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Abstract

We study emergent communication in a multi-agent
reinforcement learning setting, where the agents
solve cooperative tasks and have access to a commu-
nication channel. The communication channel may
consist of either discrete symbols or continuous vari-
ables. We introduce an inductive bias to aid with
the emergence of good communication protocols for
continuous messages, and we look at the effect this
type of inductive bias has for continuous and dis-
crete messages in itself or when used in combination
with reinforcement learning. We demonstrate that
this type of inductive bias has a beneficial effect
on the communication protocols learnt in two toy
environments, Negotiation and Sequence Guess.

1 Introduction

Although communication in multi-agent reinforce-
ment learning (MARL) may emerge when the agents
are given a communication channel that contains no
predetermined communication protocol, efficiently
doing so often turns out to be a difficult task. As is
the case in MARL, the credit assignment problem
together with the moving target problem leads to
the existence of robust shadowed equilibria in many
environments [1]. As a result, when it comes to
communication; instead of benefiting from learning
a “shared language”, the agents may end up disre-
garding the communication channel altogether and
only act upon their own observation.

In order to combat these issues and facilitate the
emergence of meaningful communication, that is,
communication which increases the expected return
over a communication-free baseline, Eccles et al. [2]
extended the measures of positive signaling and pos-
itive listening from Lowe et al. [3] to be used as
inductive biases. The basic idea is to add additional
terms to the loss function which encourage the fol-
lowing: In the case of positive signaling, a speaker
is incentivized to produce different messages from
different observations. While for positive listening a
listener is incentivized to produce different actions
from different messages. Overall, this ensures an
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improved use of the communication bandwidth and
a reduced chance of not acting based upon messages.
This scheme is explored by Eccles et al. [2] for when
the messages passed between the agents are built
from discrete symbols.

An orthogonal approach to improving the stabil-
ity of learning to communicate is to allow for the
gradient signal to flow through the communication
channel. Doing so shifts the problem from a de-
centralized towards a centralized training paradigm,
which helps at alleviating some of the issues plaguing
the former [1]. The cost is that the gradient infor-
mation needs to be available and passed between
the agents while training, which may or may not be
viable in a given setting.

In this work, we look at how MARL agents learn
to form a “shared language” in order to solve coop-
erative tasks using two toy examples, a variant of
Negotiation [4–7], and a new game we call Sequence
Guess. We demonstrate how the positive signaling
ideas can be extended to continuous communication
protocols, where messages consist of real numbers
rather than discrete symbols. We estimate the effect
of positive signaling on differentiable communication
protocols [8–13], reinforced communication proto-
cols [14, 15], and a combination of both. The effect
of a continuous communication protocol is also com-
pared to the effect of a discrete one, in the otherwise
discrete game of Sequence Guess.

2 Positive Signaling

We write the total loss function for a communicat-
ing MARL agent as L = Lrest + Lcomm, where the
latter term is associated with communication and
the former with other actions. The communication
loss may be further subdivided into

Lcomm = LRC + λIBLIB (1)

where LRC is the loss associated with the communi-
cation policy, LIB is an inductive bias, and λIB > 0
is a weighting factor. We will focus on Lcomm from
here on.

Positive signaling is equivalent to maximizing the
entropy of the average message policy, while at the
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same time minimizing the entropy of the message pol-
icy when conditioned upon a trajectory. We denote
the policy for selecting message m given a trajec-
tory x as π(m|x), and the average message policy,
weighted by frequency, as π(m) = Ex∼π[π(m|x)],
where π is the overall policy. π can be estimated
from a mini-batch of B trajectories by

π(m) ≈ 1

B

B∑
b

π(m|xb), (2)

where the subscript b labels the mini-batch members.
Then, a natural inductive bias which encourages
positive signaling would be

LIB(π, x) = −H(π) + λPSH(π(·|x))

=
∑
m∈M

π(m) ln(π(m))− λPSπ(m|x) ln(π(m|x)),

(3)

where M is the set of all possible messages and
λPS > 0 is a weighting factor.

In practice, however, minimizing the entropy when
it is conditioned upon the current trajectory does
not work well. One reason for this may be that for
any c < log(2) the space of policies with entropy
at most c is disconnected[2], in that the minimal
possible entropy during a gradual message policy
shift from an old to a new most likely message will at
some point have to be at least log(2), if the entropy
of the initial message policy was less than log(2).
Because of this, Eccles et al. instead introduces a
finite target entropy Htarget > 0 for H(π(·|x)) and
write

LIB(π, x) = −H(π)+λPS(H(π(·|x))−Htarget)
2 (4)

One can view Htarget as an exploration parameter,
with a larger Htarget meaning a higher degree of
exploration.

2.1 Positive Signaling for Continuous
Communication

We take a different approach to positive signaling
in the case of the messages consisting of continuous
variables rather than discrete symbols. To make
the computations viable, a compact support for the
messages is needed. A particularly easy set is the
n-dimensional torus, where each component of a
message lies on an interval of the real line with the
end points identified, i.e. a circle. Furthermore, by
interpreting the messages as points on a n-torus, we
observe that a more uniform average policy may be
encouraged by making the messages mutually “repul-
sive”. In practice, this can be achieved stochastically
by introducing a pair-wise repulsive “potential” ℓ
between the members of a mini-batch of B messages

M , leading to an inductive bias on the form

LIB(M) =
1

B2

∑
m,m′∈M

ℓ(m,m′). (5)

Since the messages are continuous, the gradient of
the message policy with respect to its weights will
be affected by this term as long as we choose an
almost everywhere differentiable ℓ. In this work, we
have used the simple functional form

ℓ(m,m′) = max[−λ1d(m,m′) + λ2, 0], (6)

where λ1 > 0 and λ2 > 0 are hyperparameters and
d is a distance measure in message space. Assuming
that m,m′ ∈ (−1, 1)n with −1 and 1 identified as
the same point, we define the distance between the
two messages to be

d(m,m′) =

√√√√ n∑
i=1

min(|mi −m′
i|, 2− |mi −m′

i|)2,

(7)
where mi is the i-th component of m. See Fig. 1
for an illustration. The intuition behind Eq. (6)
is to penalize two messages that are closer than
λ2/λ1, and otherwise do nothing. Except for in
pathological cases, this cutoff should not affect the
inductive bias’s push for a more uniform policy, while
it does remove any constraining influence on the
policy learning when messages are already far apart
in message space. After all, what we are mainly
interested in is to utilize the entire bandwidth of the
message space, not to make the utilization perfectly
uniform.

It should be noted that there are multiple ways
of achieving a similar outcome as the one described
here. Notably, an alternative to Eq. (5) could read

LIB(M) =
2

B

∑
m∈MA

m′∈MB

ℓ(m,m′), (8)

where M has been equipartitioned into MA and
MB. This reduces the computational complexity
of the inductive bias, at the expense of a higher
variance. Furthermore, while the functional form of
Eq. (6) seems to work well in practice, it is straight-
forward to construct alternatives.

Since the effect of the latter term in Eq. (4) is
to tune the degree of exploration for the message
policy when conditioned upon a trajectory, we do not
attempt to introduce such a term in the continuous
case. Rather, we let the degree of exploration be
controlled explicitly by the communication policy.

3 Experiments
The main purpose of the experiments done here
is to show how using continuous positive signaling
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Figure 1. Example of continuous positive signaling
where messages contain two components. The distance
di,j = d(mi,mj) is calculated between every message.
The circles indicate where di,j = λ2/λ1, in other words
where message mi is considered too close to mj . m3

and m4 show a case where d3,4 < λ2/λ1. m5 illustrates
that the space wraps around.

for the communication protocol results in improved
performance. We demonstrate this using two toy
examples, a variant of Negotiation, and Sequence
Guess, which are described below. For the experi-
ments the REINFORCE algorithm [16, 17] has been
used, with a policy modeled as a recurrent neural
network with a final softmax layer in case of discrete
actions, and as a normal distribution with mean and
standard deviation parameters given by a neural
network when dealing with continuous actions. See
appendices Appendices B and C for further details.

Pytorch has been used both to create the envi-
ronments and the agents [18]. One experiment run
on an NVIDIA GeForce RTX 3080 takes about one
hour with roughly 40% GPU utilization, this results
in an estimated use of 3.2 · 1016 FLOP during an
experiment run.

3.1 Negotiation

Negotiation is a game that consists of two agents, A
and B, which, through negotiation, try to distribute
a set of k different types of divisible items (e.g.
beverages) among themselves. The game is fully
cooperative and individual rewards are shared in
order to produce a final reward for both agents.

At the beginning of a negotiation round, the
agents are individually assigned utilities u ∈ (0, 1)k

for each of the items, drawn uniformly at random.
They receive their own utilities as inputs, but are
blind to the utility vector of their partner. The game
proceeds in a turn-based manner by the agents al-
ternately making a partitioning proposal p ∈ (0, 1)k

and passing a message m ∈ (−1, 1)n to their part-
ners, until either the partner agrees to the proposal,
or a finite time limit T has been reached. Note that

 

Figure 2. Negotiation. An example run of two agents
negotiating over three different types of beverages. Mes-
sages have no predefined meaning. The hidden utilities
indicate how each beverage is weighted when calculating
the reward. A proposal of [0.9, 0.3, 0.5] from agent A
would mean agent A receives these proposed fractions
of each beverage (here: soda, water and orange juice),
while agent B receives the remainder. Agent B can either
accept this proposal or come with a counter-proposal.
In this example, where agent A accepts B’s counter-
proposal, the negotiation ends. The agents individual
raw reward will be 0.5·0.8+0.7·0.35+0.5·0.5 ≈ 0.95 and
0.5·0.4+0.3·0.2+0.5·0.8 ≈ 0.58, which leads to a shared
reward of rNeg ≈ (0.95 + 0.58)/(0.8 + 0.35 + 0.8) ≈ 0.78.
The robots have been taken from [19, 20]. The beverages
have been taken from [21–23].

the proposals are not explicitly shared, but have to
be communicated through the messages, which in
turn have to acquire meaning through collaborative
learning. In addition to messages and utilities, the
agents receive the current turn index t as an input.
A proposal agreement in the first turn, i.e. before
the first agent has received a message, is ignored.
The dynamics is illustrated in Fig. 2 for k = n = 3.

At the end of a negotiation round, if the agents
have come to an agreement, an individual normalized
reward is calculated as

rx = r(px;ux) =

k∑
i=1

pxiuxi, (9)

for x ∈ {A,B}, where pAi + pBi = 1. Note that if
agent A is the proposing agent, pB is a function of
the proposal pA, and not an independent proposal.
The overall, shared reward is then defined as

rNeg =
rA + rB
rmax

. (10)

The scaling factor rmax =
∑k

i=1 max(uAi, uBi) is
to ensure that maxp rNeg = 1, regardless of the
randomly drawn utilities. If the agents do not come
to an agreement before reaching the time limit T ,
they are punished by rNeg = −1.
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3.2 Sequence Guess

We propose a new game, Sequence Guess, inspired
by the board game Mastermind [24]. Sequence Guess
is a cooperative, asymmetrical two-player game con-
sisting of a mastermind and a guesser. The goal
is for the guesser to as quickly as possible guess a
target sequence a = (a1, a2, . . . , ak) drawn from a
finite alphabet Σ, while being guided by the master-
mind through messages. Depending on the variant
of the game, a message may consist of either a col-
lection of discrete symbols or continuous variables.
As with Negotiation, the meaning of a message is
not predetermined, but has to be learned.

Each turn of Sequence Guess consists of one se-
quence guess â ∈ Σk by the guesser and one reply
message from the mastermind: The guesser receives
the latest message from the mastermind (initially a
constant) as well as the current turn number t, and
returns a guess. Then the mastermind replies with
a new message based on the correct sequence, the
guess, and the current turn number. If the guess is
the same as the target sequence, or t = T , the game
terminates. Fig. 3 shows an excerpt of a possible
realization of Sequence Guess.

When a game of Sequence Guess ends, the agents
are rewarded according to the fraction of letters in
the guess sequence being equal to the corresponding
letters in the target sequence, as well as a time
penalty to encourage fast solutions:

rSeq = −0.1t+
1

k

k∑
i=1

1ai=âi . (11)

Sequence Guess differs from Negotiation in a few
key aspects. Negotiation is symmetric; each agent
is given the same type of information, and the game
is “dialogue focused”. Sequence Guess, on the other
hand, is “monologue focused”, isolating the tasks
of “formulating” and “understanding” messages to
separate agents. In Negotiation it is possible for
the agents to learn a policy significantly better than
the non-repeated random policy even with the com-
munication channel removed. This is not possible
in Sequence Guess. Thus, Sequence Guess cannot
suffer from shadowed equilibria.

3.3 Results

To demonstrate the effects of positive signaling, we
set up a number of Negotiation and Sequence Guess
ablation experiments, both when interagent gradi-
ents are allowed to flow and not. We focus on three
cases: when the communication policy is learned
using only a standard reinforcement learning ap-
proach without an inductive bias (RC), when it is
obtained through minimizing the positive signaling
inductive bias (PS), and when a combination of
these two methods is used. The results of these

R G B

RG B

RR B

Figure 3. An excerpt of Sequence Guess. The guesser
attempts to guess some target sequence, while the mas-
termind tries to provide information about the target
sequence to the guesser. Here, the alphabet size is 3 and
the target sequence length is 3, while messages consist
of one real number. The robot figures are from [19, 20].

experiments are shown in Fig. 4 and summarized
in Table 1. Note that the average returns of the
Sequence Guess experiments have been shifted by
a factor of 1− (1 · 1/27 + 0.9 · 26/27) ≈ 0.0963 1 to
ensure that the expected return under an optimal
policy is 1.

We observe that including a positive signaling
learning bias typically improves the learning, as
does interagent gradients. Moreover, continuous
communication protocols outperform discrete ones.
These points are not surprising, given that continu-
ous messages and gradients carry more information
compared to only communicating discrete messages.

One should, however, keep in mind that the posi-
tive signaling learning bias is different when using
continuous and discrete messages.

Note that in Fig. 4(d) using only the positive sig-
naling learning bias performs best. This may be due
to the the fact that in this case all the information
can be communicated in one message, making it
possible for PS in and of itself to push the learning
towards an optimal bandwidth usage. In this case,
adding an extra RC component will mostly provide
detrimental noise. When the information cannot
be communicated in a single message, this may not
apply; then, a combination of PS and RC may per-
form better, as RC may help prioritize the most
important information. Why this does not happen
in Fig. 4(c) is not entirely clear to us, but we suspect
that without a gradient to couple the learning of
sending and receiving messages, local minima may
more easily be encountered. In this case, an RC
contribution may provide a helpful learning signal.

Without communication, the maximum possible
expected return for Sequence Guess is 1/9 ≈ 0.11,
while for Negotiation simulation experiments show
that it is ∼ 0.92. This explains why the separa-
tion between the different Negotiation experiments
(Fig. 4(a,b)) is smaller than for the corresponding

1The chance for the initial guess to be correct is 1/27
which gives a reward of 1, under an optimal policy the reward
will be 0.9 if the initial guess is incorrect.
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Figure 4. Summary of 30 independent experiment runs for each game and loss function combination investigated.
Each sample is an average of a mini-batch of size 2048. The lines indicate the means, while the bands denote 95%
confidence intervals. The columns display the different games: Negotiation, continuous message (CM) Sequence
Guess, and discrete message (DM) Sequence Guess. The rows are organized with respect to whether interagent
gradients (IG) are allowed to flow or not. The returns have been scaled to ensure that their maximal expectation
values are one. See the text for more details.

Sequence Guess experiments (Fig. 4(c-e)), assum-
ing that it is easier to learn a non-communicative
policy,.

The discrepancy between Table 1 and Fig. 4 for
Negotiation is due to averaged out oscillations; it
seems that the learning is unstable with respect to
whether the communication protocol is beneficial.

4 Discussion and Summary

In this work, we have shown that it is possible to gen-
eralize the idea of positive signaling as an inductive
bias[2] for learning communication with continuous
messages. The advantages of introducing such an
inductive bias to the loss function has been demon-
strated on two toy MARL environments, Negotiation
and Sequence Guess.

Positive Signaling “encourages” the agents to learn
to utilize the entire bandwidth of the communica-
tion protocol without getting stuck in local minima
where two input states result in the same message.
This is similar to what is done in variational autoen-
coders[11], where the average encoding is forced to
follow a predefined distribution (typically a Gaus-
sian), regularizing the learning space.

Continuous message protocols have some intrinsic
advantages over discrete message protocols when
it comes to learning: a smooth optimization land-
scape is usually preferable when dealing with policies
modeled by neural networks. In addition, there is

a practical limit on how large the communication
alphabets can be, since their one-hot encoding grows
linearly with the alphabet size. Furthermore, com-
puting a positive signaling bias through “repelling”
messages in a continuous message space is easier
and more robust than estimating entropies based on
mini-batches of discrete messages.

It is noteworthy that continuous message proto-
cols seem to generally perform better than discrete
message protocols, even when the desired informa-
tion is discrete; compare Fig. 4(e) with Figs. 4(c, d).

If the set of possible states is smaller than the
set of possible messages, loss-less communication is
achievable and can be encouraged by using positive
signaling. If the contrary holds, the sending agent
can prioritize by adding RC. In practice, using only
RC is likely not desirable, since the agents can get
stuck in a local optimum where the same message
is sent in two different states; most attempts at
deviating from such a communication policy is likely
to lead to a worse performance, driving the agents
back to their original suboptimal policies.

Regarding future work, we believe from a linguis-
tic or cognitive perspective it could be interesting
to look more into visualizing the message policies
that are being learnt. Another interesting avenue is
looking at environments for more than two agents
with no reward sharing, and see if some form of
communication or cooperation can more easily arise
in such games with the use of positive signaling.
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Table 1. Summary of 30 independent experiment runs, each with a batch size of 2048. The table shows the
average returns of the best mini-batches with 95% confidence intervals, i.e. the expected highest return. IG, CM,
and DM refers to Interagent Gradients, Continuous Messages, and Discrete Messages, respectively.

RC PS RC and PS

Negotiation IG 0.942± 0.009 0.976± 0.010 0.979± 0.008
No IG 0.951± 0.008 0.987± 0.002 0.986± 0.003

CM Sequence Guess IG 0.780± 0.034 0.958± 0.010 0.921± 0.020
No IG 0.778± 0.029 0.803± 0.011 0.897± 0.024

DM Sequence Guess No IG 0.693± 0.020 0.551± 0.014 0.782± 0.035
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A Example PyTorch Implemen-
tation of Continuous Positive
Signaling

This example code illustrates an example implemen-
tation of continuous positive signaling where the the
distances between all neighbours are used for each
message to calculate the loss.

def positive_signalling_loss(self, means):
means = means.repeat(len(means), 1, 1)
# means has dimensions of length [Batch

Size, Batch Size, Sequence Length]↪→

means_2 =
torch.transpose(means.clone().detach(),
0, 1)

↪→

↪→

distances = torch.abs(means - means_2)
delta = torch.pow(torch.minimum(distances, 2

- distances) + self.epsilon, 2)↪→

delta = torch.sum(delta, dim=2)
delta = torch.triu(delta, diagonal=1)
delta[delta == 0] = torch.inf
delta = torch.sqrt(delta)
zeroes = torch.zeros(delta.shape,

device=device)↪→

loss = torch.mean(torch.maximum(-lambda_1 *
delta + lambda_2, zeroes))↪→

return loss

B Network Architecture, Algo-
rithm and Hyperparameters
for Negotiation

B.1 Algorithm

For Negotiation the REINFORCE algorithm is used
with a parameterized baseline. The ADAM opti-
mizer[25] is used for both the baseline and the pol-
icy. The baseline is centralized and receives the
same input as the agent whose turn it is, learning
was observed to be unstable without the use of a
parameterized baseline.

B.2 Network Architecture

The network architecture for the agents and the
baseline is the same unless otherwise stated:

1. Input: Hidden utilities, current message, cur-
rent turn/max turns

2. LSTM layer with output size 100, Hidden state
persists across one game of Negotiation.

3. Fully Connected layer with output size 100 and
Leaky ReLU activation

4. Fully Connected layer with output size 1 and
a tanh activation for the baseline in order to
produce the return prediction, for the policy
the output size is 13.

7

http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://commons.wikimedia.org/wiki/File:Kawaii_robot_power_clipart.svg
https://commons.wikimedia.org/wiki/File:Kawaii_robot_power_clipart.svg
https://commons.wikimedia.org/wiki/File:Kawaii_robot_power_clipart.svg
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://commons.wikimedia.org/wiki/File:Kawaii_robot_power_clipart.svg
https://commons.wikimedia.org/wiki/File:Kawaii_robot_power_clipart.svg
https://commons.wikimedia.org/wiki/File:Kawaii_robot_power_clipart.svg
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://smart.servier.com/smart_image/orange-juice/
https://smart.servier.com/smart_image/orange-juice/
https://smart.servier.com/smart_image/orange-juice/
https://creativecommons.org/licenses/by/3.0/deed.en
https://smart.servier.com/smart_image/water/
https://smart.servier.com/smart_image/water/
https://creativecommons.org/licenses/by/3.0/deed.en
https://creativecommons.org/licenses/by/3.0/deed.en
https://smart.servier.com/smart_image/soda-2/
https://smart.servier.com/smart_image/soda-2/
https://creativecommons.org/licenses/by/3.0/deed.en
https://creativecommons.org/licenses/by/3.0/deed.en
 https://mathworld.wolfram.com/Mastermind.html
 https://mathworld.wolfram.com/Mastermind.html


Hyperparameter Value

Batch Size 2048
Iterations 50 000
LSTM Layer Size 100
Hidden Layer Size 100
Max Turns 6
λ1 250
λ2 10
Gradient Clip Value 1
β1 (Decay Rate, Adam) 0.9
β2 (Decay Rate, Adam) 0.999
Weight Decay 0.0001

Table B.1. Hyperparameters used in Negotiation, the
same layer sizes are used for the agents and the parame-
terized baseline. We selected values for λ1 and λ2 which
caused the magnitude of the PS loss the be similar to
that of the REINFORCE loss.

5. For the policy 6 output variables are used as
means µ, 6 are used as standard deviations σ(s),
where σ is the sigmoid activation function. µ
and σ(s) are then used to initialize six normal
distributions. Three normal distributions are
used to sample the proposal σ(ŷ1). Three nor-
mal distributions are used to create the message
tanh(ŷ2). The remaining output is used to de-
termine probability of termination σ(ŷ3) from
which the termination action is sampled.

The learning rate α begins at 0.001 for both the
baseline and the policies. When an iteration with
r ≥ 0.9 is reached, the learning rate is reduced to
0.0001 for both the baseline and the policies. r ≥ 0.9
indicates a close to optimal joint policy if the agents
only know their own hidden utilities. The reason
for the learning rate adjustment is that the learning
can very easily become unstable with a learning
rate of 0.001, while learning would be very slow if
it began with a learning rate of 0.0001. Table B.1
shows the hyperparameters used. The hidden layer
sizes, message sizes and number of item categories
are the same ones that Cao et al. [6] used for their
implementation. The choice of a ¨large batch" size
is based upon Jiang and Lu [26] who noted that
a large batch size helped accelerate their learning
process in a MARL setting.

The network also outputs the probability of ter-
mination from a sigmoid activation, and the termi-
nation action is sampled from this probability.

C Network Architecture, Algo-
rithm and Hyperparameters
for Sequence Guess

C.1 Algorithm
The REINFORCE algorithm with a baseline and
the ADAM[25] optimizer is used. A moving average
is used as the baseline. This is how the baseline is
calculated at iteration t+ 1:

bt+1 = 0.7bt + 0.3Gt (12)

Where Gt is the mean return over the entire mini-
batch for the current iteration. This is the same
baseline that Cao et al. [6] used. Since the stability
issues observed in Continuous Negotiation has not
been observed in this game, a more simple baseline
should suffice.

C.2 Network Architecture
C.2.1 Discrete messages

Both the guesser and mastermind:

1. Input Guesser: Current Turn, Last Message.
Input Mastermind: Current turn, Last Guess,
Target Sequence.

2. An encoder-decoder using LSTMs, a one hot
encoding of the current turn is appended to the
hidden state. Refer to Fig. C.1 for more details.

3. Fully Connected layer of input size 100 and
output size 3, one for each letter, with softmax
activation over final dimension.

4. Initialize B ·k categorical distributions with |Σ|
categories, where B is the batch size, k is the
sequence length and |Σ| is the alphabet size.
We then sample the guesses or messages for the
Guesser and Mastermind respectively.

C.2.2 Continuous messages

For continuous messages the architecture is the same
except for that mastermind employs only the encoder
part, where the final hidden state is used in a fully
connected layer of size 100, then a ReLU activation
and another fully connected layer, the output from
this layer is used in the same manner as in Negotia-
tion in order to generate the message. The guesser
employs only the decoder part for continuous mes-
sages, as messages are of the same type as those
used for Negotiation.

Table C.1 shows the hyperparameters used in
Sequence Guess.
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Figure C.1. The encoder-decoder architecture used for DM Sequence Guess. In the case of the mastermind,
input xt will contain symbol number t from the guess sequence and target sequence, T1 will be the length of the
target sequence and T2 will be the length of the message sequence. The output yt is used in a fully connected
layer with a Softmax activation function in order to find message symbol number t. In the case of the guesser,
input xt will contain symbol number t from the message, T1 will be the length of the message sequence and T2

will be the length of the target sequence. yt is used in a fully connected layer with a Softmax activation function
in order to find guess symbol number t. In both cases, a one-hot encoding of the current turn is appended to the
final hidden state of the Encoder in order to produce the context vector.

Hyperparameter Value

Batch Size 2048
Learning Rate 0.001
Iterations 100 000
Encoder Size 100
Decoder Size 100 + n turns
Hidden Layer Size 100
λ1 100
λ2 10
λPS 1
λIB 1
β1 (Decay Rate, Adam) 0.9
β2 (Decay Rate, Adam) 0.999
weight decay 0.0001 if CM 0 if DM

Table C.1. Hyperparameters used in Sequence Guess.
The same hyperparameters are used for the guesser and
the mastermind. The reasoning behind the choice of
hyperparameters is they are of the same magnitude as
the ones used by Cao et al. [6]. Note that weight decay
with DM fails to produce any convergence, the most
likely reason beings that the gradient signal in the initial
correlations giving rise to communication is too weak
compared to the gradient signal of weight decay. We
selected values for λ1 and λ2 which caused the magnitude
of the PS loss the be similar to that of the REINFORCE
loss.
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