U \cdot [\tilde{s}_{t,\tau}, t]) \varphi''(U \cdot [\tilde{s}_{l,\tau}, l]) (\tilde{s}_{l,\tau} \tilde{s}_{t,\tau} + lt) q_{l,\tau}] dl, \text{ where}$$

2192

$$2193 \quad q_{l,\tau} = \partial_t v_{l,\tau}^{\text{lin}} + r(\tilde{s}_{l,\tau}) - \beta v_{l,\tau}^{\text{lin}} \text{ and } U = [U_1, U_2] \sim \mathcal{N}(0, 1), B \sim \text{Unif}(-1, 1),$$

2194

2195 multiplied by η and variance:

2196

2197

$$2198 \quad \mathbb{E} \left[B^2 U_1^2 U_2^2 (\varphi'''(U \cdot [\tilde{s}_{t,\tau}, t]) - \varphi'''(U \cdot [\tilde{s}_{t,\tau}, t]) (U_1 \tilde{s}_{t,\tau} + U_2 t))^2 \right]$$

2199

2200 where $U = [U_1, U_2] \sim \mathcal{N}(0, 1), B \sim \text{Unif}(-1, 1)$,

2201 multiplied by $(\Delta \tilde{s}_{t,\tau})^2$ with an additional error of $O(1/\sqrt{n})$.

2202

2203

2204

2205

2206 *Proof.* The proof is based on taking a partial derivative with respect to t in Equation 29 and the rest
2207 follows from the conditional law of large numbers and CLT. \square

2208

2209

2210 J CHANGE IN ACTION OVER GRADIENT STEP

2211

2212 We define by $a_{t,\tau}$ the action chosen by the agent at time t and the gradient step τ . Formally, it is
2213 defined as $a_{t,\tau} = F^{\text{lin}}(\tilde{s}_{t,\tau}; W^\tau) = F_\pi(\tilde{s}_{t,\tau}; W^0) + \Phi(\tilde{s}_{t,\tau}; W^0) \Delta W^\tau$. Now, similar to the value

2214 estimate in Section F, consider the change in this variable:
 2215

$$\begin{aligned}
 a_{t,\tau+\eta} - a_{t,\tau} &= F_\pi(s_{t,\tau+\eta}; W^0) + \Phi(s_{t,\tau+\eta}; W^0)(W^{\tau+\eta} - W^0) \\
 &\quad - F_\pi(\tilde{s}_{t,\tau}; W^0) + \Phi(\tilde{s}_{t,\tau}; W^0)(W^\tau - W^0) \\
 &= \frac{1}{\sqrt{n}} \sum_{\kappa=1}^n C_\kappa^0 (\varphi(W_\kappa^0 s_{t,\tau+\eta}) - \varphi(W_\kappa^0 \tilde{s}_{t,\tau})) \\
 &\quad + (\Phi(s_{t,\tau+\eta}; W^0) W^{\tau+\eta} - \Phi(s_{t,\tau}; W^0) W^\tau) - (\Phi(s_{t,\tau+\eta}; W^0) - \Phi(s_{t,\tau}; W^0)) W^0 \\
 &= \frac{1}{\sqrt{n}} \sum_{\kappa=1}^n C_\kappa^0 \left(\varphi'(W_\kappa^0 \tilde{s}_{t,\tau})(s_{t,\tau+\eta} - \tilde{s}_{t,\tau}) W_\kappa^0 \right. \\
 &\quad \left. + \frac{1}{2} \varphi''(W_\kappa^0 \tilde{s}_{t,\tau}) ((s_{t,\tau+\eta} - \tilde{s}_{t,\tau}) W_\kappa^0)^2 \right) + O(\eta^2) \\
 &\quad + \frac{1}{\sqrt{n}} \sum_{\kappa=1}^n C_\kappa^0 (\varphi'(W_\kappa^0 s_{t,\tau+\eta}) s_{t,\tau+\eta} W_\kappa^{\tau+\eta} - \varphi'(W_\kappa^0 s_{\tau,t}) \tilde{s}_{t,\tau} W_\kappa^\tau) \\
 &\quad - \frac{1}{\sqrt{n}} \sum_{\kappa=1}^n C_\kappa^0 (\varphi'(W_\kappa^0 s_{t,\tau+\eta}) s_{t,\tau+\eta} - \varphi'(W_\kappa^0 s_{\tau,t}) \tilde{s}_{t,\tau}) W_\kappa^0.
 \end{aligned}$$

2234 Similar to the previous section, consider the first expression in the summation above:
 2235 $W_\kappa^0 C_\kappa^0 \varphi'(W_\kappa^0 \tilde{s}_{t,\tau})$. To evaluate the sum of these variables in infinite width limit we have to separate
 2236 the dependence of $\tilde{s}_{t,\tau}$ on W_κ^0, C_κ^0 , we observe the following about $s_{t,0}$ and $\kappa = n$:
 2237

$$\begin{aligned}
 s_{t,0} &= \sum_{i=1}^{\infty} \sum_{\alpha \in \Xi_i} \left(\mathbb{B}_\alpha + \sum_{\mathbf{c} \in \mathcal{C}_i, \mathbf{m} \in \mathcal{M}_i} \mathbb{C}_{\mathbf{c}, \mathbf{m}, \alpha} \prod_{j=1}^i \left(F_\pi^{(c_j)}(s_0; W^0) \right)^{m_j} \right) I_\alpha[1]_{0,t} \\
 &= \sum_{i=1}^{\infty} \sum_{\alpha \in \Xi_i} \left(\mathbb{B}_\alpha + \sum_{\mathbf{c} \in \mathcal{C}_i, \mathbf{m} \in \mathcal{M}_i} \mathbb{C}_{\mathbf{c}, \mathbf{m}, \alpha} \prod_{j=1}^i \left(\frac{1}{\sqrt{n}} \sum_{\kappa=1}^n C_\kappa^0 \varphi^{(c_j)}(s_0 W_\kappa^0) \right)^{m_j} \right) I_\alpha[1]_{0,t},
 \end{aligned}$$

2245 where we can factor out the expression for $\kappa = n$ as follows:
 2246

$$\begin{aligned}
 s_{t,0} &= \sum_{i=1}^{\infty} \sum_{\alpha \in \Xi_i} \left(\mathbb{B}_\alpha + \sum_{\mathbf{c} \in \mathcal{C}_i, \mathbf{m} \in \mathcal{M}_i} \mathbb{C}_{\mathbf{c}, \mathbf{m}, \alpha} \prod_{j=1}^i \left(\frac{1}{\sqrt{n}} \sum_{\kappa=1}^{n-1} C_\kappa^0 \varphi^{(c_j)}(s_0 W_\kappa^0) \right)^{m_j} \right. \\
 &\quad \left. + \sum_{\mathbf{c} \in \mathcal{C}_i, \mathbf{m} \in \mathcal{M}_i} \mathbb{C}_{\mathbf{c}, \mathbf{m}, \alpha} \sum_{j=1}^i \frac{1}{\sqrt{n}} C_n^0 \varphi^{(c_j)}(s_0 W_n^0) K_{-j, -n} + O(n^{-2}) \right) I_\alpha[1]_{0,t},
 \end{aligned}$$

2254 where similar to the previous sections we have the following notation:
 2255

$$K_{-j, -n} = m_j \prod_{j'=1}^i \left(\frac{1}{\sqrt{n}} \sum_{\kappa=1}^{n-1} C_\kappa^0 \varphi^{(c_j)}(s_0 W_\kappa^0) \right)^{m_j},$$

2259 and the derivative of c_j order of φ is:
 2260

$$\varphi^{(c_j)}(s_0 W_n^0) = (W_n^0)^{c_j} \frac{\partial^{c_j} \varphi(x)}{x} \Big|_{x=s_0 W_n^0}.$$

2263 We further denote by $R_{t,0,-n}$:

$$R_{t,0,-n} = \sum_{i=1}^{\infty} \sum_{\alpha \in \Xi_i} \left(\mathbb{B}_\alpha + \sum_{\mathbf{c} \in \mathcal{C}_i, \mathbf{m} \in \mathcal{M}_i} \mathbb{C}_{\mathbf{c}, \mathbf{m}, \alpha} \prod_{j=1}^i \left(\frac{1}{\sqrt{n}} \sum_{\kappa=1}^{n-1} C_\kappa^0 \varphi^{(c_j)}(s_0 W_\kappa^0) \right)^{m_j} \right) I_\alpha[1]_{0,t}$$

Using this leave-one-out formulation, we further rewrite the summation as follows.

$$\begin{aligned} \frac{1}{\sqrt{n}} \sum_{\kappa=1}^n C_\kappa^0 W_\kappa^0 \varphi'(W_\kappa^0 s_{t,0}) &= \frac{1}{\sqrt{n}} \sum_{\kappa=1}^n C_\kappa^0 W_\kappa^0 \varphi'(W_\kappa^0 R_{t,0,-n}) \\ &+ \sum_{i=1}^{\infty} \sum_{\alpha \in \Xi_i} \sum_{\mathbf{c} \in \mathcal{C}_i, \mathbf{m} \in \mathcal{M}_i} \mathbb{C}_{\mathbf{c}, \mathbf{m}, \alpha} \sum_{j=1}^i \frac{1}{n} \sum_{\kappa=1}^n (C_\kappa^0)^2 \varphi^{(c_j)}(s_0 W_\kappa^0) W_\kappa^0 \varphi''(W_\kappa^0 R_{t,0,-n}) K_{-j,-\kappa}. \end{aligned} \quad (32)$$

Using the conditional law of large numbers above and the fact that $\varphi^{(c_j)}(s_0 W_n^0)$ is odd (for an odd function $\varphi = \tanh$), and together with $W_\kappa^0 \varphi''(W_\kappa^0 R_{t,0,-n})$ which is symmetric in W_κ^0 , we have that:

$$\frac{1}{n} \sum_{\kappa=1}^n (C_\kappa^0)^2 \varphi^{(c_j)}(s_0 W_\kappa^0) W_\kappa^0 \varphi''(W_\kappa^0 R_{t,0,-n}) K_{-j,-\kappa} = O\left(\frac{1}{\sqrt{n}}\right),$$

since the sequence inside the summation has mean 0 (by law of large numbers). Also, we note that, given the result that the Itô -Taylor expansion converges, we have:

$$\sum_{i=1}^{\infty} \sum_{\alpha \in \Xi_i} \sum_{\mathbf{c} \in \mathcal{C}_i, \mathbf{m} \in \mathcal{M}_i} \mathbb{C}_{\mathbf{c}, \mathbf{m}, \alpha} \sum_{j=1}^i (C_\kappa^0)^2 \varphi^{(c_j)}(s_0 W_\kappa^0) W_\kappa^0 \varphi''(W_\kappa^0 R_{t,0,-n}) K_{-j,-\kappa} = O(1).$$

Once again, similar to Lemma 3.1 we can show that the expression in Equation 32 is distributed as Gaussian with mean 0 and variance $\mathbb{E}[C^2 W^2 \varphi(W s)]$ with an additional error term of order $O(1/\sqrt{n})$, conditioned on $s_{t,0} = s$.

Now to show the inductive step, suppose that for a τ that is an integral multiple of η we can express the general expression of Equation 32 as the sum of a Gaussian plus an error term of order $O(1/\sqrt{n})$. Now we expand it recursively:

$$\begin{aligned} \frac{1}{\sqrt{n}} \sum_{\kappa=1}^n C_\kappa^0 \varphi'(W_\kappa^0 \tilde{s}_{t,\tau}) &= \frac{1}{\sqrt{n}} \sum_{\kappa=1}^n C_\kappa^0 \varphi'(W_\kappa^0 R_{t,\tau,-\kappa}) \\ &+ \sum_{i=1}^{\infty} \sum_{\alpha \in \Xi_i} \sum_{\mathbf{c} \in \mathcal{C}_i, \mathbf{m} \in \mathcal{M}_i} \mathbb{C}_{\mathbf{c}, \mathbf{m}, \alpha} \sum_{j=1}^i \frac{1}{n} \sum_{\kappa=1}^n (C_\kappa^0)^2 \varphi^{(c_j)}(s_0 W_\kappa^0) W_\kappa^0 \varphi''(W_\kappa^0 R_{t,0,-n}) K_{-j,-\kappa}. \end{aligned} \quad (33)$$

To isolate the dependence on W_κ^0, C_κ^0 in $K_{-j,-\kappa}$ we expand the expression for $\kappa = n$ as follows:

$$\begin{aligned} K_{-j,-n} &= \prod_{j=1}^i \left(\frac{1}{\sqrt{n}} \sum_{\kappa=1}^{n-1} C_\kappa^0 \varphi^{(c_j)}(\tilde{s}_{t,\tau} W_\kappa^0) + \Phi^{(c_j)}(s_0; W^0) W^\tau \right)^{m_j}, \\ &= \prod_{j=1}^i \left(\frac{1}{\sqrt{n}} \sum_{\kappa=1}^{n-1} C_\kappa^0 \varphi^{(c_j)}(\tilde{s}_{t,\tau} W_\kappa^0) + \frac{1}{n} \sum_{\kappa=1}^n \phi^{(c_j)}(s_0; W_\kappa^0, B_n^0) W_\kappa^\tau \right)^{m_j} \\ &= K_{-j,-n,-n} + \frac{1}{n} \sum_{j=1}^i m_j \phi^{(c_j)}(s_0; W_n^0, B_n^0) K_{-j,-n}. \end{aligned}$$

Therefore, the additional dependence on W_n^0, B_n^0 in equation 33 is $O(1/n^2)$. Therefore, we have shown that for a general τ the inductive argument is valid.

Continuing the decomposition of the expressions in $\Delta a_{t,\tau}$ above, we observe:

$$\begin{aligned} \frac{1}{\sqrt{n}} \sum_{\kappa=1}^n C_\kappa^0 (\varphi'(W_\kappa^0 s_{t,\tau+\eta}) s_{t,\tau+\eta} W_\kappa^{\tau+\eta} - \varphi'(W_\kappa^0 s_{\tau,t}) \tilde{s}_{t,\tau} W_\kappa^\tau) \\ = \Delta \tilde{s}_{t,\tau} \frac{1}{\sqrt{n}} \sum_{\kappa=1}^n C_\kappa^0 (\varphi''(W_\kappa^0 \tilde{s}_{t,\tau}) W_\kappa^0) \\ + \frac{\eta}{\sqrt{n}} \sum_{\kappa=1}^n C_\kappa^0 \varphi'(W_\kappa^0 \tilde{s}_{t,\tau}) \tilde{s}_{t,\tau} \hat{\mathcal{G}}(U, W)(U^\tau, W^\tau)_\kappa + O(\eta^2). \end{aligned}$$

2322 Further expanding the expression for $\Delta a_{t,\tau}$ we have the following:
 2323

$$\begin{aligned} 2324 \quad & \frac{1}{\sqrt{n}} \sum_{\kappa=1}^n C_{\kappa}^0 (\varphi'(W_{\kappa}^0 s_{t,\tau+\eta}) s_{t,\tau+\eta} - \varphi'(W_{\kappa}^0 s_{\tau,t}) \tilde{s}_{t,\tau}) W_{\kappa}^0 \\ 2325 \quad & = \frac{1}{\sqrt{n}} \sum_{\kappa=1}^n B_{\kappa}^0 \left(\varphi'(W_{\kappa}^0 \tilde{s}_{t,\tau}) \Delta \tilde{s}_{t,\tau} + \varphi''(W_{\kappa}^0 \tilde{s}_{t,\tau}) \Delta \tilde{s}_{t,\tau} W_{\kappa}^0 \tilde{s}_{t,\tau} \right) W_{\kappa}^0 + O(\eta^2). \\ 2326 \quad & \\ 2327 \quad & \\ 2328 \quad & \end{aligned}$$

2329 We also express the mean term which includes the gradient vector as follows:
 2330

$$\begin{aligned} 2331 \quad & \frac{\eta}{\sqrt{n}} \sum_{\kappa=1}^n C_{\kappa}^0 \varphi'(W_{\kappa}^0 \tilde{s}_{t,\tau}) \tilde{s}_{t,\tau} \hat{\mathcal{G}}(U, W)(U^{\tau}, W^{\tau})_{\kappa} + O(\eta^2) \\ 2332 \quad & \\ 2333 \quad & = \eta \int_0^T \frac{1}{n} \sum_{\kappa=1}^n (C_{\kappa}^0)^2 \varphi'(W_{\kappa}^0 \tilde{s}_{t,\tau}) \varphi'(W_{\kappa}^0 \tilde{s}_{l,\tau}) (\tilde{s}_{l,\tau} \tilde{s}_{t,\tau}) q_{l,\tau} dl. \\ 2334 \quad & \\ 2335 \quad & \\ 2336 \quad & \end{aligned}$$

2337 K SUFFICIENT STATISTICS FOR CHANGE IN ACTION 2338

2339 In Section J we derive the change in the action variable: $a_{t,\tau}$ over the gradient step. Here we provide
 2340 a lemma, analogous to Lemma I.1 but for $a_{t,\tau}$, summarizing the sufficient statistics required to track
 2341 the change in the action variable.

2342 **Lemma K.1.** *The change in the action variable in a single step of gradient update $\Delta a_{t,\tau}$ is as
 2343 follows:*

$$\begin{aligned} 2344 \quad & \Delta a_{t,\tau} = \Delta \tilde{s}_{t,\tau} \frac{1}{\sqrt{n}} \sum_{\kappa=1}^n C_{\kappa}^0 W_{\kappa}^0 (\varphi''(W_{\kappa}^0 \tilde{s}_{t,\tau}) - \varphi''(W_{\kappa}^0 \tilde{s}_{t,\tau}) W_{\kappa}^0 \tilde{s}_{t,\tau}) \\ 2345 \quad & + \eta \int_0^T \frac{1}{n} \sum_{\kappa=1}^n (C_{\kappa}^0)^2 \varphi'(W_{\kappa}^0 \tilde{s}_{t,\tau}) \varphi'(W_{\kappa}^0 \tilde{s}_{l,\tau}) (\tilde{s}_{l,\tau} \tilde{s}_{t,\tau}) q_{l,\tau} dl + O(\eta^2) \\ 2346 \quad & \\ 2347 \quad & \\ 2348 \quad & \\ 2349 \quad & \end{aligned} \tag{34}$$

2350 and its distribution, conditioned on $\tilde{s}_{t,\tau}, v_{t,\tau}, v'_{t,\tau}, a_{t,\tau}$ and $\Delta \tilde{s}_{t,\tau}$, is a Gaussian with mean:
 2351

$$\begin{aligned} 2352 \quad & \int_0^T e^{-\beta l} \mathbb{E} [C^2 \varphi'(W \tilde{s}_{t,\tau}) \varphi'(W \tilde{s}_{l,\tau}) \tilde{s}_{l,\tau} \tilde{s}_{t,\tau} q_{l,\tau}] dl, \text{ where} \\ 2353 \quad & \\ 2354 \quad & q_{l,\tau} = \partial_t v_{l,\tau}^{\text{lin}} + r(\tilde{s}_{l,\tau}) - \beta v_{l,\tau}^{\text{lin}} \text{ and } W \sim \mathcal{N}(0, 1), C \sim \text{Unif}(-1, 1), \\ 2355 \quad & \text{multiplied by } \eta \text{ and variance:} \\ 2356 \quad & \\ 2357 \quad & \mathbb{E} [C^2 W^2 (\varphi''(W \tilde{s}_{t,\tau}) - \varphi''(W \tilde{s}_{t,\tau}) W \tilde{s}_{t,\tau})^2] \\ 2358 \quad & \text{where } W \sim \mathcal{N}(0, 1), C \sim \text{Unif}(-1, 1), \\ 2359 \quad & \text{multiplied by } (\Delta \tilde{s}_{t,\tau})^2 \text{ up to an error of } O(1/\sqrt{n}). \\ 2360 \quad & \end{aligned}$$

2361 *Proof.* The result and proof are similar to that of Lemma I.1. The proof of Gaussian variance follows
 2362 from the derivation and demonstration of the inductive step in Section J (see the discussion around
 2363 Equation 32) and the combination of the conditional law of large numbers (Theorem H.1) and the
 2364 conditional CLT (Theorem G.1). The proof of the Gaussian mean originates from the conditional law
 2365 of large numbers (Theorem H.1). \square
 2366

2367 A corollary of this lemma for $\partial_x F_{\pi}^{\text{lin}}$, which we utilize to estimate the change in the state variable, is
 2368 also presented below. We denote by $a'_{t,\tau} = \partial_x F_{\pi}^{\text{lin}}$.
 2369

2370 **Lemma K.2.** *The change in the action variable in a single step of gradient update $\Delta a_{t,\tau}$ is as
 2371 follows:*

$$\begin{aligned} 2372 \quad & \Delta a'_{t,\tau} = \Delta \tilde{s}_{t,\tau} \frac{1}{\sqrt{n}} \sum_{\kappa=1}^n C_{\kappa}^0 (W_{\kappa}^0)^2 (\varphi'''(W_{\kappa}^0 \tilde{s}_{t,\tau}) - \varphi'''(W_{\kappa}^0 \tilde{s}_{t,\tau}) W_{\kappa}^0 \tilde{s}_{t,\tau}) \\ 2373 \quad & + \eta \int_0^T \frac{1}{n} \sum_{\kappa=1}^n (C_{\kappa}^0)^2 W_{\kappa}^0 \varphi''(W_{\kappa}^0 \tilde{s}_{t,\tau}) \varphi'(W_{\kappa}^0 \tilde{s}_{l,\tau}) (\tilde{s}_{l,\tau} \tilde{s}_{t,\tau}) q_{l,\tau} dl + O(\eta^2) \\ 2374 \quad & \\ 2375 \quad & \end{aligned} \tag{35}$$

2376 and its distribution, conditioned on $\tilde{s}_{t,\tau}, v_{t,\tau}, v'_{t,\tau}, a_{t,\tau}$ and $\Delta\tilde{s}_{t,\tau}$, is a Gaussian with mean:
 2377

$$2378 \int_0^T e^{-\beta l} \mathbb{E} [C^2 W \varphi''(W \tilde{s}_{t,\tau}) \varphi'(W \tilde{s}_{t,\tau}) \tilde{s}_{t,\tau} \tilde{s}_{t,\tau} q_{l,\tau}] dl, \text{ where} \\ 2379 \\ 2380 q_{l,\tau} = \partial_t v_{l,\tau}^{lin} + r(\tilde{s}_{t,\tau}) - \beta v_{l,\tau}^{lin} \text{ and } W \sim \mathcal{N}(0, 1), C \sim \text{Unif}(-1, 1), \\ 2381$$

2382 multiplied by η and variance:
 2383

$$2384 \mathbb{E} [C^2 W^4 (\varphi'''(W \tilde{s}_{t,\tau}) - \varphi'''(W \tilde{s}_{t,\tau}) W \tilde{s}_{t,\tau})^2] \\ 2385 \text{ and } W \sim \mathcal{N}(0, 1), C \sim \text{Unif}(-1, 1), \\ 2386$$

2387 multiplied by $(\Delta\tilde{s}_{t,\tau})^2$ up to an error of $O(1/\sqrt{n})$.
 2388

2389 *Proof.* The proof proceeds by taking the partial with respect to s in equation 34 and then a similar
 2390 application of Theorems G.1 and H.1. \square
 2391

2393 L CHANGE IN STATE OVER GRADIENT STEP

2395 We analyze and better understand how the state variable changes over gradient steps. Similarly to
 2396 Section F and following the notation in Section F.1, we consider the difference for the learning rate η ,
 2397 i.e. $\Delta\tilde{s}_{t,\tau} = s_{t,\tau+\eta} - \tilde{s}_{t,\tau}$ and present the following Lemma.
 2398

2399 **Lemma L.1.** Define $Z_{l,t,\tau}$ as:

$$2400 Z_{t,l,\tau} = Y_{t,\tau} \int_0^t Y_{u,\tau}^{-1} h(\tilde{s}_{u,\tau}) \mathcal{C}_{u,l,\tau} du, \text{ with } Y_{t,\tau} \text{ is solution to} \\ 2401 \\ 2402 dY_{t,\tau} = (a_{t,\tau} + a'_{t,\tau}) Y_{t,\tau} dt + \sigma'(\tilde{s}_{t,\tau}) Y_{t,\tau} dw_t \\ 2403 \\ 2404 C_{u,l,\tau} = \mathbb{E} [C^2 \varphi'(\tilde{s}_{l,\tau} W) \varphi'(\tilde{s}_{t,\tau} W)], \text{ with } C \sim \text{Unif}(-1, 1), W \sim \mathcal{N}(0, 1). \\ 2405$$

2406 In addition, define $\mathbb{Z}_{t,\tau} = \int_0^t Z_{t,l,\tau} (v'_{l,\tau} + r(\tilde{s}_{l,\tau}) - \beta v'_{l,\tau}) dl$. The change in the state variable, $\Delta\tilde{s}_{t,\tau}$,
 2407 conditioned on $v_{t,\tau}, a_{t,\tau}, a'_{t,\tau}, \partial_t v_{t,\tau}$, is as follows:
 2408

$$2409 \Delta\tilde{s}_{t,\tau} = \eta \mathbb{Z}_{t,\tau} - M_{t,\tau} + G_{t,\tau} + O(1/\sqrt{n}), \text{ where} \\ 2410 \\ 2411 M_{t,\tau} = \tilde{s}_{t,\tau} - s_0 - \int_0^t (g(\tilde{s}_{u,\tau}) + h(\tilde{s}_{u,\tau}) a_{u,\tau}) du, \\ 2412$$

2413 and $G_{t,\tau}$ is a random variable and the martingale component of $x_{t,\tau}$, which follows similar dynamics
 2414 to $\tilde{s}_{t,\tau}$:

$$2415 dx_{t,\tau} = (g(x_{t,\tau}) + h(x_{t,\tau}) a_{t,\tau}) dt + \tilde{\sigma}(x_{t,\tau}) dw'_t,$$

2416 where w'_t is an independent Wiener process and therefore $Z_{t,\tau} = x_{t,\tau} - \mathbb{E}[x_{t,\tau}]$, where the expectation
 2417 is over the random process w'_t .
 2418

2419 *Proof.* Using the Itô -Taylor expansion of the state variable at time t (Equation 20) and taking the
 2420 difference for τ and $\tau + \eta$.
 2421

$$2422 \Delta\tilde{s}_{t,\tau} = \sum_{i=1}^{\infty} \sum_{\alpha \in \Xi_i} \sum_{\mathbf{c} \in \mathcal{C}_i, \mathbf{m} \in \mathcal{M}_i} \mathbb{C}_{\mathbf{c}, \mathbf{m}, \alpha} \left(\prod_{j=1}^i \left(F_{\pi}^{(c_j)}(s_0; W^0) + \eta \Phi^{(c_j)}(s_0; W^0) \Delta W^{\tau+\eta} \right)^{m_j} I_{\alpha}[1]_{0,t} \right. \\ 2423 \\ 2424 \left. - \prod_{j=1}^i \left(F_{\pi}^{(c_j)}(s_0; W^0) + \eta \Phi^{(c_j)}(s_0; W^0) \Delta W^{\tau} \right)^{m_j} I'_{\alpha}[1]_{0,t} \right) \\ 2425 \\ 2426 \\ 2427 + \sum_{i=1}^{\infty} \sum_{\alpha \in \Xi_i} \mathbb{B}_{\alpha} (I_{\alpha}[1]_{0,t} - I'_{\alpha}[1]_{0,t}) \\ 2428 \\ 2429$$

2430 Consider the deterministic parts of $\Delta \tilde{s}_{t,\tau}$, with respect to I or the deterministic part of the transition
2431 where we have $I_\alpha[1]_{0,t} = I'_\alpha[1]_{0,t}$.
2432

$$\begin{aligned} 2433 \Delta \tilde{s}_{t,\tau} &= \sum_{i=1}^{\infty} \sum_{\alpha \in \Xi_i \cap \mathcal{B}_i} \sum_{\mathbf{c} \in \mathcal{C}_i, \mathbf{m} \in \mathcal{M}_i} \mathbb{C}_{\mathbf{c}, \mathbf{m}, \alpha} \left(\Pi_{j=1}^i \left(F_\pi^{(c_j)}(s_0; W^0) + \Phi^{(c_j)}(s_0; W^0) \Delta W^{\tau+\eta} \right)^{m_j} \right. \\ 2434 &\quad \left. - \Pi_{j=1}^i \left(F_\pi^{(c_j)}(s_0; W^0) + \Phi^{(c_j)}(s_0; W^0) \Delta W^\tau \right)^{m_j} \right) I'_\alpha[1]_{0,t} \\ 2435 &= \sum_{i=1}^{\infty} \sum_{\alpha \in \Xi_i \cap \mathcal{B}_i} \sum_{\mathbf{c} \in \mathcal{C}_i, \mathbf{m} \in \mathcal{M}_i} \mathbb{C}_{\mathbf{c}, \mathbf{m}, \alpha} \left(\sum_{j=1}^i \eta m_j \Phi^{(c_j)}(s_0; W^0) \hat{\mathcal{G}}(U^\tau, W^\tau) K_{-j} + O(\eta^2) \right) I'_\alpha[1]_{0,t}, \\ 2436 & \\ 2437 & \\ 2438 & \\ 2439 & \\ 2440 & \\ 2441 & \\ 2442 & \\ 2443 & \\ 2444 & \\ 2445 & \\ 2446 & \\ 2447 & \\ 2448 & \\ 2449 & \\ 2450 & \\ 2451 & \\ 2452 & \\ 2453 & \\ 2454 & \\ 2455 & \\ 2456 & \\ 2457 & \\ 2458 & \\ 2459 & \\ 2460 & \\ 2461 & \\ 2462 & \\ 2463 & \\ 2464 & \\ 2465 & \\ 2466 & \\ 2467 & \\ 2468 & \\ 2469 & \\ 2470 & \\ 2471 & \\ 2472 & \\ 2473 & \\ 2474 & \\ 2475 & \\ 2476 & \\ 2477 & \\ 2478 & \\ 2479 & \\ 2480 & \\ 2481 & \\ 2482 & \\ 2483 & \\ \end{aligned}$$

where $K_{-j} = \Pi_{\substack{j'=1 \\ j' \neq j}}^i \left(F_\pi^{(c_j)}(s_0; W^0) + \Phi^{(c_j)}(s_0; W^0) \Delta W^\tau \right)^{m_j}$. The stochastic part of $\Delta \tilde{s}_{t,\tau}$ is then written as:

$$\begin{aligned} \widetilde{\Delta s}_{t,\tau} &= \sum_{i=1}^{\infty} \sum_{\alpha \in \Xi_i \cap \Omega_i} \sum_{\mathbf{c} \in \mathcal{C}_i, \mathbf{m} \in \mathcal{M}_i} \mathbb{C}_{\mathbf{c}, \mathbf{m}, \alpha} \left(\Pi_{j=1}^i \left(F_\pi^{(c_j)}(s_0; W^0) + \Phi^{(c_j)}(s_0; W^0) \Delta W^{\tau+\eta} \right)^{m_j} \right. \\ &\quad \left. - \Pi_{j=1}^i \left(F_\pi^{(c_j)}(s_0; W^0) + \Phi^{(c_j)}(s_0; W^0) \Delta W^\tau \right)^{m_j} \right) I'_\alpha[1]_{0,t} \\ &+ \sum_{i=1}^{\infty} \sum_{\alpha \in \Xi_i \cap \Omega_i} \mathbb{B}_\alpha + \sum_{\mathbf{c} \in \mathcal{C}_i, \mathbf{m} \in \mathcal{M}_i} \mathbb{C}_{\mathbf{c}, \mathbf{m}, \alpha} \Pi_{j=1}^i \left(F_\pi^{(c_j)}(s_0; W^0) + \Phi^{(c_j)}(s_0; W^0) \Delta W^\tau \right)^{m_j} (I_\alpha[1]_{0,t} - I'_\alpha[1]_{0,t}). \end{aligned}$$

Simplifying these expressions as in the deterministic analog, we obtain the following.

$$\begin{aligned} \Delta S_{t,\tau} &= \sum_{i=1}^{\infty} \sum_{\alpha \in \Xi_i} \sum_{\mathbf{c} \in \mathcal{C}_i, \mathbf{m} \in \mathcal{M}_i} \mathbb{C}_{\mathbf{c}, \mathbf{m}, \alpha} \left(\sum_{j=1}^i \eta m_j \Phi^{(c_j)}(s_0; W^0) \hat{\mathcal{G}}(U^\tau, W^\tau) K_{-j} + O(\eta^2) \right) I'_\alpha[1]_{0,t} \\ &+ \sum_{i=1}^{\infty} \sum_{\alpha \in \Xi_i \cap \Omega_i} \mathbb{B}_\alpha + \sum_{\mathbf{c} \in \mathcal{C}_i, \mathbf{m} \in \mathcal{M}_i} \mathbb{C}_{\mathbf{c}, \mathbf{m}, \alpha} \Pi_{j=1}^i \left(F_\pi^{(c_j)}(s_0; W^0) + \Phi^{(c_j)}(s_0; W^0) \Delta W^\tau \right)^{m_j} \\ &\times (I_\alpha[1]_{0,t} - I'_\alpha[1]_{0,t}). \end{aligned} \tag{36}$$

We seek to simplify the expression which emerges in both of these terms:

$$\begin{aligned} \Phi^{(c_j)}(s_0; W^0) \hat{\mathcal{G}}(U^\tau, W^\tau) &= \int_0^T e^{-\beta l} \Phi^{(c_j)}(s_0; W^0) \Phi(\tilde{s}_l^{W^0}; W^0)^\top \left[\partial_t v_{l,\tau} + r(\tilde{s}_{l,\tau}) - \beta v_{l,\tau} \right] dl, \\ &= \int_0^T \frac{1}{n} \left(\sum_{\kappa=1}^n C_\kappa^0 \tilde{s}_{l,\tau} \varphi'(W_\kappa^0 \tilde{s}_{l,\tau}) \phi^{(c_j)}(s_0, W_\kappa^0, C_\kappa^0) \right) dl \\ &\quad \times \int_0^T e^{-\beta l} \left[\partial_t v_{l,\tau} + r(\tilde{s}_{l,\tau}) - \beta v_{l,\tau} \right] dl, \end{aligned}$$

where ϕ is as defined in equation 28:

$$\phi^{(c_j)}(s_0, W_\kappa^0, C_\kappa^0) = C_\kappa^0 \left((W_\kappa^0)^{c_j} \tilde{s}_0 \varphi^{(c_j+1)}(W_\kappa^0 \tilde{s}_0) + c_j (W_\kappa^0)^{c_j-1} \varphi^{(c_j)}(W_\kappa^0 \tilde{s}_0) \right).$$

To simplify these expressions, we first provide a result for the polynomial expansion, using the Itô -Taylor series (Section C). Consider the differential of $s_t(W)$ with respect to W and we define:

$$\tilde{s}_{t,\tau} = \nabla_W s_t(W)|_{W=W_\tau},$$

2484

which can be defined as the solution to:

2485

$$dS_{t,\tau} = (A_{t,\tau} S_{t,\tau} + h(\tilde{s}_{t,\tau}) \Phi(\tilde{s}_{t,\tau}; W^0)) dt + \sigma'(\tilde{s}_{t,\tau}) S_{t,\tau} dw_t, \quad S_0 = 0,$$

2486

2487

$$A_{t,\tau} = g'(\tilde{s}_{t,\tau}) + h'(\tilde{s}_{t,\tau}) (F_\pi(\tilde{s}_{t,\tau}) + \Phi(\tilde{s}_{t,\tau}; W^0) \Delta W^\tau) + h(\tilde{s}_{t,\tau}) (F'_\pi(\tilde{s}_{t,\tau}) + \Phi'(\tilde{s}_{t,\tau}; W^0) \Delta W^\tau).$$

2488

2489

Given that we have the entire path: $\tilde{s}_{t,\tau}$ and $a_{t,\tau}$ to condition upon, we can “reconstruct” the driving Brownian motion w_t as follows.

2490

2491

2492

2493

2494

2495

2496

because we have a solution with strong uniqueness due to the Lipschitz assumption on the dynamics (see theorem 5.2.5 in the textbook by Karatzas & Shreve (2014)) and $\tilde{\sigma} \neq 0$. Now we further define $Z_{t,l,\tau} = S_{t,\tau} \Phi(s_l; W^0)^\top$ for some fixed s , and therefore the corresponding ODE as:

2497

2498

2499

2500

2501

$$dZ_{t,l,\tau} = (A_{t,l,\tau} Z_{t,l,\tau} + h(\tilde{s}_{t,\tau}) \Phi(\tilde{s}_{t,\tau}; W^0) \Phi(\tilde{s}_{l,\tau}; W^0)^\top) dt + \sigma'(\tilde{s}_{t,\tau}) Z_{t,l,\tau} dw_t.$$

2502

To solve for $Z_{t,l,\tau}$, we define $Y_{t,l,\tau}$ as the solution to the equation:

2503

2504

2505

2506

2507

2508

We also note that

2509

2510

2511

2512

$$S_t = \sum_{i=1}^{\infty} \sum_{\alpha \in \Xi_i} \sum_{\mathbf{c} \in \mathcal{C}_i, \mathbf{m} \in \mathcal{M}_i} \mathbb{C}_{\mathbf{c}, \mathbf{m}, \alpha} \left(\sum_{j=1}^i \eta m_j \Phi^{(c_j)}(s_0; W^0) K_{-j} \right) I'_\alpha[1]_{0,t},$$

2513

which is the same as the expression in equation 36, barring the $O(\eta^2)$ error. For intuition of this gradient of the state variable with respect to the parameters see the example in Section D.

2514

2515

2516

2517

which corresponds to the first expression in equation 36. Therefore, to solve for $Y_{t,\tau}$ we have access to all $A_{t,\tau}$, $\tilde{s}_{t,\tau}$, $w_{t,\tau}$ are all known and $\Phi(\tilde{s}_{t,\tau}) \Phi(\tilde{s}_{l,\tau})^\top$ depends only on $\tilde{s}_{l,\tau}$ and $\tilde{s}_{t,\tau}$. Therefore, we can now rewrite the change in state at gradient step τ as follows:

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

$$\begin{aligned} \Delta \tilde{s}_{t,\tau} = & \eta \int_0^T Z_{t,l,\tau} (\partial_t v_{l,\tau} + r(\tilde{s}_{l,\tau}) - \beta v_{l,\tau}) dl + O(\eta^2) \\ & + \sum_{i=1}^{\infty} \sum_{\alpha \in \Xi_i \cap \Omega_i} \mathbb{B}_\alpha \\ & + \sum_{\mathbf{c} \in \mathcal{C}_i, \mathbf{m} \in \mathcal{M}_i} \mathbb{C}_{\mathbf{c}, \mathbf{m}, \alpha} \prod_{j=1}^i \left(F_\pi^{(c_j)}(s_0; W^0) + \Phi^{(c_j)}(s_0; W^0) \Delta W^\tau \right)^{m_j} (I_\alpha[1]_{0,t} - I'_\alpha[1]_{0,t}) \end{aligned} \quad (37)$$

2528

Finally, note the remaining expression from that of $\Delta \tilde{s}_{t,\tau}$:

2529

2530

2531

$$\sum_{i=1}^{\infty} \sum_{\alpha \in \Xi_i \cap \Omega_i} \mathbb{B}_\alpha + \sum_{\mathbf{c} \in \mathcal{C}_i, \mathbf{m} \in \mathcal{M}_i} \mathbb{C}_{\mathbf{c}, \mathbf{m}, \alpha} \prod_{j=1}^i \left(F_\pi^{(c_j)}(s_0; W^0) + \Phi^{(c_j)}(s_0; W^0) \Delta W^\tau \right)^{m_j} (I_\alpha[1]_{0,t} - I'_\alpha[1]_{0,t}),$$

2532

which can be decomposed into two parts:

2533

2534

2535

2536

2537

$$\begin{aligned} M_{t,\tau} = & \sum_{i=1}^{\infty} \sum_{\alpha \in \Xi_i \cap \Omega_i} \mathbb{B}_\alpha + \sum_{\mathbf{c} \in \mathcal{C}_i, \mathbf{m} \in \mathcal{M}_i} \mathbb{C}_{\mathbf{c}, \mathbf{m}, \alpha} \prod_{j=1}^i \left(F_\pi^{(c_j)}(s_0; W^0) + \Phi^{(c_j)}(s_0; W^0) \Delta W^\tau \right)^{m_j} I'_\alpha[1]_{0,t} \\ G_{t,\tau} = & \sum_{i=1}^{\infty} \sum_{\alpha \in \Xi_i \cap \Omega_i} \mathbb{B}_\alpha + \sum_{\mathbf{c} \in \mathcal{C}_i, \mathbf{m} \in \mathcal{M}_i} \mathbb{C}_{\mathbf{c}, \mathbf{m}, \alpha} \prod_{j=1}^i \left(F_\pi^{(c_j)}(s_0; W^0) + \Phi^{(c_j)}(s_0; W^0) \Delta W^\tau \right)^{m_j} I_\alpha[1]_{0,t}, \end{aligned}$$

2538 where $M_{t,\tau} = \tilde{s}_{t,\tau} - \mathbb{E}[\tilde{s}_{t,\tau}]$, where the expectation is about the randomness of the stochastic process
 2539 $\tilde{s}_{t,\tau}$, and is therefore the martingale component of $\tilde{s}_{t,\tau}$, conditioned on $\tilde{s}_{t,\tau}$.
 2540

$$2541 \quad M_{t,\tau} = \tilde{s}_{t,\tau} - s_0 - \int_0^t (g(\tilde{s}_{u,\tau}) + h(\tilde{s}_{u,\tau})a_{u,\tau})du$$

2543 Similarly, $G_{t,\tau}$ is the martingale part of an independent instantiation of the process $\tilde{s}_{t,\tau}$, because we
 2544 do not condition on $I_\alpha[0, t]$. Putting all these different components together in Equation 37 we have
 2545 the statement of the Lemma. \square
 2546

2547 M MAIN RESULT: PUTTING IT ALL TOGETHER

2550 In the previous sections we derive the sufficient statistics and evolution equations for the value
 2551 estimate (Section F), action (Section J), and state (Section L). Putting all these components together,
 2552 we can derive a closed system and summary statistics required to describe the gradient dynamics of
 2553 the actor critic algorithm described in Sections 4, E under the assumptions of Section 3. We prove
 2554 the main result for gradient time τ , which is an integer multiple of η and a 1-dimensional system i.e.
 2555 $d_s = d_a = 1$ in finite time $T < 1$.
 2556

2557 *Proof.* The expression for $\Delta s_{t,\tau}$ comes from the lemma L.1. The expression for $\Delta a_{t,\tau}, \Delta a'_{t,\tau}$ follows
 2558 from the lemmas K.1, K.2. The expression for the change in $\Delta v_{t,\tau}, \Delta v'_{t,\tau}$ follows from the lemmas
 2559 I.1, I.2. We conclude the proof by stating that the system is closed up to an error of $O(1/\sqrt{n})$: the
 2560 changes in all these variables for a single gradient step depend only on each other. \square
 2561

2562 N CODE FOR LINEARIZED ACTOR AND CRITIC

2564 We use the cleanrl repository to simplify our implementation in section ???. The code for the actor
 2565 and critic are modified as follows. First we present LQR environment code block:
 2566

2567 Listing 1: Environment construction for continuous-time LQR control.

```

2568
2569 1
2570 2     register(
2571 3         id="LQRd-v1",
2572 4         entry_point="custom_envs.lqr_d_env:LQRdEnv",
2573 5         nondeterministic=True,
2574 6     )
2575 7
2576 8     def make_env(env_id, seed, idx, capture_video, run_name,
2577 9         A, B, Q, R, Qf,
2578 10        dt=0.02, T=1.0,
2579 11        Sigma=None, x0_mean=None, x0_std=0.0,
2580 12        u_max=20.0, exp_noise=0.05):
2581 13
2582 14     def thunk():
2583 15         kwargs = dict(
2584 16             A=A,
2585 17             B=B,
2586 18             Q=Q,
2587 19             R=R,
2588 20             Qf=Qf,
2589 21             dt=dt,
2590 22             T=T,
2591 23             Sigma=Sigma,
2592 24             x0_mean=x0_mean,
2593 25             x0_std=x0_std,
2594 26             u_max=u_max,
2595 27             seed=seed,
2596 28             exp_noise=exp_noise,
2597 29         )

```

```

2592
2593     if capture_video and idx == 0:
2594         env = gym.make(env_id, render_mode="rgb_array", **kwargs)
2595         env = gym.wrappers.RecordVideo(env, f"videos/{run_name}")
2596     else:
2597         env = gym.make(env_id, **kwargs)
2598
2599     env = gym.wrappers.RecordEpisodeStatistics(env)
2600     env.action_space.seed(seed)
2601     return env
2602
2603     return thunk
2604
2605 # Example: scalar LQR with diagonal A, B, Q, R
2606 d = args.data_dim
2607 m = args.action_dim
2608
2609 A = -0.5 * np.eye(d)
2610 B = np.eye(d, m)
2611 Q = args.reward_scale * np.eye(d)
2612 R = np.zeros((m, m))
2613 Qf = np.zeros((d, d))
2614 Sigma = args.process_noise * np.eye(d)
2615
2616 lqr_env = make_env(
2617     "LQRd-v1",
2618     seed=123 + args.seed,
2619     idx=1,
2620     x0_mean=1.0,
2621     x0_std=0.0,
2622     capture_video=False,
2623     run_name="test_run",
2624     A=A, B=B, Q=Q, R=R, Qf=Qf,
2625     dt=0.02, T=1.0, Sigma=Sigma,
2626     exp_noise=args.exploration_noise,
2627     u_max=args.u_max,
2628 )
2629
2630 envs = gym.vector.SyncVectorEnv([lqr_env])

```

The linearized actor and critic code blocks are as follows:

Listing 2: Linearized actor and critic networks for continuous-time AC.

```

1
2 def tanh_gradient(x: torch.Tensor) -> torch.Tensor:
3     y = torch.tanh(x)
4     grad_tanh = 1 - y ** 2
5     return grad_tanh
6
7 class VNetwork(nn.Module):
8
9     def __init__(self, env, width: int = 256):
10         super().__init__()
11         self.width = width
12         self.state_dim = np.array(env.single_observation_space.shape) .
13             prod() + 1 # +1 for time
14
15         # initial weights
16         self.fc1 = nn.Linear(self.state_dim, self.width, bias=False)
17         nn.init.normal_(self.fc1.weight, mean=0.0, std=1 / self.
18                         state_dim)
19
20         # linearization copy (trainable)

```

```

2646 19         self.fc1_copy = nn.Linear(self.state_dim, self.width, bias=
2647 20             False)
2648 21         self.fc1_copy.load_state_dict(self.fc1.state_dict())
2649 22
2650 23         self.v_head = nn.Linear(self.width, 1, bias=False)
2651 24         nn.init.normal_(self.v_head.weight, mean=0.0, std=1.0 / np.sqrt
2652 25             (self.width))
2653 26
2654 27     def forward(self, x_with_time: torch.Tensor) -> torch.Tensor:
2655 28         # x_with_time has shape (B, state_dim+1)
2656 29         preactivation_init = self.fc1(x_with_time)
2657 30         init_intermediate = tanh_gradient(preactivation_init)
2658 31         intermediate_linear = self.fc1_copy(x_with_time) -
2659 32             preactivation_init
2660 33         h = torch.tanh(preactivation_init) + intermediate_linear *
2661 34             init_intermediate
2662 35         v = self.v_head(h) / np.sqrt(self.width)
2663 36         return v.squeeze(-1) # (B, )
2664 37
2665 38     class Actor(nn.Module):
2666 39
2667 40         def __init__(self, env, width: int = 256):
2668 41             super()).__init__()
2669 42             self.width = width
2670 43             self.state_dim = np.array(env.single_observation_space.shape).
2671 44                 prod()
2672 45
2673 46             self.fc1 = nn.Linear(self.state_dim, self.width, bias=False)
2674 47             nn.init.normal_(self.fc1.weight, mean=0.0, std=1 / self.
2675 48                 state_dim)
2676 49
2677 50             self.fc1_copy = nn.Linear(self.state_dim, self.width, bias=
2678 51                 False)
2679 52             self.fc1_copy.load_state_dict(self.fc1.state_dict())
2680 53
2681 54             self.fc_mu = nn.Linear(self.width,
2682 55                 np.prod(env.single_action_space.shape),
2683 56                 bias=False)
2684 57
2685 58             # action rescaling (Box space)
2686 59             self.register_buffer(
2687 60                 "action_scale",
2688 61                 torch.tensor(
2689 62                     (env.action_space.high - env.action_space.low) / 2.0,
2690 63                     dtype=torch.float32,
2691 64                     ),
2692 65             )
2693 66             self.register_buffer(
2694 67                 "action_bias",
2695 68                 torch.tensor(
2696 69                     (env.action_space.high + env.action_space.low) / 2.0,
2697 70                     dtype=torch.float32,
2698 71                     ),
2699 72             )
2700 73
2701 74     def forward(self, x: torch.Tensor) -> torch.Tensor:
2702 75         preactivation_init = self.fc1(x)
2703 76         init_intermediate = tanh_gradient(preactivation_init)
2704 77         intermediate_linear = self.fc1_copy(x) - preactivation_init
2705 78         h = torch.tanh(preactivation_init) + intermediate_linear *
2706 79             init_intermediate
2707 80         out_x = self.fc_mu(h) / np.sqrt(self.width)
2708 81         return out_x # actions will be clipped by the caller

```

2700 We optimize these using SGD and in an online episodic manner.
2701

2702 O LLM USAGE AND REPRODUCIBILITY STATEMENT 2703

2704 For our work, we used large language models for supportive, non-substantive tasks: we rely on them
2705 mainly for discovery (e.g., quickly locating references or related concepts), checking grammar and
2706 readability in the drafts, and clarifying technical notions when we need a different perspective to aid
2707 understanding. Additionally, we use them for code snippets. All core research contributions, proofs,
2708 experiments, and arguments are developed independently.
2709

2710 **Reproducibility Statement.** Our work is primarily theoretical, and we have provided complete
2711 proofs of all claims in the appendix along with detailed explanations of the assumptions underlying
2712 our results. For empirical validation, we include a toy continuous control experiment in the main text
2713 (Section 7) with full details of the environment dynamics, parameter initialization, and training setup,
2714 ensuring that the experiment can be replicated without ambiguity. Since the empirical component is
2715 intentionally simple and illustrative, and the theoretical framework is fully specified with proofs, the
2716 results presented in this paper can be readily reproduced using the information provided.
2717

2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753